#include "f2c.h" #include "blaswrap.h" /* Subroutine */ int cgbmv_(char *trans, integer *m, integer *n, integer *kl, integer *ku, complex *alpha, complex *a, integer *lda, complex *x, integer *incx, complex *beta, complex *y, integer *incy) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5, i__6; complex q__1, q__2, q__3; /* Builtin functions */ void r_cnjg(complex *, complex *); /* Local variables */ integer i__, j, k, ix, iy, jx, jy, kx, ky, kup1, info; complex temp; integer lenx, leny; extern logical lsame_(char *, char *); extern /* Subroutine */ int xerbla_(char *, integer *); logical noconj; /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CGBMV performs one of the matrix-vector operations */ /* y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or */ /* y := alpha*conjg( A' )*x + beta*y, */ /* where alpha and beta are scalars, x and y are vectors and A is an */ /* m by n band matrix, with kl sub-diagonals and ku super-diagonals. */ /* Arguments */ /* ========== */ /* TRANS - CHARACTER*1. */ /* On entry, TRANS specifies the operation to be performed as */ /* follows: */ /* TRANS = 'N' or 'n' y := alpha*A*x + beta*y. */ /* TRANS = 'T' or 't' y := alpha*A'*x + beta*y. */ /* TRANS = 'C' or 'c' y := alpha*conjg( A' )*x + beta*y. */ /* Unchanged on exit. */ /* M - INTEGER. */ /* On entry, M specifies the number of rows of the matrix A. */ /* M must be at least zero. */ /* Unchanged on exit. */ /* N - INTEGER. */ /* On entry, N specifies the number of columns of the matrix A. */ /* N must be at least zero. */ /* Unchanged on exit. */ /* KL - INTEGER. */ /* On entry, KL specifies the number of sub-diagonals of the */ /* matrix A. KL must satisfy 0 .le. KL. */ /* Unchanged on exit. */ /* KU - INTEGER. */ /* On entry, KU specifies the number of super-diagonals of the */ /* matrix A. KU must satisfy 0 .le. KU. */ /* Unchanged on exit. */ /* ALPHA - COMPLEX . */ /* On entry, ALPHA specifies the scalar alpha. */ /* Unchanged on exit. */ /* A - COMPLEX array of DIMENSION ( LDA, n ). */ /* Before entry, the leading ( kl + ku + 1 ) by n part of the */ /* array A must contain the matrix of coefficients, supplied */ /* column by column, with the leading diagonal of the matrix in */ /* row ( ku + 1 ) of the array, the first super-diagonal */ /* starting at position 2 in row ku, the first sub-diagonal */ /* starting at position 1 in row ( ku + 2 ), and so on. */ /* Elements in the array A that do not correspond to elements */ /* in the band matrix (such as the top left ku by ku triangle) */ /* are not referenced. */ /* The following program segment will transfer a band matrix */ /* from conventional full matrix storage to band storage: */ /* DO 20, J = 1, N */ /* K = KU + 1 - J */ /* DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL ) */ /* A( K + I, J ) = matrix( I, J ) */ /* 10 CONTINUE */ /* 20 CONTINUE */ /* Unchanged on exit. */ /* LDA - INTEGER. */ /* On entry, LDA specifies the first dimension of A as declared */ /* in the calling (sub) program. LDA must be at least */ /* ( kl + ku + 1 ). */ /* Unchanged on exit. */ /* X - COMPLEX array of DIMENSION at least */ /* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' */ /* and at least */ /* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. */ /* Before entry, the incremented array X must contain the */ /* vector x. */ /* Unchanged on exit. */ /* INCX - INTEGER. */ /* On entry, INCX specifies the increment for the elements of */ /* X. INCX must not be zero. */ /* Unchanged on exit. */ /* BETA - COMPLEX . */ /* On entry, BETA specifies the scalar