A Bibliography of Publications about the Fast Multipole Method

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

14 June 2020
Version 2.143

Title word cross-reference

1 [TPKP12]. $\S 15K$ [WGL+98]. 2 [GROZ04, Lab98, Liu08, ON08a, RS94, VGZB09, WYW05, WXQL08]. 3 [BDMN03b, BHR04, BHGR04, CDM98, DDL13, Dar02, GP08, GD03, JMC97, NW89, NH97, ON08b, PG94, QCG15, Sar03, TCD17, WY05, WLL+07, WZC+17, WZC19, WZC+20, iYNK02, YB01, ZY05]. $\S 50$/Mflop [WSB+97]. $\S 7.3$/Mflops [KFM99]. 3 [PG96b]. $h = 0$ [DNS90]. K [MG05, CK95b]. LU [MG07]. R^N [CBN02]. N [Aar85, Alu94, APG94, Alu96, AGPS98, AAL+01, And99, Ano94a, Ano94c, ADB94, ADBGP99, Bag02, Bar86, BADP96, BAAD+97, BADG00, BAD01, BS97, BN97, BOX00, Bor86, BDS07, BME90, BME93, BEM94, DH86, Dem95, Dem96a, Dem96b, DHM03, FRE+08, FM95, FM96, FQG+92, HTG02, HJ96, IFM09, IHN05, Kat89, KFM99, KFMT00, KMT94, LKM02, Liu94, MIES90, MTES94, MT95, MD12, MG05, MMC99, McD97, NMH06, Oku96, PGB05, Per99, PRL03, SWW94, Shl96, Shl06, SP99, Sin92, SHG95, SHT+95, SRK+12, TMES94, TWYC06, TYN12, TYNO12, Ten98, TL14, WPM+02, WS92, WS93, WN14, WSL95, WSH+12, Xu95, Yin15, YF05, Ano94b, CK95a, CK95b, GKS94, GKS98, Gre90b, HNY+09, HN10, HS95, KK95, Xue98]. $N^2 N$ [AO10, DYP93, ADO11]. ν [SH07]. $O(N \log_2 n)$ [JBL02]. $O(N)$ [BSL11, Deh92, DTG96, OKF14, Xue98]. $O(N \log N)$ [BH86, FGM11, PJY95]. $r^{-\lambda}$
-Body
[Ano94b, CK95b, GKS94, KK95, BEM94, GKS98, Gre90b, HNY+09, HN10, HS95, Xue98, AGPS98, AAL+01, And99, ADB94, Bag02, BADG00, BS97, BN97, BOX00, FM96, HTG02, II96, KFM99, KFMT00, SWW94, SHG95, SHT+95, Ten98, WPM+02, WS93, Xu95, Yin15, YF05, Aar85, Alu94, APG94, Alu96, Ano94a, Ano94c, ADBGP99, Bar86, BAPD96, BAAD+97, BAD01, BDS07, BME90, BME93, CK95a, DH86, Dem95, Dem96a, Dem96b, DHM03, FRE+08, FM95, FOG+92, IFM09, IHM05, Kat89, KMT94, LKM02, Liu94, MIES90, MTES94, MT95, MHI07, MS94, Oku96, PGB05, Per99, PRL03, Sal96, Sha06, SP99, SRK+12, TMES94, TWYC06, TYON12, TYNO12, TL14, WS92, WN14, WSWL95, WSH+12]. -D [NH97, BDMN03b, CDM98, DDL13, Dar02, GROZ04, JD98, Lab98, means [MG05]. -Nearest-Neighbors [CK95b].

3 [OME+92]. 3-D [WY07a]. 3051-66 [YB97]. 33rd [IEE92a]. 3D [LO96b].

4 [Ano94a, FM95, FM96, MTES94, MT95, TMES94]. 42 [HNY+09].

5 [KFM99, KFMT00]. 512 [MHI07]. 512-core [MHI07]. 512-Gflops [MHI07].

6 [MFK00, MKF01, MKFD02, MFKN03].

