A Bibliography of Publications about the Fast Multipole Method

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

26 March 2019
Version 2.132

Title word cross-reference

1 [TPKP12]. $\mathbf{S15K}$ [WGL+98]. 2 [GROZ04, Lab98, Liu8, ON08a, RS94, VGZB09, WYW05, WXQL08]. 3 [BDMN03b, BHR04, BHGR04, CDM98, DDL13, Dar02, GP08, GD03, JMC97, NW89, NH97, ON08b, PG94, QCG15, Sar03, TCD17, WY05, WLL+07, WZC+17, iYNK02, YB01, ZY05]. $\mathbf{S50/Mflop}$ [WSB+97]. $\mathbf{S7.3/Mflops}$ [KFM99]. 3 [PG96b]. $h = 0$ [DNS90]. K [MG05, CK95b]. \mathbf{LU} [MG07]. $\mathbf{R^N}$ [CBR02]. N [Aar85, Alu94, APG94, Alu96, AGPS98, AAL+01, And99, Ano94a, Ano94c, ADB94, ADBGP99, Bag02, Bar86, BADP96, BAAD+97, BADG00, BAD01, BS97, BN97, BOX00, Bor86, BDD07, BME90, BME93, BEM94, DH86, Dem95, Dem96a, Dem96b, DHM03, FRE+08, FM95, FM96, FQG+92, HTG02, HJ96, IFM09, ILM05, Kat89, KFM99, KMT00, KMT94, LKM02, Liu94, MIES90, MTES94, MT95, MD12, MG05, MMC99, McD97, NMH02, Oku96, PGB05, Per99, PRL03, SWW94, Sal96, Sha06, SP99, Sin92, SHG95, SHT+95, SRK+12, TMES94, TWYC06, TYON12, TYNO12, Ten98, TL14, WPM+02, WS92, WS93, WN14, WSWL95, WSH+12, Xu95, Yin15, YF05, Ano94b, CK95a, CK95b, GKS94, GKS98, Gre90b, HNY+09, HN10, HS95, KK95, Xue98]. $N \log N$ [AO10, DYP93, ADO11]. ν [SH07]. $O(\log_2 n)$ [JBL02]. $O(N)$ [BSL11, Deh02, DTG96, OKF14, Xue98]. $O(N \log N)$ [BH86, FGM11, PJY95]. $r^{-\lambda}$ [CJ05]. $R^{-\nu}$ [SH07]. $r \pm 1_{12}$ [Pan95].
Body [Ano94b, CK95b, GKS94, KK95, BEM94, GKS98, Gre90b, HNY+99, HN10, HS95, Xue98, AGPS98, AAL+01, And99, AD894, Bag02, BADG00, BS97, BN97, BOX00, FM96, HTG02, HN10, KFM99, KFMT00, SWW94, SHG95, SHT+95, Ten98, WPM+02, WS93, Xu95, Yin15, YF05, Aar85, Alu94, APG94, Alu96, Ano94a, Ano94c, ADBGP99, Bar86, BADP96, BAAD+97, BAD01, BSO70, BME90, BME93, CK95a, DHI86, Dem95, Dem96a, Dem96b, DHM03, FRE+98, FM95, FQG+92, IFM90, IOM05, Kats89, KMT94, LKM02, Liu94, MIES90, MTES94, MT95, NH86, Oku96, PGB05, Per99, PRL03, Sal96, Sha06, SP99, Sin92, SR+12, TMS94, TWYC06, TYON12, TYO12, TL14, WS92, WN14, WSL95, WSH+12].

- Dimensional [Lab98].
- Means [MG05].

3 [OME+92]. 3-D [YW07a]. 3051-66 [YB97]. 3rd [IEE92a]. 3D [LO96b].

4 [Ano94a, FM95, FM96, MTES94, MT95, TMES94]. 42 [HNY+09].

5 [KFM99, KFMT00]. 512 [MHI07]. 512-core [MHI07]. 512-Gflops [MHI07].

6 [MKF00, MKF01, MKFD02, MFKN03].

8 [MD12]. '88 [KK88]. 8th [BGPW00].

90 [IEE00]. '91 [Wel91]. '92 [IEE92b]. '93 [IEE93]. '94 [IEE94c]. '96 [ACM96]. 967 [MB16]. 98 [BGPW00]. 98 [Ano97b].

A-posteriori [XTH09]. above [GSC01].

Accelerate [CS08b, LSCM96, LKM02, TYNO12].

Accelerated [BCL+92, EB96, SH07, WZC+17, WN14, AC17, BHE+94, BHER94, EB94, EG01, GD09, GODZ10, GAD13, Ham11, JH08, LCM07, MR07, QCG15, Tak14, WLL+07, ZD05].

Accelerating [GHRW98, MG09, WC94a]. Acceleration [CKE90, LCZ07, SWW99, VCM00, BK96, KCF+05, SGD+04].

accelerator [ATMK03, MD12]. accomplishments [Ano90]. Accuracy [CDCD97, DY98, CB09, GL96, JP89].

Accurate [SRPD06, AHLP93, Dac06, EG09a, EG13, HKPK99, ZGD+16].

achieves [WGL+98]. Achieving [SSF96].

ACM [IEE02, Kar95]. ACM/IEEE [Kar95, ACM97].

acoustic [AD05, BSL09, BN07, CWK08, GF06b, GF06a, HW10, TCW08, WJYO06, ZGD+16].

acoustic-structure [GF06b, GF06a].

acoustics [FPG05, OLL04]. Acta [Ise97].

Adaptation [McK96]. Adapted [NT96, NT94]. adaption [BLA05].
Adaptive [BT95, BSL09, BS97, BFO99, GE13, GP08, HEGH14, KK95, NPR93, PD15, SHHG93, SHT+95, Ten98, ZT07, AC17, BCP08, CGR88, CGR99, CHL06, CFR10, FOCEB96, GY08, GL06, GCH+18, HJZ09, LCL+12, LB92a, LCHM10, LCHM13, PRL03, YBZ04, ZHPS10]. addition [HC08, KSC99]. address [HS95]. Advanced [HM86, Win95, dCGQS06, TYON12]. Advances [BLA05, SM05]. advantage [Ano92]. Adventures [CDCD97]. anomalies [KSS10]. AFMPB [LCHM10, LCHM13]. after [ZQSW94]. Algebraic [Car90, YTK14, Of08, PRT92]. Algorithm [BS00, Bor86, BFO99, CDM98, CSMCxx, Deh02, DD95, EB96, JMC97, JMBC98, KK95, Lea92, LO96a, MBS+00, MG11, MPPA96, NPR93, OKF14, SLC96, SLC97, WC94b, WS93, WN14, YR99, ZBS15, AR91, Alu96, AP99, ATR+12, BH86, Bar86, BJWS96, BS97, BCL+92, BP03, BCOY94, BP93, CGR88, CG04, CC13, CGR99, DRS96, EGHT97, EB94, EG08, EG09a, EG09b, Erg11, EG13, GH08, GDDC08, GKD09, GR87, GR88b, HS08, HSA91, HC10, HR98, JMBMC98, KM00, KK16, KS98a, LM02, LDB96, LB91, LB92a, LB92b, LSL04, LH08, LC93, LC94, LWM+92, MG07, MG09, MCBB07, NW89, NKV94, NT09, OR99, OLL03, OLL04, PJY95, PRL03, Rah06, RCVW07, Sar03, ST02, SK04, Sud04, TCVW08, TC09, WK18, WJY006, WL96, Xue98, YRGS13, YB204, Yin96, YB12]. algorithm [ZCG00, ZBS11, ZCL+98, ZB95, ZD05, Lea92, MB16]. Algorithms [APG94, AGPS98, Ano94c, ADBG99, BF78, Bha97, BN97, Boy92a, CK95a, DS00, DGR96, LCE+06, Liu94, MBS+00, MBS15, Pri94, Ten98, BC08, BHE+94, BHER94, BME93, BEM94, DMH03, Eas95, Gre94, K+96, Mak93, PRT92, Pel98, Win95, YB95]. ALiCE [HTG02]. All-to-All [HP95]. almost [FL13]. Alpha [WGL+98]. Alpha/Linux [WGL+98]. Alternative [AD05, CL91]. AMBER [DK93]. AMBERCUBE [DK93]. AMS [RSS96]. Analyse [Ano97b]. analyses [Ham11, XWY+08]. Analysis [AP99, AP00, BHH98, ERT12, HAS02, Hol12, JMBC98, LCK11, Sat10, VTG91, Ano97b, Car07, Car09, Dar00a, EG13, JMBMC98, JKJC08, KSC99, NH97, OC03, OLL04, Pe98, RC97, RSS96, SGd+04, SS07, Sud04, WY05, WY07b, WY07a]. Analytic [ABD04, BSSF96a, LCD14, BSSF96b, DDL13]. Analytical [Gus98, LBGS16, CC13]. analyze [SHM98]. Analyzing [CSON00, JMC97]. Angeles [AG88, Rod89]. Anger [CC04]. angular [GY08, WHG96b]. Animated [BT95]. Ankara [Ano97b]. Annual [Ano95b, Ano96, Ano97a, IEE92a, Mak93, PA02]. anomalies [ON09a]. Antennas [IEE94a, IEE95, IEE96a, IEE97, MI95]. anterpolation [Sar03]. Appendix [Ano90]. Application [LSCM96, Lj96b, Lj96a, NH97, SGG+04, TCD17, VOD08, WSW+95, DHM03, ERS01, GROZ04, HNO06, LWM+02, SGd+04, YR98]. Applications [CK95b, CCLKL09, OSW05, BHER94, HNY+09, LGG+13, Ot07, ON08b, PD89, ZY05, dCGQS06, TDBEE11]. Applied [BGPW00, HDG+15, RSS96, Ano95b, Ano96, Ano97a, BN07, JdR+18, MB05, OMC08]. Approach [ÁC94, SHMC97, WC94a, AHLP93, BWS+95, KAN95, KAN96, PGB05, SHM98, WJG96a, YS18]. Approximate [Beb06, CDGS03, CDGS05, CPD17, FPG05, Rei99, MG09, PRT92, YGSR01]. approximating [LX17]. Approximation [ADO11, LSCM06, AO10, GP08, ST06]. approximations [DC07, HW11, Lem04, RŠŽ09]. Apr [Dem95, Dem96a, Dem96b]. April [PA02, Web91]. Aquous [GP93]. Arbitrary [LS93, WZC+17, EIM+92, GSC01, GL96,
KS98b, LM02, Tau03b, YRGS13.
Architectural [DRS96]. Architecture [Lea92, NMH06, Sin92, TYON12, TYNO12].
Architectures [SHG95, HGD11, LCL+12, MMC99].

arithmetic [LKM02], armed [KLM+09],
array [CKS91]. article [Dac10]. ASCI [WSB+97]. aspects [CHJN03]. assemblies [CPP93, LDB96]. Astrophysical [Ano94a, KFM99, MTE94, MT95, MFK03, WS92, HN10, TME94].
Astrophysics [FQG+92, HNY+99].
Asymptotic [BK96, Dar00a]. atom [DKG92, FRE+08]. Atomic [AC94, DKG92a, Kon93]. Atoms [McD97, Pie93]. August [IEE96b, RSS96].
Australian [Ano92]. Automatic [RGK12]. Autotuning [HEGH14].

Avalon [WGL+98]. Axial [SMC97, SM97].

B [Ano90], balance [BAAD+97], Balanced [PD99]. Balancing [SHT+95, Ten98, FG96, MG05, PGd+15].

Baltimore [IEE96a, IEE02]. Banff [ER92]. Barnes [AAL+01, Ano94b, BJWS96, BGLM05, GKS94, GKS98, SHT+95, WSF+12, ZBS11, ZBS15]. barrier [WHG96b]. Based [AAB+17, CD13, GSS98a, GSS00, MPPA96, YB01, AO10, BLA05, BN98, BHGR05, FMI+93, GRO04, GKD09, GP08, HHKP09, HLL08, HLL+18, LM02, LDB96, Liu98, NN12, Sud04, Tak14, WL96, ZHP9811, ZGD+16].

bases [FBHJ04, TW03]. basis [BLA05, BL97, BN98, BCR01, Buh03, CN02, GH08, GDC08, GD07a, LCZ07, Yin06].

BE [SGP+04]. Beach [IEE95]. Behaviour [ON09a]. Beltrami [SHMC97, SM97, SMC97].

BEM [And08, BN07, FP0005, GF06b, GF06a, HKS05, MB05, NH97, Tau03a, WYW05, XWT09, TX09, XY08, hYtWbWL08, YBK+11, ZY05, ZGD+16]. BEM-FEM [MB05]. Beowulf [WWF02]. Between [AAB+17, Pie93, CDM90, RŠŽ09]. beyond [ZB14]. Bianisotropic [SHMC97, SHM98].

