#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; static integer c__0 = 0; static integer c_n1 = -1; /* Subroutine */ int cgees_(char *jobvs, char *sort, L_fp select, integer *n, complex *a, integer *lda, integer *sdim, complex *w, complex *vs, integer *ldvs, complex *work, integer *lwork, real *rwork, logical * bwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, vs_dim1, vs_offset, i__1, i__2; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ integer i__; real s; integer ihi, ilo; real dum[1], eps, sep; integer ibal; real anrm; integer ierr, itau, iwrk, icond, ieval; extern logical lsame_(char *, char *); extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, complex *, integer *), cgebak_(char *, char *, integer *, integer *, integer *, real *, integer *, complex *, integer *, integer *), cgebal_(char *, integer *, complex *, integer *, integer *, integer *, real *, integer *), slabad_(real *, real *); logical scalea; extern doublereal clange_(char *, integer *, integer *, complex *, integer *, real *); real cscale; extern /* Subroutine */ int cgehrd_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), clascl_(char *, integer *, integer *, real *, real *, integer *, integer *, complex *, integer *, integer *); extern doublereal slamch_(char *); extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *), xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); real bignum; extern /* Subroutine */ int chseqr_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *), cunghr_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), ctrsen_(char *, char *, logical *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, real *, real *, complex *, integer *, integer *); integer minwrk, maxwrk; real smlnum; integer hswork; logical wantst, lquery, wantvs; /* -- LAPACK driver routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* .. Function Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CGEES computes for an N-by-N complex nonsymmetric matrix A, the */ /* eigenvalues, the Schur form T, and, optionally, the matrix of Schur */ /* vectors Z. This gives the Schur factorization A = Z*T*(Z**H). */ /* Optionally, it also orders the eigenvalues on the diagonal of the */ /* Schur form so that selected eigenvalues are at the top left. */ /* The leading columns of Z then form an orthonormal basis for the */ /* invariant subspace corresponding to the selected eigenvalues. */ /* A complex matrix is in Schur form if it is upper triangular. */ /* Arguments */ /* ========= */ /* JOBVS (input) CHARACTER*1 */ /* = 'N': Schur vectors are not computed; */ /* = 'V': Schur vectors are computed. */ /* SORT (input) CHARACTER*1 */ /* Specifies whether or not to order the eigenvalues on the */ /* diagonal of the Schur form. */ /* = 'N': Eigenvalues are not ordered: */ /* = 'S': Eigenvalues are ordered (see SELECT). */ /* SELECT (external procedure) LOGICAL FUNCTION of one COMPLEX argument */ /* SELECT must be declared EXTERNAL in the calling subroutine. */ /* If SORT = 'S', SELECT is used to select eigenvalues to order */ /* to the top left of the Schur form. */ /* IF SORT = 'N', SELECT is not referenced. */ /* The eigenvalue W(j) is selected if SELECT(W(j)) is true. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* A (input/output) COMPLEX array, dimension (LDA,N) */ /* On entry, the N-by-N matrix A. */ /* On exit, A has been overwritten by its Schur form T. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* SDIM (output) INTEGER */ /* If SORT = 'N', SDIM = 0. */ /* If SORT = 'S', SDIM = number of eigenvalues for which */ /* SELECT is true. */ /* W (output) COMPLEX array, dimension (N) */ /* W contains the computed eigenvalues, in the same order that */ /* they appear on the diagonal of the output Schur form T. */ /* VS (output) COMPLEX array, dimension (LDVS,N) */ /* If JOBVS = 'V', VS contains the unitary matrix Z of Schur */ /* vectors. */ /* If JOBVS = 'N', VS is not referenced. */ /* LDVS (input) INTEGER */ /* The leading dimension of the array VS. LDVS >= 1; if */ /* JOBVS = 'V', LDVS >= N. */ /* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. LWORK >= max(1,2*N). */ /* For good performance, LWORK must generally be larger. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* RWORK (workspace) REAL array, dimension (N) */ /* BWORK (workspace) LOGICAL array, dimension (N) */ /* Not referenced if SORT = 'N'. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* > 0: if INFO = i, and i is */ /* <= N: the QR algorithm failed to compute all the */ /* eigenvalues; elements 1:ILO-1 and i+1:N of W */ /* contain those eigenvalues which have converged; */ /* if JOBVS = 'V', VS contains the matrix which */ /* reduces A to its partially converged Schur form. */ /* = N+1: the eigenvalues could not be reordered because */ /* some eigenvalues were too close to separate (the */ /* problem is very ill-conditioned); */ /* = N+2: after reordering, roundoff changed values of */ /* some complex eigenvalues so that leading */ /* eigenvalues in the Schur form no longer satisfy */ /* SELECT = .TRUE.. This could also be caused by */ /* underflow due to scaling. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --w; vs_dim1 = *ldvs; vs_offset = 1 + vs_dim1; vs -= vs_offset; --work; --rwork; --bwork; /* Function Body */ *info = 0; lquery = *lwork == -1; wantvs = lsame_(jobvs, "V"); wantst = lsame_(sort, "S"); if (! wantvs && ! lsame_(jobvs, "N")) { *info = -1; } else if (! wantst && ! lsame_(sort, "N")) { *info = -2; } else if (*n < 0) { *info = -4; } else if (*lda < max(1,*n)) { *info = -6; } else if (*ldvs < 1 || wantvs && *ldvs < *n) { *info = -10; } /* Compute workspace */ /* (Note: Comments in the code beginning "Workspace:" describe the */ /* minimal amount of workspace needed at that point in the code, */ /* as well as the preferred amount for good performance. */ /* CWorkspace refers to complex workspace, and RWorkspace to real */ /* workspace. NB refers to the optimal block size for the */ /* immediately following subroutine, as returned by ILAENV. */ /* HSWORK refers to the workspace preferred by CHSEQR, as */ /* calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */ /* the worst case.) */ if (*info == 0) { if (*n == 0) { minwrk = 1; maxwrk = 1; } else { maxwrk = *n + *n * ilaenv_(&c__1, "CGEHRD", " ", n, &c__1, n, & c__0); minwrk = *n << 1; chseqr_("S", jobvs, n, &c__1, n, &a[a_offset], lda, &w[1], &vs[ vs_offset], ldvs, &work[1], &c_n1, &ieval); hswork = work[1].r; if (! wantvs) { maxwrk = max(maxwrk,hswork); } else { /* Computing MAX */ i__1 = maxwrk, i__2 = *n + (*n - 1) * ilaenv_(&c__1, "CUNGHR", " ", n, &c__1, n, &c_n1); maxwrk = max(i__1,i__2); maxwrk = max(maxwrk,hswork); } } work[1].r = (real) maxwrk, work[1].i = 0.f; if (*lwork < minwrk && ! lquery) { *info = -12; } } if (*info != 0) { i__1 = -(*info); xerbla_("CGEES ", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { *sdim = 0; return 0; } /* Get machine constants */ eps = slamch_("P"); smlnum = slamch_("S"); bignum = 1.f / smlnum; slabad_(&smlnum, &bignum); smlnum = sqrt(smlnum) / eps; bignum = 1.f / smlnum; /* Scale A if max element outside range [SMLNUM,BIGNUM] */ anrm = clange_("M", n, n, &a[a_offset], lda, dum); scalea = FALSE_; if (anrm > 0.f && anrm < smlnum) { scalea = TRUE_; cscale = smlnum; } else if (anrm > bignum) { scalea = TRUE_; cscale = bignum; } if (scalea) { clascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, & ierr); } /* Permute the matrix to make it more nearly triangular */ /* (CWorkspace: none) */ /* (RWorkspace: need N) */ ibal = 1; cgebal_("P", n, &a[a_offset], lda, &ilo, &ihi, &rwork[ibal], &ierr); /* Reduce to upper Hessenberg form */ /* (CWorkspace: need 2*N, prefer N+N*NB) */ /* (RWorkspace: none) */ itau = 1; iwrk = *n + itau; i__1 = *lwork - iwrk + 1; cgehrd_(n, &ilo, &ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1, &ierr); if (wantvs) { /* Copy Householder vectors to VS */ clacpy_("L", n, n, &a[a_offset], lda, &vs[vs_offset], ldvs) ; /* Generate unitary matrix in VS */ /* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) */ /* (RWorkspace: none) */ i__1 = *lwork - iwrk + 1; cunghr_(n, &ilo, &ihi, &vs[vs_offset], ldvs, &work[itau], &work[iwrk], &i__1, &ierr); } *sdim = 0; /* Perform QR iteration, accumulating Schur vectors in VS if desired */ /* (CWorkspace: need 1, prefer HSWORK (see comments) ) */ /* (RWorkspace: none) */ iwrk = itau; i__1 = *lwork - iwrk + 1; chseqr_("S", jobvs, n, &ilo, &ihi, &a[a_offset], lda, &w[1], &vs[ vs_offset], ldvs, &work[iwrk], &i__1, &ieval); if (ieval > 0) { *info = ieval; } /* Sort eigenvalues if desired */ if (wantst && *info == 0) { if (scalea) { clascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &w[1], n, & ierr); } i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { bwork[i__] = (*select)(&w[i__]); /* L10: */ } /* Reorder eigenvalues and transform Schur vectors */ /* (CWorkspace: none) */ /* (RWorkspace: none) */ i__1 = *lwork - iwrk + 1; ctrsen_("N", jobvs, &bwork[1], n, &a[a_offset], lda, &vs[vs_offset], ldvs, &w[1], sdim, &s, &sep, &work[iwrk], &i__1, &icond); } if (wantvs) { /* Undo balancing */ /* (CWorkspace: none) */ /* (RWorkspace: need N) */ cgebak_("P", "R", n, &ilo, &ihi, &rwork[ibal], n, &vs[vs_offset], ldvs, &ierr); } if (scalea) { /* Undo scaling for the Schur form of A */ clascl_("U", &c__0, &c__0, &cscale, &anrm, n, n, &a[a_offset], lda, & ierr); i__1 = *lda + 1; ccopy_(n, &a[a_offset], &i__1, &w[1], &c__1); } work[1].r = (real) maxwrk, work[1].i = 0.f; return 0; /* End of CGEES */ } /* cgees_ */