8 [MD12]. '88 [KK88]. 8th [BGPW00].

= [Ano97b].

A-posteriori [XTH09]. above [GSC01]. Accelerate
[CS98b, LSCM96, LKM02, TYNO12]. Accelerated
[BCL+92, EB96, SH07, WZC+17, WN14, AC17, BHE+94, BHER94, EB94, EG01, GD09, GODZ10, GAD13, Ham11, JH08, LCM07, MR07, QCG15, Tak14, WLL+07, ZD05]. Accelerating
[GHRW98, MG09, WC94a]. Acceleration [CCE08, HZH+18, LCZ07, SWW99, VCM00, BK96, KCF+05, SGD+04]. accelerator
[ATMK03, MD12]. accomplishments [Ano90]. Accuracy
[CDCD97, DY98, CB09, GL96, JP89]. Accurate
[SRPD06, AHLP93, Dac06, EG09a, EG13, HKP09, HMM19, ZGD+16]. achieves [WGL+98]. Achieving [SSF96].

ACM [IEE02, Kar95]. ACM/IEEE [Kar95, ACM97]. acoustic
[AD05, BSL09, BN07, CWK08, GF06b, GF06a, HW10, TCW08, WYJ006, ZGD+16]. acoustic-structure [GF06b, GF06a].
acoustics [FPG05, OLL04]. Acta [Ise97].
Adaptation [McK96]. Adapted
[NT96, NT94]. adaption [BLA05].
Adaptive [BT95, BSL09, BS97, BFO99,
GE13, GP08, HEGH14, KKL95, NPP93,
PD15, SHHG93, SHT+95, Ten98, ZT07,
AC17, BCP08, CRR88, CRR99, CHL06,
CFR10, FOCB96, GY08, GL96, GCH+18,
HJZ09, LCL+12, LB92a, LCHM10, LCHM13,
PR03, YB204, ZHPS10].
Advanced [HS95].
Advances [HLA05, SM05], advantage
[An92]. Adventures [CDD97], affinities
[KSS10]. AFMPB [LCHM10, LCHM13].
after [QSW94], algebra [CB20].
Algebraic [Car90, YTK14, OF08, PRT92].
Algorithm [BS00, BOR86, BFO99, CMD98,
CSMxx, DEh02, DEh05, EB96, JMC97, JMB98,
KK95, LCA92, LQ96a, MBS+00, MG11,
MPFA96, NFR93, OFK14, SL96, SLC97,
WC94b, WS93, VN14, YR99, ZBS15, AR91,
Alt96, AP99, ATR+12, BH86, Bar86,
BJW96, BS97, BCL+92, BP03, BCOY94,
BP93, CRR88, CG04, CC13, CRR99,
DRS96, EGHT97, EB94, EG08, EG09a,
EG08b, Erg11, EG13, GH08, GDC08,
GKD09, GR87, GR88b, HS08, HSA91, HC10,
HR98, JBMC98, KM00, KKL96, KS98a,
LM02, LDB96, LB91, LB92a, LB92b, LVL04,
LHL08, LC93, LC94, LWI+02, MG07,
MG09, MCBB07, NW89, NV94, NT09,
OR98, OLL03, OLL04, PYJ95, PRL03,
Rah96, RCW07, Sar03, ST02, SK04, Sud04,
TCW08, TC09, WK18, WY006, WL96,
Xue98, YRS13, YB02, Yin06, YB12].
algorithm [ZCG00, ZBS11, ZCL+98, ZB95,
ZD05, Lea92, MB16]. Algorithms
[APG94, AGPS98, An94c, ADGP99,
BF78, Bha97, BN97, Boy92a, CK95a, DS00,
DG96, LCE+06, Liu94, MBS+00, MBS15,
Pri94, Ten98, BCP08, BHE+94, BHER94,
BME93, BEM94, DHM03, Ess95, Gre94,
K+96, Mak93, PRT92, Pel98, Win95, Yin90].
ALICE [HTG02], All-to-All [HP95].
almost [FL13]. Alpha [WGL+98].
Alpha/Linux [WGL+98]. Alternative
[AD05, CL91]. AMBER [DK93].
AMBERCUBE [DK93]. AMS [RSS96].
Analyse [An97b], analyses
[Ham11, XY+98]. Analysis
[AP99, AP00, BH89, ERT12, HAS02, Hol12,
JMB98, LCK11, Sat10, VTO91, An97b,
Car07, Car09, Dar00a, EG13, JMB98,
KJCG08, KSC99, NH97, OC03, OLL04,
Prl98, RC97, RSS96, SGD+04, SS07, Sud04,
WY05, WY07b, WY07a]. Analytic [AB04,
BSS96a, LCD14, BSS96b, DL13].
Analytical [Gus98, LBGS16, CC13].
analyze [shm98]. Analyzing
