Title word cross-reference

1 [TPKP12]. $\$15K$ [WGL+98]. 2 [GROZ04, Lab98, Liu08, ON08a, RS94, VGZB09, WYW05, WXQL08]. 3 [BDMN03b, BHR04, BHGR04, CDM98, DDL13, Dar02, GP08, GD03, JMC97, NW89, NH97, ON08b, PG94, QCG15, Sar03, TCD17, WY05, WLL+07, WZC+17, WCZ+20, iYNK02, YB01, ZY05]. $\$50/Mflop$ [WSB+97]. $\$7.3/Mflops$ [KFM99]. 3 [PG96b]. $h = 0$ [DNS90]. K [MG05, CK95b]. LU [MG07]. R^n [CBN02]. N [Aar85, Alu94, APG94, Alu96, AGPS98, AAL+01, And99, Ano94a, Ano94c, ADB94, ADBG99, Bag02, Bar86, BADP96, BAAD+97, BADG00, BAD01, BS97, BN97, BOX00, Bor86, BDS07, BME90, BME93, BEM94, DH86, Dem95, Dem96a, Dem96b, DHM03, FRA+08, FM95, FM96, FQG+92, HTG02, HJ96, IFM09, IIM05, KAT89, KFM99, KMT00, KMT94, LKM02, Liu94, MIES90, MTES94, MT95, MD12, MG05, MMC99, MCD97, NMH06, Oku96, PGB05, Per99, PRL03, SWW94, Sal96, Sha06, SP99, Sin92, SH99, SH95, SHT+95, SRK+12, TMES94, TWYC06, TYON12, TYN012, Ten98, TL14, WPM+02, WS92, WS93, WN14, WSWL95, WSH+12, Xu95, Yin15, YF05, Ano94b, CK95a, CK95b, GKS94, GKS98, Gre90b, HNY+09, HN10, HS95, KK95, Xue98]. $N \log N$ [AO10, DYP93, ADO11]. ν [SH07]. $O(\log_2 n)$ [JBL02]. $O(N)$ [BSL11, Deh02, DTG96, OKF14, Xue98]. $O(N \log N)$ [BH86, FGM11, PJY95]. $r^{-\lambda}$

A Bibliography of Publications about the Fast Multipole Method

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/
31 October 2019
Version 2.137
-Body [Ano94b, CK95b, GKS94, KK95, BEM94, GKS98, Gre90b, HNY+90, HN10, HS95, Xue98, AGPS98, AAL+01, And99, ADB94, Bag02, BADG00, BS97, BN97, BOX00, FM96, HTG02, HJ96, KFM99, KFMT00, SWW94, SHG95, SHT+95, Ten98, WPM+92, WS93, Xun95, Yin15, YF05, Aar85, Alu94, APG94, Alu96, Ano94a, Ano94c, ADBG99, Bar66, BADP96, BAAD+97, BAD01, BDS07, BME90, BME93, CK95a, DSH6, Dem95, Dem96a, Dem96b, DHM03, FRE+98, FM95, FQC+92, IFM09, IHM05, Kat89, KMT94, LKM02, Liu94, MIES90, MTES94, MT95, MD05, MG05, MCM99, NMH06, Oku96, PGB05, Per99, PRL03, Sal96, Sha06, SP99, Sin92, SRK+12, TMM94, TWYC06, TYON12, TYON12, TL14, WS92, WN14, WSWL95, WSH+12]. -D [NH97, WZZ+20, BDMN03b, CD98, DDL13, Dar02, GRO20, GD03, JMC97, NW89, Sar03, TPKP12, WYW05, YB01, ZY05]. -dimensional [Lab98]. -means [MG05]. -Nearest-Neighbors [CK95b].

3 [OME+92]. 3-D [WY07a]. 3051-66 [YB97]. 33rd [IEE92a]. 3D [LO96b].

4 [Ano94a, FM95, FM96, MTES94, MT95, TMES94]. 42 [HNY+90].

5 [KFM99, KFMT00]. 512 [MHI07]. 512-core [MHI07]. 512-Gflops [MHI07].

6 [MKFD00, MKFD01, MKFD02, MKFD03].

8 [MD12]. ’88 [KK88]. 8th [BGPW00].

= [Ano97b].

A-posteriori [XTH09]. above [GSC01].

Accelerate [CS98b, LSCM96, LKM02, TYNO12].

Accelerated [BCL+92, EB96, SH07, WZZ+17, WN14, AC17, BHE+94, BHER94, EB94, EG01, GD09, GODZ10, GAD13, Ham11, JH08, LCM07, MR07, QCG15, Tak14, WLL+07, ZD05]. Accelerating [GHRW98, MG09, WC94a]. Acceleration [CKE08, HZH+18, LCZ07, SWW99, VCM00, BK96, KCF+05, SGD+04]. accelerator [ATM93, MD12]. accomplishments [Ano90]. Accuracy [CCD97, DY98, CB09, GL96, JP89].

Accurate [SRDP06, AHP93, Dac06, EG09a, EG13, HHHP09, HHH19, ZGD+16]. achieves [WGL+98]. Achieving [SSF96].

ACM [IEE02, Kar95]. ACM/IEEE [Kar95, ACM97]. acoustic [AD05, BSL09, BN07, CWK08, GF60b, GF60a, HW10, TCW08, WJY906, ZGD+16].

acoustic-structure [GF60b, GF60a].

acoustics [FG05, OLL04]. Acta [Is197].
Adaptation [McK96]. Adapted [NT96, NT94]. adaptation [BLA05].
Adaptive [BT95, BSL90, BS97, BFO99, GE13, GP08, HEGH14, KK95, NPR93, PD15, SIHG93, SHT+95, Ten98, ZT07, AC17, BCP08, CCR88, CRR99, CHL06, CF10, FOCH96, GY08, GL96, GCH+18, HJZ09, LCL+12, LB92a, LCM10, LCM13, PRL03, YBZ04, ZHS10]. addition [HC08, KSC99]. address [HS95].
Advanced [HM86, Win95, dCGQS06, TYON12]. Advances [BLA05, SM05]. advantage [Ano92]. Adventures [CDCD97]. affinities [KSS10]. AFMPB [LCHM10, LCHM13].
after [ZQSW94]. Algebraic [Car09, YTK14, OF08, PRT92]. Algorithm [BS00, Bar86, BFO99, CDM98, CSMCxx, Deh02, DD95, EB96, JMC97, JMBC98, KK95, Lea92, LQ96a, MBS+00, MG11, MPA96, NPK93, OKF14, SLC96, SLC97, WC94b, WS93, WN14, YR99, ZBS15, AR91, Alu96, AP99, ATR+12, BN92a, BJWS96, BSS97, BCL+92, BP03, BCO94, BP93, CCR88, CG04, CC13, CRR99, DR96, EGHT97, EB94, EG08, EG09a, EG09b, Erg11, EG13, GH08, GDC08, GKD09, GR87, GR88b, HS08, HSA91, HC10, HR98, JMBMC98, KM00, KK16, KS98a, LM02, LDB96, LB91, LB92a, LB92b, LZL04, LLOH08, LC93, LC94, LW+02, MG07, MG09, MCB070, NW98, NQK94, NT09, OR89, OLLL03, OLL04, PJ95Y, PRL03, Rah96, RCW97, Sar93, ST03, SK04, Sud04, TC909, TK18, WJY060, WL96, Xue98, YRS13, YB204, Yin06, YB12]. algorithm [ZCG00, ZBS11, ZCL+98, ZB95, ZD05, Lea92, MB16]. Algorithms [APG94, AGP98, Ano94c, ADBG99, BF78, Bhs97, BN97, Boy92a, CK95a, DSO0, DGR96, LCM+06, Liu94, MBS+00, MBS15, Pri94, Ten98, BCP08, BHE+94, BHER94, BM93, BEM94, DH03, ES95, Gre94, K+96, Mak93, PRT92, Pe98, Win95, Yin09]. ALiCE [HTG02]. All-to-All [HP95].
Aqueous [GP93].

Arbitrary
[LS93, WZC+17, EIM+92, GSC01, GL96, KS98b, LM02, Tau03b, YRG13].

Architectural [DRS96]. Architecture [Lea92, NMH06, Sin92, TYON12, TYNO12].

Architectures [SHG95, HGD11, LCL+12, MMC99].

arithmetic [LKM02]. armed [KLM+09].

array [CKS91]. article [Dac10].

ASCI [WSB+97]. aspects [CHJN03]. assemblies [CPP93, LDB96].

Astrophysical [Ano94a, KFM99, MTES94, MT95, WS92, WSH+12, ZBS11, ZBS15].

Astrophysics [FQG+92, HNY+09].
asymptotic [BK96, Dar00a]. atom [DKG92c, FRE+08]. Atomic [AC94, DKG92a, Kon93]. Atoms [McD97, Pie93].

Atoms [McD97, Pie93]. August [IEE96b, RSS96].

Australian [Ano92]. Automatic [RGKM12]. Autotuning [HEGH14].

Avalon [WGL+98]. Axial [SMC97, SM97].
[BH03, BR93, Bre04, LJ96b, LJ96a, MBA97, Osw06b, SS07, WZC+17, WSW+95, AP03, Atk97, BSL90, Bes00, BWS+95, BHR04, BHGR04, Car06, Car07, CWHG97, CWK08, Gas97, GBMN06, Gav11, GOS99, GP08, GD09, GODZ10, GAD13, Ham11, KMC09, KCF+05, Ls05, LOSZ07a, LOSZ07b, LCQF18, LHL08, Lin95, Liu08, Liu09, LC94, Mil08, OSW05, OSW06a, Oi08, Oks09, ON08a, ON09a, ON09b, PN95, QCQ15, RSZ09, SGG+04, Sat10, Skt93, Sin95, Tak14, Tcd17, Tw03, Tan04, VGZB09, WY05, WY07b, WY07a, Wslw95, Xjm08, Yin09, iYnk02, YAO18, Ysm05, BR93].

Boundary-Integral [Lj96b].

Boundary-value [Lin95].

Bounds [Gss98a, Gss00, Wk18].

box [Fd09].

Brest [Es04].

Breit [JdR+18].

Bridging [Aab+17].

Broadband [Wjyo06, Gd90].

Brownian [Dhm03].

Building [Td09].

buried [Ers01, Gso01].

C [Bglm05].

CA [B+95, Ano95b, Ano96, Ano97a, Kar95, Wel91].

Calculate [BvW96, Bv96b, Bv96a, Kmc09].

calculated [Dm90, Ya018].

calculates [Atm03].

Calculating [Bfo99, Dm90, Lchm10, Lchm13, Skt94].

Calculation [Dhe02, Ha17, Nt96, Bhr6, Bh03, Fgm11, Ldb96, Oll03, RCWY07].

Calculations [Bgg70, Ber95, Cdg03, Cdg05, Kss10, Ks11, Pnb94, Csa95, Kk16, Sks98a, Lcm07, Pa14, Skt93, Whg96a, Wjgh96b, Whg96b].

Calderon [Nn12].

California [Ac97, Rod89, Ful97, Iee95, Pa02].

Canada [Iee97, Bb93].

cancer [Es04].

Canonical [Lcp93, Kmo0].

Capacitance [Ybo1, Jc04, Nw89].

capacitive [Gsg+04].

Cardinal [Boy92].

Carlo [Ers01].

Carrier [Bb98].

Cartesian [Csa95, Cs82, Hf92, Hll+18, Le 97, Sh07].

Case [Bglm05, Groz04, Psp95, Pss95].

Cauchy [Cl12, Lcd14].

CE2014 [Mbs15].

cell [Cc13, Cwd08, Dkg92a, Dkg92c, Gk95, Ks98b, Kn95, Lm02, Fl13].

cells [Dkg92c].

Center [Ac97, Hol12, Iee90, Kar95, Pan95, Mfk00].

central [Eim+92].

challenge [Bha97].

channels [Gdo90a].

characteristic [Gd08].

Characterization [Cbo9].

Charge [Ac94, Cc13, Gy08, Kan15].

charged [Ab95, Cpp93, Kn95].

Charges [Ac94, Cjd07, Dc07].

Chebyshev [Boy92a, Lrw95].

Chem [Dae10].

Chemistry [Adg96, Mat95, Sp96, Ls96].

Chennai [Iee98].

chips [Mhi07].

Chiral [Smc97, Sm97, Shm98].

Christoffel [Bt03].

city [Hol12, Rss96].

Clar [Ful97].

class [Pa14].

classical [Gd94, Rok85].

closed [Bhr04].

closest [Ck95a].

Cluster [Pnb94, Ln10, Wgl98, Yns09].

clustering [Mg05, Swj05].

Clusters [Adg94, Bp88, Hl15, Zbs15, Gis98, Gd05, Kno93].

Coarse [Gib11, Pa14].

coarse-grained [Pa14].

Coarse-graining [Gib11].

coated [Zcg00].

COBE [Zqs94].