Biomolecular [SRP06, YBK+11, GCH+18, KPS99, LCM07, LCHM10, LCHM13, SK93].

block-diagonal [CG04]. blocking [TSIM16]. Blue [FRE+08]. BO12 [LB91].

board [ATMK01]. Bodies [BT95]. Body [APG98, AAL+01, And99, Ano94b, ADB94, Bag02, BADG00, BS97, BN97, BOX00, CK95b, FM96, GKS94, HP95, HTG02, HJ96, KFM99, KFMT00, KK95, Pie93, SWW94, SHG95, SHT+95, Ten98, WPM+02, WZC+17, WS93, Xu95, Yin15, YF05, Aar85, Alu94, AP94, Alu96, Ano94a, Ano94c, ADBP99, App85, Bar86, BAP96, BAAD+97, BAD01, BDS07, BME90, BME93, BEM94, CK95a, DH96, Dem95, Dem96a, Dem96b, DHM03, EIM+92, EFT+93, FRE+08, FM95, FQG+92, GKS98, Gre90b, HFKM98, HNY+99, HN10, HS95, IFM90, IHM05, Kat89, KMT94, LKM02, Liu94, MIES90, MTE94, MT95, MD12, MG05, MCM99, NMO96, OME+92, Oku96, PGB95, Pers99, PG96a, PRL03, Sal96, Sha06, SP99, Sin92, SRK+12, SCM+90, TME94, TW06, YON12, TNO12, TL14, WS92, WN14, WSL95, WSH+12]. body [Xue98, ZBG15]. Bologna [Ano95a].

Boltzmann [BH03, LCHM10, LCHM13].

Book [Gav11]. Born [ADO11, HCO10].

Boston [K+96]. both [HN+99].

Boulevard [ACM99]. boundaries [Mil98].

Boundary [BH03, BR93, Br04, LJR96b, LJR96a, MBA97, OSW06b, SS07, WZC+17, WSW+95, AP03, Atk97, BSL09, Bes00, BWS+95, BHR04].
BHGR04, Car06, Car07, CWHG97, CWK08, Gas97, GBMN06, Gav11, GOS99, GP08, GD09, GODZ10, GAD13, Ham11, KMC09, KCF+05, LS05, LOSZ07a, LOSZ07b, LCQF18, LHL08, Lin95, Liu08, Liu09, LC94, Mil08, OSW05, OSW06a, O08, OKS09, ON08a, ON09a, ON09b, PN95, QCG15, RZ09, SGG+04, Sat10, SKT93, Sin95, Tak14, TCD17, TW03, Tan04, VZG09, WY05, WY07b, WY07a, WSWL95, XJM08, Yin09, iYNK02, YAO18, YSM05, BR93].

Boundary-Integral [LJ96b].
boundary-value [Lin95].
Bounds [GSS98a, GSS00, WK18].
box [FD09].
breast [ES04].
Breit [JdR+18].
Bridging [AAB+17].
Broadband [WJYO06, GD09].
Brownian [DHM03].
Building [TD09].
buried [ESRS01, GSC01].

C [BGLM05].
CA [B+95, Ano95b, Ano96, Ano97a, Kar95, Wel91]. Calculate [BVW96, BV96b, BV96a, BM09].
calculated [DM90, YA018]. calculates [ATMK03].
Calculating [BF099, DM90, LCHM10, LCHM13, SKT94].
Calculation [Deh02, HA17, NT96, BJ86, BH03, FGM11, LDB96, ON08a, ON09a, ON09b, PN95, QCG15, RZ09, SGG+04, Sat10, SKT93, Sin95, Tak14, TCD17, TW03, Tan04, VZG09, WY05, WY07b, WY07a, WSWL95, XJM08, Yin09, iYNK02, YA018, YSM05, BR93].

Boundary-Integral [LJ96b].
boundary-value [Lin95].
Bounds [GSS98a, GSS00, WK18].
box [FD09].
breast [ES04].
Breit [JdR+18].
Bridging [AAB+17].
Broadband [WJYO06, GD09].
Brownian [DHM03].
Building [TD09].
buried [ESRS01, GSC01].

C [BGLM05].
CA [B+95, Ano95b, Ano96, Ano97a, Kar95, Wel91]. Calculate [BVW96, BV96b, BV96a, BM09].
calculated [DM90, YA018]. calculates [ATMK03].
Calculating [BF099, DM90, LCHM10, LCHM13, SKT94].
Calculation [Deh02, HA17, NT96, BJ86, BH03, FGM11, LDB96, ON08a, ON09a, ON09b, PN95, QCG15, RZ09, SGG+04, Sat10, SKT93, Sin95, Tak14, TCD17, TW03, Tan04, VZG09, WY05, WY07b, WY07a, WSWL95, XJM08, Yin09, iYNK02, YA018, YSM05, BR93].

Boundary-Integral [LJ96b].
boundary-value [Lin95].
Bounds [GSS98a, GSS00, WK18].
box [FD09].
breast [ES04].
Breit [JdR+18].
Bridging [AAB+17].
Broadband [WJYO06, GD09].
Brownian [DHM03].
Building [TD09].
buried [ESRS01, GSC01].

C [BGLM05].
CA [B+95, Ano95b, Ano96, Ano97a, Kar95, Wel91]. Calculate [BVW96, BV96b, BV96a, BM09].
calculated [DM90, YA018]. calculates [ATMK03].
Calculating [BF099, DM90, LCHM10, LCHM13, SKT94].
Calculation [Deh02, HA17, NT96, BJ86, BH03, FGM11, LDB96, ON08a, ON09a, ON09b, PN95, QCG15, RZ09, SGG+04, Sat10, SKT93, Sin95, Tak14, TCD17, TW03, Tan04, VZG09, WY05, WY07b, WY07a, WSWL95, XJM08, Yin09, iYNK02, YA018, YSM05, BR93].

Boundary-Integral [LJ96b].
boundary-value [Lin95].
Bounds [GSS98a, GSS00, WK18].
box [FD09].
breast [ES04].
Breit [JdR+18].
Bridging [AAB+17].
Broadband [WJYO06, GD09].
Brownian [DHM03].
Building [TD09].
buried [ESRS01, GSC01].
competitive [Ano92]. Complement [MG11].
Complex [CSMCxx, MGM95, MBS15, SLC96, SLC97, SyI03, AC17, BGGC06, CC10, CC12, NW89, Rei99, TW03, ZB95]. complexes [KSS10].

Complexity
[JBL02, Pan92, YTK14, Dur00a].

Component [CKB11, JKCGJ08].

Composite [EG13, GM94]. Composites [SMC97, GH98, WY05, WY07a]. Comprehensive [AC94]. compressible [ECL99].

Comput [BEM94]. Computation [Gue97, GD03, GD05, GODZ10, McD97, MSV92, Pie93, YRGS13, ATMK03, AO10, FOCB96]. Computational [BEM94]. Computations [ERT12, Pan92, KAN95, KAN96, OKS09, SyI03, VOD08, WJGH96a, YF98].

Computer [AT87, Ano94a, BGGT90, BP88, CKE08, FM96, HE88, IEE92a, KFMT00, MTE94, MFKN03, Bar86, EIM92, EFT93, FMI93, FM95, HFKM98, HG90, KMT94, MIE980, MT95, MHI07, OMH94, OYK94, OME92, SCM90, TMES94].

Correlations [ZQSW94]. Cosmological [Bag02, BH88, IMF09, YF05, Spr05].

Coulomb [ADG96, BFO99, CFH89, DNS90, DK92a, DK92b, DK92c, DTG96, GGM01, GH02, HJZ09, KMT94, MIE980, MT95, MHI07, OMH94, OYK94, OME92, SCM90, TMES94].

Coupling [BDMN03a, BDMN03b, Dar02, DM07, GBMN06, MB05].

Coulombic [HA17, PG96b, SKT93]. Coupled [LS05, MBS15, PNB94, SMD94, NMDK99].

Coupling [BDMN03a, BDMN03b, Dar02, DM07, GBMN06, MB05].

CPU [HEGH14]. crack [iYNK02]. cracks [ON08a, WY05]. CRAY [BAAD97].

Creeping [Kro99, Kro01, Kro02]. Cross [Gue97, GP08]. Crystal [MPPA96].

crystals [ON08b]. CS [Dem95, Dem96a, Dem96b]. Cubic [WWF02]. cultura [Ano95a]. Current [CG97, Les96]. curved [GH08]. curves [STZ14]. Custom [PA02]. cutoff [KLM09].

cutoffs [DK92b]. cylinders [CG97, ZCG00]. Cylindrical [SHMC97, SMC97, SM97, SHM98].
DREAM-1A [OMH+94]. driven [BSL11, LY14]. drops [ZD05]. dual [CCKL09, LCQF18, Liu08]. dual-level [LCQF18]. Dynamic [HEGH14, BAAD+97, CK95a, FG96, MG05]. Dynamical [SWW94, WSWL95]. Dynamics [BGGT90, BHGS90, BP88, CDCD97, HM86, JBL02, LCP93, MPPA96, NT96, OKF14, Sch94, TDGEE11, WLMP99, ATMK03, BSL11, BAL91, BSS97, BCL+92, BHE+94, BHER94, BCOY93, BCOY94, BP93, CvHM94, DK93, EGHT97, FMI+93, GDK89, GKZ07, HGS90, Ich02, KM00, KP05a, LM02, LBC91, LBI+97, LMCPP92, LWM+02, LRJ+99, NKV94, OKF14, OMH+94, OYK+14, OP07, PGB05, SF18, Ske89, VGZB09, VCM00, WS91, Win95, ZB95]. DynamO [BSL11]. Economization [LRW95]. Editor [GW98]. Editors [MBS+00, DS00]. EEG [KCF+05]. effects [AB95, BPK85]. efficiency [HLL+18, KK16]. Efficient [BS97, DH04a, EG08, HS08, NT96, RS06, SKT93, Ami00, App85, Bar86, BHR04, CL91, CCZ97, CWD08, EG09b, GR88b, KM00, Kro01, KS98a, LDB96, OI08, PN95, TSM16, WL96, WHG94, YF98, ZGD+16]. eigendecomposition [CG04]. eigensolver [ZGD+16]. Eighth [HTA+97]. elastic [CCZ97, TC09]. elasticity [GKM96]. elastodynamic [CB14]. elastoplastic [FY07b]. Elastostatic [WZC+17, GG16, GH98, HLL08, Liu08, MB05, iYNK02, ZY05]. elastostatics [OSW05, PN95]. Electric [Gus98, PBN94, ZZ93, ABD04, CS82, FH92, WFC08]. Electrically [HAS02, GDDC08]. Electrode [HB93]. Electrode-Electrolyte [HB93]. Electromagnetic [CSMCxx, EMRV92, GA96a, GA96b, SLC97, BGCC06, Car09, ESR01, ES04, GH08, MG07, MD98]. Electromagnetics [Ano95b, Ano96, Ano97a, CML+97, Erg11, Gib08, LZL04, OMC08]. Electromagnetism [CDGS03, CDGS05, BDMN03a, BDMN03b, Car06, Car07, DM07, Sy103]. electron [GS98, NH97]. electronic [Goe99, Kon93, KS98a, SSF96]. Electrostatic [CFH89, NT96, Pei98, BAL91, BHR04, BHR05, CC13, CG97, DM90, EGHT97, FOCB96, GB11, GM94, LCM07, NT94, OKS09, PA14, SGD+04, SKT94, YAO18]. Electrostatics [SRPD06, BWS+95, FGM11, LCM10, LCM13, YBK+11]. Element [BR93, LJ96b, LJ96a, MBA97, WZC+17, WSW+95, BSL09, Beb06, BWS+95, BH03, BHR04, BHR04, CWK08, Gav11, GP08, GD09, GODZ10, Ham11, KMC09, KCF+05, LS05, LOSZ07a, LOSZ07b, LCQF18, LHL08, Liu08, Liu09, OSW05, OSW06b, Of08, OKS09, PN95, SG+04, Sat10, SS07, TCD17, VW02, VCM00, WY05, WY07b, WY07a, WSWL95, XJM08, YSM05]. Element-Boundary [LJ96a, SG+04]. elements [BR93, Bre04, FST05, GAD13, Ros06]. Elizabeth [IEE97]. elliptic [A+97, Beb06, FST05, LC14]. elliptical [Ros06]. Elongation [KLM+09]. embedded [SHM98]. EMC [HU97]. energetic [BPK85]. energies [DTG96, FGM11]. energy [BSSF96a, BSSF96b, CC13, CPP93, FOCB96]. energy-conserving [CC13]. Engineering [MBS15, SM05]. Ensemble [LCP93]. entire [LC07]. entirely [Sar03]. Equation [CD13, GHRW98, GD03, MG11, Nii04, SC95, Sta95a, AP03, ABD04, BH03, CHL06, CGG+06a, CGG+06b, CC10, CC12, CRW93, DDL13, Dar02, EG09a, GM93, GKM96, GR97, GK04, GD06, GD09, GAD13, Kro09, LHL08, LC94, MCB07, MMNB06, NN12, OLL04, ON08a, ON09a, QCG15, RS97, Rok98, Sta95b, Tak14, WLL+07, WFC08, iYNK02, ZC00, ZKL+07]. Equations [DY98, AHL93, AD05, Atk97, BDMN03a, BDMN03b, Car06, Car07,
CCZ97, DH04b, Fuj98, Gas97, GBMN06, GOS99, GD07b, Hav03, LZL04, LC14, LC93, NT09, ON08b, ON09a, ON09b, RSZ09, RO04, Rok85, Rok90, RS94, Tan04, TG08, VW02, WLL+07, Yin09, ZX19, ZC00.
equispaced [DR95].

Erratum [BEM94, FLZB97a, SL97a].

Error [BH89, CC04, CC05, GKD09, GSS98a, GSS00, KSC99, OC05, PSPS95, PSS95, SP97, Dac09, Dac10, OC03, Pel98, WK18, Dar00a].

error-controlled [Dac09, Dac10].