[CSMxx, JMC97]. Angeles [AG88, Rod89].
Anger [CC04]. angular [GY08, WH96b].
Animated [BT95]. anisotropic [AYO20].
Ankara [An97b]. Annual [An95b, An96,
An97a, IEE92a, Mak93, PA02]. anomalies
[ON09a]. Antennas
[IEE94a, IEE95, IEE96a, IEE97, MI95].
anterpolation [Sar03]. Appendix [An90].
Application [LCSM96, LJ96b, LJ96a,
NH97, SGD+04, TCD17, VOD08, WSW+95,
DHM03, ERS01, GROZ04, HNO06,
LWM+02, SGD+04, TCD20, YR98].
Applications [CK95b, CCKL95, OSW05,
RSBS19, BHER94, HNY+09, LG+13, OF07,
ON08b, PD98, ZY05, dCQS06, TDB11].
Applied
[BGPW00, HDG+15, RSS96, An95b, An96,
An97a, BN07, JdR+18, MB05, OMC08].
Approach [AC94, SHMC97, WC94a,
ALHP93, BWS+95, CB20, KAN95, KAN96,
PG005, SHM98, WJGH96a, YS18].
Approximate
[BB06, CDG03, CDG05, CPD17, FPG05,
Rei99, MG09, PRT92, YGR01].
approximating [LX17]. Approximation
[ADO11, LSCM96, AO10, GP08, ST06].
approximations
Boulevard [ACM99]. boundaries [Mi08].
Boundary
[BH03, BR93, Brec04, LJ96b, LJ96a, MBA97, OSW06b, SS07, WZC+17, WSW+95, AP03, Atk97, BSL09, Bes00, BWS+95, BHR04, BHGR04, Car06, Car07, CWHG97, CKW08, DMC20, Gas97, GBN06, Gav11, GOS99, GP08, GD09, GODZ10, GAD13, GDK89, KNS8b, KN95, LM02, FL13].
cells [AYO20, DKG92c]. Center [ACM99, Hol12, IE90, Kar95, Pan95, MKF00]. central [EIM+92]. challenge [Bha97]. channels [Gre90a]. characteristic [GDDC08].
Characterization [CB09]. Charge
[AC94, CC13, CC13]. charge- [CC13]. charged [AB95, CPP93, KN95].
Charges [AC94, CDJ07, DC07].
Chebyshev [Boy92a, LW95]. Chem
[Dac10]. Chemistry
[ADG96, Mat95, SP96, Les96]. Chennai [IE98]. chips [MI07]. Chiral
[SMC97, SM97, SM98]. Christoffel
[BT03]. cibles [Ano97b]. City
[Hol12, RSS96]. Clara [Fil97]. class [PA14]. classical [Gre94, Rok85]. close [ZD05].
closed [BHR04]. closest [CK95a]. Closet
[SW94]. Cluster
[PNB94, HN10, WGL+98, YNS+98]. clustering [MG05, SJ+05]. Clusters
[ADB94, BP88, HL15, ZBS15, GSS98, GD05, Kon93]. Coarse
[GB11, PA14]. coarse-grained [PA14]. Coarse-graining
[GB11]. coated [ZCG00]. COBE
[ZQSW94]. Code [ADB94, Bag92, BH89, Bar90, BADG00, CDM98, CWA14, IFM09, SLCL98a, SLCL98b, BAPD96, BAC+97, BAD01, BCD06, DMC20, Dub96, GY08, GDK98, JdR+18, JCG9J08, JP89, LWM+02, PD89, PG94, Spr05, Wam99, WSH+12].
Codes [SWW94, WSW+95, NH06, Pud16, WSL95]. Coefficients
[GD03, Beb06, FST05, KS11]. Cold
[ZQSW94]. collective [BSvdG+94].
Collision [BT95, WN14, JdR+18]. collisional in [TYO12]. collisionless
[TYO12]. Combined [JMBC98, KM00].
Combining [CDG93, CDG95, CW08, DDL13, DM12, FLZB97a, FLZB97b].
DNA [FOCB96]. domain [BCOY93, BCOY94, CWD08, GP08, LM02, Liu08, LCZ07, Mil08, OSW06b, OFH+08, RSZ09, VW02]. domains [BHR04, GG93, GK04, RS20]. Don’t [Bar90]. doubly [GK04]. doubly-periodic [GK04]. DR [MHI07]. DREAM [OMH+94].
DREAM-1A [OMH+94]. driven [BSL11, LY14]. drops [ZD05]. dual [CCLK09, LCQF18, Liu08]. dual-level [LCQF18]. Dynamic [HEGH14, BAAD97, CK95a, FG96, MG05].
