SUBROUTINE DGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
* .. Scalar Arguments ..
DOUBLE PRECISION ALPHA,BETA
INTEGER INCX,INCY,KL,KU,LDA,M,N
CHARACTER TRANS
* ..
* .. Array Arguments ..
DOUBLE PRECISION A(LDA,*),X(*),Y(*)
* ..
*
* Purpose
* =======
*
* DGBMV performs one of the matrix-vector operations
*
* y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y,
*
* where alpha and beta are scalars, x and y are vectors and A is an
* m by n band matrix, with kl sub-diagonals and ku super-diagonals.
*
* Arguments
* ==========
*
* TRANS - CHARACTER*1.
* On entry, TRANS specifies the operation to be performed as
* follows:
*
* TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
*
* TRANS = 'T' or 't' y := alpha*A**T*x + beta*y.
*
* TRANS = 'C' or 'c' y := alpha*A**T*x + beta*y.
*
* Unchanged on exit.
*
* M - INTEGER.
* On entry, M specifies the number of rows of the matrix A.
* M must be at least zero.
* Unchanged on exit.
*
* N - INTEGER.
* On entry, N specifies the number of columns of the matrix A.
* N must be at least zero.
* Unchanged on exit.
*
* KL - INTEGER.
* On entry, KL specifies the number of sub-diagonals of the
* matrix A. KL must satisfy 0 .le. KL.
* Unchanged on exit.
*
* KU - INTEGER.
* On entry, KU specifies the number of super-diagonals of the
* matrix A. KU must satisfy 0 .le. KU.
* Unchanged on exit.
*
* ALPHA - DOUBLE PRECISION.
* On entry, ALPHA specifies the scalar alpha.
* Unchanged on exit.
*
* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
* Before entry, the leading ( kl + ku + 1 ) by n part of the
* array A must contain the matrix of coefficients, supplied
* column by column, with the leading diagonal of the matrix in
* row ( ku + 1 ) of the array, the first super-diagonal
* starting at position 2 in row ku, the first sub-diagonal
* starting at position 1 in row ( ku + 2 ), and so on.
* Elements in the array A that do not correspond to elements
* in the band matrix (such as the top left ku by ku triangle)
* are not referenced.
* The following program segment will transfer a band matrix
* from conventional full matrix storage to band storage:
*
* DO 20, J = 1, N
* K = KU + 1 - J
* DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
* A( K + I, J ) = matrix( I, J )
* 10 CONTINUE
* 20 CONTINUE
*
* Unchanged on exit.
*
* LDA - INTEGER.
* On entry, LDA specifies the first dimension of A as declared
* in the calling (sub) program. LDA must be at least
* ( kl + ku + 1 ).
* Unchanged on exit.
*
* X - DOUBLE PRECISION array of DIMENSION at least
* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
* and at least
* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
* Before entry, the incremented array X must contain the
* vector x.
* Unchanged on exit.
*
* INCX - INTEGER.
* On entry, INCX specifies the increment for the elements of
* X. INCX must not be zero.
* Unchanged on exit.
*
* BETA - DOUBLE PRECISION.
* On entry, BETA specifies the scalar beta. When BETA is
* supplied as zero then Y need not be set on input.
* Unchanged on exit.
*
* Y - DOUBLE PRECISION array of DIMENSION at least
* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
* and at least
* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
* Before entry, the incremented array Y must contain the
* vector y. On exit, Y is overwritten by the updated vector y.
*
* INCY - INTEGER.
* On entry, INCY specifies the increment for the elements of
* Y. INCY must not be zero.
* Unchanged on exit.
*
* Further Details
* ===============
*
* Level 2 Blas routine.
* The vector and matrix arguments are not referenced when N = 0, or M = 0
*
* -- Written on 22-October-1986.
* Jack Dongarra, Argonne National Lab.
* Jeremy Du Croz, Nag Central Office.
* Sven Hammarling, Nag Central Office.
* Richard Hanson, Sandia National Labs.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE,ZERO
PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
* ..
* .. Local Scalars ..
DOUBLE PRECISION TEMP
INTEGER I,INFO,IX,IY,J,JX,JY,K,KUP1,KX,KY,LENX,LENY
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX,MIN
* ..
