#include "f2c.h" #include "blaswrap.h" /* Subroutine */ int zherk_(char *uplo, char *trans, integer *n, integer *k, doublereal *alpha, doublecomplex *a, integer *lda, doublereal *beta, doublecomplex *c__, integer *ldc) { /* System generated locals */ integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3, i__4, i__5, i__6; doublereal d__1; doublecomplex z__1, z__2, z__3; /* Builtin functions */ void d_cnjg(doublecomplex *, doublecomplex *); /* Local variables */ integer i__, j, l, info; doublecomplex temp; extern logical lsame_(char *, char *); integer nrowa; doublereal rtemp; logical upper; extern /* Subroutine */ int xerbla_(char *, integer *); /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZHERK performs one of the hermitian rank k operations */ /* C := alpha*A*conjg( A' ) + beta*C, */ /* or */ /* C := alpha*conjg( A' )*A + beta*C, */ /* where alpha and beta are real scalars, C is an n by n hermitian */ /* matrix and A is an n by k matrix in the first case and a k by n */ /* matrix in the second case. */ /* Arguments */ /* ========== */ /* UPLO - CHARACTER*1. */ /* On entry, UPLO specifies whether the upper or lower */ /* triangular part of the array C is to be referenced as */ /* follows: */ /* UPLO = 'U' or 'u' Only the upper triangular part of C */ /* is to be referenced. */ /* UPLO = 'L' or 'l' Only the lower triangular part of C */ /* is to be referenced. */ /* Unchanged on exit. */ /* TRANS - CHARACTER*1. */ /* On entry, TRANS specifies the operation to be performed as */ /* follows: */ /* TRANS = 'N' or 'n' C := alpha*A*conjg( A' ) + beta*C. */ /* TRANS = 'C' or 'c' C := alpha*conjg( A' )*A + beta*C. */ /* Unchanged on exit. */ /* N - INTEGER. */ /* On entry, N specifies the order of the matrix C. N must be */ /* at least zero. */ /* Unchanged on exit. */ /* K - INTEGER. */ /* On entry with TRANS = 'N' or 'n', K specifies the number */ /* of columns of the matrix A, and on entry with */ /* TRANS = 'C' or 'c', K specifies the number of rows of the */ /* matrix A. K must be at least zero. */ /* Unchanged on exit. */ /* ALPHA - DOUBLE PRECISION . */ /* On entry, ALPHA specifies the scalar alpha. */ /* Unchanged on exit. */ /* A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is */ /* k when TRANS = 'N' or 'n', and is n otherwise. */ /* Before entry with TRANS = 'N' or 'n', the leading n by k */ /* part of the array A must contain the matrix A, otherwise */ /* the leading k by n part of the array A must contain the */ /* matrix A. */ /* Unchanged on exit. */ /* LDA - INTEGER. */ /* On entry, LDA specifies the first dimension of A as declared */ /* in the calling (sub) program. When TRANS = 'N' or 'n' */ /* then LDA must be at least max( 1, n ), otherwise LDA must */ /* be at least max( 1, k ). */ /* Unchanged on exit. */ /* BETA - DOUBLE PRECISION. */ /* On entry, BETA specifies the scalar beta. */ /* Unchanged on exit. */ /* C - COMPLEX*16 array of DIMENSION ( LDC, n ). */ /* Before entry with UPLO = 'U' or 'u', the leading n by n */ /* upper triangular part of the array C must contain the upper */ /* triangular part of the hermitian matrix and the strictly */ /* lower triangular part of C is not referenced. On exit, the */ /* upper triangular part of the array C is overwritten by the */ /* upper triangular part of the updated matrix. */ /* Before entry with UPLO = 'L' or 'l', the leading n by n */ /* lower triangular part of the array C must contain the lower */ /* triangular part of the hermitian matrix and the strictly */ /* upper triangular part of C is not referenced. On exit, the */ /* lower triangular part of the array C is overwritten by the */ /* lower triangular part of the updated matrix. */ /* Note that the imaginary parts of the diagonal elements need */ /* not be set, they are assumed to be zero, and on exit they */ /* are set to zero. */ /* LDC - INTEGER. */ /* On entry, LDC specifies the first dimension of C as declared */ /* in the calling (sub) program. LDC must be at least */ /* max( 1, n ). */ /* Unchanged on exit. */ /* Level 3 Blas routine. */ /* -- Written on 8-February-1989. */ /* Jack Dongarra, Argonne National Laboratory. */ /* Iain Duff, AERE Harwell. */ /* Jeremy Du Croz, Numerical Algorithms Group Ltd. */ /* Sven Hammarling, Numerical Algorithms Group Ltd. */ /* -- Modified 8-Nov-93 to set C(J,J) to DBLE( C(J,J) ) when BETA = 1. */ /* Ed Anderson, Cray Research Inc. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Parameters .. */ /* .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; c_dim1 = *ldc; c_offset = 1 + c_dim1; c__ -= c_offset; /* Function Body */ if (lsame_(trans, "N")) { nrowa = *n; } else { nrowa = *k; } upper = lsame_(uplo, "U"); info = 0; if (! upper && ! lsame_(uplo, "L")) { info = 1; } else if (! lsame_(trans, "N") && ! lsame_(trans, "C")) { info = 2; } else if (*n < 0) { info = 3; } else if (*k < 0) { info = 4; } else if (*lda < max(1,nrowa)) { info = 7; } else if (*ldc < max(1,*n)) { info = 10; } if (info != 0) { xerbla_("ZHERK ", &info); return 0; } /* Quick return if possible. */ if (*n == 0 || (*alpha == 0. || *k == 0) && *beta == 1.) { return 0; } /* And when alpha.eq.zero. */ if (*alpha == 0.) { if (upper) { if (*beta == 0.) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * c_dim1; c__[i__3].r = 0., c__[i__3].i = 0.; /* L10: */ } /* L20: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * c_dim1; i__4 = i__ + j * c_dim1; z__1.r = *beta * c__[i__4].r, z__1.i = *beta * c__[ i__4].i; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; /* L30: */ } i__2 = j + j * c_dim1; i__3 = j + j * c_dim1; d__1 = *beta * c__[i__3].r; c__[i__2].r = d__1, c__[i__2].i = 0.; /* L40: */ } } } else { if (*beta == 0.) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = j; i__ <= i__2; ++i__) { i__3 = i__ + j * c_dim1; c__[i__3].r = 0., c__[i__3].i = 0.; /* L50: */ } /* L60: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j + j * c_dim1; i__3 = j + j * c_dim1; d__1 = *beta * c__[i__3].r; c__[i__2].r = d__1, c__[i__2].i = 0.; i__2 = *n; for (i__ = j + 1; i__ <= i__2; ++i__) { i__3 = i__ + j * c_dim1; i__4 = i__ + j * c_dim1; z__1.r = *beta * c__[i__4].r, z__1.i = *beta * c__[ i__4].i; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; /* L70: */ } /* L80: */ } } } return 0; } /* Start the operations. */ if (lsame_(trans, "N")) { /* Form C := alpha*A*conjg( A' ) + beta*C. */ if (upper) { i__1 = *n; for (j = 1; j <= i__1; ++j) { if (*beta == 0.) { i__2 = j; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * c_dim1; c__[i__3].r = 0., c__[i__3].i = 0.; /* L90: */ } } else if (*beta != 1.) { i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * c_dim1; i__4 = i__ + j * c_dim1; z__1.r = *beta * c__[i__4].r, z__1.i = *beta * c__[ i__4].i; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; /* L100: */ } i__2 = j + j * c_dim1; i__3 = j + j * c_dim1; d__1 = *beta * c__[i__3].r; c__[i__2].r = d__1, c__[i__2].i = 0.; } else { i__2 = j + j * c_dim1; i__3 = j + j * c_dim1; d__1 = c__[i__3].r; c__[i__2].r = d__1, c__[i__2].i = 0.; } i__2 = *k; for (l = 1; l <= i__2; ++l) { i__3 = j + l * a_dim1; if (a[i__3].r != 0. || a[i__3].i != 0.) { d_cnjg(&z__2, &a[j + l * a_dim1]); z__1.r = *alpha * z__2.r, z__1.i = *alpha * z__2.i; temp.r = z__1.r, temp.i = z__1.i; i__3 = j - 1; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = i__ + j * c_dim1; i__5 = i__ + j * c_dim1; i__6 = i__ + l * a_dim1; z__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i, z__2.i = temp.r * a[i__6].i + temp.i * a[ i__6].r; z__1.r = c__[i__5].r + z__2.r, z__1.i = c__[i__5] .i + z__2.i; c__[i__4].r = z__1.r, c__[i__4].i = z__1.i; /* L110: */ } i__3 = j + j * c_dim1; i__4 = j + j * c_dim1; i__5 = i__ + l * a_dim1; z__1.r = temp.r * a[i__5].r - temp.i * a[i__5].i, z__1.i = temp.r * a[i__5].i + temp.i * a[i__5] .r; d__1 = c__[i__4].r + z__1.r; c__[i__3].r = d__1, c__[i__3].i = 0.; } /* L120: */ } /* L130: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { if (*beta == 0.) { i__2 = *n; for (i__ = j; i__ <= i__2; ++i__) { i__3 = i__ + j * c_dim1; c__[i__3].r = 0., c__[i__3].i = 0.; /* L140: */ } } else if (*beta != 1.) { i__2 = j + j * c_dim1; i__3 = j + j * c_dim1; d__1 = *beta * c__[i__3].r; c__[i__2].r = d__1, c__[i__2].i = 0.; i__2 = *n; for (i__ = j + 1; i__ <= i__2; ++i__) { i__3 = i__ + j * c_dim1; i__4 = i__ + j * c_dim1; z__1.r = *beta * c__[i__4].r, z__1.i = *beta * c__[ i__4].i; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; /* L150: */ } } else { i__2 = j + j * c_dim1; i__3 = j + j * c_dim1; d__1 = c__[i__3].r; c__[i__2].r = d__1, c__[i__2].i = 0.; } i__2 = *k; for (l = 1; l <= i__2; ++l) { i__3 = j + l * a_dim1; if (a[i__3].r != 0. || a[i__3].i != 0.) { d_cnjg(&z__2, &a[j + l * a_dim1]); z__1.r = *alpha * z__2.r, z__1.i = *alpha * z__2.i; temp.r = z__1.r, temp.i = z__1.i; i__3 = j + j * c_dim1; i__4 = j + j * c_dim1; i__5 = j + l * a_dim1; z__1.r = temp.r * a[i__5].r - temp.i * a[i__5].i, z__1.i = temp.r * a[i__5].i + temp.i * a[i__5] .r; d__1 = c__[i__4].r + z__1.r; c__[i__3].r = d__1, c__[i__3].i = 0.; i__3 = *n; for (i__ = j + 1; i__ <= i__3; ++i__) { i__4 = i__ + j * c_dim1; i__5 = i__ + j * c_dim1; i__6 = i__ + l * a_dim1; z__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i, z__2.i = temp.r * a[i__6].i + temp.i * a[ i__6].r; z__1.r = c__[i__5].r + z__2.r, z__1.i = c__[i__5] .i + z__2.i; c__[i__4].r = z__1.r, c__[i__4].i = z__1.i; /* L160: */ } } /* L170: */ } /* L180: */ } } } else { /* Form C := alpha*conjg( A' )*A + beta*C. */ if (upper) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { temp.r = 0., temp.i = 0.; i__3 = *k; for (l = 1; l <= i__3; ++l) { d_cnjg(&z__3, &a[l + i__ * a_dim1]); i__4 = l + j * a_dim1; z__2.r = z__3.r * a[i__4].r - z__3.i * a[i__4].i, z__2.i = z__3.r * a[i__4].i + z__3.i * a[i__4] .r; z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i; temp.r = z__1.r, temp.i = z__1.i; /* L190: */ } if (*beta == 0.) { i__3 = i__ + j * c_dim1; z__1.r = *alpha * temp.r, z__1.i = *alpha * temp.i; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; } else { i__3 = i__ + j * c_dim1; z__2.r = *alpha * temp.r, z__2.i = *alpha * temp.i; i__4 = i__ + j * c_dim1; z__3.r = *beta * c__[i__4].r, z__3.i = *beta * c__[ i__4].i; z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; } /* L200: */ } rtemp = 0.; i__2 = *k; for (l = 1; l <= i__2; ++l) { d_cnjg(&z__3, &a[l + j * a_dim1]); i__3 = l + j * a_dim1; z__2.r = z__3.r * a[i__3].r - z__3.i * a[i__3].i, z__2.i = z__3.r * a[i__3].i + z__3.i * a[i__3].r; z__1.r = rtemp + z__2.r, z__1.i = z__2.i; rtemp = z__1.r; /* L210: */ } if (*beta == 0.) { i__2 = j + j * c_dim1; d__1 = *alpha * rtemp; c__[i__2].r = d__1, c__[i__2].i = 0.; } else { i__2 = j + j * c_dim1; i__3 = j + j * c_dim1; d__1 = *alpha * rtemp + *beta * c__[i__3].r; c__[i__2].r = d__1, c__[i__2].i = 0.; } /* L220: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { rtemp = 0.; i__2 = *k; for (l = 1; l <= i__2; ++l) { d_cnjg(&z__3, &a[l + j * a_dim1]); i__3 = l + j * a_dim1; z__2.r = z__3.r * a[i__3].r - z__3.i * a[i__3].i, z__2.i = z__3.r * a[i__3].i + z__3.i * a[i__3].r; z__1.r = rtemp + z__2.r, z__1.i = z__2.i; rtemp = z__1.r; /* L230: */ } if (*beta == 0.) { i__2 = j + j * c_dim1; d__1 = *alpha * rtemp; c__[i__2].r = d__1, c__[i__2].i = 0.; } else { i__2 = j + j * c_dim1; i__3 = j + j * c_dim1; d__1 = *alpha * rtemp + *beta * c__[i__3].r; c__[i__2].r = d__1, c__[i__2].i = 0.; } i__2 = *n; for (i__ = j + 1; i__ <= i__2; ++i__) { temp.r = 0., temp.i = 0.; i__3 = *k; for (l = 1; l <= i__3; ++l) { d_cnjg(&z__3, &a[l + i__ * a_dim1]); i__4 = l + j * a_dim1; z__2.r = z__3.r * a[i__4].r - z__3.i * a[i__4].i, z__2.i = z__3.r * a[i__4].i + z__3.i * a[i__4] .r; z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i; temp.r = z__1.r, temp.i = z__1.i; /* L240: */ } if (*beta == 0.) { i__3 = i__ + j * c_dim1; z__1.r = *alpha * temp.r, z__1.i = *alpha * temp.i; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; } else { i__3 = i__ + j * c_dim1; z__2.r = *alpha * temp.r, z__2.i = *alpha * temp.i; i__4 = i__ + j * c_dim1; z__3.r = *beta * c__[i__4].r, z__3.i = *beta * c__[ i__4].i; z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; } /* L250: */ } /* L260: */ } } } return 0; /* End of ZHERK . */ } /* zherk_ */