Error-estimates [PSS95].

errors [AP00].
estimates [CC04, CC05, PSPS95, PSS95, SP97].

Euler [RS94].

Eulerian [NMDK99].

EuMC [Ano95a].

European [Ano95a].

Evaluate [CDM98].

Evaluated [ZZ93].

Evaluating [CS98b].

Evaluations [CS98b].
event [BSL11].
event-driven [BSL11].

evolution [SWJ+05].

Ewald [Ami00, BAL91, CL91, DYP93, DNS90, FMI+93, KM00, LS93, PG96b, SL97b, SKPP95].

exascale [YB12].

Excitation [GIS98].

execution [BDS07, LY14, YF98].

exhibition [Ano95a].

Existence [YSM05].

Expansion [Le 97, OC05, Pan95, SPS96, AHL93, OC03, WL96, WXQLO8, WK18].

Expansions [Boy92b, C05, McD97, RGKM12, AR91, GB11, Len08, MD08, SH07].

explicit [JP89, Pud16].

exponential [TWYC06].

Expressions [Pan95, CS82].

extended [KS11].

Extending [CDJ07, DC07].

Extension [GY08, TYON12].

eXtensions [TYON12].

exterior [AP03].

Extraction [YB01, JC04, NW89].

extreme [WSH+12].

extreme-scale [WSH+12].

facility [RTZ+96].

FAMUSAMM [EGHT97].

Far [LSCM96, HW11].

Far-Field [LSCM96, HW11].

Fast [And92, BT95, BL97, BN98, BCR01, BPT07, BK15, BPT+14, BF78, BCP08, BMK09, BW96, BV96b, BS00, BL98, BL05, BFO99, Boy92a, BHR04, BHGR04, BHGR05, CDM98, CDGS03, CDGS05, CL12, CC15, CSMCx, CC297, CS98a, CS98b, CWA14, CN02, CJL+97, CC10, CC12, CPD17, CKB11, Dac06, Dar97, DYZ8, Dem95, Dem96a, Dem96b, DD95, DR95, DGR06, EB94, EB96, EMRV92, ESM98, EG13, FOCD96, Gas97, Gav11, GSC01, GP93, Gre94, GHRW98, GW98, Gue97, GD06, GD07a, GD08, GAD13, GA96a, GA96b, GS98b, HOST95, HAS02, HC10, HA17, HEGH14, JMC97, JMC98, JBM98, KLZ+06, KMK09, KKF+05, LCD14, LHL08, Liu09, LX17, LC93, LSCM96, LJ96b, LJ96a, LO96a, LRW95, M95, M96, MBS+00, Mak04, MG11, MB16, MB05, MGM95, MK96].

Fast [MPPA96, MMNB06, NW89, NT96, Nil04, NPR93, O07, OKS90, PSN04, PD15, Pri94, QCG15, RRR05, RW94, RS94, SSVW94, Sch94, SG97, SHMC97, SMCG97, SHHG93, SHT+95, SC94, SC95, SLC96, SLC97, Sta95a, Sp01, STZ14, WC94a, WC94b, WLMP99, WY05, WY07b, WXQLO8, WZC+17, WS95, WXY+08, XJM08, YR99, Yin09, Yin15, YNS+09, YB01, ZY05, AHL93, AR91, AGR88a, AGR88b, AP99, AP00, Ami00, ATMK03, ATNR+12, AC17, BDMN03a, BDMN03b, BSL09, BG97, BW8+95, BV96a, BSS97, BCL+92, BP03, BSSF96a, BSSF96b, BK96, CD07, CC04, CC05, Car09, CGR88, CWHG97, CDF10, CWK08, CCKL09, CGR99, C0L06, CCG+06b, CRG01, CPP93, CWD08, CRW93, CFR08, CB09, Dac09, Dac10, Dar02, DM07, DM12, Dar00a, Dar00b, DH04a, DH04b, DC07, DRS96, ESR01, ES04].

fast [Eng11, EG08, EG09a, EG09b, Erg11, EG01,
FGM11, FLZB97a, FLZB97b, FPG05, FD09, Fuji98, GDDC08, GBMN06, GF06b, GF06a, GIS98, GYO8, GR02, G16, GROZ04, GKZ09, GE13, GR87, GR88b, GG89, GG90, G91, GH02, GCH, G+18, GD05, GD09, GODZ10, Ham11, HHKP09, HS08, Hav03, HLL08, HW10, HW11, HU97, HR98, HGD11, HJZ09, HLL+18, IYK16, Kan15, KM00, KS10, KS11, Kon93, KLM+09, KS98a, KS98b, KS04, KP05a, KP05b, KP08, KAN95, KAN96, Lab98, LOSZ07b, LCL+12, LBS16, LB91, LB92a, LB92b, LJ98, LZL04, LCQF18, LGG+13, LC14, Liu08, LY14, LCZ07, LCM07, LCHM10, LCHM13, LWM+02, Mak99, MG07, MG09, MR07, MRH14, NT09, NN12, NH97, OR98, OSW07, OW06a, O08, OCK+03, OK+14, OMC08, OLL03, OLL04, OFH+08, OP07, ON09a, PJY96, PSPS94]. Fast [PSPS95, PSS95, PA14, Rah96, RRR03, RSZ09, RTZ+96, RO04, RTA+08, RS97, RS06, RCW07, SGG+04, Sar03, Sat10, SL97a, SL97b, ST06, SWW99, SM97, SHM98, SH07, SKT94, Sim95, SKPP95, SP97, Sta95b, SB96, ST02, SK04, Sud04, Sy03, Tak14, T3IM16, TCD17, Tau03b, Tau04, T08, T09, TD09, VOD08, W18, WJY06, WL96, W05, W07a, WLL+07, WFC08, WH94, WJGH96a, WH96a, WJGH96b, WH96b, WSL95, XWT09, YRGS13, yTvlWl08, Y98, YB97, YBZ03, YBZ04, Yn06, YBK+11, YBYN12, YBY12, YBYN13, iYNK2, YAO18, YSM05, ZCG00, ZT07, ZHPS10, ZHPS11, ZB14, ZX19, ZCL+98, ZKl+07, ZGD+16, ZB95, AAB+17, Boy92b, CD13, CB14, CKE08, CFR10, DDL13, EMT09, FL13, GR97, G98a, Lec92, LCP93, RGK912, SL91, SLCL98a, SLCL98b, YTK14]. Fast-multipole [Dar97, EG01, Tak14, ZCL+98]. FCCM [PA02]. FE [SGD+04]. February [B+95]. FEM [MB05]. FFT [TPKP12]. FTTM [HLL08, LHL08, OLL04]. fiber [WY07a]. fiber-reinforced [WY07a]. Field [LSCM96, PA02, ABD04, BHR04, BHGR05, HW11, MD98, OKS09, WFC08, Xue98]. Field-Programmable [PA02]. Fields [CK95b, Gre87, SHMC97, SM97, SB08, YR99, CK95a, CG97, DC07, ESM98, GG16, Gre88, GR88a, GM94, GH98, HR98, OLL03, Pe98, ST06, SM97, VOD08]. Fifth [An09, IEE96b, MC92, IEE98]. filtering [BP03, YR98]. Fine [Bar86]. Fine [Bar86]. Finite [FST05, LJ96b, LJ96a, Beb06, Ich02, LS05, LCZ07, SGG+04, Sat10, WV02]. Finite-Element [LJ96b]. finite-sized [Sat10]. First [OKF14, AHLP93]. First-Principles [OKF14]. FISC [SLCL98a, SLCL98b]. Fitted [AC94]. fitting [LBGS16, TWY06]. Flexibly [YS18]. floating [LKM02]. floating-point [LKM02]. Flow [Pri94, ECL02, Gre90a, GKM96, G04, NMDK99, Tau03a]. Flows [GCC+99, WSW+95, BCH93, Kro99, Kro01, Kro02]. Fluid [SWW94, TDBE01, Bat03, OMH+94, VGBD09, WSL95]. fluids [Ang17, BPK85, LRJ+99, ZB14]. FLY [BAD01, BCD06]. FM [BN07]. FN-BEM [BN07]. FMA [LOG96]. FMBEM [CWK08]. FMD [LWM+02]. FMM [CCG+06a, EMR92, HNO06, JH90, MRH14, ON08a, ON08b, ON09b, PG96b, SGG+04, SB98, YS18, ZHPS10]. Fock [KAN96, WJGHG96a, KAN95]. Fokker [Lem98, Lem04]. Force [Deh02, BH86, EIM+92, JP99, KK16, Xue98, YRGS13]. force-calculation [BH86]. Forces [BP88, CDM98, NT96, Pie93, WZC+17, BH03, C5K91, DM90, LDB96]. Form [CJ05, AP99, BCP08, SH07]. Formation [FM96, FM95, SWJ+05]. forms [KSC99, Rah96, Rok98]. Formula [CL12]. formulae [NN12]. Formulation [AAL+01, JBL02, CB14, CWK08, CCKL09, CFR08, CCR10, DM07, GD07b, Liu08, OSW06a, DM12]. Formulations
Fortran [GDK89]. Foundations [IEE92a].

Fourier [Boy92b, EMT99, Boy92a, CD13, DR95, EB94, EB96, HLL08, HW10, LHL08, OLLL03, OLL04, Sar03, ZHPS11].

Fourier-Based [CD13].

Fredholm [AHL093]. free [BSL11, BKM09, Car06]. Frequencies [GHRW98, DH04b, ZC00]. Frequency [Nil04, BK96, DH04a, KMC09, QC015, TSIM16, ZC00].

Functional [DRS96, KAN95, KAN96, LBS16, WJGHG96a, WJGHG96b].

Functions [Boy92b, BL97, BN98, BCR01, Buh03, CBN02, KMC09, LCZ07, Tau03b, Yin06].

Future [EMT99].

GADGET [Spr05]. GADGET-2 [Spr05]. galactic [MFK00]. galaxies [SWJ+05].

Galaxy [FM96, FM95]. Galerkin [AHL93, AP03, HS95, OSW05, XWT09].

Gap [ABB+17]. Gauss [GS98a, GS91].

Gaussian [BSSF96a, BSSF96b, KS98a, Le 97, Ros06, Sal96]. Gegenbauer [CC05].

General [LCD14, McD97, BSL11, FG96].

Generalization [Boy92b]. Generalized [ADO11, CBG02, GR02, KAN95, KAN96, ST06, SK04, WJGHG96a, YR96].

Generation [HL15, Sal96]. geometric [CDF10].

Geometries [MGM95, AC17, KS98b, NW89]. Geometry [SC94, TW03].

Ggflips [MHI07, WGL+98]. giant [RTZ+96]. gigaflops [WSB+97].

GMRES [BGGC06]. Good [Ten98].

GOTPM [DKPH04]. GPU [GE13, Ham11, HL15, HEGH14, Kan15, WN14].

GPM accelerate [Ham11]. GPUs [HN+F09, HN10, YNS^+09, YBK^+11, YB0Y12, YB0Y13]. gradients [BSSF96a, LBS16]. grain [Bar06]. grained [PA14].

graining [GB11]. granularities [BEM93, BEM94]. GRAPE [Ano94a, CKE08, EIM^+92, EFT^+93, FM95, FM96, KFM99, KFMT00, MIE90].

MTES94, MT95, MT98, MKF00, MKF01, MKF02, MFK03, Mak04, MHI07, MD12, OME^+92, TMS94, TYN012, YF05].

GRAPE-2A [EIM^+92]. GRAPE-3 [OME^+92]. GRAPE-4 [Ano94a, FM95, FM96, MTE94, MT95, TM9S94].

GRAPE-5 [KFM99, KFMT00]. GRAPE-6 [MKF00, MFK01, MKF02, MFK03].

GRAPE-8 [MD12]. GRAPE-DR [MHI07].

graphics [GD98]. gratings [Sat10].

gravitating [TYON12]. Gravitational [CDM98, SWW94, WM99, DHM03, MD12, OME^+92, SCM^+90]. Gravity [BOX90, Xu95].

GreeM [IFM99]. Green [BKM09, Tau03b].

Greengard [Ahu94, Alu96, HM95, SB98]. Green’s [CB14]. Grid [Ber95, Bor86, Boy92a, HTG02, Bes00, Car06, DM90, ZGI^+10].

grid-calculated [DM90]. Grid-Multipole [Ber95].

gridded [HW11]. Gridless [AGR88a, AGR88]. grids [GOS99, HW10].

ground [TCW08]. Group [Wz091]. groups [AB95, Kan15]. Guest [DS00, GW98].

guided [Sat10]. guided-mode [Sat10].

Guidelines [BV96b, BV96a]. guns [NH97].

GvFMM [BSSF96a, BSSF96b].

half [BSL90, CB14, GSC01, GG16].

half-space [BSL90, CB14, GG16]. Halos [ZQSW94]. Hamiltonian [CDF10].

Hanover [Mak93]. hardware [ATE93].

Harmonic [CAJ09, GD07b, GD07].

harmonics [PJY96, ST02, WL96, YR98].

HARP [KMT94]. HARP-1 [KMT94].

Hartree [KAN96, WJGHG96a, KAN95].

Hashed [WS93]. Haskell [TL14]. head
head-related \cite{GODZ10, KMC09}.

heavy \cite{RTZ09}.

Held \cite{HTA97, HM86, AG88, Ano97b, K+96, Rod89}.

