#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; /* Subroutine */ int cggrqf_(integer *m, integer *p, integer *n, complex *a, integer *lda, complex *taua, complex *b, integer *ldb, complex *taub, complex *work, integer *lwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3; /* Local variables */ integer nb, nb1, nb2, nb3, lopt; extern /* Subroutine */ int cgeqrf_(integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), cgerqf_( integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); extern /* Subroutine */ int cunmrq_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *); integer lwkopt; logical lquery; /* -- LAPACK routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CGGRQF computes a generalized RQ factorization of an M-by-N matrix A */ /* and a P-by-N matrix B: */ /* A = R*Q, B = Z*T*Q, */ /* where Q is an N-by-N unitary matrix, Z is a P-by-P unitary */ /* matrix, and R and T assume one of the forms: */ /* if M <= N, R = ( 0 R12 ) M, or if M > N, R = ( R11 ) M-N, */ /* N-M M ( R21 ) N */ /* N */ /* where R12 or R21 is upper triangular, and */ /* if P >= N, T = ( T11 ) N , or if P < N, T = ( T11 T12 ) P, */ /* ( 0 ) P-N P N-P */ /* N */ /* where T11 is upper triangular. */ /* In particular, if B is square and nonsingular, the GRQ factorization */ /* of A and B implicitly gives the RQ factorization of A*inv(B): */ /* A*inv(B) = (R*inv(T))*Z' */ /* where inv(B) denotes the inverse of the matrix B, and Z' denotes the */ /* conjugate transpose of the matrix Z. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrix A. M >= 0. */ /* P (input) INTEGER */ /* The number of rows of the matrix B. P >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrices A and B. N >= 0. */ /* A (input/output) COMPLEX array, dimension (LDA,N) */ /* On entry, the M-by-N matrix A. */ /* On exit, if M <= N, the upper triangle of the subarray */ /* A(1:M,N-M+1:N) contains the M-by-M upper triangular matrix R; */ /* if M > N, the elements on and above the (M-N)-th subdiagonal */ /* contain the M-by-N upper trapezoidal matrix R; the remaining */ /* elements, with the array TAUA, represent the unitary */ /* matrix Q as a product of elementary reflectors (see Further */ /* Details). */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,M). */ /* TAUA (output) COMPLEX array, dimension (min(M,N)) */ /* The scalar factors of the elementary reflectors which */ /* represent the unitary matrix Q (see Further Details). */ /* B (input/output) COMPLEX array, dimension (LDB,N) */ /* On entry, the P-by-N matrix B. */ /* On exit, the elements on and above the diagonal of the array */ /* contain the min(P,N)-by-N upper trapezoidal matrix T (T is */ /* upper triangular if P >= N); the elements below the diagonal, */ /* with the array TAUB, represent the unitary matrix Z as a */ /* product of elementary reflectors (see Further Details). */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,P). */ /* TAUB (output) COMPLEX array, dimension (min(P,N)) */ /* The scalar factors of the elementary reflectors which */ /* represent the unitary matrix Z (see Further Details). */ /* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. LWORK >= max(1,N,M,P). */ /* For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3), */ /* where NB1 is the optimal blocksize for the RQ factorization */ /* of an M-by-N matrix, NB2 is the optimal blocksize for the */ /* QR factorization of a P-by-N matrix, and NB3 is the optimal */ /* blocksize for a call of CUNMRQ. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO=-i, the i-th argument had an illegal value. */ /* Further Details */ /* =============== */ /* The matrix Q is represented as a product of elementary reflectors */ /* Q = H(1) H(2) . . . H(k), where k = min(m,n). */ /* Each H(i) has the form */ /* H(i) = I - taua * v * v' */ /* where taua is a complex scalar, and v is a complex vector with */ /* v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in */ /* A(m-k+i,1:n-k+i-1), and taua in TAUA(i). */ /* To form Q explicitly, use LAPACK subroutine CUNGRQ. */ /* To use Q to update another matrix, use LAPACK subroutine CUNMRQ. */ /* The matrix Z is represented as a product of elementary reflectors */ /* Z = H(1) H(2) . . . H(k), where k = min(p,n). */ /* Each H(i) has the form */ /* H(i) = I - taub * v * v' */ /* where taub is a complex scalar, and v is a complex vector with */ /* v(1:i-1) = 0 and v(i) = 1; v(i+1:p) is stored on exit in B(i+1:p,i), */ /* and taub in TAUB(i). */ /* To form Z explicitly, use LAPACK subroutine CUNGQR. */ /* To use Z to update another matrix, use LAPACK subroutine CUNMQR. */ /* ===================================================================== */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --taua; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --taub; --work; /* Function Body */ *info = 0; nb1 = ilaenv_(&c__1, "CGERQF", " ", m, n, &c_n1, &c_n1); nb2 = ilaenv_(&c__1, "CGEQRF", " ", p, n, &c_n1, &c_n1); nb3 = ilaenv_(&c__1, "CUNMRQ", " ", m, n, p, &c_n1); /* Computing MAX */ i__1 = max(nb1,nb2); nb = max(i__1,nb3); /* Computing MAX */ i__1 = max(*n,*m); lwkopt = max(i__1,*p) * nb; work[1].r = (real) lwkopt, work[1].i = 0.f; lquery = *lwork == -1; if (*m < 0) { *info = -1; } else if (*p < 0) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*lda < max(1,*m)) { *info = -5; } else if (*ldb < max(1,*p)) { *info = -8; } else /* if(complicated condition) */ { /* Computing MAX */ i__1 = max(1,*m), i__1 = max(i__1,*p); if (*lwork < max(i__1,*n) && ! lquery) { *info = -11; } } if (*info != 0) { i__1 = -(*info); xerbla_("CGGRQF", &i__1); return 0; } else if (lquery) { return 0; } /* RQ factorization of M-by-N matrix A: A = R*Q */ cgerqf_(m, n, &a[a_offset], lda, &taua[1], &work[1], lwork, info); lopt = work[1].r; /* Update B := B*Q' */ i__1 = min(*m,*n); /* Computing MAX */ i__2 = 1, i__3 = *m - *n + 1; cunmrq_("Right", "Conjugate Transpose", p, n, &i__1, &a[max(i__2, i__3)+ a_dim1], lda, &taua[1], &b[b_offset], ldb, &work[1], lwork, info); /* Computing MAX */ i__1 = lopt, i__2 = (integer) work[1].r; lopt = max(i__1,i__2); /* QR factorization of P-by-N matrix B: B = Z*T */ cgeqrf_(p, n, &b[b_offset], ldb, &taub[1], &work[1], lwork, info); /* Computing MAX */ i__2 = lopt, i__3 = (integer) work[1].r; i__1 = max(i__2,i__3); work[1].r = (real) i__1, work[1].i = 0.f; return 0; /* End of CGGRQF */ } /* cggrqf_ */