Code [Adg94, Bag02, Bb95, Rb90, Badg00, Cdm98, Cwa14, Ifm09, Slc98a, Slc98b, Bad96, Bad97, Bado1, Bcado6, Duh96, Gy08, Gd99, Jd98, Jkccg98, Jps9, Lwm02, Pd98, Pg94, Spr05, Wam99, Wsh12].

Codes [Sww94, Wsw95, Nm06, Fud16, Wswl95].

Coefficients [Gd03, Beb06, Fst05, Ks11].

Cold [Zqs94].

collective [Bsvd94].

Collision [Bt95, Wn14, Jd98].

collisional [Ty012].

collisionless [Ty012].

Combined [Jmb98, Km00].

Combining [Cdg03, Cdg05, Cwd08, Ddl13, Dm12, Flzby97a, Flzby97b, Gd08, Prt92, Zb95].

Comment [Kan96, Wjgh96a].

Comments [Pg96b].

Communication [Hp95, Ytk14].
BSvdG+94, IYK16, KP08, SS89, TPKP12.

Communications [KP05a]. Companion [HDG+15]. Comparison [BN97, CDM98, EG09a, RSZ09, WPM+02, Ees95, SKPP95].

competitive [Ano92]. Complement [MG11]. Complex [CSMCxx, MGM95, MBS15, SLC96, SLC97, Syf03, AC17, BGGC06, CC10, CC12, NW89, Rei99, TW03, ZJ95]. complexes [KSS10].

Complexity [JBL02, Pan92, YTK14, Dar00a]. Complement [MG11]. Complex [CSMCxx, MGM95, MBS15, SLC96, SLC97, Syf03, AC17, BGGC06, CC10, CC12, NW89, Rei99, TW03, ZJ95]. complexes [KSS10].

Computable [AC94]. Computation [BEM94]. Computationally [KM00]. Computations [ERT12, Pan92, KAN95, KAN96, OKS09, Syf03, VOD08, WJGHG96a, YF98].

Computer [AT87, Ano94a, BGGT90, BP88, CKE08, FM96, HE88, IEE92a, KFMT00, MIES90, MFKN03, Bar86, EIM92, EFT93, FMI93, FM95, HFKM98, HGS90, KMT94, MIES90, MT95, MHI07, OMY+94, OYK+14, OMY+94, SCM+90, TMES94].

Computers [FHM99, LCP93, MT98, DK93, LBI+97, NVK94, OCK+03]. Computing [AC97, B+95, BGI+99, HTA+97, Hol12, IEE94b, IEE96b, IEE98, LCK11, Mat95, PA02, SHMC97, WWF02, WSW+95, CGLO3, CPP93, IYK16, MHI07, MCM99, PRT92, Rod89, SH07, Xue98]. concise [PJY96], condition [YAO18]. conditions [CWHGHG97, SKT93, Sin95]. Conducting [GA96a, HAS02].

Conference [ACM96, ACM97, Ano92, Ano95a, B+95, BR93, HTA+97, Hol12, IEE94b, IEE96c, IEE98, IEE02, Kar95, KK88, LCK11, MC92, MBA97, Rod89, Wel91]. conformal [OR89].

Congress [BGPPW00]. congressi [Ano95a]. conjunction [CCKL99]. connected [GGM93]. Connection [BME90, WS91, ZJ91]. conquer [CG04].

conserving [CC13]. constant [Rei99].

Constrained [FGB05, SL96].

Constructing [BF78]. construction [HHK99]. constructions [PUD16].

containing [WYW05]. continued [Dem95].

continuous [BS19, FGM11, LBGS16, WJGHG96b].

cotinuum [BCM02]. Contour [Sch94, VCM00, ZGD+16]. control [GKD99]. controlled [DAC09, DAC10].

convolution [BKM09, HW10, PSN04]. cooperation [ATMK03]. Coordinate [BF78].

coordinates [HF92]. Copper [MC92]. core [MHI07]. Corrected [DAC10]. correction [JH08]. corrections [MCBB07].

corrector [TWYCO6]. correlated [Sal96].

Correlations [QZSW94]. Cosmological [Bag02, BH88, IFM09, YF05, Spr05].

Coulomb [ADG96, BFO99, CFH89, DNS90, DGK92a, DGK92b, DGK92c, DTG96, GGM01, GH02, HDS+16, KS98a, SPS96, SSF96, ZHD98].

Coulombic [HA17, PG96b, SKT93]. Coupled [LS05, MBS15, PNB94, SGD+04, NMDK99, RSBS19].

Coupling [BDMN03a, BDMN03b, Dar02, DM07, GBMN06, MB05].

course [BG97]. CPU [HEGH14].

CRAY [BAAD+97].

creaks [ON08a, WYW05].

Cray [KRO99, KRO01, KRO02]. Cross [Gue97, GP08].

Crystal [MPPA96].

crystals [ON08b].

CS [Dem95, Dem96a, Dem96b].

Cubic [WWF02]. cultura [Ano95a]. Current

CGL03, Les96]. curved [GH08].

curves
[STZ14]. Custom [PA02]. cutoff [KLM+09].
cutoffs [DKG92b]. cylinders
[CG97, ZCG00]. Cylindrical
[SHMC97, SMC97, SM97, SHM98].

D [NH97, WCZ+20, BDMN03b, BHR04,
BHGR04, CDM98, DDL13, Dar02, GROZ04,
GP08, GD03, GA96b, JM97, Liu08, NW89,
ON08a, ON08b, PG94, QCG15, RS94, Sar03,
TC17, TP12, VZB09, WY05, WY07a, WLL+07,
WQ08, WZC+17, iYNK02, YB01, ZY05].

Dame [IEE96c]. Dangers [BS93].
Dark [ZQSW94]. Data
[AAL+01, And99, BGLM05, HJ96, LY14,
NPR93, SS99, SHT+95, WPM+02, BADP96,
BAAD+97, DR95, KPO8, LOSZ07a, RSZ90,
WS92, YGSR01]. Data-driven [LY14].

Data-Parallel [HJ96, NPR93].
data-sharing [BADP96]. data-sparse
[LOSZ07a]. databases [Mak93]. DC
[IEE94c]. debugging [RC97]. December
[Ano92, IEE98, Kar95, K+96, Rod89].

Decomposition [CK95b, BJWS96, BP03,
BCOY93, BCOY94, CvHMS94, CWD08,
LM02, OSW06b, RTA+08, ZT97].
Decoupled [PGdS+15]. deferred [JH08].
deformable [Ros06, ZD05]. della [Ano95a].
Delta [FQ+92]. Dense
[CPD17, GSS98b, BGGC06, CG97, PG94].
densities [GY08]. Density
[AC94, BS19, LBS16, PNB94, WWF02,
KAN95, KAN96, WGHH96a, WGHH96b].
dependence [RC97]. dependent [MD98].
development [FL13]. Derivation [WHG94].
derivative [BN07]. derivatives [BSS96b].
Derive [RGKM12]. Descent
[JM97, JM98, ESR01]. Descent-Fast
[JM98]. description [HF92]. Design
[BGI+99, Lea92, ZBS15, And08]. detect
[TD09]. Detection
[BG95, ESR01, JdR+18]. Determination
[PNB94, Dac06]. Developer [IEE96c].
Development [ATMK03, TDBEE11].
developments [CC15]. Diagonal
[Rah96, AP99, CG04, ESM98, KSC99, Rok98].
Diagonalizations [HC08]. Diego [Kar95].

Dielectric [BVW96, M11, CDJ07, DC07,
EG09a, Erg11, JMC97, KCM98, ZCG00].
difference [LC14]. different
[BME93, BEM94]. Differentiation
[DSR96, KLZ+06]. Difficulties [BSS97].

Diffusion [CM06, KP08, STZ14]. digest
[IEE94a, IEE95, IEE96a, IEE97]. DIMACS
[Bha97]. dimension [MR07]. Dimensional
[JMB98, LS93, PTH95, SC95, SW95+95,
BSL09, BL97, BCR01, CWK08, CC10,
CC12, ESR01, ES04, ECL02, EM08,
GH98, GD09, KSS07, Lab98, LCQF18, NT09,
OLL03, PSS95, PSS95, RRR03, SK04,
Tak14, TC09, TG08, WY07b, WSL95,
XJM08, YR98, YB97].
Dimensions
[CS98a, LO96a, MCK96, Nil04, RRR05,
SL91, BPT07, CGR99, CHL06, CCG+06a,
CCG+06b, EG01, GR88a, GR97, GH02,
GD06, LB92b, MCB07, Rok90, Rok98,
SKP95, TSM16, YBZ04, SL97a]. dipolar
[CPP93, CFH99, KNN95]. Direct
[Aar85, CPD17, BME90, BME93, BEM94,
FL08, GL96, LHL08, NMP96]. direction
[HM95]. Directional [BPT+14]. Dirichlet
[GMM93, Mil08]. disciplinary [WSH+12].
discontinuity [RSB91]. discretization
[BDMN03a, BDMN03b, Dar02, GBMN06].
discretizations [Beb06]. Discretized
[VTG91]. dispersions [CG97].
displacement [RSB91]. distorted
[HJ10]. Distributed
[AC94, IEE96b, MB16, SRP06, YB01,
BCOY93, DK93, GP11, HGD11, KPO5b,
LBC91, LMCP92, MMC99, MRH14].

Distributed-Memory
[MB16, DK93, LMCP92]. Distribution
[Alu94, APG94, AGPS98, Ano94c,
BAAD+97]. Distribution-Independent
[Alu94, APG94, AGPS98, Ano94c].
divide [CG04]. divide-and-conquer [CG04].
DNA [FOCB96]. domain
[BCOY93, BCOY94, CWD08, GP08, LM02, Liu08, LCZ07, Mil08, OSW06b, OFH+08, RS09, VW02]. domains
[BHR04, GGM93, GK04]. Don’t [Bar90].
doubly [DK04]. doubly-periodic [DK04].
DR [MI07]. DREAM [OMH+94].
DREAM-1A [OMH+94]. driven
[BSL11, LY14]. drops [ZD05]. dual
[CCKL09, LCQF18, Liu08]. dual-level
[LCQF18].
Dynamic
[HEGH14, BAAD+97, CK95a, FG96, MG05].
Dynamical
[SWW94, WSWL95].
Dynamics
[BBG790, BHGS90, BP88, CDC97, HM86, JBL02, LCP93, MPPA96, NT96, OKF14, Sch94, TDBE11, WLMP99, ATMK03, BSL11, BAL91, BSS97, BCL+92, BHE+94, BHER94, BCOY93, BCOY94, BP93, CvHMS94, DK93, EGHT97, FMI+93, GDX93, GZ07, HGS90, Ich02, KM00, KPo5a, LM02, LBC91, LBT+97, LMCPP92, LWM+02, LRJ+99, NKV94, NT94, OMH+94, OYK+14, OP07, PGB05, SF18, Ske89, VZB09, VCM00, WS91, Win95, ZB95].
DynamO [BSL11].

Economization [LRW95]. Editor [GW98].
Editors [MBS+00, DS00]. EEG [KCF+05].
effects [AB95, BPK85]. Efficiency
[HZH+18, HLL+18, KK16]. Efficient
[BS97, DH04a, EG08, HS08, NT96, RS06, SKT93, Ami00, App85, Bar86, BHR04, CL91, CCZ97, CWD08, EG09b, GR88b, KM00, Kro01, KS98a, LDB96, O80, PN95, TSIM16, WL96, WHG94, YF98, ZGD+16].
eigendecomposition [CG04]. eigensolver
[ZGD+16]. Eighth [HTA+97]. elastic
[CCZ97, TC09]. elasticity [GKM96].
elastodynamic [CB14]. elastoplastic
[WY07b]. Elastostatic
[WZC+17, GG16, GH98, HLL08, Liu08, MB05, iYNK02, ZY05].
elastostatics [OSW05, PN95]. Electric
[Gus98, PNB94, Z93, ABDO4, CS82, HF92, WFC08]. Electrically
[HAS02, GDDC08].
Electrode [HB93]. Electrode-Electrolyte
[HB93]. Electrolyte [HB93].
Electromagnetic
[CSMCxx, EMRV92, GA96a, GA96b, SL97, BGGC06, Car09, ESRS01, ES04, GH98, MG07, MD98].
electromagnetics [AFO95b, AFO96, AFO97a, CJL+97, Erg11, Gib08, LZL04, OM08].
electromagnetism
[CDGS03, CDGS05, BDMN03a, BDMN03b, Car06, Car07, DM07, SY03].
electron
[GIS98, NH97]. electronic
[Go99, Kon93, KS98a, SSF96].