beta. When BETA is */ /* supplied as zero then Y need not be set on input. */ /* Unchanged on exit. */ /* Y - COMPLEX array of DIMENSION at least */ /* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' */ /* and at least */ /* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. */ /* Before entry, the incremented array Y must contain the */ /* vector y. On exit, Y is overwritten by the updated vector y. */ /* INCY - INTEGER. */ /* On entry, INCY specifies the increment for the elements of */ /* Y. INCY must not be zero. */ /* Unchanged on exit. */ /* Level 2 Blas routine. */ /* -- Written on 22-October-1986. */ /* Jack Dongarra, Argonne National Lab. */ /* Jeremy Du Croz, Nag Central Office. */ /* Sven Hammarling, Nag Central Office. */ /* Richard Hanson, Sandia National Labs. */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --x; --y; /* Function Body */ info = 0; if (! lsame_(trans, "N") && ! lsame_(trans, "T") && ! lsame_(trans, "C") ) { info = 1; } else if (*m < 0) { info = 2; } else if (*n < 0) { info = 3; } else if (*kl < 0) { info = 4; } else if (*ku < 0) { info = 5; } else if (*lda < *kl + *ku + 1) { info = 8; } else if (*incx == 0) { info = 10; } else if (*incy == 0) { info = 13; } if (info != 0) { xerbla_("CGBMV ", &info); return 0; } /* Quick return if possible. */ if (*m == 0 || *n == 0 || alpha->r == 0.f && alpha->i == 0.f && (beta->r == 1.f && beta->i == 0.f)) { return 0; } noconj = lsame_(trans, "T"); /* Set LENX and LENY, the lengths of the vectors x and y, and set */ /* up the start points in X and Y. */ if (lsame_(trans, "N")) { lenx = *n; leny = *m; } else { lenx = *m; leny = *n; } if (*incx > 0) { kx = 1; } else { kx = 1 - (lenx - 1) * *incx; } if (*incy > 0) { ky = 1; } else { ky = 1 - (leny - 1) * *incy; } /* Start the operations. In this version the elements of A are */ /* accessed sequentially with one pass through the band part of A. */ /* First form y := beta*y. */ if (beta->r != 1.f || beta->i != 0.f) { if (*incy == 1) { if (beta->r == 0.f && beta->i == 0.f) { i__1 = leny; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__; y[i__2].r = 0.f, y[i__2].i = 0.f; /* L10: */ } } else { i__1 = leny; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__; i__3 = i__; q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i, q__1.i = beta->r * y[i__3].i + beta->i * y[i__3] .r; y[i__2].r = q__1.r, y[i__2].i = q__1.i; /* L20: */ } } } else { iy = ky; if (beta->r == 0.f && beta->i == 0.f) { i__1 = leny; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = iy; y[i__2].r = 0.f, y[i__2].i = 0.f; iy += *incy; /* L30: */ } } else { i__1 = leny; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = iy; i__3 = iy; q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i, q__1.i = beta->r * y[i__3].i + beta->i * y[i__3] .r; y[i__2].r = q__1.r, y[i__2].i = q__1.i; iy += *incy; /* L40: */ } } } } if (alpha->r == 0.f && alpha->i == 0.f) { return 0; } kup1 = *ku + 1; if (lsame_(trans, "N")) { /* Form y := alpha*A*x + y. */ jx = kx; if (*incy == 1) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = jx; if (x[i__2].r != 0.f || x[i__2].i != 0.f) { i__2 = jx; q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2] .r; temp.r = q__1.r, temp.i = q__1.i; k = kup1 - j; /* Computing MAX */ i__2 = 1, i__3 = j - *ku; /* Computing MIN */ i__5 = *m, i__6 = j + *kl; i__4 = min(i__5,i__6); for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) { i__2 = i__; i__3 = i__; i__5 = k + i__ + j * a_dim1; q__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i, q__2.i = temp.r * a[i__5].i + temp.i * a[i__5] .r; q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i; y[i__2].r = q__1.r, y[i__2].i = q__1.i; /* L50: */ } } jx += *incx; /* L60: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__4 = jx; if (x[i__4].r != 0.f || x[i__4].i != 0.f) { i__4 = jx; q__1.r = alpha->r * x[i__4].r - alpha->i * x[i__4].i, q__1.i = alpha->r * x[i__4].i + alpha->i * x[i__4] .r; temp.r = q__1.r, temp.i = q__1.i; iy = ky; k = kup1 - j; /* Computing MAX */ i__4 = 1, i__2 = j - *ku; /* Computing MIN */ i__5 = *m, i__6 = j + *kl; i__3 = min(i__5,i__6); for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) { i__4 = iy; i__2 = iy; i__5 = k + i__ + j * a_dim1; q__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i, q__2.i = temp.r * a[i__5].i + temp.i * a[i__5] .r; q__1.r = y[i__2].r + q__2.r, q__1.i = y[i__2].i + q__2.i; y[i__4].r = q__1.r, y[i__4].i = q__1.i; iy += *incy; /* L70: */ } } jx += *incx; if (j > *ku) { ky += *incy; } /* L80: */ } } } else { /* Form y := alpha*A'*x + y or y := alpha*conjg( A' )*x + y. */ jy = ky; if (*incx == 1) { i__1 = *n; for (j = 1; j <= i__1; ++j) { temp.r = 0.f, temp.i = 0.f; k = kup1 - j; if (noconj) { /* Computing MAX */ i__3 = 1, i__4 = j - *ku; /* Computing MIN */ i__5 = *m, i__6 = j + *kl; i__2 = min(i__5,i__6); for (i__ = max(i__3,i__4); i__ <= i__2; ++i__) { i__3 = k + i__ + j * a_dim1; i__4 = i__; q__2.r = a[i__3].r * x[i__4].r - a[i__3].i * x[i__4] .i, q__2.i = a[i__3].r * x[i__4].i + a[i__3] .i * x[i__4].r; q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i; temp.r = q__1.r, temp.i = q__1.i; /* L90: */ } } else { /* Computing MAX */ i__2 = 1, i__3 = j - *ku; /* Computing MIN */ i__5 = *m, i__6 = j + *kl; i__4 = min(i__5,i__6); for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) { r_cnjg(&q__3, &a[k + i__ + j * a_dim1]); i__2 = i__; q__2.r = q__3.r * x[i__2].r - q__3.i * x[i__2].i, q__2.i = q__3.r * x[i__2].i + q__3.i * x[i__2] .r; q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i; temp.r = q__1.r, temp.i = q__1.i; /* L100: */ } } i__4 = jy; i__2 = jy; q__2.r = alpha->r * temp.r - alpha->i * temp.i, q__2.i = alpha->r * temp.i + alpha->i * temp.r; q__1.r = y[i__2].r + q__2.r, q__1.i = y[i__2].i + q__2.i; y[i__4].r = q__1.r, y[i__4].i = q__1.i; jy += *incy; /* L110: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { temp.r = 0.f, temp.i = 0.f; ix = kx; k = kup1 - j; if (noconj) { /* Computing MAX */ i__4 = 1, i__2 = j - *ku; /* Computing MIN */ i__5 = *m, i__6 = j + *kl; i__3 = min(i__5,i__6); for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) { i__4 = k + i__ + j * a_dim1; i__2 = ix; q__2.r = a[i__4].r * x[i__2].r - a[i__4].i * x[i__2] .i, q__2.i = a[i__4].r * x[i__2].i + a[i__4] .i * x[i__2].r; q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i; temp.r = q__1.r, temp.i = q__1.i; ix += *incx; /* L120: */ } } else { /* Computing MAX */ i__3 = 1, i__4 = j - *ku; /* Computing MIN */ i__5 = *m, i__6 = j + *kl; i__2 = min(i__5,i__6); for (i__ = max(i__3,i__4); i__ <= i__2; ++i__) { r_cnjg(&q__3, &a[k + i__ + j * a_dim1]); i__3 = ix; q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i = q__3.r * x[i__3].i + q__3.i * x[i__3] .r; q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i; temp.r = q__1.r, temp.i = q__1.i; ix += *incx; /* L130: */ } } i__2 = jy; i__3 = jy; q__2.r = alpha->r * temp.r - alpha->i * temp.i, q__2.i = alpha->r * temp.i + alpha->i * temp.r; q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i; y[i__2].r = q__1.r, y[i__2].i = q__1.i; jy += *incy; if (j > *ku) { kx += *incx; } /* L140: */ } } } return 0; /* End of CGBMV . */ } /* cgbmv_ */