Dynamical [SWW94, WSWL95].
Dynamics [BGGT90, BHGS90, BP88, CDCD97, HM86, JBL02, LCP93, MPPA96, NT96, OKF14, Sch94, TDTEE11, WLMP99, ATMK03, BSL11, BAL91, BSS07, BCL+92, BHE+94, BHER94, BCOY93, BCOY94, BP93, CvhMS94, DK93, EGHT97, FMI+93, GDK89, GKZ07, HGS90, Ich02, KM00, KP05a, LM02, LBC91, LBI+97, LMCPP92, LWM+92, LRJ+99, NKV94, NT94, OMH+94, OYK+14, OP07, PGB05, SF18, Ske89, VGZB09, VCM00, WS91, Win95, ZB95].
DynamO [BSL11].
Economization [LRW95]. Editor [GW98]. Editors [MBS95, DSG00]. EEG [KCF95].
effects [AB95, BPK85]. Efficiency [HZH+98, HLL+88, KK16]. Efficient [BS97, DH04a, EG08, HS08, NT96, RS06, SKT93, Ami00, App85, Bar86, BHR04, CL91, CCZ97, CWD08, EG99b, GR88b, KM00, Kro01, KS98, LD96, OF08, PN95, RS02, TSM16, WL96, WHG94, YF98, ZGD+16].
eigendecomposition [CG04]. eigensolver [ZGD+16]. Eighth [HTA97]. elastic [CCZ97, TC09]. elasticity [GKM96].
elastodynamic [CB14]. elastoplastic [Wy07b]. Elastostatic [WZC+17, GG16, GH98, HLL08, Liu08, MB05, iYNK02, ZY05].
elastostatics [OSW05, PN95]. Electric [Gus98, PN94, ZZ93, ABD04, CS82, HF92, WFC08]. Electrically [HAS02, GGG08].
Electrode [HB93]. Electrode-Electrolyte [HB93].
Electromagnetic [CSMxx, ERMV92, GA96a, GA96b, SL97, BG96, Car09, ESRS01, ES04, GHH04, MD98].
electromagnetics [Ano95b, Ano96, Ano97a, CIL+97, Erg11, Gib08, LZL04, OM08].
Electromagnetism [CDGS03, CDGS05, BDMN03a, BDMN03b, Car06, Car07, DM07, Sys03]. electron [Goe99, Kon93, KS98a, SSF96].
Electrostatic [CFH97, NT96, Pel98, BA04, BHGR04, BHGR05, CC13, CG97, DM90, EHT97, FOC96, GB11, GM94, LCM07, NT94, OKS09, PA14, SGD+04, SKT94, YAO18].
Electrostatics [SRPD06, BWS95, FGM11, LCM10, LCH13, YBK11].
Element [BR93, LJ96b, LJ96a, MBA97, WZC+17, WSW95, BS09, Bcb06, BWS95, BH03, BHR04, BHGR04, CWM08, DM02, Gav11, GP08, GD09, GODZ10, Ham11, KMC09, KCF+05, LS05, LOSZ07a, LOSZ07b, LCQF18, LHL08, Liu08, Liu09, OSW05, OSW06b, OF08, OYK95, PN95, SGG+04, Sat10, SS07, TCD17, TCD20, VW02, VCM00, WV05, WY07b, WV07a, WSWL95, XJM08, YSM05]. Element-Boundary [LJ96a, SGG+04].
Elkington [IE97]. elliptic [B97, Be06, FST05, GAD13, Ros06].
Elizabeth [IEE97].
elements [BR93, Bre04, FST05, GAD13, Ros06].
effective [A97, Be06, FST05, LC14]. elliptical [Ros06]. Elongation [KLM+09]. embedded [RS20, SHM98].
Energy [HZE98, BSS96, BSS96b, CC13, CP93, POC96].
ergy-conserving [CC13]. Engineering [MBS15, SM05]. Ensemble [LC93]. entire [LCZ07]. entirely [Sar03].
Equation
[CD13, GHRW98, GD03, MG11, Nil04, SC95, Sta95a, WZC19, AP03, ABD04, BH03, CHL06, CCG+06a, CCG+06b, CC10, CC12, CRW93, DDL13, Dar02, EG09a, GGM03, GKM96, GR97, GK04, GD06, GD09, GAD13, Kro99, LHL08, LC94, MCBB07, MMNB06, NN12, OLL04, ON08a, ON09a, QCG15, RS97, Ro98, Sta95b, Tak14, WLL+07, WFC08, iYNK02, ZC00, ZKL+07].