Helmholtz \cite{AP03, BKM09, CD13, CC15, CHL06, CCG06a, CCG06b, CC10, CC12, DDL13, Dar02, GHRW98, GD03, GD09, GAD13, GKS94, GKS98, KL97, Rok98, Sta95b, Sta95a, TCD17, VW02}.

Hermite \cite{KMT94, NMH06}.

Heterogeneous \cite{ADB94, HGD11, LCL12}.

Hierarchical \cite{Alu94, APG94, AGPS98, Ano94c, SB98, MR07, YS18, YBZL03, ZB04, Yin06, ZHPS11}.

Hilton \cite{IEE97}.

Hub \cite{HL15}.

Hub \cite{AAL01, Ano94b, BJWS96, BGLM05, GKS94, GKS98, SHT+95, WSH+12, ZBS11, ZBS15}.

Hybrid \cite{HEGH14, JMC97, WN16, DKPH04, LZL04, LC93, OFH+08, SGG+04}.

Hydrodynamics \cite{GCH+18}.

Hyglac \cite{WSB97}.

Hyper \cite{DHH03}.

Hyper-systolic \cite{DHH03}.

Hypercube \cite{BME93, BEM94, BME90, DK93}.

hypercubes \cite{SS89}.

I/O \cite{Mak93}.

ICCAM \cite{BGPW00}.

ICCAM-98 \cite{BGPW00}.

ICS \cite{KK88}.

IEEE \cite{IEE96b, IEE02, PA02, ACM97, Kar95}.

Igniting \cite{ACM03}.

II \cite{CC13}.

Illinois \cite{SLCL98a, SLCL98b}.

image \cite{DC07}.

imaging \cite{Ano97b}.

impact \cite{GIS98}.

Implementation \cite{And92, HJ96, Liu94, MPPA96, NPR93, OP07, YB01, AHLP93, Bes00, BJWS96, Bha97, CCG06a, Dar00b, GR88b, HV93, KP05b, KP08, LO96b, Mak93, OCK+03, RS06, Sin95, WHG94}.

Implementations \cite{BS97, WLMP99, Buh03, TL14}.

Implementing \cite{KN95, SL91, MRH14, SL97a}.

Implications \cite{Sin92, SHG95, DRS96}.

implicit \cite{CC13}.

imposing \cite{YS18}.

Improve \cite{HLL18}.

Improvement \cite{MPPA96, YR99, HR98, PRT92, PA14}.

Improvement \cite{IYK16}.

Inexact \cite{LOSZ07a, LOSZ07b}.

inextensible \cite{VGZB09}.

Infinite \cite{MC97, SM97, CL91, SHM98}.

Innovation \cite{ACM03}.

Insight \cite{IEE02}.

Institute \cite{BR93, HM86}.

Instruction \cite{TYON12, TYNO12}.

Integral \cite{CL12, GKM96, GKS94, Kro99, L96b, L96a, MG11, SC95, ZC00, PO03, AB04, AD05, Atk97, BDMN03a, BDMN03b, Bes00, Car06, Car07, CCZ97, CCKL09, DM07, EG09a, Fuj98, Gas97, GKS94, GOS99, LZL04, LC93, LC94, NT09, OSW06a, ON09a, RZ09, Rok85, Rok90, Ros06, Tak14, TW03, Tau04, VGZB09, WLL+07, WFC08}.
Yin09, iYNK02, ZX19, ZGD+16.

Integral-Equation [MG11, EG09a].
Integrals [BL05, Gus98, ZZ93, BL98].
Integration [DGR96, Oku96, WZC+17, NMH06].
integrations [CDF10]. Integrator [Per99, SP99, KM00, KMT94]. integrators [FLZB97a, FLZB97b, Sha06].
Integral [FQG+92]. Interacting [BP88, BP93].
interaction [GF06b, GF06a, HLL+18, Kan15, YAO18, ZD05]. Interactions [BFO99, DD95, GGM01, LS93, ATMK03, AO10, BAL91, BPK85, CFH89, CKB11, DKG92a, DKG92b, DKG92c, EGHT97, Ess95, GH02, HJJZ09, NT94, PJY95, SKT93, SKT94, ZHPS11].
Integrator [Per99, SP99, KM00, KMT94]. integrators [FLZB97a, FLZB97b, Sha06].
Integrator [Per99, SP99, KM00, KMT94].
integrators [FLZB97a, FLZB97b, Sha06].
Integrating [DGR96, Oku96, WZC+17, NMH06].
infrared [Per99, SP99, KM00, KMT94]. Integrators [FLZB97a, FLZB97b, Sha06].
integration [DGR96, Oku96, WZC+17, NMH06].
Integrations [DGR96, Oku96, WZC+17, NMH06].
integration [DGR96, Oku96, WZC+17, NMH06].
integrations [DGR96, Oku96, WZC+17, NMH06].
Integral [FQG+92]. Interacting [BP88, BP93].
interaction [GF06b, GF06a, HLL+18, Kan15, YAO18, ZD05]. Interactions [BFO99, DD95, GGM01, LS93, ATMK03, AO10, BAL91, BPK85, CFH89, CKB11, DKG92a, DKG92b, DKG92c, EGHT97, Ess95, GH02, HJJZ09, NT94, PJY95, SKT93, SKT94, ZHPS11].
DM12, Dar97, Dar00a, Dar00b. **method** [DH04a, DH04b, DC07, DRS96, DKG92a, DKG92c, ERSRS01, ECL02, FGM11, FOCE96, FLZB97a, FLZB97b, FD09, Fuj98, FMI+93, GDC08, GSC01, Gib08, GR02, GRO04, GKS98, GG16, GROZ04, GKS98, GG90, GH02, GP08, GCH+18, GD05, GD06, GD09, GODZ10, Ham11, HM95, HC10, HW10, HW11, HU97, HJZ09, HLL+18, Ich02, JH08, JC04, Kan15, KM00, KSS10, KS11, KLM+09, KMC09, Kro01, KS98b, KS04, KP05b, KN95, KCF+05, Lab08, LCL+12, LBGS16, LJ98, LCQF18, LGG+13, LHL08, LC14, Liu08, Liu09, LCZ07, LCM07, MI95, Mak99, MB05, MR07, Mil08, MRH14, MNMN06, NT94, NH97, OSW05, OSW06a, O808, OKS90, OCK+03, OMY+14, OMC08, OFG+08, OP07, ON09a, PN95, PFS94, PFS95, PSS95, PG96b, PA14, QC15, RRO03, RO04, RTA+08, RSG97, RS06, SGG+04.

method [SF18, Sat10, SL97a, SL97b, SM97, SH07, Sin95, SKPP95, SP97, Sta95b, SK04, Sud04, Sy03, Tak14, TSIM16, TCD17, Tau03b, Tau04, TG08, VW02, VOD08, VGB09, VCM00, VY05, WY07a, WFC08, WH94, WHG96a, WJGHG96b, WHG96b, WSL195, XJM08, YR98, Y979, YBZL03, YB12, YBON13, iYNK02, YAO01, YSM05, ZT07, ZHP510, ZHP511, ZB14, ZKL+07, ZGD+16, ZB95, AAB+17, CD13, CKE08, CC10, C12, CFR10, DDL13, FL13, GR07, LCP93, RGK12, SL91, YTK14, Gav11].

Method-Ecient [NT96]. Methods [Aar85, Alu94, AG88, BS93, BS97, BR93, DY98, Dem95, Dem96a, Dem96b, FQG+92, GHWW98, GW98, HEGH14, HJ96, LRW95, MBA97, SRP06, SHG95, SHT+95, TDBE11, V1T91, WSW+95, YF05, A+97, MLA05, BHC93, BL97, BG97, BN98, BCR01, Bes00, BDS07, Car07, CB02, CIL+97, CWD08, CK00, Eng11, Gas97, GBMN06, GY08, GCC+99, Goe99, GE13, GKM96, GKO4, GD08, HS95, HGD11, IYK16, Kro99, Kro02, KP05a, KP08, LS05, LOSZ07a, LOSZ07b, LOG12, Lin95, LX17, LY14, MC92, NN12, OSW06b, O070, Oku96, PJY96, PG96a, RS94, ST06, SKT94, SM05, Sin92, SB96, TD09, YGSR01, aYZ97, YNS+09, YBNY12, ZX19, MC92].

Models [AC94, HB93]. MN [IEE92b]. Modification [SB98]. Modified [Bar90, BADG00, CHL06, LCQF18]. module [DK93]. Molecular [AC94, BGGT90, BAL91, BHGS90, BP88, CDCD97, Gus98, HGS90, LBC91, LBI+97, LCMP09, MPPA96, OKF14, WLMP09, WS91, ATM03, BSL11, BWS+95, BSS97, BCL+92, BHE+94, BHER94, BCOY93, BCOY94, BP93, CvHMS94, DK93, EGHT97, GDK89, GZK07, KM00, LM02, LBGS16, LWM+02, NKV94, OMY+14, OP07, PGB05, PA14, SF18, SWW09, Win95, ZB95]. molecular-dynamics [BCL+92, BP93].

[ESRS01]. Monterey
[Ano95b, Ano96, Ano97a]. Montréal
[IEE97]. motion
[DHM03, Kro01].
Mountain [MC92], mover [CC13], MPI
[IEE96c, BCAD06, LO96b, Per99, SP99].
MPI-2 [BCAD06]. MPSim [LBI +97]. MR
[BE94]. Multi
[AP03, Ang17, BAD01, Liu08, WSH +12].
multi-disciplinary [WSH +12]. multi-domain [Liu08].
multi-level [AP03]. multi-platform [BAD01]. Multi-scale
[Ang17]. Multibody
[BGI +99, JBL02, LOG12].
Multicomputers [YB01]. Multicore
[HEGH14, ZBS15]. Multidimensional
[CK95b, BCP08, BL98]. multigrid
[Gas97, IHM05, MC92, OF08]. Multilevel
[CSMCxx, GS98b, MG11, SLC96, SLC97,
TCW08, TC09, A+97, ATR+12, BDMN03b,
DM12, EG08, EG09a, EG09b, Erg11, EG13,
GDDC08, GKD09, HS08, HC10, LCL04,
LC94, MG07, MG09, RCWY07, Sar03,
WJYO06, YRGS13]. Multiple [BS93,
BSS97, FLZB97a, FLZB97b, KM00, Kro02].
multiplication [XWT09]. multiply
[GGM93]. multipoint [PR92].
Multi-polar [LS93]. Multipole
[AAB+17, And92, BT03, BK15, BPT+14,
Ber95, BV96, BS00, BL05, BF099,
Boy92b, CDM98, CDGS03, CDGS05, CL12,
CD13, CC15, CSMCxx, CKE08, CS09b,
CC10, CC12, CJ05, CFR10, CPD17, CKB11,
DDL13, DY98, EB96, EMRV92, FL13, GP93,
GSS98a, GSS00, GR97, GHRW98, GW98,
Gue97, GD03, GA96a, GA96b, Gsu98, GS98b,
HOST05, HAS02, HA17, HEGH14, JMC97,
JMB98, Kon93, KLZ+06, KK95, Le 97,
Lea92, Lem98, LCD14, Lin95, LSCM96,
LJ96b, LJ96a, LO96a, LCF93, LRW95, MI96,
MBS+00, MG11, MB16, McD97, Mck96,
MPPA96, NT96, NIl04, NPR93, OC05,
Pan95, PN94, PD15, RRR05, RGKM12,
RW94, SRPD06, SPS96, SL91, SL97b, Sch94,
SG97, SHMC97, SMC97, SHHG93, SHT+95,
SC94, SC95, SLC96, SLC97, Sta95a, SP01].
Multipole
[WC94a, WC94b, WLMP99, WZC+17,
YR99, Yin15, YTK14, YB01, ZJ91, ZZ93,
AHLP93, AGR88a, AGR88b, AP99, AP00,
AP03, Ami00, AMT03, ATR+12, AC17,
BDMN03a, BDMN03b, BSL09, BG97,
BWS+95, BV96a, BS97, BCL+92, BHE+94,
BHVR94, BL98, BH03, BHGR04, BHGR05,
BSSF96a, BSSF96b, BK96, CDJ07, CC04,
CC05, Car09, CR988, CSA95, CWG97,
CDF10, CC297, CKW08, CCKL09, CCR99,
CCG+06b, CRG01, CPP93, CS82, CWD08,
CRW93, CFR08, CR09, Dac06, Dac09, Dac10,
Dar02, DM07, DM12, Dar07, Dar00a, Dar00b,
DH04a, DH04b, DC07, DS06, DK92a,
DKG92c, ESRS01, ES04, EB94, Eng11,
EG08, EG09a, EG09b, Erg11, EG13, EG01,
FOCB96, FLZB97a, FLZB97b, FFG05, FD09,
Fu98, GDDC08, Gsg97, GBMN06, GF06b,
GF06a, Gav11, GSC01, GIS98, GY08, GR02].
multipole [GG16, GROZ04, GKD90, GE13,
GB11, GR88b, GG98, GG99, GH02,
GCH+18, GD05, GD06, GD08, GD09,
GODZ10, GAD13, Ham11, HHHK99, HS08,
Hav03, HC10, HW10, HW11, HF92, HU97,
HR98, HDG11, HJZ09, HLL+18, IYK16,
Kan15, KM00, KSS10, KS11, KLM+09,
KMC09, KS98a, KS98b, KS04, KP05a,
KP05b, KP08, KAN95, KN95, KAN96,
KCF+05, Lab98, LM02, LDB96, LOSZ07b,
LCL+12, LBGS16, LB91, LB92a, LB92b,
LJ98, LSL04, LOG12, Lem04, LCQF18,
LGG+13, LCL04, Liu09, LX17, LY14,
LCZ07, LCM07, LCHM10, LCHM13,
LWM+02, MI95, Mak99, MG07, MG09,
MD98, MB05. MR07. MRH14. MMNB06,
NW89, NT09, NT94, NN12, NH97, OSW05,
OSW06a, OF07, OF08, OKS09, OCK+03,
OYK+14, OC03. OMC08, OFH+08, OP07,
ON09a, PRT92, PN95, PJJY96, PSPS94].
multipole [PSP95, PSS95, PA14, QCG15, Ral96,
RSZ09, RTZ+96, RO04, RTA+08, RS97,
RS06, RCWY07, SGG$^+$04, SF18, Sar03, Sat10, SL97a, ST06, SWW99, SM97, SHM98, SRT94, Sin95, SKP95, SPP97, Sta95b, SB96, SK04, Sud04, STZ14, Sy103, Tak14, TSIM16, TCD17, Tau03b, Tau04, TCV08, TC09, TG08, TD09, VOD08, WJYO06, WL96, WYW05, YR98, YB97, YBZ03, YBZ04, Yi96, YNS09, YBK11, YBNY12, YB12, YBNY13, YNY02, YAO18, YSM05, ZCG00, ZT07, ZHPS10, ZHPS11, ZX19, ZCL98, ZY05, ZKL07, ZGD16, ZB95, ZD05, CB14, multipole-accelerated
[BHE$^+$94, BHER94, ZD].

