#include "f2c.h" #include "blaswrap.h" /* Subroutine */ int ssymm_(char *side, char *uplo, integer *m, integer *n, real *alpha, real *a, integer *lda, real *b, integer *ldb, real *beta, real *c__, integer *ldc) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, i__3; /* Local variables */ integer i__, j, k, info; real temp1, temp2; extern logical lsame_(char *, char *); integer nrowa; logical upper; extern /* Subroutine */ int xerbla_(char *, integer *); /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SSYMM performs one of the matrix-matrix operations */ /* C := alpha*A*B + beta*C, */ /* or */ /* C := alpha*B*A + beta*C, */ /* where alpha and beta are scalars, A is a symmetric matrix and B and */ /* C are m by n matrices. */ /* Arguments */ /* ========== */ /* SIDE - CHARACTER*1. */ /* On entry, SIDE specifies whether the symmetric matrix A */ /* appears on the left or right in the operation as follows: */ /* SIDE = 'L' or 'l' C := alpha*A*B + beta*C, */ /* SIDE = 'R' or 'r' C := alpha*B*A + beta*C, */ /* Unchanged on exit. */ /* UPLO - CHARACTER*1. */ /* On entry, UPLO specifies whether the upper or lower */ /* triangular part of the symmetric matrix A is to be */ /* referenced as follows: */ /* UPLO = 'U' or 'u' Only the upper triangular part of the */ /* symmetric matrix is to be referenced. */ /* UPLO = 'L' or 'l' Only the lower triangular part of the */ /* symmetric matrix is to be referenced. */ /* Unchanged on exit. */ /* M - INTEGER. */ /* On entry, M specifies the number of rows of the matrix C. */ /* M must be at least zero. */ /* Unchanged on exit. */ /* N - INTEGER. */ /* On entry, N specifies the number of columns of the matrix C. */ /* N must be at least zero. */ /* Unchanged on exit. */ /* ALPHA - REAL . */ /* On entry, ALPHA specifies the scalar alpha. */ /* Unchanged on exit. */ /* A - REAL array of DIMENSION ( LDA, ka ), where ka is */ /* m when SIDE = 'L' or 'l' and is n otherwise. */ /* Before entry with SIDE = 'L' or 'l', the m by m part of */ /* the array A must contain the symmetric matrix, such that */ /* when UPLO = 'U' or 'u', the leading m by m upper triangular */ /* part of the array A must contain the upper triangular part */ /* of the symmetric matrix and the strictly lower triangular */ /* part of A is not referenced, and when UPLO = 'L' or 'l', */ /* the leading m by m lower triangular part of the array A */ /* must contain the lower triangular part of the symmetric */ /* matrix and the strictly upper triangular part of A is not */ /* referenced. */ /* Before entry with SIDE = 'R' or 'r', the n by n part of */ /* the array A must contain the symmetric matrix, such that */ /* when UPLO = 'U' or 'u', the leading n by n upper triangular */ /* part of the array A must contain the upper triangular part */ /* of the symmetric matrix and the strictly lower triangular */ /* part of A is not referenced, and when UPLO = 'L' or 'l', */ /* the leading n by n lower triangular part of the array A */ /* must contain the lower triangular part of the symmetric */ /* matrix and the strictly upper triangular part of A is not */ /* referenced. */ /* Unchanged on exit. */ /* LDA - INTEGER. */ /* On entry, LDA specifies the first dimension of A as declared */ /* in the calling (sub) program. When SIDE = 'L' or 'l' then */ /* LDA must be at least max( 1, m ), otherwise LDA must be at */ /* least max( 1, n ). */ /* Unchanged on exit. */ /* B - REAL array of DIMENSION ( LDB, n ). */ /* Before entry, the leading m by n part of the array B must */ /* contain the matrix B. */ /* Unchanged on exit. */ /* LDB - INTEGER. */ /* On entry, LDB specifies the first dimension of B as declared */ /* in the calling (sub) program. LDB must be at least */ /* max( 1, m ). */ /* Unchanged on exit. */ /* BETA - REAL . */ /* On entry, BETA specifies the scalar beta. When BETA is */ /* supplied as zero then C need not be set on input. */ /* Unchanged on exit. */ /* C - REAL