Equations

[DY98, AHLP93, AD05, Atk97, BDMN03a, BDMN03b, Car06, Car07, CCZ97, DH04b, Fu98, Gas97, GBMN06, GOS99, GD07b, Hav03, LZL04, LC14, LC93, NT09, ON08b, ON09a, ON09b, RŠZ09, RO04, Ro95, Ro90, RS94, Tau04, TG08, VW02, WLL+07, WCZ+20, Yin09, ZX19, ZC00].

equispaced [DR95].

Erratum [BEM94, FLZB97a, SL97a].

Error [BH89, CC04, CC05, GKD09, GSS98a, GSS00, KSC99, OC05, PSPS95, PSS95, SP97, Dar09, Da010, OC03, Pe98, WK18, Dar00a].

error-controlled [Dac09, Dac10].

Error-estimates [PSS95].

errors [AP00].

estimates [CC04, CC05, PSPS95, PSS95, SP97].

Euler [RS94].

Eulerian [NMDK99].

EuMC [Ano95a].

European [Ano95a].

Evaluate [CDM98].

Evaluated [ZZ93].

Evaluating [CDJ07, DC07].

Evaluation [AYO20, GY08, TYON12].

eXtensions [TYON12].

exterior [AP03].

Extraction [YB01, JC04, NW89].

extreme [WSH+12].

extreme-scale [WSH+12].

facility [RTZ+96], **FAMUSAMM** [EGHT97].

Far [LSCM96, HW11].

Far-Field [LSCM96, HW11].