Multipole-Based
[BHE$^+$94, BHER94, ZD05].

Multipole-Based
[GSS98a, GSS00, YB01, LDB96].

Multipole-to-local
[CFR08, YS18].

Multipoles
[And92, AC94, GSS98b, HLL08, Mak99, OLLL03, OLL04].

Multiprocessor
[SHG95, LMCPP92, Sin92, Ske89].

Multiprocessors
[BB87, HS95].

multiquadrics
[CBN02].

Multiresolution
[NKV94].

Multiscale
[ERT12, TW03].

Multithreaded
[ZBS15].

Multivariable
[BL05].

Napa
[PA02], natural
[AO10].

Near
[Bor86, CAJ09, ON09a, Re99], near-rigid
[CAJ09].

Nearest
[CK95b].

Neighbor
[Bor86].

Neighbors
[CK95b].

Neptune
[MKF02].

network
[LB91].

Networking
[ACM97, Hol12, LCK11].

networks
[Kan15, LJ98].

Neumann
[GG16].

New-version-fast-multipole-method
[LCM07].

Newport
[IEE95].

News
[Kan15].

NH
[Mak93], no
[BEM94].

Node
[BK15, FRE$^+$08].

Node-Level
[BK15].

Non
[BB87, BCP08, DR95].

non-equispaced
[DR95].

non-standard
[BCP08].

Non-Uniform
[BB87].

nonbond
[DKG92a].

nonbonded
[ATMK03].

nonlinear
[CAJ09].

nonlinearly
[CC13].

nonoscillatory
[GR02].

nonplanar
[YB97].

nonsmooth
[Beb06].

normal
[GG16].

Nose
[BVW96].

Notre
[IEE96c].

November
[ACM96, ACM97, ACM99, ACM03, Hol12, IEE90, IEE92b, IEE93, IEE94c, IEE02, K$^+$96, LCK11].

nuclear
[PGB05].

number
[DGK99, Ieh02].

numbers
[JdR$^+$18, WYW05].

numerica
[Ise97].

Numerical
[CL91, GKZ07, Kro02, Pri94, TDBE11, dCGQS06, Atek97, BCM02, BCH93, CDF10, CG97, CHJN03, Dar00b, GCG$^+$99, Gre90b, GM94, GH08, KSC99, Kro01, OR89, PRT92, RSS96, TYNO12, Wam99, ERT12].

O
[Mak93].

Object
[BT95, SHMC97, ESR01, SM97, SHM98].

Objects
[BVW96, BV96b, SL96, SLC97, BV96a, EG09a, Erg11, TC09].

Oblique
[SM97, CCKL09].

obstacles
[Mak93].

Oct
[WS93].

Oct-Tree
[WS93].

October
[An097b, HB93, IEE92a].

Off
[HL15, DH86].

Off-Loading
[HL15].

one-dimensional
[SK04, YR98].

One
[An094a, MTES94, WWF02, FRE$^+$08, HM95, MR07, SK04, YR98].

OpenMP
[AO10].

opening
[CBK11].

operator
[CR08, Lem98, Lem04, YS18].

Operators
[CFR08, LEM98, LEM04, YM98].

Opportunities
[AO10].

Optical
[FL97].

Optimality
[DKG92b, HHP09, BWS$^+$95, BME90, CRG01, MG05, PRL03].

Optimization
[BM15, MB15].

Optimizing
[PD15, ZBS15].

Order
[Bor86, LS93, RRR05, ALu96, DC07, GH08, GBMN06, GL96, PRL03, TWY06, Tau03a, Tau04].

Oregon
[ACM99, IEE93].

organic
[CKS1].

organization
[AO10].
organizations [TD09]. Origin [Le 97]. orthotropic [ON09b]. oscillatory [ZX19]. other [ZB95]. overlapping [KP05a]. overview [SB96].

P [PG96b]. PA [ACM96]. pair [CK95a]. Pairwise [BP88, CKS91]. Palazzo [Ano95a]. Panel [Ano97b, RRR03]. Panels [RRR05]. Paper [HOST95]. Papers [Ano97b, IEE92a]. parabolic [JH08]. paradigms [MMC99]. Parallel [AAL+01, Ano94b, ADB94, ADBGP99, B+95, BADG00, BPT+14, Bha97, BS97, BP88, CDDC97, GKS94, GCH+18, HAS02, HTA+97, HP95, HJ96, IFM09, IHO5, JBL02, JKCGJ08, Liu94, LO96a, LO96b, LCP93, MFKN03, Mak04, Mat95, MBS15, NMR93, OFK14, Pri99, Pri94, SWW94, SP99, Sin95, SHHG93, Ten98, TDBEE11, WS93, WS+W+95, Xu95, YB01, Z91, Bar96, BADP96, BAAD+97, BAD01, BCAD06, BJWS96, BCL+92, BSD07, BCOY94, Car07, CRG01, CWD08, CKB11, DKB96, DKPH04, Erg11, EG13, GLS06, GKS98, GGS98, GG90, Hav03, HGS90, K+96, KK95, KP05b, LCL+12, LB92b, LJ98, LBI+97, LC14, Mak93, MI+07, MG05, NKV94, OCK+03, RC97, SRK+12, Sta95b, TMES94, WLL+07, WS95b, WS95a, WS+W+95, WS+W+12, YF98, YBZLO3, YBNY13, Mak93, Rod98, TL14, TDBEE11]. Parallelism [BGLM05].

Parallelization [LB91, Lea92, BCOY93, DK93, EG08, EG09b, SWW99]. parallelized [OMF+92]. Parallelizing [CvHMS94, Sta95a]. parameter [CRG01]. Parametric [SC94]. Park [RS98]. Part [Dem96a, Dem96b]. Particle [BOX00, DYP93, Gre87, MFKN03, Pri94, VTC91, ARR89a, CRG88, CC13, CB90, CKB11, DKPH04, ECL02, FMI+93, GY08, GR87, Gre88, KM00, KK16, Kro99, KP05a, LRJ+99, PJY95, WY05, WS95b, YGSR01]. particle-in-cell [CC13]. Particle-Mesh [BOX00, DKPH04]. particle-particle [PJY95]. particle-reinforced [WY05].

Performance [ACM97, BGI+99, BK15, Car07, FM99, HL15, Hol12, IEE94b, IEE96b, IEE98, LCK11, LWM+02, MKF01, NH06, RC97, SF18, SHT94, WM+02, CFF08, CFR08, CFR10, IYK16, MD12, Sha06, WS+W+97].

Perform [Sar03]. Periodic [CWHG97, RO04, RW94, AM00, CPP93, CF89, DK92c, FLB97a, GK04, HM95, HNO06, KS98a, KS98b, KS04, LDB96, LBGS16, LCZ07, NN12, ON08a, ON08b, ON09a, ON09b, PG96b, SHT93, Sin95, YB97, YAO18]. periodicity [YS18].

PMD [Win95]. Point [CK95b, LKM02, Rei99]. points [STZ14]. Poisson [AC17, BH03, EG01, GL96, LJ98, LCHM10, LCHM13, MCB07, MGM95, Mil08, RŚ90, VTG91]. polar [BPK85]. polarisable [HHKP09]. Polarizability [PNB94]. polyelectrolyte [FOCB96].
Polygons [BT03]. polyharmonic [BL97, BCR01, BPT07]. polymers [BCOY94]. Polynomial [DGR96, PRT92, Rei99]. Polynomials [Pan92]. Polytechnic [BR93]. Portable [BK15, BS97, OCK03, WS95b, WS95a]. Portland [ACM99, IEE93]. posed [HM95]. posteriori [XTH09]. Potential [CK95b, Gre87, Gre90a, HA17, SPS96, YR99, CK95a, GB11, Gre88, GR88a, GD07b, HHHK09, HF92, HR98, LCQF18, Mi08, OLLL03, PA14, Rok85, Tau03a, WXQL08]. Potentials [CJ05, MB16, McK96, Pie93, DM00, DB96, SH07]. Polynomial [DGR96, PRT92, Rei99]. Polynomials [Pan92]. Polytechnic [BR93]. Portable [BK15, BS97, OCK03, WS95b, WS95a]. Portland [ACM99, IEE93]. posed [HM95]. posteriori [XTH09]. Potential [CK95b, Gre87, Gre90a, HA17, SPS96, YR99, CK95a, GB11, Gre88, GR88a, GD07b, HHHK09, HF92, HR98, LCQF18, Mi08, OLLL03, PA14, Rok85, Tau03a, WXQL08]. Potentials [CJ05, MB16, McK96, Pie93, DM00, DB96, SH07]. power [PRT92]. PPPM [YF05, ZB14]. Practical [BN97, Pan95, CAJ09, Mak93]. practice [CK00]. Prager [GCH18, LGG13]. pragmatic [SB96]. Precise [Ami00]. preconditioned [BGCC06, GD07a]. Preconditioner [CDGS03, CDGS05, CPD17, Car06, DDL13, OF08, TCD17]. Preconditioning [MG11, ARD04, Car09]. Preconditioning [NN12, Beb06, FPG05, LZZ04, MG07, MG09, RCWY07]. predictor [TWYC06]. predictor-corrector [TWYC06]. preeminent [YB12]. preprocessing [SK04]. Prescription [GS98b, CRW93]. presented [Ano97b]. Pressure [YAO18, YRGS13]. Price [WSB97]. Price/performance [WSB97]. Princeton [HM86, HDG15]. Principles [OKF14]. Pro [WSB97]. Problem [APG94, AGPS98, Ano94a, Ano94c, Dem95, Dem96a, Dem96b, HTG02, MTE94, Yin15, CKKL09, DH86, DHM03, Gre90b, IHH05, Kat89, KS98a, Mi08, Pud16, SSF96, TL14, WXQL08]. Problems [BB87, EMV92, GA96b, KK95, LJ96b, LJ96a, MG11, MBS15, SW94, SG97, WZC+17, AP00, AD05, ATR+12, BSL09, Bes00, BCP08, BHGR04, BHGR05, BGCC06, CC04, CC05, Car09, EG08, EG09a, Erg11, FST05, Fuj98, GDDC08, GLS06, HM95, HNO06, HU97, JH08, Lab98, LCQF18, Lin95, Liu08, MIES90, Oku96, ON08a, ON08b, ON09b, Rah96, RO04, SCM+90, TWYC06, WJYO06, WY07b, WSWL95, XWY+08, XJMO08, iYNK02, ZY05]. Proceedings [ACM96, ACM97, AG88, ERT12, Hol12, HM86, IEE92, Kar95, LCK11, Rod89, Ano92, Ano95a, IEE92a, IEE98, KK88, PA02, WSB97, B+95, BGPW00, HB93, HTA+97, IE90, IE92b, IEE93, IE94b, IEE94c, IE96b]. Proceedings. [IEE96c]. process [JdR+18]. processes [Sal96]. Processing [B+95, HTA+97, BCOY94, Rod89]. Processor [WWF02, FL13, DHL07]. processors [GD08]. produced [Kon93]. products [And08]. Professor [Wil00]. Program [CDCD97, YB01, App85, LBI+97, WS95b, Win95]. Programmable [PA02, HFKM98]. programming [MRH14]. Programs [BGLM05, RC97]. PROGRAPE [HFKM98]. PROGRAPE-1 [HFKM98]. Progress [Ano95b, Ano96, Ano97a]. Prolate [KLZ+06]. Propagation [Ano97b, IEE94a, IEE95, IEE96a, IEE97, WC94a, WC94b, CHJN03, GLS06]. propagator [ZB95]. properties [WY05, WY07a]. Property [NT96, Kan15, KSS10, KS11, NT94]. protein-protein [KSS10]. proteins [ZB95]. protonatable [Kan15]. Provably [Ten98]. pseudo [CKS91, OFH+08]. pseudo-pairwise [CKS91]. pseudo-spectral [OFH+08]. pseudoparticle [Mak99]. Pseudospectral [Boy92b, KLZ+06]. Purpose [Ano94a, BGGT90, CKE08, FM96, FH99, KFMT00, MTE94, MT98, MFKN03, EIM+92, EFT+93, FM+93, FM95, HFKM98, KMT94, MIES90, MT95, OMH+94, OME+92, SCM+90, TMES94]. Quadrature [WK18]. Quantum [SPS96, KLM+09, SSF96]. quartic

Sham [BSSF96b]. shape [LM02]. shaped [YRG813]. shared [HS95, RC97, Ske89].