Electrostatic
[CFH89, NT96, Pe98, BAL91, BHGR04, BHGR05, CC13, CG97, DM09, EGHT97, FOCA96, GB11, GM94, LCM07, NT94, OKS09, PA14, SGT+04, SKT94, YAO18].
Electrostatics
[SRP06, BWS+95, FGMM11, LCHM10, LCHM13, YBK+11]. Element
[BR93, LJ96b, LJ96a, MBA97, WZC+17, WSW+95, BSL09, Beb06, BWS+95, BH03, BHR04, BHGR04, CWK08, Gav11, GP08, GD99, GODZ10, Ham11, KMC09, KCF+09, LS05, LOSZ07a, LOSZ07b, LCQF18, LHL08, Liu08, Liu09, OSW05, OSW06b, OF08, OKS09, PN95, SGT+04, Sat10, SS07, TCD17, VW02, VCM00, WY05, WY07b, WY07a, WSWL95, XJM08, YSM05].

Element-Boundary
[LJ96a, SGT+04].
elements
[BR93, Bre04, FST05, GAD13, R006].

Elizabeth [IEE97]. elliptic
[A+97, Bhb06, FST05, LC14]. elliptical
[R006]. Elongation
[KLM+09]. embedded
[SHM98]. EMC [HU97]. energetic
[BPK85]. energies
[DTG96, FMM11].
Energy
[HZH+18, BSSF96a, BSSF96b, CC13, CPP93, FOS96].
energy-conserving
[CC13]. Engineering
[MBS15, SM05]. Ensemble
[LC0393, entire
[LCZ07]. entirely [Sar03]. Equation
[CD13, GHRW98, GD03, MG11, Nil04, SC95, Sta95a, AP03, ABDO4, BH03, CHL06, CCG+06a, CCG+06b, CC10, CC12, CRW93, DDL13, Dar02, EG09a, GMM93, GKM96,
GR97, GK04, GD06, GD09, GAD13, Kro99, LHL08, LC94, MCBB07, MMNB06, NN12, OLL04, ON08a, ON09a, QCG15, RS97, Rok98, Sta95b, Tak14, WLL+07, WFC08, iYNK02, ZCO0, ZKL+07. Equations [DY98, AHLP93, AD05, Atk97, BDMN03a, BDMN03b, Coo07, CCZ97, DH04b, Fu98, Gav97, GBMN06, GOS99, GD07b, Hav03, LCL04, LCL93, NT09, ON08b, ON09a, ON09b, RSK99, RO04, Rok85, Rok90, RC04, VG08, TWW02, WLL+07, WCZ+20, Yin09, XZ19, ZCO0].

Equispaced [DR95].

Erratum [BEM94, FLZB97a, SL97a].

Error [BH89, CC04, CC05, GKD09, GSS98a, GSS00, KSC99, OC05, PSPS95, PSS95, SP97, Dac09, Dac10, OC03, Pe98, WK18, Dar00a].

Error-controlled [Dac09, Dac10].

Error-estimates [PSS95].

Euler [RS94].

Eulerian [NMDK99].

EuMC [Ano95a].

European [Ano95a].

Evaluate [CDM98].

Evaluated [ZZ93].

Evaluating [McK96, AB95].

Expansion [KS11].

Extensions [CC82].

Extended [KS11].

Extending [CDJ07, DC07].

Extension [Gy08, TYON12].

Extents [TYON12].

Extreme [WSS+12].

Extreme-scale [WSS+12].

Facility [RTZ+96].

FAMUSAMM [EGHT97].

Far [LSCM96, HW11].

Far-Field [LSCM96, HW11].

Fast [And92, BT95, BL97, BN98, BCR01, BPT07, BK15, BPT+14, BF78, BCO08, BKM09, BV99, BV99b, BS00, BL98, BL05, BFO09, Boy92a, BHR04, BHR04, BHR05, CDM98, CDGS03, CDGS05, CL12, CC15, CSMCxx, CCZ97, CS98a, CS98b, CWA14, CBN02, CCL+97, CC10, CC12, CPD17, CKB11, Dac06, Dar97, DY98, Dem95, Dem96a, Dem96b, DD95, DR95, DGR96, EB94, EB96, EMRV92, ESM98, EG13, FOCB96, Gas97, Gav11, GSC01, GP93, Gre94, GHRW98, GW98, Gue97, GD06, GD07a, GD08, GAD13, GAO96, GA96b, GS98b, HOST95, HAS02, HC10, HA17, HEGH14, JMC97, JMB09, JMB10, JMB09, KLC09, KK95, KCF+05, LCD14, LHL08, Liu99, LX17, LC93, LSCM96, LJR96b, LJ96a, LJR96a, LRW95, MJ95, MJ96, MBS+00, Mak04, MG11, MB16, MB05, MGM95, McK96].

Fast [MPPA96, MMNB06, NW89, NT06, NI04, NPR93, O070, OKS09, PSN04, PD15, Pri94, QCG15, RRR05, BW94, RS94, SWW94, Sch94, SFG9, SHMC97, SMC97, SHHG93, SHT+95, SC94, SC95, SLC96, SLC97, Sta95a, Sp01, STZ14, WC94a, WC94b, WLMP99, WYY05, WYY07b, WXQL08, WZC+17, WSW+95, XWY+08, XJM08, YR99, Yin09, Yin15, YNS+09, YB01, ZY05, AHLP93, AR91, AG88a, AG88b, AP99, AP00, AP03, Ami00, ATMK03, AT+12, AC17, BDMN03a, BDMN03b, BS09, BG97, BS19, BWS+95, BV96a, BSS97, BCL+92, BPO3, BSS96a, BSS96b, BK96, CDJ07, CDM98, CDGS03, CDGS05, CL12, CC15, CSMCxx, CCZ97, CS98a, CS98b, CWA14, CBN02, CLJ+97, CC10, CCL2, CPD17, CKB11, Dac06, Dar97, DY98, Dem95, Dem96a, Dem96b, DD95, DR95, DGR96, EB94, EB96, EMRV92, ESM98, EG13, FOCB96, Gas97, Gav11, GSC01, GP93, Gre94, GHRW98, GW98, Gue97, GD06, GD07a, GD08, GAD13, GAO96, GA96b, GS98b, HOST95, HAS02, HC10, HA17, HEGH14, JMC97, JMB09, JMB10, JMB09, KLC09, KK95, KCF+05, LCD14, LHL08, Liu99, LX17, LC93, LSCM96, LJR96b, LJ96a, LJR96a, LRW95, MJ95, MJ96, MBS+00, Mak04, MG11, MB16, MB05, MGM95, McK96].

Fast [MPPA96, MMNB06, NW89, NT06, NI04, NPR93, O070, OKS09, PSN04, PD15, Pri94, QCG15, RRR05, BW94, RS94, SWW94, Sch94, SFG9, SHMC97, SMC97, SHHG93, SHT+95, SC94, SC95, SLC96, SLC97, Sta95a, Sp01, STZ14, WC94a, WC94b, WLMP99, WYY05, WYY07b, WXQL08, WZC+17, WSW+95, XWY+08, XJM08, YR99, Yin09, Yin15, YNS+09, YB01, ZY05, AHLP93, AR91, AG88a, AG88b, AP99, AP00, AP03, Ami00, ATMK03, AT+12, AC17, BDMN03a, BDMN03b, BS09, BG97, BS19, BWS+95, BV96a, BSS97, BCL+92, BPO3, BSS96a, BSS96b, BK96, CDJ07, CDM98, CDGS03, CDGS05, CL12, CC15, CSMCxx, CCZ97, CS98a, CS98b, CWA14, CBN02, CLJ+97, CC10, CCL2, CPD17, CKB11, Dac06, Dar97, DY98, Dem95, Dem96a, Dem96b, DD95, DR95, DGR96, EB94, EB96, EMRV92, ESM98, EG13, FOCB96, Gas97, Gav11, GSC01, GP93, Gre94, GHRW98, GW98, Gue97, GD06, GD07a, GD08, GAD13, GAO96, GA96b, GS98b, HOST95, HAS02, HC10, HA17, HEGH14, JMC97, JMB09, JMB10, JMB09, KLC09, KK95, KCF+05, LCD14, LHL08, Liu99, LX17, LC93, LSCM96, LJR96b, LJ96a, LJR96a, LRW95, MJ95, MJ96, MBS+00, Mak04, MG11, MB16, MB05, MGM95, McK96].

Fast [MPPA96, MMNB06, NW89, NT06, NI04, NPR93, O070, OKS09, PSN04, PD15, Pri94, QCG15, RRR05, BW94, RS94, SWW94, Sch94, SFG9, SHMC97, SMC97, SHHG93, SHT+95, SC94, SC95, SLC96, SLC97, Sta95a, Sp01, STZ14, WC94a, WC94b, WLMP99, WYY05, WYY07b, WXQL08, WZC+17, WSW+95, XWY+08, XJM08, YR99, Yin09, Yin15, YNS+09, YB01, ZY05, AHLP93, AR91, AG88a, AG88b, AP99, AP00, AP03, Ami00, ATMK03, AT+12, AC17, BDMN03a, BDMN03b, BS09, BG97, BS19, BWS+95, BV96a, BSS97, BCL+92, BPO3, BSS96a, BSS96b, BK96, CDJ07,
CC04, CC05, Car09, CGR88, CWHG97, CDF10, CWK08, CCKL09, CGR99, CHL06, CCG+06b, CRG01, CPP93, CWD08, CRW93, CFR08, CB09, Dac09, Dac10, Dar02, DM07, DM12, Dar00a, Dar00b, DH04a, DH04b, DC07, DR96, ESRS01, ES04, fast [Eng11, EG08, EG09a, EG09b, Erg11, EG01, FFG11, FLZB97a, FLZB97b, FPG05, FD09, Fu98, GDC08, GBM06, GF06b, GF06a, GIS98, GY08, GR02, GG16, GROZ04, GKD09, GE13, GR87, GR88b, GG89, GG90, GS91, GH02, GCH+18, GD05, GD09, GODZ10, Ham11, HHKP09, HS08, Hav03, HLL08, HW10, HW11, HU97, HR98, HGD11, HJZ09, HLL+18, IYK16, Kan15, KM00, KSS10, KS11, Kf93, KLM+09, KS98a, KS98b, KS04, KP05a, KP05b, KP08, KAN95, KAN96, Lab98, LOSZ07b, LCL+12, LBG16, LB91, LB92a, LB92b, L98, LHZL04, LCQF18, LGG+13, LC14, Lin08, LY14, LC207, LCM07, LCHM10, LCHM13, LW+02, Mak99, MG07, MG09, MR07, MRH14, NT09, NN12, NH97, OR89, OSW05, OSW06a, O98, OCK+03, OYK+14, OMC08, OLL03, OLL04, OFH+08, OP07, ON99a, PJY96, PSP94], fast [PS95, PSS95, PA14, Rah96, RR03, RS90, RSB19, RTZ+96, RO44, RA+08, RS97, RS06, RCW07, SGG+04, Sar03, Sat10, SL97a, SL97b, ST06, SWW99, SM97, SHM08, SH07, SKT94, Sin95, SKP95, SP97, Sta95b, SB96, ST02, SK04, Sud04, Syl03, Tak14, TS16, TCD17, Tau03a, Tau04, TCW08, TC90, TG08, TD09, VOD08, WK18, WJY06, WL96, WY05, WY07a, WLL+07, WFC08, WCZ+20, WHG94, WJGHG96a, WHG96a, WJGHG96b, WHG96b, WSWL95, XWT09, YRGS13, yWbWL08, YR98, YB97, YBZL03, YBZ04, Yin06, YRK+11, YBN12, YB12, YBNY13, iYMK02, YA018, YSM05, ZCG00, ZT07, ZSHS10, ZHPS11, ZB14, ZX19, ZCL+98, ZKL+07, ZGD+16, ZB95, AAB+17, Boy92b, CD13, CB14, CKE08, CFR10, DDL13, EMT99, FL13, GR97, GS98a, Lea92, LCP93, RGKM12, SL91, SLCL98a, SLCL98b, YTK14]. Fast-multipole [Dar97, EG01, Tak14, ZCL+98], FCCM [PA02]. FE [SG+04], February [B+95]. FEM [MB05]. ferrofluids [HM19]. FFT [TPK92]. FFTM [HLL08, LHL08, OLL04]. fiber [WY07a]. fiber-reinforced [WY07a]. Field [LSCM96, PA02, AB04, BHG04, BHG05, HW11, MD98, OKS09, WFC08, Xue98]. Field-Programmable [PA02]. Fields [CD13, CK95b, Gre87, SHMC97, SM97, SB98, YR99, CK95a, CG97, DC07, ESM98, GG16, Gre88, GR88a, GM94, GH98, HR98, OLLL03, Pe98, ST06, SM97, VOD08]. Fifth [An092, IEE96b, MC92, IEE98]. filtering [BP03, YR98]. fine [Bar86]. fine-grain [Bar86]. Finite [FST05, L96b, L96a, Beb06, Ich02, LS05, LCZ07, SGG+04, Sa10, V92]. Finite-Element [L96b]. finite-sized [Sat10]. First [OKF14, AHP93]. First-Principles [OKF14]. FISC [SLCL98a, SLCL98b]. Fitted [AC94]. fitting [BS19, LBGS16, TWY06]. Flexibly [YS18]. floating [LKM02]. floating-point [LKM02]. Flow [P944, ECL02, Gre90a, GKM96, G94, NMDK99, Tau03a]. Flows [CCG+99, WSW+95, BHC93, Kro99, Kro01, Kro02]. Fluid [SWW94, TBBE11, Bat03, OMH+94, VGZ90, WSWL95]. fluids [A17, BPK85, L979, ZB14]. FYL [B01, BCD96]. FM [BN07]. FM-BEM [BN07]. FMA [LO96b]. FMFEM [CW08]. FMD [LWM+02]. FMM [CCG+06a, EMV92, H900, HJZ90, HZ+18, MR14, ON08a, ON08b, ON99b, PG96b, SG+04, SB98, YS18, ZHP10]. Fock [KA96, WJGHG96a, KAN95]. Fokker [Lem98, Lem04]. Force [D02, BH86, EIM+92, JP89, KK16, Xue98, YRG13]. force-calculation [BH86]. Forces [BP88, CDM98, NT96, Pie93].
WZC+17, BH03, CKS91, DM90, LDB96].