*
* Test the input parameters.
*
INFO = 0
IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
+ .NOT.LSAME(TRANS,'C')) THEN
INFO = 1
ELSE IF (M.LT.0) THEN
INFO = 2
ELSE IF (N.LT.0) THEN
INFO = 3
ELSE IF (KL.LT.0) THEN
INFO = 4
ELSE IF (KU.LT.0) THEN
INFO = 5
ELSE IF (LDA.LT. (KL+KU+1)) THEN
INFO = 8
ELSE IF (INCX.EQ.0) THEN
INFO = 10
ELSE IF (INCY.EQ.0) THEN
INFO = 13
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('DGBMV ',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
+ ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
*
* Set LENX and LENY, the lengths of the vectors x and y, and set
* up the start points in X and Y.
*
IF (LSAME(TRANS,'N')) THEN
LENX = N
LENY = M
ELSE
LENX = M
LENY = N
END IF
IF (INCX.GT.0) THEN
KX = 1
ELSE
KX = 1 - (LENX-1)*INCX
END IF
IF (INCY.GT.0) THEN
KY = 1
ELSE
KY = 1 - (LENY-1)*INCY
END IF
*
* Start the operations. In this version the elements of A are
* accessed sequentially with one pass through the band part of A.
*
* First form y := beta*y.
*
IF (BETA.NE.ONE) THEN
IF (INCY.EQ.1) THEN
IF (BETA.EQ.ZERO) THEN
DO 10 I = 1,LENY
Y(I) = ZERO
10 CONTINUE
ELSE
DO 20 I = 1,LENY
Y(I) = BETA*Y(I)
20 CONTINUE
END IF
ELSE
IY = KY
IF (BETA.EQ.ZERO) THEN
DO 30 I = 1,LENY
Y(IY) = ZERO
IY = IY + INCY
30 CONTINUE
ELSE
DO 40 I = 1,LENY
Y(IY) = BETA*Y(IY)
IY = IY + INCY
40 CONTINUE
END IF
END IF
END IF
IF (ALPHA.EQ.ZERO) RETURN
KUP1 = KU + 1
IF (LSAME(TRANS,'N')) THEN
*
* Form y := alpha*A*x + y.
*
JX = KX
IF (INCY.EQ.1) THEN
DO 60 J = 1,N
IF (X(JX).NE.ZERO) THEN
TEMP = ALPHA*X(JX)
K = KUP1 - J
DO 50 I = MAX(1,J-KU),MIN(M,J+KL)
Y(I) = Y(I) + TEMP*A(K+I,J)
50 CONTINUE
END IF
JX = JX + INCX
60 CONTINUE
ELSE
DO 80 J = 1,N
IF (X(JX).NE.ZERO) THEN
TEMP = ALPHA*X(JX)
IY = KY
K = KUP1 - J
DO 70 I = MAX(1,J-KU),MIN(M,J+KL)
Y(IY) = Y(IY) + TEMP*A(K+I,J)
IY = IY + INCY
70 CONTINUE
END IF
JX = JX + INCX
IF (J.GT.KU) KY = KY + INCY
80 CONTINUE
END IF
ELSE
*
* Form y := alpha*A**T*x + y.
*
JY = KY
IF (INCX.EQ.1) THEN
DO 100 J = 1,N
TEMP = ZERO
K = KUP1 - J
DO 90 I = MAX(1,J-KU),MIN(M,J+KL)
TEMP = TEMP + A(K+I,J)*X(I)
90 CONTINUE
Y(JY) = Y(JY) + ALPHA*TEMP
JY = JY + INCY
100 CONTINUE
ELSE
DO 120 J = 1,N
TEMP = ZERO
IX = KX
K = KUP1 - J
DO 110 I = MAX(1,J-KU),MIN(M,J+KL)
TEMP = TEMP + A(K+I,J)*X(IX)
IX = IX + INCX
110 CONTINUE
Y(JY) = Y(JY) + ALPHA*TEMP
JY = JY + INCY
IF (J.GT.KU) KX = KX + INCX
120 CONTINUE
END IF
END IF
*
RETURN
*
* End of DGBMV .
*
END