Sides [BT03]. signature [Ano97b].

Siloxane [MPPA96]. Siloxane-Based [MPPA96]. SIMD [TYON12, TYNO12]. simple [AB95, PJY95]. Simulating [ZBG15, ZGI+10, VGZB90, ZB95].

Simulation [AT87, An99, BADG00, CKS91, FM96, HE88, KFM99, LCE+06, MF96, Ten98, WF9+02, AGR88a, App85, BCM02, BAAD+97, BCL+92, DRS96, FLZB97a, FLZB97b, FMI+93, FM95, GF06b, GKS07, HN10, HGS90, KMT94, LM02, IWM+02, MI95, MFK00, MKFD02, MD12, OYK+94, OMC08, PG94, SWW99, Spr05, TYON12, TYNO12, WYW05, Win95, YB97, YNS+99, YBNY13]. Simulations [Aar85, AAL+01, Ano94b, ADBGP99, Bag02, BHGS90, BHS88, GP93, GKS94, HP95, IFM09, KTM00, LR+99, MT98, MKFN03, MPPA96, OKF14, SRPD06, SWJ+05, WLMPI99, WN14, YF05, AGR88b, ATM03, AB95, BAL91, BDS07, BCOY93, BCOY94, CL91, CGR88, CWD08, CB09, DKG92a, EIM+92, EFT+93, EGTH97, ERS01, FOCC06, FRE+08, GF06a, GKS98, GR87, GDK89, GCH+18, HFKM98, HNY+99, KM00, K+96, Kro99, KP08, LBC91, LKM02, MT95, MG05, MMC99, OME+92, PA14, SA196, SHA06, SKT93, SKT94, TMES94, VCM00, WAM99, WS92, WSH+12, XUE98].

Skeletons [SW94]. Slater [Gus98, ZZ93].

Slater-Type [Gus98, ZZ93]. slightly [ZD05]. Society [IEE95, IEE96a, IEE97].

Software [Kan15, TDBE11, SF18, TYNO12]. solid [Bat03, PJY96, WL96, lYtWBWL08]. solids [WYW05]. Solution [ATR+12, GA96a, LJ96b, LJ96a, SG97, SC94, SC95, AHL93, AP03, AD05, ATK97, BH03, BHR04, BHR05, CJL+97, EG08, EG99a, FLZB97a, FLZB97b, GDDC08, Gas97, GLS06, Gre90b, HW10, PN95, Rok85, Rok90, WFC08, WSWL95, YS95, ZC00].

Solver [BOX00, CPD17, MGM95, SLCL98a, SLCL98b, Xu95, AC17, BE90, CCZ97, CHL06, EG01, GL96, GP08, HLL08, Kan15, L98, LCHM10, LCHM13, SRK+12].

Solvers [GSS98b, BEM93, BM94].

Solving [HTG02, VDI91, Car06, Car07, LC93, LC94, MCBB07, MNBN97, OL04, XJM08, ZCL+98]. some [Sha06]. sound [CAJ09]. Source [SB98, CKB11]. Space [BT95, YF98, BSL09, BKM09, CB14, GSC01, GG16, HM95, H95, SRK+12].

space-time [SRK+12]. Space/time [YF98].

Space/time-efficient [YF98]. Spaces [BF78]. Spanning [BF78]. Sparse [GOS99, LZZ14, RO85, TAU03a, LOSZ07a, MG09, RZ09, TW03].

sparse-approximate-inverse [MG09].

Spatial [BT95, BLA05, CVHMS94, ZT07].

Special [Ano94a, BGT90, CKE98, FM96, FHM99, KTM00, MTE94, MT98, MKFN03, EIM+92, EFT+93, FMI+93, FNM95, HFKM98, KMT94, MIES90, MT95, OMH+94, OME+92, SC10, TME94, MC92].
Special-Purpose
[Ano94a, CKE08, FM96, FHM99, KFMT00, MTES94, MT98, MFKN03, FM95, HFKM98, KMT94, MIES90, MT95, OMH+94, OME+92, SCM+90, TMES94]. spectra [ES04]. Spectral
RCWY07, OFH+08, PN95]. speeding [AO10]. sphere
BP03, CDJ07, DC07, Lin95]. spheres [GD05]. spherical
GODZ10, KSC99, PJY96, ST02, YR98]. Spline
CS98b, DKG92b]. Splines
CS98a, BL97, BCR01, BPT07]. Square
GGM01]. Stability
[Nil04, Sud04]. stable
DH04b]. standard
BCP08]. statistical
VOD08]. Station
ERT12]. statistical
Kan15]. Steepest
JMC97, JMBc98, ERS01].
steeped
ZCL+98]. Stress
GG16]. Strips
GA96a]. strong
Kan15]. Structural
BPK85]. Structure
BADG00, NT96, ZQS94, GF06b, GF06a, Go99, Kat98, KS98a, NT94]. Structures
And99, CSMCxx, GGM01, MI96, RW94, WPM+02, Car09, CWK08, EG13, LCZ07, W92, ZCL+98, ZY05]. studies
RTZ+96]. Study
[BGLM05, HM86, Pri94, Dar97].
study
[Kro01]. sub
[LCZ07].
sub-entire-domain
[LCZ07]. Subdivision
BT95]. Summation
CWA14, LS93, Ami00, BAL91, IHM05, SF18, ZB14]. Summer
[RSS96]. Sums
DNS90, BG94, DYP93, KS04, RO04, SL97b]. Sunnyvale
[Wel91]. Supercomputers
[FQG+92, HM86, BAD01].
Supercomputing
ACM96, Ano92, IEE90, IEE92b, IEE93, IEE94c, Kar95, Ano92, KK88]. Surface
[MG11, CCZ97, ERS01, ZBG15]. Surfaces
[CSMCxx, HAS02, JMC97, JMBC98, GH08, JMBc98]. Surfaces-Wire
[CSMCxx]. suspended
[VGZB99]. Switching
[HL15]. Symbolic
PHe93]. symmetric
[CG04, OSW06a]. Symposium
[Ano97b, HB93, IEE92a, IEE95, IEE96a, IEE96b, IEE97, PA02, K+96, Mak93]. Syracuse
[IEE96b]. System
[BGI+99, RGKM12, BAAD+97, TMES94, ZB95, HTG02]. Systems
AAB+17, CPD17, GP93, Gre87, HEGH14, MT98, VGG91, YF05, AB95, BWS+95, BGGC06, CL91, CDF10, CFH89, DYP93, DKG92c, EIM+92, EFT+93, Gre88, Ich02, KS98a, KS98b, KN95, LM02, LBGS16, LB92a, LBI+97, LCM07, LCHM13, PGB05, PG96b, TYON12, YB12, ZB95].
Stysolic
[BHGS90, DHM03].
T3D
[RAAD+97]. tails
[ADG96]. tangential
[GH08]. Target
[SB98, GSC01]. targets
[Ano97b]. Task
[AAB+17]. Task-Based
[AAB+17]. tearing
[LS05, LOSZ97a, LOSZ97b, OSW06b]. Technique
[CGDS03, CGDS05, PRT92, SWW99].
Telescopical
[LRW95]. Template
[BGLM05]. Tennessee
[IEE94b]. tensor
[CB14, CSA95, GCH+18, HC08, HLL+18, LGG+13, YA018]. Tensors
[PNB94]. Terabytes
[IEE02]. teraFLOPS
[TMES94]. Term
[DNS90]. terms
[JP89]. test
[AB95]. Tcottles
[Ano94a, HUY+09, HN10, MTE94, MFK00, MKF01, MKFD02]. theorems
[KSC99, Lab98]. theorems
[HC08]. Theoretical
[CC15]. theory
[AP99, Buh03, CK00, GD07b, K+96, LBGS16, Pe98, Rok85, Rok90, Tai03a]. thermodynamics
[Kan15]. Thin
[ZCL+98, CAJ09, ZY05]. Thin-stratified
[ZCL+98]. Third
[KK88, Rod89, Bha97].
Thousands [BT03]. Three
[CS98a, JMBC98, LO96a, Nil04, Pie93, Pri94, SL91, SC95, WSW+95, YB97, BS97, BPT07, CWK08, CGR99, CCG+06b, ESR01, ES04, ESM98, GR88a, GR97, GH02, GD06, GD09, LB92b, LCQF18, MCBB07, OLLL03, PSS95, SL97a, Tak14, TSM16, TC09, TG08, WSWL95, YBZ04].

Three-Body [Pie93]. Three-Dimensional [JMBC98, Pri94, WSW+95, YB97, BS97, CWK08, ESR01, ES04, ESM98, LCQF18, OLLL03, PSS95, Tak14, TC09, TG08, WSWL95]. tiers [WHG96a]. Time [BS93, MD98, BSS97, FLZB97a, FLZB97b, GD07b, KM00, OFH+08, RC97, SRK+12, VW02, Xue98]. Time-dependent [MD98]. time-domain [VW02]. time-efficient [YF98]. time-harmonic [GD07b]. time-step [KM00]. Top [DS00, MBS+00]. topological [BN07]. toroidal [CKS91]. Toronto [HB93]. Touchstone [FQG+92]. TPM [Xu95]. traces [HLL+18]. trained [HHKP09]. transfer [GODZ10].

Transform [EB96, EB94, GS91, HL08, HW11, LL08, OLLL03, OLL04, Sar03, ST02, Sud04, Boy92b, EMT99, GS98a]. Transformation [DNS90]. transforms [DR95]. transient [ESM98]. Translation [GD03, ESM98, GD07b, Rah96, Rok98, TSM16]. translator [HS08]. transpose [JH08]. Transputer [Wel91, CKS91, LB91]. Transputers [BHGS09]. Transputing [Wel91]. treatment [KS98a]. Tree [And99, ADB94, ADBGP99, BH89, Bar90, BADG00, BOXX00, BH88, CDMS98, CA14, Jr+18, SWW94, WPM+02, WS93, WN14, WSW+95, BADP96, BAAD+97, BAD01, BAC06, BJWS96, Dub96, GY08, JP89, PD98, PG94, PG96a, Pud16, Wam99, WS92, WSWL95, WSH+12, Xue98, JKCGJ08].

Tree-Code [CDM98]. Treecode [KF99, Mak04, SW94, DKPH04, WS95a, WSB+97]. Treecodes [GSS98a, GSS00]. TreePM [Bag02, IFM09, YF05]. Trees [BF78].

trenches [TCW08]. Trends
[MBS15, Car09, CLG03, Les96]. triangulated [RS94]. Truly
[APG94, Ano94c]. truncated [TCW08]. truncating [BPK85]. Truncation
[OC03, AP00, AB95, CC04, CC05]. tube [Lin95]. tumors [ES04]. tuned [YB12]. tuning [MKF01, NMH06]. turbulence
[HN+09, YNS+09, YBNY13]. Turkey [Ano97b]. Two [LS93, MK96, Pan95, Pie93, RRR05, BL97, Car06, CHL06, CCG+06a, CC10, CC12, ECL02, EG01, GH98, JKCGJ08, Kro01, NT09, PSPS95, RRR03, Rok90, Rok98, RCWY07, SKPP95, WY07b, XJ08, YBZ04]. Two-Center [Pan95].
two-component [JKCGJ08].

Two-Dimensional [LS93, BL97, CC10, CC12, ECL02, GH98, Kro01, NT09, PSPS95, RRR03, WY07b, XJ08]. two-grid [Car06].
two-step [RCWY07]. Type [Gus98, ZZ93].

[MBS15]. Unified [JBL02]. Uniform [BB87]. uniqueness [YMS05]. unit [DKG92c, KS98b]. Universe
[BADG00, ZGI+10, BAD01]. University [IEE94a]. unknowns [YBK+11].