Fast [And92, BT95, BL97, BN98, BCR01, BPT07, BK15, BPT+14, BF78, BCP08, BK90, BVW96, BV96b, BS00, BL98, BL05, BFO99, Boy92a, BHR04, BHGR04, BHGR05, CDM98, CGO93, CGO95, CL12, CC15, CSMCxx, CCZ97, CS98a, CS98b, CWA14, CRN02, CRL+97, CC10, CC12, CPD17, CKB11, Da06, Dar97, DY98, Dem95, Dem96a, Dem96b, DD95, DR95, DGR96, EB94, EB96, EMRV92, EMRA98, EG13, FOCB96, Gas97, Gav11, GSC01, GP93, Gre94, GHRW98, GW98, Gue97, GD06, GD07a, GD08, GAD13, GA96a, GA96b, GS98b, HOST95, HAS02, HC10, HA17, HECH14, JMC97, JMSC98, JMBC98, KLZ+06, KMC09, KK95, KCF+05, LCD14, LHL08, Liu09, LX17, LC93, LSCM96, LJ96b, LJ96a, LO96a, LRW95, MI95, MI96, MBS+00, Mak04, MG11, MB16, MB05, MGM95, MCK96].

Fast [MPPA96, MMNB06, NW98, NT96, Nil04, NPR93, O07, OCS09, PS04, PD15, Pri94, QCG15, RR05, RW94, RS94, SWW94, Sch94, SG07, SMCM97, SMC97, STH93, SHT+95, SC94, SC95, SLC96, SLC97, Sta95a, SP01, STZ14, WC94a, WC94b, WLMP99, WYW05, WY07b, WXQL08, WZC+17, WZC19, WSW+95, XY+08, XJM08, YR99, Yin09, Yin15, YNS+09, YAO20, YB01, ZY05, OC03, WL96, WXQL08, WCZ+20, WK18].

Expansions [Boy92b, CJ05, Mc97, RGKM12, AR91, GB11, Lem98, MD98, SH07].

explicit [JP89, Pud16].

exponential [TWYC06].

Expressions [Pan95, CS82].

extended [KS11].

Extending [CDJ07, DC07].

Extension [AYO20, GY08, TYON12].

eXtensions [TYON12].

exterior [AP03].

Extraction [YB01, JC04, NW89].

extreme [WSH+12].

extreme-scale [WSH+12].

facility [RTZ+96], **FAMUSAMM** [EGHT97].

Far [LSCM96, HW11].

Far-Field [LSCM96, HW11].

Fast [And92, BT95, BL97, BN98, BCR01, BPT07, BK15, BPT+14, BF78, BCP08, BK90, BVW96, BV96b, BS00, BL98, BL05, BFO99, Boy92a, BHR04, BHGR04, BHGR05, CDM98, CGO93, CGO95, CL12, CC15, CSMCxx, CCZ97, CS98a, CS98b, CWA14, CRN02, CRL+97, CC10, CC12, CPD17, CKB11, Da06, Dar97, DY98, Dem95, Dem96a, Dem96b, DD95, DR95, DGR96, EB94, EB96, EMRV92, EMRA98, EG13, FOCB96, Gas97, Gav11, GSC01, GP93, Gre94, GHRW98, GW98, Gue97, GD06, GD07a, GD08, GAD13, GA96a, GA96b, GS98b, HOST95, HAS02, HC10, HA17, HECH14, JMC97, JMSC98, JMBC98, KLZ+06, KMC09, KK95, KCF+05, LCD14, LHL08, Liu09, LX17, LC93, LSCM96, LJ96b, LJ96a, LO96a, LRW95, MI95, MI96, MBS+00, Mak04, MG11, MB16, MB05, MGM95, MCK96].

Fast [MPPA96, MMNB06, NW98, NT96, Nil04, NPR93, O07, OCS09, PS04, PD15, Pri94, QCG15, RR05, RW94, RS94, SWW94, Sch94, SG07, SMCM97, SMC97, STH93, SHT+95, SC94, SC95, SLC96, SLC97, Sta95a, SP01, STZ14, WC94a, WC94b, WLMP99, WYW05, WY07b, WXQL08, WZC+17, WZC19, WSW+95, XY+08, XJM08, YR99, Yin09, Yin15, YNS+09, YAO20, YB01, ZY05, OC03, WL96, WXQL08, WCZ+20, WK18].