Form [CJ05, AP99, BCP08, SH07].

Formation [FM96, FM95, SWJ+05]. forms [KSC99, Rah96, Rok98]. Formula [CL12].

formulae [NN12]. Formulation [AAL+01, JBL02, CB14, CWK08, CCKL09, CFR08, CFR10, DM07, GD07b, Liu08, OSM06a, DM12]. Formulations [Ano94b, GKS94, MG11, EG09a, GKS98].

Fortran [GDK89]. Foundations [IEE92a]. four [BCR01]. four-dimensional [BCR01].

Fourier [Boy92b, EMT99, Boy92a, CD13, DR95, EB94, EB96, HLL08, HW10, LHL08, OLL03, OLL04, Sar03, ZHZPS11].

Fourier-Based [CD13]. Fourier-series-based [ZHPS11]. FPGAs [LKM02]. Fractal [PD15]. Fractional [WHG96a]. fracturing [XWY+08, ZBG915].

Foundations [IEE92a]. four [BCR01]. four-dimensional [BCR01].

Fourier [Boy92b, EMT99, Boy92a, CD13, DR95, EB94, EB96, HLL08, HW10, LHL08, OLL03, OLL04, Sar03, ZHZPS11].

Fourier-Based [CD13]. Fourier-series-based [ZHPS11]. FPGAs [LKM02]. Fractal [PD15]. Fractional [WHG96a]. fracturing [XWY+08, ZBG915].

Foundations [IEE92a]. four [BCR01]. four-dimensional [BCR01].

Fourier [Boy92b, EMT99, Boy92a, CD13, DR95, EB94, EB96, HLL08, HW10, LHL08, OLL03, OLL04, Sar03, ZHZPS11].

Fourier-Based [CD13]. Fourier-series-based [ZHPS11]. FPGAs [LKM02]. Fractal [PD15]. Fractional [WHG96a]. fracturing [XWY+08, ZBG915].

Foundations [IEE92a]. four [BCR01]. four-dimensional [BCR01].

Fourier [Boy92b, EMT99, Boy92a, CD13, DR95, EB94, EB96, HLL08, HW10, LHL08, OLL03, OLL04, Sar03, ZHZPS11].

Fourier-Based [CD13]. Fourier-series-based [ZHPS11]. FPGAs [LKM02]. Fractal [PD15]. Fractional [WHG96a]. fracturing [XWY+08, ZBG915].

Foundations [IEE92a]. four [BCR01]. four-dimensional [BCR01].

Fourier [Boy92b, EMT99, Boy92a, CD13, DR95, EB94, EB96, HLL08, HW10, LHL08, OLL03, OLL04, Sar03, ZHZPS11].

Fourier-Based [CD13]. Fourier-series-based [ZHPS11]. FPGAs [LKM02]. Fractal [PD15]. Fractional [WHG96a]. fracturing [XWY+08, ZBG915].

Foundations [IEE92a]. four [BCR01]. four-dimensional [BCR01].

Fourier [Boy92b, EMT99, Boy92a, CD13, DR95, EB94, EB96, HLL08, HW10, LHL08, OLL03, OLL04, Sar03, ZHZPS11].

Fourier-Based [CD13]. Fourier-series-based [ZHPS11]. FPGAs [LKM02]. Fractal [PD15]. Fractional [WHG96a]. fracturing [XWY+08, ZBG915].

Foundations [IEE92a]. four [BCR01]. four-dimensional [BCR01].

Fourier [Boy92b, EMT99, Boy92a, CD13, DR95, EB94, EB96, HLL08, HW10, LHL08, OLL03, OLL04, Sar03, ZHZPS11].

Fourier-Based [CD13]. Fourier-series-based [ZHPS11]. FPGAs [LKM02]. Fractal [PD15]. Fractional [WHG96a]. fracturing [XWY+08, ZBG915].

Foundations [IEE92a]. four [BCR01]. four-dimensional [BCR01].

Fourier [Boy92b, EMT99, Boy92a, CD13, DR95, EB94, EB96, HLL08, HW10, LHL08, OLL03, OLL04, Sar03, ZHZPS11].

Fourier-Based [CD13]. Fourier-series-based [ZHPS11]. FPGAs [LKM02]. Fractal [PD15]. Fractional [WHG96a]. fracturing [XWY+08, ZBG915].

Foundations [IEE92a]. four [BCR01]. four-dimensional [BCR01].

Fourier [Boy92b, EMT99, Boy92a, CD13, DR95, EB94, EB96, HLL08, HW10, LHL08, OLL03, OLL04, Sar03, ZHZPS11].

Fourier-Based [CD13]. Fourier-series-based [ZHPS11]. FPGAs [LKM02]. Fractal [PD15]. Fractional [WHG96a]. fracturing [XWY+08, ZBG915].

Foundations [IEE92a]. four [BCR01]. four-dimensional [BCR01].

Fourier [Boy92b, EMT99, Boy92a, CD13, DR95, EB94, EB96, HLL08, HW10, LHL08, OLL03, OLL04, Sar03, ZHZPS11].

Fourier-Based [CD13]. Fourier-series-based [ZHPS11]. FPGAs [LKM02]. Fractal [PD15]. Fractional [WHG96a]. fracturing [XWY+08, ZBG915].

Foundations [IEE92a]. four [BCR01]. four-dimensional [BCR01].
half-space [BSL09, CB14, GG16]. Halos [ZQSW94]. Hamiltonian [CDF10].
Hanover [Mak93]. Hardware [HYZ+18, ATM03]. Harmonic [CAJ09, GD07b, GDZ10]. harmonics [PJY96, ST02, WL96, YR98]. HARP [KMT94]. HARP-1 [KMT94]. Hartree [KAN96, WJGHG96a, KAN95]. Hashed [WS93]. Haskell [TL14]. head [GODZ10, KMC09]. head-related [GODZ10, KMC09]. heavy [RTZ+96]. heavy-ion [RTZ+96]. Held [HTA+97, HM86, AG88, Ano97b, K+96, Rod89]. Helmholtz [AP03, BKM90, CD13, CC15, CHLO96, CCG96a, CCG96b, CC10, CC12, DDL13, Dar02, GHRW98, GD03, GD09, GAD13, GS98b, NN12, Nil04, OLL04, ON08a, QCG15, RS97, Rok98, Sta95b, Sta95a, TCD17, VV02, WC02, WCZ20]. Hermite [KMT94, NMH06]. Heterogeneous [ADB94, HGD11, LCL12]. Hierarchical [Ahlu94, AGPS98, BH86, BJWS96, BHH88, Deh02, Dem95, Dem96a, Dem96b, H95, HJ6, SHG95, SHT+95, EG09b, HNY+99, HSA91, JP89, MG05, PG94, Sin92, VCM00, Wam99, WS92, Xue98, YGSR01]. hierarchical-element [VC000]. High [ACM97, BGF99, BKE96, CBF08, CFR10, FHM99, GBMN06, HL15, Ho12, HYZ+18, IEE94b, IEE96b, IE98, LCK11, Nil04, TWY06, WWF02, DC07, GH08, GY08, IYK16]. High-Density [WWF02]. High-frequency [BK96]. High-order [TWY06, DC07, GH08]. High-Performance [FHM99, IE94b, IYK16]. Higher [PNB94, RRR05]. Highly [BS97, OME92, YBNY13, ZH19]. Hilton [IE90]. holes [MFK00]. homogeneous [CL91, YRGS13]. homogenisation [HN96]. host [SHM98]. Hotel [IE97]. Hub [HL15]. Hut [AA1+01, Ano94b, BJWS96, BGLM05, GKS94, GKS98, SHT+95, WSH+12, ZBS11, ZBS15]. Hybrid [HEGH14, JMC97, WN14, DKPH04, LZL04, LC93, OFH+08, SGG+04]. hydraulic [RSBS19]. hydrodynamics [GCH+18]. Hyglac [WSB+97]. hyper [DHM03]. hyper-systolic [DHM03]. Hyperm.[BME93, BM94, BME90, DK93]. hypercubes [SS89].