Unrelaxed [PNB94]. unstructured [HKS05, MSV92]. UPC [ZBS11]. Updates
[Kan15]. Updating [HA17]. upon [TD09]. Uranus [MKFD02]. USA [Hol12, HM86, IEE96c, ACM07, IEE02, Kar95, K+96]. Use
[HM86, SP96, Bes00, Mak93, PJY96, RT+08, SM97]. User [Wel91]. Using
[BVW96, BV96b, BP88, CL12, CKE08, CS98b, CPD17, GA96a, HE88, LKM02, LR95, MI96, MPPA96, Per99, SG97, SHMC97, SMC97, SP99, SC94, BV96a, Bor86, BH88, CKS91, CvHMS94, DM07, ESR01, ES04, ESM98, Gas97, GF06b, GF06a, GD05, HC10, HLL+18, Kan15, KM00, LBGS16, LB91, LJ98, LO96b, LC07, LWM+02, MI95].
MRH14, OYK+14, Pri94, RC97, Sat10, Syl03, Tau03a, WY07a, WS92, WSWL95, YB97, YBK+11, YBNY13, ZCG00]. UT [Hol12]. Utah [RSS96].

vacancies [Kon93]. value [Lin95, ON08a, ON09b, RTA+08]. values [LX17]. variable [Tau03a, Tau04]. variables [JP89]. Variants [YTK14, BHER94]. Variational [DM12, DM07]. Vector [CS98a, TYON12, HC08, XWT09]. Vectorized [Bor86, GDK89, BP93]. Velocities [ZQSW94]. versatile [WS95a]. Version [GS98a, NT96, SP01, GG89, GG90, GR97, GH07, LCM07]. very [BSSF96a, BSSF96b, LBI+97, PSSP94].

vesicles [VGZB09]. via [AGR88b, GB11, Gue97, GD07a, WJGHG96b]. videocopiê [Ano97b]. virial [KS11]. virtual [XJ10]. viscous [BLA05, VGZB09]. Vlasov [VTG91]. Vol [Bat03]. Volterra [ZX19]. Volume [MB16, NT09]. Volumetric [ZKL+07, HW10]. Vortex [BCH93, CK00, DD95, RRR95, WSWL95, aYZ97, BLA05, CWD08, ECL02, HM95, Ros06, RS94, WSWL95, AG88].

vortex-in-cell [CWD08]. vorticle [Ang17]. voxel [Ham11].

W [MD12]. WA [LCK11]. Waals [DKG92b]. Washington [IEE94a, IEE94c]. water [BAL91, HHK99]. wave [BSL09, Bes00, BGCG06, CCZ97, CCKL09, CHJN03, CRW93, ESR90, ESM98, GLS06, LC94, MD98, Tak14, TCW08, TC09].

X [Ful97]. X10 [MRH14]. x86 [TYON12, TYNO12]. x86_64 [NMH06]. XV [BR93]. XXVI [Bre04].

Yamakawa [GCH+18, LGG+13]. York [IEE90, IEE90, IEE96b]. Yukawa [BFO99, HJZ09, ZHPS10].

zero [GG16, SF18, ZC00]. zero-multipole [SF18]. Zonal [BDS07].

References

Ainsworth:1997:WMM

Agullo:2017:BGB

Emmanuel Agullo, Olivier
REFERENCES

[Aumage et al. 2017]

[Amor et al. 2001]

[Aarseth 1985]

[Auffinger and Beveridge 1995]

[Antoine et al. 2004]

[Angyan and Chipot 1994]

5614 (print), 1464-3855 (electronic).

Antonuccio-Delogu:1994:PTB

Antonuccio-Delogu:1999:PTA

Adamson:1996:CCT

Anandakrishnan:2011:GBA

Anderson:1988:VMP

Aluru:1998:DIH

Ambrosiano:1988:FMM

REFERENCES

Ambrosiano:1988:GPS

Allen:1993:GIM

Aluru:1994:DIH

Aluru:1996:GBA

Amisaki:2000:PEE

Anderson:1992:IFM

Anderson:1999:TDS

REFERENCES

[Ano94c] Anonymous. Truly distribution-independent algorithms for the N-body and problem. In IEEE [IEE94c], pages
REFERENCES

Anonymous:1995:ECP

Anonymous:1995:PAC

Anonymous:1996:PAC

Naval Postgraduate School, ???? , 1996. Two volumes.

Anonymous:1997:PAC

Anonymous:1997:RSA

Anandakrishnan:2010:ABN

Ramu Anandakrishnan and Alexey V. Onufriev. An $N \log N$ approximation based on the natural organization of biomolecules for speeding up the computation of long range interactions. Journal of Computational Chemistry, 31(4): 691–706, March 2010. CODEN JCCHDD. ISSN 0192-
REFERENCES

31

8651 (print), 1096-987X (electronic).

Amini:1999:ADF

S. Amini and A. T. J. Proft. Analysis of a diagonal form of
the fast multipole algorithm for scattering theory. *BIT
CODEN BITTEL, NBITAB.
ISSN 0006-3835 (print), 1572-9125 (electronic). URL http://
www.springerlink.com/openurl.asp?genre=article&
issn=0006-3835&volume=39&
issue=4&spage=585.

Amini:2000:ATE

Sia Amini and Anthony
Proft. Analysis of the truncation errors in the fast
multipole method for scattering problems. *Journal
of Computational and Applied Mathematics*, 115(1–
CODEN JCAMDI.
ISSN 0377-0427 (print), 1879-1778
(electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0377042799001752.

Amini:2003:MLF

S. Amini and A. T. J. Proft. Multi-level fast multi-
pole Galerkin method for the boundary integral solution of
the exterior Helmholtz equation. In *Current trends in
scientific computing (Xi’an, 2002)*, volume 329 of *Contemp.
Math.*, pages 13–19.

American Mathematical So-
ciety, Providence, RI, USA,
2003.

Aluru:1994:TDI

S. Aluru, G. M. Prabhu,
and J. Gustafson. Truly
distribution-independent algo-
rithms for the N-body
problem. In IEEE [IEE94c],
pages 420–428. ISBN 0-8186-
6605-6 (paper), 0-8186-6606-
4 (microfiche), 0-8186-6607-
2 (case). ISSN 1063-9535.
LCCN QA76.5 .S894 1994.
duke.edu/School/Reference/
Multipole.html; http:/
/sc94.ameslab.gov/AP/contents.
hmtl. This paper proves that
Greengard’s algorithm is not
O(N) for non-uniform distri-
butions.

Appel:1985:EPM

Andrew W. Appel. An effi-
cient program for many-body
simulation. *SIAM Journal
on Scientific and Statistical
Computing*, 6(1):85–103, January
ISSN 0196-5204.

Alpert:1991:FAE

Bradley K. Alpert and
Vladimir Rokhlin. A fast al-
gorithm for the evaluation of
Legendre expansions. *SIAM
Journal on Scientific and Sta-
tistical Computing*, 12(1):158–
179, January 1991. CO-
DEN SIJCD4. ISSN 0196-
5204. These polynomials are
used in the Fast Multipole
Method, and this paper shows how they can be computed in $O(N)$ time.

Allen:1987:CSL

Atkinson:1997:NSB

Amisaki:2003:DHA

Araujo:2012:SLS

Ying:1997:VM

Bailey:1995:PSS

Becciani:1997:PTC

REFERENCES

REFERENCES

Bathe:2003:CFS

Berger:1987:PSN

Becciani:2006:FMP

Beale:1993:VFR

Board:1992:AMD

Babuska:2002:MMN

REFERENCES

REFERENCES

Berman:1994:RME

Beatson:1997:SCF

Rick Beatson and Leslie Greengard. A short course on fast multipole methods. In Ainsworth et al. [A+97], pages 1–37. ISBN 0-19-850190-0. LCCN QA374 .W38 1997. The Seventh EPSRC Numerical Analysis Summer School was held at the University of Leicester during the summer of 1996, from the 8th to the 19th of July.

Bunse-Gerstner:2006:PGC

Bakker:1990:SPC

Beatson:1997:SCF

Bischof:2005:DPC

Broeckx:2000:PIC

F. Broeckx, M. J. Goovaerts, R. Piessens, and L. Wuytack,

[BH86] J. E. Barnes and P. Hut. A hierarchical $O(N \log N)$ forcecalculation algorithm. *Nature*, 324(6270):446–449, 1986. CODEN NATUAS. ISSN 0028-0836 (print), 1476-4687 (electronic). This paper appears to be the origin of fast multipole algorithms; its $O(N \log N)$ complexity was later improved to $O(N)$ [GR87]. See also [App85], which might predate this work.

REFERENCES

REFERENCES

References

REFERENCES

Brunet:1993:HAD

Blelloch:1997:PCB

Beatson:1998:FER

Bonnet:2007:FBT

Boris:1986:VNN

Bode:2000:TPM

Boyd:1992:FA

John P. Boyd. A fast algorithms for Chebyshev, Fourier

Benson:2014:PDF

Brebbia:1993:BEX

Brebbia:2004:BEX

Biesiadecki:1993:DMT

Blackston:1997:HPE

Board:2000:FMA

Bapat:2009:AFM

[BSL09] M. S. Bapat, L. Shen, and
REFERENCES

REFERENCES

REFERENCES

REFERENCES

583X (print), 1290-3841 (electronic).

Carayol:2005:EEF

Cho:2010:WFM

Cho:2012:RWW

Chen:2013:APM

Chaillat:2015:WFM

Cheng:2006:RIW

H. Cheng, W. Crutchfield, Z. Gimbutas, L. Green-gard, J. Huang, V. Rokhlin, N. Yarvin, and J. Zhao. Remarks on the implementation of the wideband FMM for the Helmholtz equation in two dimensions. In *Inverse problems, multi-scale analysis and
REFERENCES

Cheng:2006:WFM

Chen:2009:ADI

Chen:1997:FMM

Cecka:2013:FBF

Chen:1997:FMM

Cecka:2013:FBF

Crowley:1997:AIS

Chartier:2010:RFM

REFERENCES

issn=0006-3835&volume=50&issue=1&page=23.

Carpentieri:2003:CFM

Carpentieri:2005:CFM

Cai:2007:EFM

Capuzzo-Dolcetta:1998:CBF

Cichocki:1989:EIP

Coulaud:2008:HPB

1862, 2008. CODEN JCT-PAH. ISSN 0021-9991 (print), 1090-2716 (electronic).

Coulaud:2010:HPB

Cheng:1997:NEE

Chandrasekaran:2004:DCA

Chen:2003:CTS

Carrier:1988:FAM

Cheng:1999:FAM

Cohen:2003:MNA

REFERENCES

Cheng:2006:AFS

Chowdhury:2005:SLM

Callahan:1995:ADC

Callahan:1995:DMP

Cottet:2000:VMT

REFERENCES

[Cruz:2011:FMM]

[Chau:2008:AFM]

[Chynoweth:1991:SOL]

[Caillol:1991:NSH]

[Cecka:2012:FMM]

[Coifman:2006:DW]
REFERENCES

References

Matt Challacombe, Chris White, and Martin Head-Gordon. Periodic boundary conditions and the fast multipole method. Journal of Chemical Physics, 107(23):10131–??, 1997. CO-
DEN JCPA6. ISSN 0021-9606 (print), 1089-7690 (electronic).

Chen:2008:FFM

Dachsel:2006:FAD

Dachsel:2009:ECF

Dachsel:2010:CAE

Darve:1997:FMM

Darve:2000:FMMa

Darve:2000:FMMb

Darrigrand:2002:CFM

Deng:2007:EFM

DeCastro:2006:NMA

Draghicescu:1995:FAV

Darbas:2013:CAP

Dehnen:2002:HFC

Demmel:1995:FHM

Demmel:1996:FHMa

Demmel:1996:FHMb

James Demmel. Fast hierarchical methods for the
REFERENCES

Dutt:1996:FAP

Dejonge:1986:USS

Darve:2004:EFM

Darve:2004:FMM

Dorband:2003:SHS

Debolt:1993:AMP

Ding:1992:ALSb

Hong-Qiang Ding, Naoki Karasawa, and William A. Goddard, III. Atomic level

[Ding:1992:OSC]

[Ding:1992:RCM]

[Darrigrand:2007:CUW]

[Darrigrand:2012:CUW]

Deem:1990:TCS

Dutt:1995:FFT

Dikaiakos:1996:FAS

Dongarra:2000:GEI

Dombroski:1996:KCE

Dubinski:1996:PTC

Dembart:1998:AFM

REFERENCES

REFERENCES

Edelman:1999:FFF

Engblom:2011:WSS

Ergul:2011:SLS

Engquist:2012:NAM

El-Shenawee:2004:RSM

Ergin:1998:FET

El-Shenawee:2001:MCS

Esselink:1995:CAL

Esselink:1995:CAL

Fann:2004:SOM

Fong:2009:BBF

Franklin:1996:GMI

Fedichev:2011:CEM

Fukushige:1999:HPS
Toshiyuki Fukushige, Piet Hut, and Junichiro Makino.
References

T. Fukushige, J. Makino, T. Ito, S. K. Okumura,

H. Fujiwara. The fast multipole method for integral equations of seismic scattering

Ful97

Gurel:1996:ESS

Gurel:1996:FMM

Gumerov:2013:FMA

Gaspar:1997:FSB

Gavrilyuk:2011:BRF

[Gumero:2006:FMM]

[Gumero:2007:FRB]

[Gumero:2007:SPF]

[Gumero:2008:FMM]

[Gumero:2009:BFM]

[Garcia:2008:ISE]

[Grest:1989:VLC]

[GE13] Anders Goude and Stefan
REFERENCES

REFERENCES

Greengard:2004:IEM [GK04]

Ginste:2009:ECP [GKD09]

Greengard:1996:IEM [GKM96]

Grama:1994:SPF [GKS94]

Grama:1998:SPF [GKS98]

Griebel:2007:NSM [GKZ07]

REFERENCES

REFERENCES

Greengard:1991:FAC

Greengard:1990:NSB

Greengard:1990:PF

Greengard:1994:FAC

Ginste:2004:FMM

GS91

GS98a

GS98b
REFERENCES

Geng:2001:FMM

Grama:1998:IEB

Grama:1998:PMD

Groom:1995:IG

Greengard:1998:GEI
Leslie Greengard and Stephen Wandzura. Guest Editor’s introduction: Fast multipole

Giese:2008:EAT

Hoft:2017:FUM

Hamada:2011:GAI

Hariharan:2002:SPF

Have:2003:PIF

Halley:1993:PSM

He:2008:DVT

Hesford:2010:FIS

Higham:2015:PCA

Hockney:1988:CSU

Holm:2014:DAA

Hinsen:1992:RDE

Hamada:1998:PPS

REFERENCES

ver Spring, MD 20910, USA, 1998.

