#include "f2c.h" #include "blaswrap.h" /* Subroutine */ int stbsv_(char *uplo, char *trans, char *diag, integer *n, integer *k, real *a, integer *lda, real *x, integer *incx) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3, i__4; /* Local variables */ integer i__, j, l, ix, jx, kx, info; real temp; extern logical lsame_(char *, char *); integer kplus1; extern /* Subroutine */ int xerbla_(char *, integer *); logical nounit; /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* STBSV solves one of the systems of equations */ /* A*x = b, or A'*x = b, */ /* where b and x are n element vectors and A is an n by n unit, or */ /* non-unit, upper or lower triangular band matrix, with ( k + 1 ) */ /* diagonals. */ /* No test for singularity or near-singularity is included in this */ /* routine. Such tests must be performed before calling this routine. */ /* Arguments */ /* ========== */ /* UPLO - CHARACTER*1. */ /* On entry, UPLO specifies whether the matrix is an upper or */ /* lower triangular matrix as follows: */ /* UPLO = 'U' or 'u' A is an upper triangular matrix. */ /* UPLO = 'L' or 'l' A is a lower triangular matrix. */ /* Unchanged on exit. */ /* TRANS - CHARACTER*1. */ /* On entry, TRANS specifies the equations to be solved as */ /* follows: */ /* TRANS = 'N' or 'n' A*x = b. */ /* TRANS = 'T' or 't' A'*x = b. */ /* TRANS = 'C' or 'c' A'*x = b. */ /* Unchanged on exit. */ /* DIAG - CHARACTER*1. */ /* On entry, DIAG specifies whether or not A is unit */ /* triangular as follows: */ /* DIAG = 'U' or 'u' A is assumed to be unit triangular. */ /* DIAG = 'N' or 'n' A is not assumed to be unit */ /* triangular. */ /* Unchanged on exit. */ /* N - INTEGER. */ /* On entry, N specifies the order of the matrix A. */ /* N must be at least zero. */ /* Unchanged on exit. */ /* K - INTEGER. */ /* On entry with UPLO = 'U' or 'u', K specifies the number of */ /* super-diagonals of the matrix A. */ /* On entry with UPLO = 'L' or 'l', K specifies the number of */ /* sub-diagonals of the matrix A. */ /* K must satisfy 0 .le. K. */ /* Unchanged on exit. */ /* A - REAL array of DIMENSION ( LDA, n ). */ /* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */ /* by n part of the array A must contain the upper triangular */ /* band part of the matrix of coefficients, supplied column by */ /* column, with the leading diagonal of the matrix in row */ /* ( k + 1 ) of the array, the first super-diagonal starting at */ /* position 2 in row k, and so on. The top left k by k triangle */ /* of the array A is not referenced. */ /* The following program segment will transfer an upper */ /* triangular band matrix from conventional full matrix storage */ /* to band storage: */ /* DO 20, J = 1, N */ /* M = K + 1 - J */ /* DO 10, I = MAX( 1, J - K ), J */ /* A( M + I, J ) = matrix( I, J ) */ /* 10 CONTINUE */ /* 20 CONTINUE */ /* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */ /* by n part of the array A must contain the lower triangular */ /* band part of the matrix of coefficients, supplied column by */ /* column, with the leading diagonal of the matrix in row 1 of */ /* the array, the first sub-diagonal starting at position 1 in */ /* row 2, and so on. The bottom right k by k triangle of the */ /* array A is not referenced. */ /* The following program segment will transfer a lower */ /* triangular band matrix from conventional full matrix storage */ /* to band storage: */ /* DO 20, J = 1, N */ /* M = 1 - J */ /* DO 10, I = J, MIN( N, J + K ) */ /* A( M + I, J ) = matrix( I, J ) */ /* 10 CONTINUE */ /* 20 CONTINUE */ /* Note that when DIAG = 'U' or 'u' the elements of the array A */ /* corresponding to the diagonal elements of the matrix are not */ /* referenced, but are assumed to be unity. */ /* Unchanged on exit. */ /* LDA - INTEGER. */ /* On entry, LDA specifies the first dimension of A as declared */ /* in the calling (sub) program. LDA must be at least */ /* ( k + 1 ). */ /* Unchanged on exit. */ /* X - REAL array of dimension at least */ /* ( 1 + ( n - 1 )*abs( INCX ) ). */ /* Before entry, the incremented array X must contain the n */ /* element right-hand side vector b. On exit, X is overwritten */ /* with the solution vector x. */ /* INCX - INTEGER. */ /* On entry, INCX specifies the increment for the elements of */ /* X. INCX must not be