Integral

Integration

Invert

Inversion

Intercommunication

Interconnecting

Interconnection

Interconnectivity

Interconnected

Interconnections

Interdependent

Interdependence

Interdependent

Interrelated

Interrelated

Intersection

Intersections

Intersecting

Intersecting

Intersecting

Intersecting

Intersected

Intersected
[GROZ04]. Learning [RGKM12, HHKP09].
Leave [Wil00]. Legendre [AR91, Sud04].
leining [Wam99]. Less [WN14]. LET [HL15].
Letters [MBS+00]. Level [BK15, Cj05, AP03, DKG92a, LCQF18].
library [BSvdG+94, CKB11, TYNO12].
limited [BDS07]. Line [YR99].
Linear [CPD17, Goe99, PIE93, Pud16, WJGHG96b, BH03, BGGC06, KLM+09, OSW05, SSF96].
lines [JH08]. link [GDK89]. Linux [WGL+98].
Liquid [MPPA96]. Liquids [AT87, CKS91].
lithography [YB97]. Load [SHT+95, Ten98, BAAD+97, FG96, MG05, PGs+15].
Loading [HL15].
Local [RGKM12, CFR08, MCBB07, YS18].
Locality [SHT+95]. locally [GH98].
Loeve [ST06]. logarithmic [JP89].
Logical [Bor86]. Loki [WSB+97].
London [DKG92a]. Long [Pie93, AO10, BAL91, BPK85, Ess95].
Long-Range [Pie93, Ess95]. lossy [GSC01].
Low [GHRW98, DH04a, QCG15, TSIM16].
low-communication [TPKP12]. low-frequence [DH04a, TSIM16].
LSS [BCAD06]. Luther [ACM99].
M [PG96b]. M2L [TSIM16]. machine [HHKP09, BME90, WS91, ZJ91].
Machines [PA02, BCOY93, KP05b, LBC91, Mak93].
Macromolecular [LCE+06, Ske89]. macromolecules [BH03, FLZB97a, FLZB97b]. macroscopic [LDB96].
Madras [IEE98]. Magnetic [Gus98]. magneto [VOD08].
magneto-static [VOD08]. magnetorheological [LR+99].
magnetostatic [BHRG05].
malignant [ES04]. Many [HP95, PG96a, Pie93, App85, EIM+92, EFT+93, HFKM98, OME+92, SC+90].
Many-Body [HP95, Pie93, PG96a, App85, EIM+92, EFT+93, HFKM98, OME+92, SC+90].
map [GGM93]. MAPLE [McD97, Pie93]. Mapping [BT03, LB92a]. mappings [OR99]. March [Ano95b, Ano96, Ano97a, Fu97, HTA+97].
Martin [ACM99]. Maryland [IEE96a].
Massachusetts [K+96]. Massively [BP88, IFM09, JBO1, KP05b, LO96a, LPC93, MFKN03, LCL+12, LBI+97, MH07, SRK+12, TME94, WSH+12].
Massively-Parallel [MFKN03, MHI07]. matched [GROZ04, GKD09].
matters [GM94, NKV94, K+96]. Matérn [CWA14].
Mathematical [BCM02, CHIN03, Dar97].
Mathematics [BGPW00, HDG+15, Ano90, RSS96, dCGQS06]. Matrices [Pan92, CG04, Dac06, XTH09].
Matrix [PNB94, SP01, Car06, FG96, XWT09]. matrix-free [Car06]. matrix-vector [XWT09].
Material [ZQS94, FRE+08].
Maxwell [DH04b, DY98, GBMN06, GD07b, Hav03, ON08b, ON09a, ON09b, ZCO0].
May [AG88, IEE94b]. MD [IEE02, DK93].
means [MG05]. mechanical [SWW90].
mechanical [SGD+04, WY05, WY07a].
mechanical-electrostatic [SGD+04]. mechanics [BCM02, Bat03, hYtWbWL08].
Media [GA96a, GA96b, GROZ04, WCZ+20].
medium [ZCL+98]. MEG [KCF+05].
MEG/EEG [KCF+05]. Memory [MB16, YBO1, BCOY93, DK93, KP05b, LBC91, LMCP92, MMC99, RC97, Ske89].
MEMS [SGD+04]. Mesh [BOX00, DYP94, DKHP04, KM00]. meshes [HKS05, ZBG15]. meshessless [BLA05, YNS+09]. Message [KP08].
Message-passing [KP08]. metamaterials [OMC08]. Method [WWF02].
SC94, SC95, Sta95a, SP01, WC94a, WZC+17, Yin15, ZJ91, AGR88a, AGR88b, AP00, AP03, Ami00, ATMK03, BDMN03a, BDMN03b, BSL09, BS19, BC94, BWS+95, BV96a, BL08, BOH03, BHR04, BHGR05, BSSF96a, BSSF96b, BK96, CDJ07, CL91, CC04, CC05, Car09, CWHG97, CDF10, CC97, CWK08, CCKL09, CCG+06b, CRG01, CFP93, CRW93, CFR08, CB09, Dac06, Dac09, Dac10, DY93, Dar02, DM07, DM12, Dar97, Dar00a, method [Dar00b, DH04a, DH04b, DC07, DRS96, DKG92a, DKG92c, ESRS01, ECL02, FGM11, FOCB06, FLZB07a, FLZB97b, FD09, Fuj98, FMI+93, GDDC08, GSC01, Gib08, GR02, GG16, GROZ04, GKS98, GKS99, GKS90, GH02, GP08, GCH+18, GD05, GD06, GD09, GODZ10, Ham11, HM95, Hav03, HC10, HW10, HW11, HU97, HU09, HLL+18, Ich02, JH08, JC04, Kan15, KM00, KSS10, KS11, KLM+09, KMC09, Kro01, KS98b, KS04, KP05b, KN95, KCF+05, Lab98, LCL+12, LBGS16, LJ98, LCQF18, LGG+13, LHL08, LC14, Lin08, Lin09, LCZ07, LCM07, MI95, Mako99, MB05, MR07, MI08, MRH14, MMBN06, NT94, NH97, OSW05, OSW06a, Of08, OKS09, OCK+03, OK+14, OMC08, OFH+08, OP07, ON09a, PN95, PSS94, PSS95, PSS95, PG96b, PA14, QCCG15, RR03, RSBS19, RO04, RTA+08, RS97]. method [RS06, SGG+04, SF18, Sat10, SL97a, SL97b, SM97, SH07, Sin95, SKPP95, SP97, Sta95b, SK04, Sud04, Syl03, Tak14, TSIM16, TCD17, Tsd03b, Tsd04, TG08, VW02, VD08, VGZB09, VCMO0, WY05, WY07a, WFC08, WCG+12, WH94, WHG96a, WJG296b, WHG96b, WSL95, XJ08, YR98, YBZL03, YB12, YBNY13, iYKN02, YAO18, YSM05, ZT07, ZHPS10, ZHPS11, ZB14, ZKL+07, ZGD+16, ZB95, AAB+17, CD13, CKE08, CC10, CC12, CFR10, DDL13, FL13, GR97, LCP93, RGKM12, SL91, YTKL14, Gav11]. Method-Ecient [NT96]. Methods [Aar85, Alu94, AG88, BS93, BS97, BR93, DY98, Dem95, Dem96a, Dem96b, FQG+92, GHRW98, GW98, HEGH14, JH96, LRW95, MBA97, SRPD06, SHG95, SHT+95, TDTEE11, VTG91, WSW+95, YF05, A+97, BL05, BHC93, BL97, BG97, BN98, BCR01, BM00, BDS07, Car07, CB02, CML+97, CWD08, CK00, Eng11, Gas97, GBM06, GY08, GCG+99, Goe99, GE13, GKM96, GK04, GD08, HS95, HGD11, IK16, Kro99, Kro90, KP05a, KP08, LS05, LOSZ07a, LOSZ07b, LOG12, Lin95, LX17, LY14, MC92, NN12, OSW06b, OF07, Oku96, PJY96, PG96a, RS94, ST06, SKT94, SM05, Sin92, SB96, TD09, YGSR01, aYZ97, YNS+09, YBNY12, ZX19, MC92]. microlithography [Ful97]. microlocal [BDMN03a, BDMN03b, Dar02, GBMN06]. micromagnetic [VOD08]. microprocessors [NMM06, MSV92]. Microscopic [HB93]. Microstrip [MI96, MI95, ZCL+98]. Microwave [Ano95a, ZC00]. militaires [Ano97b]. military [Ano97b]. million [DKG92a, DKG92c]. million-atom [DKG92c]. MIMD [FQG+92, LB92a]. mine [ESRS01]. Minimal [BF78]. Minimization [OC05]. Minneapolis [HTA+97, IE92b]. Minnesota [IE92b]. MLFMA [SLC96]. MN [HTA+97]. mode [Sat10]. model [CAJ09, ES04, FG96, Ham11, IY16, KP08, TD09]. modeling [BCM02, NMDK99, NKV94, ZKL+07]. Models [AC94, HB93, PN95, SGG+04]. modern [NMM06, SF18]. Modification [SB98]. Modified [Bar90, BAG00, CHL06, LCQF18]. module [DK93]. Molecular [AC94, BGGT90, BAL91, BHGS90, BP88, CDCD97, Gus98, HGS90, LBC91, LBI+97, LMCPP92, MPPA96, OKF14, WLMP99, WS91, ATMK03, BSL11, BS19, BWS+95, BSS97, BCL+92, BHE+94, BHER94, BCOY93, BCOY94, BP93, CwHMS94, DK93,
Multipole [PSPS94, PSPS95, PSS95, PA14, QCG15, Rah96, RSZ09, RSBS19, RTZ96, RO04, RTA08, RS97, RS06, RCWY07, SGG04, SF18, Sar03, Sat10, SL97a, ST06, SWW99, SM97, SHM98, SKT94, Sin95, SKPP95, SP97, Sta95b, SB96, SK04, Sud04, STZ14, Syl03, Tak14, TSM16, TCD17, Tau03b, Tau04, TCW08, TC09, TG08, TD09, VOD08, WJYO06, WL96, WYYW05, WY05, WY07b, WY07a, WLL+07, WXQL08, WCZ+20, WHG94, WJGHG96a, WHG96a, WJGHG96b, WHG96b, XWW+08, XJM08, YS18, YRGS13, hYtWbWL08, YR98, YB97, YBZL03, YBZ04, Yin06, YNS+09, YBK+11, YBYN12, YB12, YBNY13, iYNK02, YAO18, YSM05, ZCG00, ZT07, ZHPS10, ZHPS11, ZX19, ZCL+98, ZY05, ZKL+07, ZGD+16, ZB95, ZD05, CB14]. multipole-accelerated [BHE+94, BHER94, ZD95].

Multipole-Based [GSS98a, GSS00, YB01, LDB96].
multipole-to-local [CFR08, YS18].

Multipoles [And92, ÁC94, GSS98b, HLL08, LHL08, Mak99, OLL03, OLL04].

Multiprocessor [SHG95, LMCPFP92, Sin92, Ske89].

Multiprocessors [BB87, H959].
multiquadrics [CBN02]. Multiresolution [NKV94]. Multiscale [ERT12, TW03].

Multithreaded [ZBS15]. Multivariable [BL05]. multiwavelet [FBHJ04].

Napa [PA02]. natural [AO10]. Near [Bor86, CAJ09, ON09a, Rei99]. near-rigid [CAJ09]. Nearest [CK95b]. Neighbor [Bor86]. Neighbors [CK95b].

New-version-fast-multipole-method [LCM07]. Newport [IEE95]. News [Kan15].

NH [Mak93]. no [BEM94]. Node [BK15, FRE+08]. Node-Level [BK15]. Non [BB87, BCP08, DR95]. non-equispaced [DR95].

non-standard [BCP08]. Non-Uniform [BB87]. nonbond [DKG92a].

nonbonded [ATMK03]. nonequispaced [PSN04]. nonlinear [CAJ09]. nonlinearly [CC13].

nonoscillatory [GR02]. nonplanar [YB97]. nonsmooth [Beb06]. normal [GG16].

Nose [BVW96]. Notre [IEE96c].

November [ACM96, ACM97, ACM99, ACM03, Hol12, IEE90, IEE92b, IEE93, IEE94c, IE02, K+96, LCK11].

nuclear [PGB05]. number [DKS89, Ich02].

numbers [JdR+18, WYYW05]. numerica [Ise97].

Numerical [CL91, GZK07, Kro02, Pri94, TDREE11, dCGQS06, Atk97, BCM02, BCH93, CD10, CG97, CHJN03, Dar00b, GCG+99, Gre90b, GM94, GH98, KSC99, Kro01, OR98, PRT92, RSS96, TYNO12, Wam99, ERT12].

O [Mak93]. Object [BT95, SHMC97, ERS01, SM97, SHM98].

Objects [BVW96, BV96b, SLC96, SLC97, BV96a, EG09a, Erg97, TC90]. Oblique [SM97, CCKL09]. obstacles [Mak93]. Oct [WS93].

Oct-Tree [WS93]. October [Ano97b, MB93, IEE92a]. Off [HL15, DH86].

Off-Loading [HL15]. One [Ano94a, MTES94, WWF02, FRE+08, HM95, MR07, SK04, YR98].

one-dimensional [SK04, YR98].

One-Tflops [Ano94a, MTES94]. onto [Boy92a, LB92a]. open [CKB11]. Opening [And08].

OpenMP [AAB+17]. operator [CFR08, Lem98, Lem04, YS18]. Operators [CAJ05, Beb06, CS82, ESM98, FBHJ04, Rah96, Rok98, TW03]. OPFMM [CRG01].
Planck [Lem98, Lem04]. Planetary [GKM96, MD98]. Planetaryesimals [MKFD02]. Plasma [AGR88b, JKCGJ08, PG94]. Plasmon [GIS98]. Plasmonic [ATR+12]. Platform [BADO1], platforms [IYK16]. Plus [CG04]. PMD [Win95]. Point [CK95b, LKM02, Rei99]. Points [STZ14]. Poisson [AC17, BH03, EG01, GL96, LJ98, LCHM10, LCHM13, MGM95, Mi08, R SZ09, VTC91]. Polar [BPK85]. Polarisable [HHKP09]. Polarizability [PNB94]. Polyelectrolyte [FOCB96]. Polygons [BT03]. Polyharmonic [BL97, BCR01, BPT07]. Polymers [BCOY94]. Polynomial [DGR96, PRT92, Rei99]. Polynomials [Pan92]. Polytechnic [BR93]. Porous [RSBS19]. Portable [BK15, BS97, OCK+03, WS95b, WS95a]. Portland [ACM99, IEE93]. posed [HM95]. posteriori [XTH09]. Potential [CK95b, Gre87, Grev90a, HA17, SPS96, YR99, CK95a, GB11, Gre88, GR88a, GD07b, HHKP09, HF92, HR98, LCFQ18, Mi08, OLLL03, PA14, Rok85, Tau03a, WXQL08]. Potentials [Cj05, MB16, McK96, Pie93, DM90, LDB96, SH07]. power [PRT92]. PPPM [YF05, ZB14]. Practical [BN97, Pan95, CAJ09, Mak93]. practice [CK00]. Prager [GCH+18, LGG+13]. pragmatic [SB96]. Precise [Ami00]. pre-conditioned [BGGC06, GD07a]. Preconditioner [CDGS03, CDGS05, CPD17, Car06, DDL13, Of08, TCD17]. Preconditioners [MG11, ABD04, Car09]. Preconditioning [NN12, Beb06, FP05, LZL04, MG07, MG09, RCWY07]. predictor [TWYC06]. predictor-corrector [TWYC06]. preeminent [YB12]. preprocessing [SK04]. Prescription [GS98b, CRW93], presented [Ano97b]. Pressure [YAO18, YRG13]. Price [WSB+97]. Price/performance [WSB+97]. Princeton [HM86, HDG+15]. Principles [OKF14]. Pro [WSB+97]. Problem [APG94, AGPS98, Ano94a, Ano94c, Dem95, Dem96a, Dem96b, HTG02, MTE94, Yin15, CCKL09, DH86, DMI03, Gre90b, IHH05, Kat89, KS98a, Mi08, Pud16, SSF96, TL14, WXQL08]. Problems [BB87, EMR92, GA96b, KK95, LJ96b, LJ96a, MG11, MBS15, SWW94, SG97, WZC+17, AP90, AD05, ATR+12, BSLO9, Bes90, BCP08, BHGR04, BHGR05, BGGC06, CC04, CC05, Car90, EG08, EG09a, Erg11, FST05, Fuji98, GDDC08, GLS06, HM95, HNO06, HU97, JH08, Lab98, LCFQ18, Lin95, Liu08, MIES90, Oku96, ON04a, ON05b, ON09b, Rah96, RSBS19, RO04, SCM+90, TWYC06, WJY06, WY97b, WSWL95, XYW+08, XJM08, iYNK02, ZY05]. Proceedings [ACM96, ACM97, AG88, ERT12, Hol12, HM86, IEE02, Kar95, LCK11, Rod89, Ano92, Ano95a, IEE92a, IEHE98, KK88, PA02, We91, B+95, BGGC06, BB87, BHGR04, BHGR05, BGGC06, CC04, CC05, Car90, EG08, EG09a, Erg11, FST05, Fuji98, GDDC08, GLS06, HM95, HNO06, HU97, JH08, Lab98, LCFQ18, Lin95, Liu08, MIES90, Oku96, ON04a, ON05b, ON09b, Rah96, RSBS19, RO04, SCM+90, TWYC06, WJY06, WY97b, WSWL95, XYW+08, XJM08, iYNK02, ZY05]. processes [Sal96]. Processing [B+95, HTA+97, BCOY94, Rod89]. Processor [WWF02, FL13, MHI07]. processors [GD08]. produced [Kon93]. products [And08]. Professor [Wil00]. Program [CDCD97, YB01, App85, LBB+97, WS95b, Win95]. Programmable [PA02, HFKM98]. programming [MRH14]. Programs [BGL05, RC97]. PROGRAPE [HF9M98]. PROGRAPE-1 [HF9M98]. Progress [Ano95b, Ano96, Ano97a]. Prolate [KLZ+06]. Propagation [Ano97b, IE94a, IE95, IE96a, IE97, WC94a, WC94b, CHJN03, GLS06]. propagator [ZB95]. properties [WY05, WY07a]. Protein [NT96, Kan15, KSS10, KS11, NT94]. protein-protein [KSS10]. proteins [ZB95]. protonatable [Kan15]. Provably [Ten98].
pseudo [CKS91, OFH0].
pseudo-pairwise [CKS91].
pseudo-spectral [OFH0].
pseudoparticle [Mak99]. Pseudospectral [Boy92b, KLZ0]. Purpose [Ano94a, BGGT90, CKE08, FM96, FHM99, KFMN03, MITE94, MT98, MFKN03, EIM$^+$92, EFT$^+$93, FM$^+$93, FM95, HFKM98, KMT94, MIES90, MT95, OHM$^+$94, OME$^+$92, SCM$^+$90, TMES94].