Expansions [Boy92b, CJ05, Mc97, RGKM12, AR91, GB11, Lem98, MD98, SH07].

explicit [JP89, Pud16].

exponential [TWYC06].

Expressions [Pan95, CS82].

extended [KS11].

Extending [CDJ07, DC07].

Extension [AYO20, GY08, TYON12].

eXtensions [TYON12].

exterior [AP03].

Extraction [YB01, JC04, NW89].

extreme [WSH+12].

extreme-scale [WSH+12].
AHLP93, AR91, AGR88a, AGR88b, AP99, AP00, AP03, Ami00, ATMK03, AYO20, ATR+12, AC17, BDMN03a, BDMN03b, BSL09, BG97, BS19, BWS+95, BV96a, BSS97, BCL+92, BP03, BSSF96a, BSSF96b, BK96, CDJ07, CC04, CC05, Car09, CGR88, CWH07, CDF10, CWK08, CCKL09, CGR99, CHL06, CCG+92, CRG01, CPP93, CWD08, CRW93, CB20, CFR08, CB09, Dar00a, Dar00b, DH04a, DH04b, DC07, DRS96, ESRS01, ES04, Erg11, EG98, GDDC08, GBMN06, GF06b, GF06a, GIS98, GY08, GR02, GG16, GROZ04, GKD09, GE13, GR87, GR88b, GG89, GG90, GS91, GH02, GCH+18, GD05, GD09, GODZ10, Ham11, HHKP09, HS08, Hav03, HLL08, HW10, HW11, HU97, HR98, HGD11, HJZ09, HLL+18, IYK16, Kan15, KM00, KSS10, KS11, Kon03, KLM+09, KS98a, KS98b, KS04, KP05a, KP05b, KP08, KAN95, KAN96, Lab98, LOSZ07b, LCL+12, LBGS16, LB91, LB92a, LB92b, L198, LZL04, LCQF18, LGG+13, LC14, L1u08, LY14, LC207, LCM07, LCHM10, LCHM13, LWM+02, Mak99, MG07, MG09, MR07, MRH14, NT09, NN12, NH97, OR98, OSW05, OSW06a, OF08, OCK+03, OYK+14, OMC08, OLL03, OFH+08, OP07, ON09a, PJY96, PPSS94, PSS95, PSS95, PA14, Rah96, RRR03, RS20, RSZ09, RSBS19, RTZ+96, RO04, RTA+08, RS97, RS06, RCW07, SGG+04, Sar03, Sat10, SL97a, SL97b, ST06, SWW99, SM97, SHM98, SH07, SHT94, Sin95, SKPP95, SP97, Sta95b, SB96, ST02, SK04, Syl03, Tak14, TSM16, TCD17, TCD20, Tan03b, Tau04, TCD08, TC09, TG08, TD09, VOD08, WK18, WJY06, WL96, WY05, WY07a, WLL+07, WFC08, WZC+20, WH94, WJGH96a, WH96a, WJGHG96b, WHG96b, WSL95, XWT09, YRGS13, hYtWbWL08, YR98, YB97, YBZL03, YBZ04, Yn06, YBK+11, YBNY12, YB12, YBN13, yYNK02, YAO18, YSM05, ZCG00, ZT07, ZHPS10, ZHPS11, ZB14, ZX19, ZCL+98, ZKL+07, ZGD+16, ZH95, AAB+17, Boy92b, CD13, CB14, CKE08, CFR10, DDL13, EMT99, FL13, GR97. Fast [GS98a, Lea92, LCP93, KGK12, SL91, SLCL98a, SLCL98b, YTK14].

HZH$^+$18, MRH14, ON08a, ON08b, ON09b, PG96b, SGD$^+$04, SB08, YS18, ZHPS10.

Fock [KAN96, WJGHG96a, CK20, KAN95].

Forces [BP88, CDM98, NT96, Pie93, WZC$^+$17, BH03, CKS91, DM90, LDB96].

