#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static complex c_b1 = {1.f,0.f}; static integer c__1 = 1; /* Subroutine */ int ctzrqf_(integer *m, integer *n, complex *a, integer *lda, complex *tau, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2; complex q__1, q__2; /* Builtin functions */ void r_cnjg(complex *, complex *); /* Local variables */ integer i__, k, m1; extern /* Subroutine */ int cgerc_(integer *, integer *, complex *, complex *, integer *, complex *, integer *, complex *, integer *); complex alpha; extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex * , complex *, integer *, complex *, integer *, complex *, complex * , integer *), ccopy_(integer *, complex *, integer *, complex *, integer *), caxpy_(integer *, complex *, complex *, integer *, complex *, integer *), clarfg_(integer *, complex *, complex *, integer *, complex *), clacgv_(integer *, complex *, integer *), xerbla_(char *, integer *); /* -- LAPACK routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* This routine is deprecated and has been replaced by routine CTZRZF. */ /* CTZRQF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A */ /* to upper triangular form by means of unitary transformations. */ /* The upper trapezoidal matrix A is factored as */ /* A = ( R 0 ) * Z, */ /* where Z is an N-by-N unitary matrix and R is an M-by-M upper */ /* triangular matrix. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrix A. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix A. N >= M. */ /* A (input/output) COMPLEX array, dimension (LDA,N) */ /* On entry, the leading M-by-N upper trapezoidal part of the */ /* array A must contain the matrix to be factorized. */ /* On exit, the leading M-by-M upper triangular part of A */ /* contains the upper triangular matrix R, and elements M+1 to */ /* N of the first M rows of A, with the array TAU, represent the */ /* unitary matrix Z as a product of M elementary reflectors. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,M). */ /* TAU (output) COMPLEX array, dimension (M) */ /* The scalar factors of the elementary reflectors. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* Further Details */ /* =============== */ /* The factorization is obtained by Householder's method. The kth */ /* transformation matrix, Z( k ), whose conjugate transpose is used to */ /* introduce zeros into the (m - k + 1)th row of A, is given in the form */ /* Z( k ) = ( I 0 ), */ /* ( 0 T( k ) ) */ /* where */ /* T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ), */ /* ( 0 ) */ /* ( z( k ) ) */ /* tau is a scalar and z( k ) is an ( n - m ) element vector. */ /* tau and z( k ) are chosen to annihilate the elements of the kth row */ /* of X. */ /* The scalar tau is returned in the kth element of TAU and the vector */ /* u( k ) in the kth row of A, such that the elements of z( k ) are */ /* in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in */ /* the upper triangular part of A. */ /* Z is given by */ /* Z = Z( 1 ) * Z( 2 ) * ... * Z( m ). */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; /* Function Body */ *info = 0; if (*m < 0) { *info = -1; } else if (*n < *m) { *info = -2; } else if (*lda < max(1,*m)) { *info = -4; } if (*info != 0) { i__1 = -(*info); xerbla_("CTZRQF", &i__1); return 0; } /* Perform the factorization. */ if (*m == 0) { return 0; } if (*m == *n) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__; tau[i__2].r = 0.f, tau[i__2].i = 0.f; /* L10: */ } } else { /* Computing MIN */ i__1 = *m + 1; m1 = min(i__1,*n); for (k = *m; k >= 1; --k) { /* Use a Householder reflection to zero the kth row of A. */ /* First set up the reflection. */ i__1 = k + k * a_dim1; r_cnjg(&q__1, &a[k + k * a_dim1]); a[i__1].r = q__1.r, a[i__1].i = q__1.i; i__1 = *n - *m; clacgv_(&i__1, &a[k + m1 * a_dim1], lda); i__1 = k + k * a_dim1; alpha.r = a[i__1].r, alpha.i = a[i__1].i; i__1 = *n - *m + 1; clarfg_(&i__1, &alpha, &a[k + m1 * a_dim1], lda, &tau[k]); i__1 = k + k * a_dim1; a[i__1].r = alpha.r, a[i__1].i = alpha.i; i__1 = k; r_cnjg(&q__1, &tau[k]); tau[i__1].r = q__1.r, tau[i__1].i = q__1.i; i__1 = k; if ((tau[i__1].r != 0.f || tau[i__1].i != 0.f) && k > 1) { /* We now perform the operation A := A*P( k )'. */ /* Use the first ( k - 1 ) elements of TAU to store a( k ), */ /* where a( k ) consists of the first ( k - 1 ) elements of */ /* the kth column of A. Also let B denote the first */ /* ( k - 1 ) rows of the last ( n - m ) columns of A. */ i__1 = k - 1; ccopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &tau[1], &c__1); /* Form w = a( k ) + B*z( k ) in TAU. */ i__1 = k - 1; i__2 = *n - *m; cgemv_("No transpose", &i__1, &i__2, &c_b1, &a[m1 * a_dim1 + 1], lda, &a[k + m1 * a_dim1], lda, &c_b1, &tau[1], & c__1); /* Now form a( k ) := a( k ) - conjg(tau)*w */ /* and B := B - conjg(tau)*w*z( k )'. */ i__1 = k - 1; r_cnjg(&q__2, &tau[k]); q__1.r = -q__2.r, q__1.i = -q__2.i; caxpy_(&i__1, &q__1, &tau[1], &c__1, &a[k * a_dim1 + 1], & c__1); i__1 = k - 1; i__2 = *n - *m; r_cnjg(&q__2, &tau[k]); q__1.r = -q__2.r, q__1.i = -q__2.i; cgerc_(&i__1, &i__2, &q__1, &tau[1], &c__1, &a[k + m1 * a_dim1], lda, &a[m1 * a_dim1 + 1], lda); } /* L20: */ } } return 0; /* End of CTZRQF */ } /* ctzrqf_ */