Quadrature [WK18]. Quantum [SPS96, KLM$^+$09, SSF96]. quartic [WHG96b]. quasars [SWJ$^+$05]. Queen [IEE97].

Radar [Gue97, Ano97b, Ano97b]. Radial [Buh03, BLAG05, BL97, BN98, BCR01, CBN02, GD07a, PSN04, Yin06]. Radial [Buh03, BLAG05, BL97, BN98, BCR01, CBN02, GD07a, PSN04, Yin06]. Radiosity [SHT$^+$95, HAS90, MMB06].

Radome [BVW96]. random [CG97, ESR01, ST06]. Range [Pie93, AO10, BAL91, BDS07, BP93, Ess95, KMC09]. range-limited [BDS07]. ranged [BP95]. rank [HW11]. Rapid [Gre87, KLZ$^+$06, Rok85, Rok90, BH03, EGH19, Gre88, GR88, HAS91, PJ19]. Ray [WC94a, WC94b]. Ray-Propagation [WC94a]. RCS [BVW96, BV96b, BV96a, Gue97, RCW04].

reacting [NMDK99]. reaction [DC07]. ready [BAD01]. real [MKF01, SH07]. realistic [NKV94]. Recurrence [CSA95].

regularization [JP89]. reinforced [WY05, WY07a]. related [Ano90, BCH93, GCG$^+$99, GODZ10, KMC09, ON08b].

Resource [HZH$^+$18]. review [Ano95b, Ano96, Ano97a, GAV11]. reviews [Les96]. Revision [CC12, ZHPS10].

Revisiting [KS04]. Rigid [BT95, JBL02, CAJ09, HNO06, ZBG15]. rigid-inclusion [HNO06]. rigorous [SKPP95]. Ring [BHGS90]. Rockefeller [IEE90]. Rohlin [HM95, HSO8, SB98].

Rome [MBA97]. Root [GGM01]. Rotating [WHG96b]. Rotation [GD03, Dac06]. Rotne [GCH$^+$18, LGG$^+$13]. Rough [JMC97, JMB98, ESR01, JMC98].

SAI [MG09]. Salt [Hol12]. sampling [LX17]. San [ACM97, B$^+$95, Kar95]. Santa [Ful97]. Savart [Ros06]. SC$^+$11 [LCK11].

Scalability [RS97]. Scalable [Ano94b, BHE$^+$94, BHER94, GKS94, GKS98, HAS02, HGD11, IEE94b, MSV92, OCK$^+$03, OKF14, YB12]. scalar [GD07b, KSC99]. Scale [BADG00, OKF14, SRPD06, WLMP99, ZQSFW94, Ang17, ATR$^+$12, EG08, Erg11, EG13, FLZB97a, FLZB97b, GF06b, GF06a, HMM19, KP08, LCQF18, LCZ07, LMM$^+$02, PN95, WY05, WY07a, WSH$^+$12, XWY$^+$08].

Scaling [CDD07, FRE$^+$08, YBNY12, Goe99, KLM$^+$09, SSF96, WJGH96b].

Scatterers [HOST95]. Scattering [BVW96, EMRV92, GA96a, GA96b, HAS02, JMC97, JMBC98, LJ96b, LJ96a, SHMC97, SMC97, SLC97, ZCG00, AP99, AP00, AD05, BN07, BGGC06, CC04, CC05, Car09, Car09].
GSC01, GG16, HM95, HS95, SRK$^+$12].

space-time [SRK$^+$12]. Space/time [YF98].

Space/time-efficient [YF98]. Spaces [BF78]. Spanning [BF78]. Sparse [GOS99, LZL04, Rok98, Tau03a, LOSZ07a, MG09, RŠZ09, TW03].

sparse-approximate-inverse [MG09].

Special [Ano94a, BGGT90, CKE08, FM96, FHM99, KFMT00, MTES94, MT98, MFKN03, EIM$^+$92, EFT$^+$93, FMI$^+$93, FM95, HFKM98, KMT94, MIES90, MT95, OMH$^+$94, OME$^+$92, SCM$^+$90, TMES94, MC92].

Special-Purpose [Ano94a, CKE08, FM96, FHM99, KFMT00, MTES94, MT98, MFKN03, FM95, HFKM98, KMT94, MIES90, MT95, OMH$^+$94, OME$^+$92, SCM$^+$90, TMES94].

spectra [ES04]. Spectral [RCWY07, OFH$^+$08, PN95]. speeding [AO10].

sphere [BP03, CDJ07, DC07, Lin95]. spherical [GD05], spherical [GODZ10, KSC99, PJY96, ST02, YR98].

Spline [CS98b, DKG92b]. Splines [CS98a, BL07, BCR01, BPT07]. Square [GGM01]. Stability [Ni04, Sn04]. stable [DH04b]. standard [BCP08]. static [VOD08]. Station [ERT12]. statistical [Kan15]. Steepest [JMC97, JMBC98, ERSR01].

steepest-descent [ESR01]. Stellar [HM86]. Step [BS93, FLZB97a, FLZB97b, KMO00, RCWY07]. stepping [BS97].

stochastic [FST05, Sal96]. Stokes [GKM96, GK04, TG08, WLL$^+$07]. Stokesian [Ich02]. Storage [Hol12, LCK11].

Strategy [BB87, BCOY93, EG09b]. stratified [ZCL$^+$98]. Stress [BS19, GG16].

Strips [GA96a]. strong [Kan15].

Structural [BPK85]. Structure [BADG00, NT96, ZQSW94, GF06b, GF06a, Goe99, Kat89, KS98a, NT94]. Structures [And99, CSMCxx, GGM01, MI96, RW94, WPM$^+$02, Car09, CWK08, EG13, LCZ07, WS92, ZCL$^+$98, ZY05]. studies [RTZ$^+$96].

Study [BGLM05, HM86, Pri94, Dar97]. studying [Kro01]. sub [LCZ07].

sub-entire-domain [LCZ07]. Subdivision [BT95]. Summation [CWA14, LS93, Ami00, BAL91, IHH05, SF18, ZB14]. Summer [RSS96].

Sums [DNS90, BG94, DYP93, KS04, RO04, SL97b]. Sunnyvale [Wel91]. Supercomputers [FQG$^+$92, HM86, BAD01].

Supercomputing [ACM96, Ano92, IEE90, IEE92b, IEE93, IEE94c, Kar95, Ano92, KK88]. Surface [MG11, CCZ97, ERSR01, ZBG15]. Surfaces [CSMCxx, HAS02, JMC97, JMBC98, GH08, JMBM98]. Surfaces-Wire [CSMCxx].

suspended [VGZB09]. switch [SGD$^+$04]. Switching [HL15]. Symbolic [Pie93].

symmetric [CG04, OSW06a]. Symposium [Ano97b, HB93, IEE92a, IEE95, IEE96a, IEE96b, IEE97, PA02, K$^+$96, Mak93]. Syracuse [IEE96b]. System [BGI$^+$99, RGKM12, BAAD$^+$97, TMES94, ZB95, HTG02].

Systems [AAB$^+$17, CPD17, GP93, Gre87, HEGH14, MT98, VTG91, YF05, AB95, BS19, BWS$^+$95, BGGC06, CL91, CDF10, CFH89, DYP93, DKG92c, EIM$^+$92, EFT$^+$93, Gre88, Ich02, KS98a, KS98b, KN95, LM02, LBGS16, LB92a, LBI$^+$97, LCM07, LCHM10, LCHM13, PGB05, PG96b, TYON12, YB12, ZB95].

Systolic [BHGS90, DHM03].

T3D [BAAD$^+$97]. tails [ADG96].

tangential [GH08]. Target [SB98, GSC01]. targets [Ano97b]. Task [AAB$^+$17].

Task-Based [AAB$^+$17]. Taylor [WCZ$^+$20].

tearing [LS05, LOSZ07a, LOSZ07b, OSW06b].

Technique [WCZ$^+$17, Gas97, KLM$^+$09].

Techniques [CDGS03, CDGS05, PRT92, SWW99].
Telescoping [LRW95]. Template [BGLM05]. Tennessee [EE94b]. tensor [BS19, CB14, CSA95, GCH+18, HC08, HLL+18, LGG+13, YAO18]. Tensors [PNB94]. Terabytes [EE02]. TeraFLOPS [TMES94]. Term [DNS90]. terms [JP89].

test [AB95]. Tflops [AN94a, HNY+09, N10, MTE94, MKF00, MKF01, MKF02]. theorem [KSC99, Lab98]. theorems [HC98].

Theoretical [CC15]. theory [AP99, BS19, Buch03, CK00, GD07b, K+96, LBGS16, Pe98, Rok85, Rok90, Tan93].

Thousands [BT03]. Three [CS98a, JMC98, LO96a, Nil04, Pie93, Pri94, SL91, SC95, WSW95, YB97, BSL90, BPT07, CK08, CGR99, CCG+96b, ESR90, ES04, ESM98, GR88a, GR97, GH02, GD06, GD09, LCQF18, MCB07, OLL03, PSS95, SL97a, Tak14, TSIM16, TC09, TG08, WSL95, YBZ04].

Three-Body [Pie93]. Three-Dimensional [JMB98, Pri94, WSW95, YB97, BSL90, CK08, ESR90, ES04, ESM98, LCQF18, OLL03, PSS95, Tak14, TC09, TG08, WSL95]. tiers [WHG96a]. Time [BS93, MD08, BSS97, FLZ97, FLZ97b, GD07b, KM00, OFH+98, RC97, SR+12, VW02, Xue98].

Time-dependent [MD98]. time-domain [VW02]. time-efficient [YF98]. time-harmonic [GD07b].

time-step [KM00]. Top [DS00, MBS+00]. topological [BN07]. toroidal [KCS91].

Toronto [HB03]. Touchstone [FQG+92]. TPM [Xu95]. traces [HLL+18]. trained [HHKP09]. transfer [GODZ10, KMC90].

Transputers [BHGS90]. Transputing [Wel91]. treatment [KS98a]. Tree [And99, ABD19, ADBGP99, BH98, Bar90, BADG00, BOX00, BH88, C98, CWA+14, JIR+18, SWW94, WPM+92, WS93, WN14, WSW95, BAP96, BAA+97, BAC01, BACD06, BJWS96, Du96, GY70, JP89, PD89, PG94, PG96a, Pud16, Wam99, WS92, WWS95, WSH+12, Xue98, JKC08].

Tree-Code [CDM98]. Treecode [KFM99, Mak04, SW94, DP04, WS95a, WSB+97].