He:2008:FES

Huang:2018:IEC

Hut:1986:USS

Hamilton:1995:RGM

Hamada:2010:TAB

Houzaki:2006:FPR

REFERENCES

926x (print), 1558-2221 (electronic).

Hanrahan:1991:RHR

Heath:1997:PES

Ho:2002:SBP

Hoyler:1997:FMM

Hesford:2010:FMM

Hesford:2011:RRA

Andrew J. Hesford and Robert C. Waag. Reduced-rank approximations to the far-field transform in the grid-ded fast multipole method.
REFERENCES

Yao:2008:IFM

Ichiki:2002:ISD

IEEE:1990:PSN

IEEE:1992:ASF

IEEE:1992:PSM

IEEE:1993:PSP

IEEE:1994:IAP

IEEE:1994:PSH

IEEE:1994:PSW

IEEE:1995:IAP

IEEE:1996:IAP

IEEE:1996:PFI

IEEE:1996:PSM

IEEE:1997:IAP

IEEE:1998:FIC

IEEE:2002:STI

[IEE02] IEEE, editor. *SC2002: From Terabytes to Insight. Proceed-

REFERENCES

Jandhyala:1998:FAA

Jiang:2004:NCE

Jansen:2018:TCC

Jia:2008:KDC

Jeon:2008:PTC

Jandhyala:1998:CSD

REFERENCES

Jandhyala:1997:HFS

Jernigan:1989:TCL

Kaxiras:1996:MTS

Kutteh:1995:GFM

Kutteh:1996:RCG

Kantardjiev:2015:SNU

REFERENCES

[KFM99] Atsushi Kawai, Toshiyuki Fukushige, and Junichiro Makino. $7.3/Mflops astrophysical N-body simulation with treecode on GRAPE-5. In ACM [ACM99], page ??

REFERENCES

pean supercomputing accomplishments, and performance and computations — v. 3. Supercomputer design, hardware and software.

Kokubo:1994:HSP

Kutteh:1995:ICM

Kondratyev:1993:MME

Kropinski:1999:IEM

REFERENCES

Kropinski:2001:ENM

Kropinski:2002:NMM

Kudin:1998:FMA

Kudin:1998:FMM

Kudin:2004:RIL

Kim:2011:CSV

Koc:1999:EAN

S. Koc, J. Song, and W. C. Chew. Error analysis for the numerical evaluation of the diagonal forms of the
REFERENCES

Kim:2010:CBA

Labreuche:1998:CTF

Leathrum:1991:PFM

Leathrum:1992:MAF

Leathrum:1992:PFMb

Liem:1991:MDS

Lazarski:2016:DFT

REFERENCES

Lim:1997:MDV

Lu:1993:FAS

Lu:1994:MAS

Liska:2014:PFM

Letourneau:2014:CFM

Leimkuhler:2006:NAM

REFERENCES

Lu:2010:AAF

Lu:2013:AAF

Lashuk:2012:MPA

Lu:2007:NVF

Lustig:1993:FMM

Li:2018:MDL

Lu:2007:AFM

Lambert:1996:MBA

LeRouzo:1997:MEC

Leathrum:1992:PFMa

Lemou:1998:MEF

Lemou:2004:MAF

[Lem04] Mohammed Lemou. On multipole approximations of the

Leszczynski:1996:CCR

Liang:2013:FMM

Liu:2008:FFT
Kian Meng Lim, Xuefei He, and Siak Piang Lim. Fast Fourier transform on multipoles (FFTM) algorithm for Laplace equation with direct and indirect boundary ele-

Linton:1995:MMB

Liu:2008:FMB

Liu:2009:FMB

Lu:1996:AFMb

Lu:1996:AFMa

Lee:1998:PPS

Lienhart:2002:UFP

Lakshminarasimhulu:2002:CMB

Lin:1992:MDD

Lu:1996:MPF

REFERENCES

Computer Society Press order number PR07582.

ISSN 0020-7608 (print), 1097-461X (electronic).

Langer:2005:CBF

Lu:1996:AFA

Lupo:2002:LSM

Liu:2017:FMM

Ltaief:2014:DDE

Lee:2004:SIP

Makedon:1993:PDA
F. Makedon, editor. Parallel I/O and databases: 2nd Annual symposium on issues and obstacles in the practical implementation of parallel algorithms and the use of parallel machines — June 1993, Hanover, NH, Dartmouth Institute for Advanced Gradu-
ate Studies in Parallel Computation. DIAGS, Hanover, NH, USA, 1993.

REFERENCES

CODEN CSENFA. ISSN 1521-9615 (print), 1558-366X (electronic). URL http://dl.acm.org/citation.cfm?doid=1539481.1539489. See [DS00, BS00].

[MD98] Edwin A. Marengo and Anthony J. Devaney. Time-dependent plane wave and

REFERENCES

Malas:2011:SCP

McKenney:1995:FPS

Makino:2007:GDP

MacDonald:1995:FSM

Macdonald:1996:FSM

Makino:1990:GSP

REFERENCES

org/stamp/stamp.jsp?tp=&arnumber=145455.

REFERENCES

8275 (print), 1095-7197 (electronic).

Milthorp:2014:PFI

Mehrotra:1992:USC

Makino:1998:SSS

Makino:1994:GOT

Makino:1995:ABS

Nishida:1997:AFM

Nilsson:2004:SHF

Nakano:1994:MMD

Najm:1999:CLE

Nitadori:2006:PTB

Niino:2012:PBC

Nyland:1993:DIA

Niedermeier:1994:SAM

REFERENCES

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
</table>
REFERENCES

Olyslager:2008:FMM

Okumura:1992:GHP

Otani:2008:FPB

Otani:2008:PFM

Otani:2009:BPF

Y. Otani and N. Nishimura.

Otani:2009:FOP

Ormseth:2007:IFM

ODonnell:1989:FAN

Of:2005:AFM

Of:2006:FMM

Of:2006:BET

REFERENCES

REFERENCES

Pouransari:2015:OAF

Pellegrini:1998:EFS

Pereira:1999:PBI

Pfalzner:1994:HTC

Pfalzner:1996:MBT

Pollock:1996:CPF

Papa:2005:CMD

REFERENCES

Pearce:2015:DLB

Piecuch:1993:MSC

Perez-Jorda:1996:CRS

Peirce:1995:SMM

Pluta:1994:DHE

Pringle:1994:NST

Pruett:2003:ABA

Pan:1992:PCT

Potts:2004:FCR

Petersen:1994:VFM

Petersen:1995:EEFa

Petersen:1995:EEFb

1995. CODEN PRLAAZ. ISSN 0080-4630.

Pudlak:2016:LTC

Qu:2015:FMA

Rahola:1996:DFT

Rajamon:1997:PDS

Rui:2007:STS

Reif:1999:ACP

REFERENCES

REFERENCES

ROSSI:2006:EBS

RAMACHANDRAN:2003:FTD

RAMACHANDRAN:2005:FMM

RUSSO:1994:FTV

ROKHLIN:1997:SFM

RUDBERG:2006:EIF

RENEGAR:1996:MNA

REFERENCES

Ravnik:2009:CBW

Rodriguez:2008:USV

Ringbom:1996:FSG

Salmon:1996:GCC

Sarvas:2003:PIA

REFERENCES

uatuio of the zero-nupoloe
summation method in mod-
erm molecular dynamics soft-
ware. Journal of Compu-
tationa! Chemistry, 39(20):
1551-1560, July 30, 2018.
CODEN JCCHDD. ISSN
0192-8651 (print), 1096-987X
(electronic).

Sendur:1997:SRP

[SG97] I. K. Sendur and L. Guerel. Solution of radiation prob-
lems using the fast mul-
tiopole method. In IEEE
[IEE97], pages 4-11. ISBN
0-7803-4179-1, 0-7803-4178-3,
0-7803-4180-5, 0-7803-4181-
3. LCCN TK7871.6.139 1997.
Four volumes. IEEE catalog
number: 97CH36122.

Sabariego:2004:CME

[SGD+04] R. V. Sabariego, J. Gysel-
linck, P. Dular, J. De
Coster, F. Henrotte, and
K. Hameyer. Coupled
mechanical-electrostatic FE-
BE analysis with FMM ac-
celeration: application to
a shunt capacitive MEMS
switch. COMPEL, 23(4):876-
884, 2004. ISSN 0332-1649.

Sabariego:2004:AFM

[SGG+04] R. V. Sabariego, J. Gyselinck,
C. Geuzaine, P. Dular, and
W. Legros. Application of the
fast multipole method to hy-
brid finite element-boundary
element models. Journal of
Computational and Ap-
pied Mathematics, 168(1-

Shanker:2007:ACE

B. Shanker and H. Huang. Ac-
celerated Cartesian expansions —
a fast method for comput-
ing of potentials of the form
R−ν for all real ν. Journal of Computational Physics,
226(1):732-753, 2007. CO-
DEN JCTPAH. ISSN 0021-
9991 (print), 1090-2716 (elec-
tronic).

Sharp:2006:BSP

Philip W. Sharp. N-body
simulations: The perfor-
mance of some integrators.
ACM Transactions on Mathe-
matical Software, 32(3):375-
395, September 2006. CO-
DEN ACMSCU. ISSN 0098-
3500 (print), 1557-7295 (elec-
tronic).

Singh:1995:IHB

Jaswinder Pal Singh, John L.
Hennessy, and Anoop Gupta.
Implications of hierarchi-
cal N-body methods for
multiprocessor architectures.
ACM Transactions on Com-
puter Systems, 13(2):141-
202, May 1995. CODEN
ACSYEC. ISSN 0734-
2071 (print), 1557-7333 (elec-
acm.org:80/pubs/citations/
REFERENCES

Suda:2004:APA

Skeel:1989:MDS

Solvason:1995:RCE

Schmidt:1991:IFM

REFERENCES

Schmidt:1997:EIF

Schmidt:1997:MES

Song:1996:MFM

Song:1997:MFM

Song:1998:FISa

Song:1998:FISb

Shanker:1997:OSI

Simos:2005:ACM

Shanker:1997:SIC

Solvason:1997:EEF

Sidonio:1999:PBI

Sun:2001:MVF

Springel:2005:CSC

Scherbinin:1996:UME
REFERENCES

Stalzer:1995:PFMb

Stalzer:1995:PFMa

Sun:2014:FMR

Suda:2004:SAF

Salmon:1994:STC

Springel:2005:SFE

Salmon:1994:FPT
John K. Salmon, Michael S. Warren, and Gregoire S. Winckelmans. Fast parallel tree codes for gravitational and fluid dynamical N-body
Schwichtenberg:1999:AMM

Tausch:2003:SBP

Tausch:2003:FMM

Tausch:2004:VOF

REFERENCES

Shang-Hua Teng. Probably good partitioning and

Tornberg:2008:FMM

Totoo:2014:PHI

Taiji:1994:GTM

Tang:2012:FLC

Takahashi:2016:EBM

Tausch:2003:MBS

REFERENCES

8275 (print), 1095-7197 (electronic).

REFERENCES

Victory:1991:CAF

Van:2002:TDF

Wambsganss:1999:GLN

Wagner:1994:RPA

Wagner:1994:RPF

Welch:1991:TPW

Wang:2008:FSM

Warren:1998:AAL

Wallen:2006:BMF

Wala:2018:FAE

Wang:1996:EFM

Wang:2007:PFM

Wang:1999:LSM

Zhiqiang Wang, James Lupo, Alan McKenney, and Ruth Pachter. Large scale molecular dynamics simulations with fast multipole implementations. In ACM [ACM99], page ??

Watanabe:2014:GAH

Waltz:2002:PCT

REFERENCES

Computer Society Press order number RS00160.

using a new fast multipole boundary element method.

REFERENCES

137

Xiao:2009:FMV

Xu:2008:FMB

Yoshii:2018:PTE

Yeung:1997:TNL

Yuan:2001:PIF

Yokota:2012:TSF

REFERENCES

Yokota:2011:BEU

Yokota:2012:SFM

Yokota:2013:PTS

Ying:2004:KIA

Ying:2003:NPK

Yang:1998:STE

Tao Yang and Cong Fu. Space/time-efficient scheduling and execution of parallel irregular computations. ACM Transactions on Programming Languages and Systems, 20(6):1195–1222, November 1998. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (elect-
139

REFERENCES

Yoshikawa:2005:PTM

Yang:2001:CPD

Ying:2006:KIF

Ying:2009:FAB

Ying:2015:BPF

Yokota:2009:FMM

Yarvin:1998:GOD

Norman Yarvin and Vladimir Rokhlin. A generalized one-dimensional fast multipole method with application to filtering of spherical harmonics. *Journal of Computa-
REFERENCES

Yarvin:1999:IFM

Yokota:2014:CCF

Zhou:1995:NMD

Zheng:2016:AEA

Zwart:2010:SUI

Zhang:2010:RFY

Zhao:1991:PMM

Zhao:2007:VFM

Zhiqin Zhao, Narayan Kovvali, Wenbin Lin, Chang-Hoi Ahn, Louise Couchman, and Lawrence Carin. Volumetric fast multipole method for