array of DIMENSION ( LDC, n ). */ /* Before entry, the leading m by n part of the array C must */ /* contain the matrix C, except when beta is zero, in which */ /* case C need not be set on entry. */ /* On exit, the array C is overwritten by the m by n updated */ /* matrix. */ /* LDC - INTEGER. */ /* On entry, LDC specifies the first dimension of C as declared */ /* in the calling (sub) program. LDC must be at least */ /* max( 1, m ). */ /* Unchanged on exit. */ /* Level 3 Blas routine. */ /* -- Written on 8-February-1989. */ /* Jack Dongarra, Argonne National Laboratory. */ /* Iain Duff, AERE Harwell. */ /* Jeremy Du Croz, Numerical Algorithms Group Ltd. */ /* Sven Hammarling, Numerical Algorithms Group Ltd. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Parameters .. */ /* .. */ /* Set NROWA as the number of rows of A. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; c_dim1 = *ldc; c_offset = 1 + c_dim1; c__ -= c_offset; /* Function Body */ if (lsame_(side, "L")) { nrowa = *m; } else { nrowa = *n; } upper = lsame_(uplo, "U"); /* Test the input parameters. */ info = 0; if (! lsame_(side, "L") && ! lsame_(side, "R")) { info = 1; } else if (! upper && ! lsame_(uplo, "L")) { info = 2; } else if (*m < 0) { info = 3; } else if (*n < 0) { info = 4; } else if (*lda < max(1,nrowa)) { info = 7; } else if (*ldb < max(1,*m)) { info = 9; } else if (*ldc < max(1,*m)) { info = 12; } if (info != 0) { xerbla_("SSYMM ", &info); return 0; } /* Quick return if possible. */ if (*m == 0 || *n == 0 || *alpha == 0.f && *beta == 1.f) { return 0; } /* And when alpha.eq.zero. */ if (*alpha == 0.f) { if (*beta == 0.f) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { c__[i__ + j * c_dim1] = 0.f; /* L10: */ } /* L20: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; /* L30: */ } /* L40: */ } } return 0; } /* Start the operations. */ if (lsame_(side, "L")) { /* Form C := alpha*A*B + beta*C. */ if (upper) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { temp1 = *alpha * b[i__ + j * b_dim1]; temp2 = 0.f; i__3 = i__ - 1; for (k = 1; k <= i__3; ++k) { c__[k + j * c_dim1] += temp1 * a[k + i__ * a_dim1]; temp2 += b[k + j * b_dim1] * a[k + i__ * a_dim1]; /* L50: */ } if (*beta == 0.f) { c__[i__ + j * c_dim1] = temp1 * a[i__ + i__ * a_dim1] + *alpha * temp2; } else { c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1] + temp1 * a[i__ + i__ * a_dim1] + *alpha * temp2; } /* L60: */ } /* L70: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { for (i__ = *m; i__ >= 1; --i__) { temp1 = *alpha * b[i__ + j * b_dim1]; temp2 = 0.f; i__2 = *m; for (k = i__ + 1; k <= i__2; ++k) { c__[k + j * c_dim1] += temp1 * a[k + i__ * a_dim1]; temp2 += b[k + j * b_dim1] * a[k + i__ * a_dim1]; /* L80: */ } if (*beta == 0.f) { c__[i__ + j * c_dim1] = temp1 * a[i__ + i__ * a_dim1] + *alpha * temp2; } else { c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1] + temp1 * a[i__ + i__ * a_dim1] + *alpha * temp2; } /* L90: */ } /* L100: */ } } } else { /* Form C := alpha*B*A + beta*C. */ i__1 = *n; for (j = 1; j <= i__1; ++j) { temp1 = *alpha * a[j + j * a_dim1]; if (*beta == 0.f) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { c__[i__ + j * c_dim1] = temp1 * b[i__ + j * b_dim1]; /* L110: */ } } else { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1] + temp1 * b[i__ + j * b_dim1]; /* L120: */ } } i__2 = j - 1; for (k = 1; k <= i__2; ++k) { if (upper) { temp1 = *alpha * a[k + j * a_dim1]; } else { temp1 = *alpha * a[j + k * a_dim1]; } i__3 = *m; for (i__ = 1; i__ <= i__3; ++i__) { c__[i__ + j * c_dim1] += temp1 * b[i__ + k * b_dim1]; /* L130: */ } /* L140: */ } i__2 = *n; for (k = j + 1; k <= i__2; ++k) { if (upper) { temp1 = *alpha * a[j + k * a_dim1]; } else { temp1 = *alpha * a[k + j * a_dim1]; } i__3 = *m; for (i__ = 1; i__ <= i__3; ++i__) { c__[i__ + j * c_dim1] += temp1 * b[i__ + k * b_dim1]; /* L150: */ } /* L160: */ } /* L170: */ } } return 0; /* End of SSYMM . */ } /* ssymm_ */