Treecodes [GS98a, GSS00]. Tree-PM [Bag02, IFM09, YF05]. Trees [BF78].

trenches [TCW08]. Trends [MBS15, Car09, C12, Les96].

triangulated [RS94]. Truly [AP94, Ano94c]. truncated [TCW08].

truncating [BPK85]. Truncation [OC03, AP00, AB95, CC04, CC05]. tube [Lin95]. tumors [ES04]. tuned [YB12].

tuning [MKF01, NMH06]. turbulence [HNY+09, YNS+09, YBN13]. Turkey [AN97b]. Two [LS93, MK96, Pan95, Pie93, RRR95, BL97, Car06, CHL06, CCG+96a, CC10, CC12, ECL02, EG01, GH98, JKC08, Kro01, NT09, PSS95, RRR93, Rok90, Rok98, RCW97, SKP95, WY07b, XJM08, YBZ04].

Two-Center [Pan95].

two-component [JCC08].

two-Dimensional [LS93, BL97, CC10, CC12, ECL02, GH98, Kro01, NT09, PSS95, RRR93, WY07b, XJM08]. two-grid [Car06].

two-step [RCW97]. Type [Gus98, ZZZ93].

ultracold [JCC08]. Uncertainty [MBS15]. Unified [JBL02]. Uniform [BB87]. uniqueness [YS05]. unit [DKG92c, KS98b]. Universe

BADG00, ZG1+10, BAD01]. University

REFERENCES

Ainsworth:1997:WMM

[ADG96, And92, HP95, Mak99, Pel98].

wood [ON09a]. Worcester [BR93]. work [BADP96, DTG96, Rei99]. work- [BADP96].

Workshop [ERT12, HM86, AG88].

workstations [LJ98]. World [Wel91].

WOTUG [Wel91]. Would [Wil00].

X [Ful97]. X10 [MRH14]. x86 [TYON12, TYNO12]. x86_64 [NMH06]. XV [BR93]. XXVI [Bre04].

Yamakawa [GCH+18, LGG+13]. York [IEE90, IEE90, IEE96b].

Yukawa [BFO99, HJZ09, ZHPS10].

zero [GG16, SF18, ZC00]. zero-multipole [SF18]. Zonal [BDS07].

References

[A+97] M. Ainsworth et al., editors. *Wavelets, multilevel methods*

Agullo:2017:BGB

Amor:2001:DPF

Aarseth:1985:MTS

Auffinger:1995:STE

Antoine:2004:APE

REFERENCES

Antonuccio-Delogu and Becciani (1994) presented a parallel tree N-body code for heterogeneous clusters. Their work was published in the *Lecture Notes in Computer Science*, 879:17–32, 1994. CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

Antonuccio-Delogu, Gambera, Pagliaro, and Becciani (1999) proposed parallel tree algorithms for N-body simulations. These algorithms were also published in the *Lecture Notes in Computer Science*, 1557:579–580, 1999. CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

Anandakrishnan, Daga, and Onufriev (2011) introduced an n log n generalized Born approximation. Their research was published in the *Journal of Chemical Theory and Computation*, 7(3):544–559, 2011. CODEN JCTCCE. ISSN 1549-9618 (print), 1549-9626 (electronic).

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>[And92]</td>
<td>Christopher R. Anderson. An implementation of the</td>
</tr>
</tbody>
</table>

Anonymous:1994:TDA

Anonymous:1995:ECP

Anonymous:1995:PAC

Anonymous:1996:PAC

Anonymous:1997:PAC

Anonymous:1997:RSA

Anandakrishnan:2010:ABN

Amini:1999:ADF

Amini:2000:ATE

Amini:2003:MLF

Aluru:1994:TDI

Appel:1985:EPM

Alpert:1991:FAE

Allen:1987:CSL

Atkinson:1997:NSB

Amisaki:2003:DHA

Araujo:2012:SLS

Ying:1997:VM

Bailey:1995:PSS

REFERENCES

Barnes:1990:MTC

Bathe:2003:CFS

Berger:1987:PSN

Becciani:2006:FMP

Beale:1993:VFR

Board:1992:AMD

Babuska:2002:MMN

Ivo Babuška, Philippe G. Ciarlet, and Tetsuhiko Miyoshi,

[BDMN03b] Alain Bachelot, Eric Darigrand, and Katherine Mer-Nkonga. Coupling of a
REFERENCES

Bowers:2007:ZMP

Bebendorf:2006:AIP

Bentley:1978:FA

Bespakov:2000:UR

Bentley:1978:FAC

Jean-Philippe Brunet, Alan Edelman, and Jill P. Mesirov. Erratum: “Hypercube algorithms for direct N-body solvers for different granular-
REFERENCES

[BGLM05] Holger Bischof, Sergei Gorbatch, Roman Leshchinskiy, and Jens Müller. Data parallelism in C++ template programs: a Barnes–Hut case

Broeckx:2000:PIC

Barnes:1986:HFC

J. E. Barnes and P. Hut. A hierarchical $O(N \log N)$ force-calculation algorithm. *Nature*, 324(6270):446–449, 1986. CODEN NATUAS. ISSN 0028-0836 (print), 1476-4687 (electronic). This paper appears to be the origin of fast multipole algorithms; its $O(N \log N)$ complexity was later improved to $O(N)$ [GR87]. See also [App85], which might predate this work.

Bouchet:1988:CSU

Barnes:1989:EAT

Bordner:2003:BES

Bhatt:1997:PAT

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Conference</th>
<th>Pages/Volume</th>
<th>Publisher</th>
<th>Year</th>
<th>ISBN</th>
<th>Catalog Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHR04</td>
<td>André Buchau, Wolfgang Hafla, and Wolfgang M. Rucker</td>
<td>Fast and efficient 3D boundary element method for closed domains</td>
<td>COMPEL</td>
<td>859–865</td>
<td>ISSN 0332-1649</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Beckmann:2015:PNL

Beylkin:2009:FCF

Beatson:1997:FER

Bokanowski:1998:FMM

Bokanowski:2005:FMM

Barba:2005:AVV

Brunet:1990:OHD

REFERENCES

REFERENCES

sis, 27(3):427–450, 2007. CODEN IJNADH. ISSN 0272-
4979 (print), 1464-3642 (electronic).

Benson:2014:PDF

[BPT+14] Austin R. Benson, Jack Poul-
son, Kenneth Tran, Björn En-
gquist, and Lexing Ying. A
parallel directional fast mul-
tipole method. *SIAM Jour-
nal on Scientific Computing*,
CODEN SJOCES. ISSN 1064-
8275 (print), 1095-7197 (elec-
tronic).

Bresbyia:1993:BEX

[BR93] C. A. Brebbia and J. J.
Rencis, editors. *Boundary
Elements XV: International
Conference on Boundary
Elements Methods (15th: 1993:
Worcester Polytechnic In-
stitute)*, volume 15. Com-
putational Mechanics Pub-
llications; Elsevier, London;
1-85166-842-X, 1-85312-273-
4, 1-56252-197-7. LCCN

Bresbyia:2004:BEX

[Bre04] C. A. Brebbia, editor. *Bound-
ary elements XXVI*, vol-
ume 19 of *International Se-
ries on Advances in Bound-
ary Elements*. WIT Press,
Southampton, 2004. ISBN 1-
85312-708-6. xvi + 466 pp.

Board:2000:FMA

[BS00] John Board and Klaus Schulten. The fast multipole
(1):76–79, January/February 2000. CODEN CSENFA.
ISSN 1521-9615 (print), 1558-306X (electronic). URL http:
//dl.acm.org/citation.cfm?doid=1013891.1013898

Bresbideck:1993:DMT

[BS93] Jeffrey J. Biesiadecki and
Robert D. Skeel. Dan-
gers of multiple time step
methods. *Journal of Com-
putational Physics*, 109(2):
CODEN JCTPAH. ISSN
0021-9991 (print), 1090-2716
(electronic). URL http:
//www.sciencedirect.com/
science/article/pii/S0021999183712209

Bresbideck:1997:HPE

[BS97] David Blackston and Torsten
Suel. Highly portable and effi-
cient implementations of par-
allel adaptive N-body meth-
ods. In ACM [ACM97], pages
LCCN ????. URL http://
//www.supercomp.org/sc97/
proceedings/TECH/BLACKSTO/
INDEX.HTM. ACM SIGARCH
order number 415972. IEEE
Computer Society Press order
number RS00160.

Blackston:1997:HPE

[BR93] C. A. Brebbia and J. J.
Rencis, editors. *Boundary
Elements XV: International
Conference on Boundary
Elements Methods (15th: 1993:
Worcester Polytechnic In-
stitute)*, volume 15. Com-
putational Mechanics Pub-
llications; Elsevier, London;
1-85166-842-X, 1-85312-273-
4, 1-56252-197-7. LCCN
REFERENCES

org/cse/cs1999/c1076abs.htm. See correspondence [MBS+00].

Becker:2019:DFT

Bapat:2009:AFM

Bannerman:2011:DFG

Bishop:1997:DMT

Burant:1996:AEG

Burant:1996:KSA

Barnett:1994:ICC

[BvdG+94] Mike Barnett, Lance Shuler, Robert van de Geijn, Satya Gupta, David G. Payne, and
REFERENCES

Bandi:1995:ASS

Banjai:2003:MMS

Buhmann:2003:RBF

Bindiganavale:1996:GUFb

Bindiganavale:1996:GUFa

Bindiganavale:1996:DNR

Bharadwaj:1995:FMB

Ranganathan Bharadwaj, Andreas Windemuth, S. Sridharan, Barry Honig, and Anthony Nicholls. The fast

Chadwick:2009:HSP

Carpentieri:2006:MFT

Carpentieri:2007:PAP

Carpentieri:2009:APF

Cruz:2009:CAF

Chaillat:2014:NFM

Cherrie:2002:FER

Carayol:2004:EEF

Carayol:2005:EEF

Cho:2010:WFM

Cho:2012:RWW

Chen:2013:APM

Chaillat:2015:WFM

Stéphanie Chaillat and Francis Collino. A wideband...

Cheng:2006:RIW

Cheng:2006:WFM

Chen:2009:ADI

Chen:1997:FMM

Cecka:2013:FBF

Crowley:1997:AIS

Michael F. Crowley, Tom A. Darden, Thomas E. Cheatham, III, and David W. Deerfield, II. Adventures in improving the scaling and accuracy

Chartier:2010:RFM

Carpentieri:2005:CFM

Cai:2007:EFM

Capuzzo-Dolcetta:1998:CBF

Cichocki:1989:EIP

Coulaud:2008:HPB

Coulaud:2010:HPB

Cheng:1997:NEE

Chandrasekaran:2004:DCA

Chen:2003:CTS

Carrier:1988:FAM

REFERENCES

REFERENCES

[CL12] Cristopher Cecka and Pierre-David Létourneau. Fast multipole method using the
REFERENCES

Coifman:2006:DW

Coulier:2017:IFM

Christiansen:1993:FMM

Choi:2001:NPO

[CM06]

Coifman:1993:FMM

[CPD17]

Cipriani:1982:CEE

REFERENCES

[CWD08] Roger Cocle, Grégoire Winckelmans, and Goéríç Daen-

Darv:2000:FMMb

Darrigrand:2002:CFM

Deng:2007:EFM

deCastro:2006:NMA

Draghicescu:1995:FAV

Darbas:2013:CAP

Dehnen:2002:HFC

Demmel:1995:FHM

James Demmel. Fast hierarchical methods for the
REFERENCES

N-body problem (continued) (CS 267, Apr 25 1995).

REFERENCES

Darrigrand:2012:CUW

Deem:1990:TCS

Dutt:1995:FFT

Dikaiakos:1996:FAS

Dongarra:2000:GEI

Dombroski:1996:KCE

REFERENCES

Dubinski:1996:PTC

Dembart:1998:AFM

Darden:1993:PME

Dyer:1994:FFT

Elliott:1996:FFT

Eldredge:2002:VPM

Ebisuzaki:1993:GSP

ver Spring, MD 20910, USA, 1993.

