#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; /* Subroutine */ int cptcon_(integer *n, real *d__, complex *e, real *anorm, real *rcond, real *rwork, integer *info) { /* System generated locals */ integer i__1; real r__1; /* Builtin functions */ double c_abs(complex *); /* Local variables */ integer i__, ix; extern /* Subroutine */ int xerbla_(char *, integer *); extern integer isamax_(integer *, real *, integer *); real ainvnm; /* -- LAPACK routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CPTCON computes the reciprocal of the condition number (in the */ /* 1-norm) of a complex Hermitian positive definite tridiagonal matrix */ /* using the factorization A = L*D*L**H or A = U**H*D*U computed by */ /* CPTTRF. */ /* Norm(inv(A)) is computed by a direct method, and the reciprocal of */ /* the condition number is computed as */ /* RCOND = 1 / (ANORM * norm(inv(A))). */ /* Arguments */ /* ========= */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* D (input) REAL array, dimension (N) */ /* The n diagonal elements of the diagonal matrix D from the */ /* factorization of A, as computed by CPTTRF. */ /* E (input) COMPLEX array, dimension (N-1) */ /* The (n-1) off-diagonal elements of the unit bidiagonal factor */ /* U or L from the factorization of A, as computed by CPTTRF. */ /* ANORM (input) REAL */ /* The 1-norm of the original matrix A. */ /* RCOND (output) REAL */ /* The reciprocal of the condition number of the matrix A, */ /* computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is the */ /* 1-norm of inv(A) computed in this routine. */ /* RWORK (workspace) REAL array, dimension (N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* Further Details */ /* =============== */ /* The method used is described in Nicholas J. Higham, "Efficient */ /* Algorithms for Computing the Condition Number of a Tridiagonal */ /* Matrix", SIAM J. Sci. Stat. Comput., Vol. 7, No. 1, January 1986. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments. */ /* Parameter adjustments */ --rwork; --e; --d__; /* Function Body */ *info = 0; if (*n < 0) { *info = -1; } else if (*anorm < 0.f) { *info = -4; } if (*info != 0) { i__1 = -(*info); xerbla_("CPTCON", &i__1); return 0; } /* Quick return if possible */ *rcond = 0.f; if (*n == 0) { *rcond = 1.f; return 0; } else if (*anorm == 0.f) { return 0; } /* Check that D(1:N) is positive. */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { if (d__[i__] <= 0.f) { return 0; } /* L10: */ } /* Solve M(A) * x = e, where M(A) = (m(i,j)) is given by */ /* m(i,j) = abs(A(i,j)), i = j, */ /* m(i,j) = -abs(A(i,j)), i .ne. j, */ /* and e = [ 1, 1, ..., 1 ]'. Note M(A) = M(L)*D*M(L)'. */ /* Solve M(L) * x = e. */ rwork[1] = 1.f; i__1 = *n; for (i__ = 2; i__ <= i__1; ++i__) { rwork[i__] = rwork[i__ - 1] * c_abs(&e[i__ - 1]) + 1.f; /* L20: */ } /* Solve D * M(L)' * x = b. */ rwork[*n] /= d__[*n]; for (i__ = *n - 1; i__ >= 1; --i__) { rwork[i__] = rwork[i__] / d__[i__] + rwork[i__ + 1] * c_abs(&e[i__]); /* L30: */ } /* Compute AINVNM = max(x(i)), 1<=i<=n. */ ix = isamax_(n, &rwork[1], &c__1); ainvnm = (r__1 = rwork[ix], dabs(r__1)); /* Compute the reciprocal condition number. */ if (ainvnm != 0.f) { *rcond = 1.f / ainvnm / *anorm; } return 0; /* End of CPTCON */ } /* cptcon_ */