zero. */ /* Unchanged on exit. */ /* Level 2 Blas routine. */ /* -- Written on 22-October-1986. */ /* Jack Dongarra, Argonne National Lab. */ /* Jeremy Du Croz, Nag Central Office. */ /* Sven Hammarling, Nag Central Office. */ /* Richard Hanson, Sandia National Labs. */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --x; /* Function Body */ info = 0; if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { info = 1; } else if (! lsame_(trans, "N") && ! lsame_(trans, "T") && ! lsame_(trans, "C")) { info = 2; } else if (! lsame_(diag, "U") && ! lsame_(diag, "N")) { info = 3; } else if (*n < 0) { info = 4; } else if (*k < 0) { info = 5; } else if (*lda < *k + 1) { info = 7; } else if (*incx == 0) { info = 9; } if (info != 0) { xerbla_("STBSV ", &info); return 0; } /* Quick return if possible. */ if (*n == 0) { return 0; } nounit = lsame_(diag, "N"); /* Set up the start point in X if the increment is not unity. This */ /* will be ( N - 1 )*INCX too small for descending loops. */ if (*incx <= 0) { kx = 1 - (*n - 1) * *incx; } else if (*incx != 1) { kx = 1; } /* Start the operations. In this version the elements of A are */ /* accessed by sequentially with one pass through A. */ if (lsame_(trans, "N")) { /* Form x := inv( A )*x. */ if (lsame_(uplo, "U")) { kplus1 = *k + 1; if (*incx == 1) { for (j = *n; j >= 1; --j) { if (x[j] != 0.f) { l = kplus1 - j; if (nounit) { x[j] /= a[kplus1 + j * a_dim1]; } temp = x[j]; /* Computing MAX */ i__2 = 1, i__3 = j - *k; i__1 = max(i__2,i__3); for (i__ = j - 1; i__ >= i__1; --i__) { x[i__] -= temp * a[l + i__ + j * a_dim1]; /* L10: */ } } /* L20: */ } } else { kx += (*n - 1) * *incx; jx = kx; for (j = *n; j >= 1; --j) { kx -= *incx; if (x[jx] != 0.f) { ix = kx; l = kplus1 - j; if (nounit) { x[jx] /= a[kplus1 + j * a_dim1]; } temp = x[jx]; /* Computing MAX */ i__2 = 1, i__3 = j - *k; i__1 = max(i__2,i__3); for (i__ = j - 1; i__ >= i__1; --i__) { x[ix] -= temp * a[l + i__ + j * a_dim1]; ix -= *incx; /* L30: */ } } jx -= *incx; /* L40: */ } } } else { if (*incx == 1) { i__1 = *n; for (j = 1; j <= i__1; ++j) { if (x[j] != 0.f) { l = 1 - j; if (nounit) { x[j] /= a[j * a_dim1 + 1]; } temp = x[j]; /* Computing MIN */ i__3 = *n, i__4 = j + *k; i__2 = min(i__3,i__4); for (i__ = j + 1; i__ <= i__2; ++i__) { x[i__] -= temp * a[l + i__ + j * a_dim1]; /* L50: */ } } /* L60: */ } } else { jx = kx; i__1 = *n; for (j = 1; j <= i__1; ++j) { kx += *incx; if (x[jx] != 0.f) { ix = kx; l = 1 - j; if (nounit) { x[jx] /= a[j * a_dim1 + 1]; } temp = x[jx]; /* Computing MIN */ i__3 = *n, i__4 = j + *k; i__2 = min(i__3,i__4); for (i__ = j + 1; i__ <= i__2; ++i__) { x[ix] -= temp * a[l + i__ + j * a_dim1]; ix += *incx; /* L70: */ } } jx += *incx; /* L80: */ } } } } else { /* Form x := inv( A')*x. */ if (lsame_(uplo, "U")) { kplus1 = *k + 1; if (*incx == 1) { i__1 = *n; for (j = 1; j <= i__1; ++j) { temp = x[j]; l = kplus1 - j; /* Computing MAX */ i__2 = 1, i__3 = j - *k; i__4 = j - 1; for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) { temp -= a[l + i__ + j * a_dim1] * x[i__]; /* L90: */ } if (nounit) { temp /= a[kplus1 + j * a_dim1]; } x[j] = temp; /* L100: */ } } else { jx = kx; i__1 = *n; for (j = 1; j <= i__1; ++j) { temp = x[jx]; ix = kx; l = kplus1 - j; /* Computing MAX */ i__4 = 1, i__2 = j - *k; i__3 = j - 1; for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) { temp -= a[l + i__ + j * a_dim1] * x[ix]; ix += *incx; /* L110: */ } if (nounit) { temp /= a[kplus1 + j * a_dim1]; } x[jx] = temp; jx += *incx; if (j > *k) { kx += *incx; } /* L120: */ } } } else { if (*incx == 1) { for (j = *n; j >= 1; --j) { temp = x[j]; l = 1 - j; /* Computing MIN */ i__1 = *n, i__3 = j + *k; i__4 = j + 1; for (i__ = min(i__1,i__3); i__ >= i__4; --i__) { temp -= a[l + i__ + j * a_dim1] * x[i__]; /* L130: */ } if (nounit) { temp /= a[j * a_dim1 + 1]; } x[j] = temp; /* L140: */ } } else { kx += (*n - 1) * *incx; jx = kx; for (j = *n; j >= 1; --j) { temp = x[jx]; ix = kx; l = 1 - j; /* Computing MIN */ i__4 = *n, i__1 = j + *k; i__3 = j + 1; for (i__ = min(i__4,i__1); i__ >= i__3; --i__) { temp -= a[l + i__ + j * a_dim1] * x[ix]; ix -= *incx; /* L150: */ } if (nounit) { temp /= a[j * a_dim1 + 1]; } x[jx] = temp; jx -= *incx; if (*n - j >= *k) { kx -= *incx; } /* L160: */ } } } } return 0; /* End of STBSV . */ } /* stbsv_ */