Ethridge:2001:NFM

Ergul:2008:EPM

Ergul:2009:CIE

Ergul:2009:HPS

Ergul:2013:FAA

Eichinger:1997:FAR

Ebisuzaki:1992:GSP

T. Ebisuzaki, T. Ito, J. Makino, S. K. Okumura, and D. Sug...

REFERENCES

El-Shenawee:2004:RSM

Ergin:1998:FET

El-Shenawee:2001:MCS

Esselink:1995:CAL

Fann:2004:SOM

Fong:2009:BBF

Franklin:1996:GMI

[FG96] Mark A. Franklin and Vasudha Govindan. A general matrix iterative model for dynamic load balancing. Parallel Computing,
REFERENCES

[FEDICHEV2011:CEM] [FGM11]

[FHM99] [FL13]

[FZLB97b] [FHM99]

[FZLB97b] [FL13]

[FLZB97a] [FLZB97b]

REFERENCES

\[\text{Fukushige:1996:BSG}\]

\[\text{Fukushige:1993:SPC}\]

\[\text{Fenley:1996:FAM}\]

\[\text{Fischer:2005:AIP}\]

\[\text{Fullagar:1992:BMM}\]

REFERENCES

[Gavrilyuk:2011:BRF]

Gramada:2011:CGE

[Giatard:2006:HOB]

Giovannini:1999:FRN

Guan:2018:RPY

Gumerov:2003:RCM
Nail A. Gumerov and Ramani Duraiswami. Recursions for the computation of multipole translation and rotation coefficients for the 3-D

[GDDC08] Eliseo García, Carlos Delgado, Iván González Diego, and Manuel Felipe Cátedra. An iterative solution for electrically large problems combining the characteristic basis function method and the

[Grest:1989:VLC]

[Goude:2013:AFM]

[GG90]

[GG16]

Zydrunas Gimbutas and Leslie Greengard. A fast multipole method for the evaluation of elastostatic fields in a half-space with zero normal

REFERENCES

Gibson:2008:MME

Gerchikov:1998:EMP

Greengard:2004:IEM

Grama:1994:SPF
REFERENCES

Griebel:1999:SGB

Glosli:1993:FMM

Grytsenko:2008:A

Greengard:1987:FAP

Greengard:1988:REPb

Greengard:1988:EIF

Greengard:1997:NVF

Gimbutas:2002:GFM
Zydrunas Gimbutas and

REFERENCES

L. Guerel. Fast radar cross
REFERENCES

Guseinov:1998:AEM

Greengard:1998:GEI

Giese:2008:EAT

ISSN 0192-8651 (print), 1096-987X (electronic).

Hoft:2017:FUM

Hamada:2011:GAI

Hariharan:2002:SPF

REFERENCES

Hinsen:1992:RDE

Hamada:1998:PPS

Hu:2011:SFM

Heller:1990:MDS

Handley:2009:OCF

Huang:2019:ALS

Hu:1996:DPI
Huang:2009:FY

Huang:2018:IEC

Harbrecht:2005:WGB

Herbordt:2015:LLG

He:2008:FES

Hut:1986:USS

Hamilton:1995:RGM

Hamada:2010:TAB

Houzaki:2006:FPR

Hamada:2009:THB

Hollingsworth:2012:SPI

Hamilton:1995:FMM

Hendrickson:1995:PMB
REFERENCES

REFERENCES

REFERENCES

IEEE:1993:PSP

IEEE:1994:IAF

IEEE:1994:PSH

IEEE:1996:PFI

Ibeid:2016:PMC

Yoshida:2002:NFM

Jaramillo-Botero:2002:UFM

Jandhyala:1998:FAA

Jiang:2004:NCE

Jansen:2018:TCC

Jia:2008:KDC

Jeon:2008:PTC

Jandhyala:1997:HFS

Jernigan:1989:TCL

Kaxiras:1996:MTS

Kutteh:1995:GFM

Kutteh:1996:RCG

Kantardjiev:2015:SNU

Karin:1995:PAI

Katzenelson:1989:CSB

Kybic:2005:FMA

[Jan Kybic, Maureen Clerc, Olivier Faugeras, Renaud Keriven, and Tho Papadopoulou. Fast multipole acceleration of

Kawai:1999:MAB

Kawai, Toshiyuki Fukushige, and Junichiro Makino. 7.3/Mflops astrophysical N-body simulation with treecode on GRAPE-5. In ACM [ACM99], page ??

Kawai:2000:GSP

Kartashev:1988:SPI

Krishnan:1995:PAF

Kozynchenko:2016:IAE

Korchowiec:2009:ECT

Kovvali:2006:RPP

Kawata:2000:CEC

Kreuzer:2009:FMB

Kokubo:1994:HSP

Kutteh:1995:ICM

Kondratyev:1993:MME

DEN CHPLBC. ISSN 0009-2614 (print), 1873-4448 (electronic).

Kudin:1998:FMM

Kudin:2004:RIL

Kudin:2011:CSV

Koc:1999:EAN

REFERENCES

Leathrum:1992:MAF

Leathrum:1992:PFMb

Liem:1991:MDS

Lazarski:2016:DFT

Lim:1997:MDV

Lu:1993:FAS

Lu:1994:MAS

[LCHM10] Lu:2010:AAF

[LCHM13] Lu:2013:AAF

[**Lambert:1996:MBA**] Christophe G. Lambert, Thomas A. Darden, and John A. Board, Jr. A multipole-based algorithm for efficient calcula-

LeRouzo:1997:MEC

Leathrum:1992:PFMa

Lemou:1998:MEF

Lemou:2004:MAF

Leszczynski:1996:CCR

Liang:2013:FMM

Lim:2008:FFT

Kian Meng Lim, Xuefei He, and Siak Piang Lim. Fast Fourier transform on multipoles (FFTM) algorithm for Laplace equation with direct and indirect boundary ele-

Lakshminarasimhulu:2002:CMB

Lin:1992:MDD

Lu:1996:PIF

Lee:2012:MMM

Langer:2007:IDS

Langer:2007:IFM

Ulrich Langer, Günther Of, Olaf Steinbach, and Walter Zulehner. Inexact fast multipole boundary element tearing and interconnecting methods. In Domain decomposition methods in science
REFERENCES

![Ly:1999:SPD](LS05)

[LRJ+99]

Lustig:1995:TFM

Lupin:1993:ESM

Langer:2005:CBF

Lu:1996:AF

Lupo:2002:LSM

Liu:2017:FMM

Guidong Liu and Shuhuang Xiang. Fast multipole meth-

[MB05] Massimiliano Margonari and Marc Bonnet. Fast multipole method applied to elas-
REFERENCES

Jan Mandel and Graham F. Carey, editors. Special issue on multigrid methods: from the Fifth Copper Mountain Conference on Multigrid Methods, volume 9(9-10) of Communications in applied numerical methods. Wiley, New York, NY, USA, 1992. ISBN ???? LCCN ???? Two volumes. Selected papers from the Fifth Copper Mountain Conference on
REFERENCES

Multigrid Methods, Colorado, April 1991.

REFERENCES

REFERENCES

Morice:2006:FMM

McKenney:1996:MDS

Martinsson:2007:AKI

Milthorpe:2014:PFI

Mehrotra:1992:USC

Makino:1995:ABS

J. Makino and M. Taiji. Astrophysical N-body simulations on the GRAPE-4 special-purpose computer. In Karin [Kar95], pages 63–??. ISBN 0-89791-816-9. LCCN ???? URL http://www.supercomp.org/sc95/proceedings/721_JMAK/SC95.HTM. These proceedings are not available in printed form. However, they are available
REFERENCES

Makino:1998:SSS

Makino:1994:GOT

Nishida:1997:AFM

Nilsson:2004:SHF

Nakano:1994:MMD

Najm:1999:CLE

Nitadori:2006:PTB

Niino:2012:PBC

Nyland:1993:DIA

Niedermeier:1994:SAM

Niedermeier:1996:FVS

Nakashima:2009:WFM

Nabors:1989:FMA

REFERENCES

REFERENCES

Of:2009:FMB

Okunb:1996:IMB

Ong:2004:FFT

Ong:2003:FAT

Olyslager:2008:FMM

Okumura:1992:GHP

Ohno:1994:DSP

Y. Ohno, J. Makino, I. Hachisu, T. Ebisuzaki, and D. Sugim
REFERENCES

REFERENCES

Pan:1992:CCM

Panas:1995:PET

Park:1989:BBT

Pouransari:2015:OAF

Pellegrini:1998:EFS

Pereira:1999:PBI

Pfalzner:1994:HTC

Susanne Pfalzner and Paul Gibbon. A 3D hierarchical tree code for dense
REFERENCES

REFERENCES

Perez-Jorda:1996:CRS

Peirce:1995:SMM

Pluta:1994:DHE

Pringle:1994:NST

Pruett:2003:ABA

Pan:1992:PCT

Potts:2004:FCR

Daniel Potts, Gabriele Steidl, and Arthur Nieslony. Fast
REFERENCES

REFERENCES

-. Rokhlin:1985:RSI

-. Rokhlin:1990:RSI

-. Rokhlin:1998:SDF

-. Rossi:2006:EBS

-. Ramachandran:2003:FTD

-. Ramachandran:2005:FMM

-. Russo:1994:FTV

REFERENCES

Ringbom:1996:FSG

Rokhlin:1994:FMM

Salmon:1996:GCC

Sarvas:2003:PIA

Sato:2010:AFS

Strickland:1996:POF

Strickland:1998:MCG

James H. Strickland and Roy S. Baty. Modification of
REFERENCES

Song:1994:FMM

Song:1995:FMM

Schmitt:1994:CDF

Sugimoto:1990:SPC

Sakuraba:2018:PEZ

Sendur:1997:SRP

Sabariego:2004:CME

R. V. Sabariego, J. Gyselinck, P. Dular, J. De Coster, F. Henrotte, and

Sabariego:2004:AFM

Shanker:2007:ACE

Sharp:2006:BSP

Singh:1995:IHB

Singh:1993:PAF

Shanker:1998:FMA

Balasubramanian Shanker, Sang-Kyun Han, and Eric Michielssen. A fast multipole approach to analyze scattering from an inhomogeneous bianisotropic cylindrical object embedded in a chiral host. Radio Science, 33(1):17–??.
Shanker:1997:FMA

Singh:1995:LBD

Singer:1995:PIF

Suda:2004:APA

Skeel:1989:MDS

Robert D. Skeel. Macromolecular dynamics on a shared-memory multiprocessor. Technical Report CSRD 929; Numerical Computing Group 89-5, University of Illinois at Urbana-Champaign, Center for Supercomputing Research and Development,
REFERENCES

Urbana, IL 61801, USA, October 1989. 15 pp.

Solvason:1995:RCE

Shimada:1993:ECC

Shimada:1994:PFM

Schmidt:1991:IFM

Schmidt:1997:EIF

Schmidt:1997:MES

REFERENCES

REFERENCES

molecular Modelling, Leicester, UK August 2004.

Saad:1989:DCH

Schanz:2007:BEA

Strain:1996:ALS

Suda:2002:FSH

Schwab:2006:KLA

Stalzer:1995:PFMb

Stalzer:1995:PFMa

Sun:2014:FMR

REFERENCES

Suda:2004:SAF

Salmon:1994:STC

Springel:2005:SFE

Salmon:1994:FPT

Schwichtenberg:1999:AMM

Sylvand:2003:CIC
Guillaume Sylvand. Complex industrial computations in electromagnetism using the fast multipole method. In
REFERENCES

Takahashi:2014:IBF

Tausch:2003:SBP

Tausch:2004:VOF

Tong:2009:MFM

Takahashi:2017:AIF

REFERENCES

Tong:2008:MFM

Tranouez:2009:BUF

Tromeur-Dervout:2011:PCF

Teng:1998:PGP

Tornberg:2008:FMM

Totoo:2014:PHI

REFERENCES

1532-0626 (print), 1532-0634 (electronic).

Taiji:1994:GTM

Tang:2012:FLC

Takahashi:2016:EBM

Tausch:2003:MBS

Tang:2006:HOP

Tanikawa:2012:PGN

REFERENCES

REFERENCES

Wagner:1994:RPA

Wagner:1994:RPF

Wang:2020:TEB

Welch:1991:TPW

Wang:2008:FSM

Warren:1998:AAL

White:1994:DEI
C. A. White and M. Head-Gordon. Derivation and efficient implementation of the

Wala:2018:FAE

WLMP99 Zhiqiang Wang, James Lupo, Alan McKenney, and Ruth Pachter. Large scale molecular dynamics simulations with fast multipole implementations. In ACM [ACM99], page ??

Winckelmans:1995:AFP

Winckelmans:1995:FST

Warren:2002:HDC

Wang:2008:FME

Wang:2005:NFM

Wang:2007:LSA

Wang:2007:FMB

P. B. Wang and Z. H. Yao. Fast multipole boundary element analysis of

REFERENCES

Xu:2008:FMB

Yoshii:2018:PTE

Yeung:1997:TNL

Yuan:2001:PIF

Yokota:2012:TSF

Yokota:2011:BEU

REFERENCES

Yokota:2012:SFM

Yokota:2013:PTS

Ying:2004:KIA

Ying:2003:NPK

Yang:1998:STE

Yoshikawa:2005:PTM
K. Yoshikawa and T. Fukushige. PPPM and TreePM methods on GRAPE systems for

Yang:2001:CPD

Ying:2006:KIF

Ying:2009:FAB

Yin:2015:BPF

Yokota:2009:FMM

Yarvin:1998:GOD

REFERENCES

REFERENCES

Zh:2015:SRB

Zhang:2011:OBH

Junchao Zhang, Babak Behzad, and Marc Snir. Optimizing the Barnes–Hut algorithm in UPC. In Lathrop et al. [LCK11], pages 75:1–75:11. ISBN 1-4503-0771-X. LCCN ????

Zhang:2015:DMB

Zhao:2000:IES

Zhang:2000:SDC

Zhao:1998:TSM

Zinchenko:2005:MAA

REFERENCES

Zurek:1994:LSS

Zhang:2007:ASD

Zhao:2005:FMB

Zheng:1993:EMM

Zhang:2019:FMM