Force-calculation [BH86].

Forces [BP88, CDM98, NT96, Pie93, WZC$^+$17, BH03, CKS91, DM90, LDB96].

Force [Deh02, BH86, EIM$^+$92, JP89, KK16, Xue98, YRGS13]. force-calculation [BH86].

Forces [BP88, CDM98, NT96, Pie93, WZC$^+$17, BH03, CKS91, DM90, LDB96].

Form [CJ05, AP99, BCP08, SH07].

Formation [FM96, FM95, SWJ$^+$05]. forms [KSC99, Rah96, Rok98].

Formulation [AAL$^+$01, JBL02, CB14, CWK08, CCKL09, CFR08, CFR10, DM07, GD07b, Liu08, OSW06a, DM12]. Formulations [Ano94b, GKS94, MG11, EG09a, GKS98].

Formulations [Ano94b, GKS94, MG11, EG09a, GKS98].

Four [BCR01]. four-dimensional [BCR01].

Fourier [Boy92b, EMT99, Boy92a, CD13, DR95, EB94, EB96, HLL08, HW10, HLL08, OLL03, OLL04, Sar03, ZHPS11].

Fourier-Based [CD13].

Fourier-series-based [ZHPS11]. FPGAs [LKM02]. Fractal [PD15]. Fractional [WHG96a]. fracturing [XWY$^+$08, ZBG15].

fracturing [RSBS19]. framework [TPKP12]. Francisco [B$^+$95]. Fredholm [AHLP93]. free [BSL11, BM09, Car06].

Frequencies [GHRW98, DHO4b, ZC00]. Frequency [Nil04, BK96, DHO4a, KMC09, QCG15, TSM16, ZC00]. frontiers [And08].

Fully [VTG91, RSBS19]. function [BLA05, BM09, GDPD08, GD07a, GODZ10, LX17].

Functional [DRS96, BS19, KAN95, KAN96, LG616, WJGHG96a, WJGHG96b]. Functions [Boy92b, BL97, BN98, BCR01, Buh03, CN02, KMC09, LCZ07, Tau03b, Yin06].

Future [EMT99].

GADGET [Spr05]. GADGET-2 [Spr05].

galactic [MFK00].

galaxies [SWJ$^+$05].

Galaxy [FM96, FM95]. Galerkin [AHLP93, AP03, DMC20, HKS05, OSW05, XWT09].

Gap [AAB$^+$17]. Gauss [GS98a, GS91].

Gaussian [BSSF96a, BSSF96b, KS98a, Le 97, Ros06, Sal96]. Gegenbauer [CC05].

General [LCD14, Mud97, BSL11, FG96]. Generalization [Boy92b]. Generalized [AO11, CBN02, GRO2, KAN95, KAN96, ST06, SK04, WJGHG96a, YR98].

generating [CB20]. Generation [HL15, Sal96]. geometric [CDF10].

Geometries [GMT95, AC17, KS98b, NW98]. Geometry [SC94, TW03]. Gflops [MHI07, WGL$^+$98].

Giant [RTZ$^+$96]. gigaflops [WSB$^+$97].

GMRES [BGGC06]. Good [Ten98].

GOTPM [DKPH04]. GPU [GE13, Ham11, HL15, HEGH14, Kan15, WN14].

GPU-accelerated [Ham11]. GPUs [HNY$^+$09, HN10, YNS$^+$09, YBK$^+$11, YBNY12, YBNY13].

gradients [BSSF96a, LG616]. grain [Bar86]. grained [PA14].

granularities [BME93, BEM94]. GRAPE [Ano94a, CKE08, EIM$^+$92, EFT$^+$93, FM95, FM96, KFM99, KFM00, MIES90, MTF94, MT95, MT98, MFK00, MKF01, MKFD02, MKFN03, Mak04, MHI07, MD12, OME$^+$92, TME94, YTO12, YF05].

GRAPE-2A [EIM$^+$92]. GRAPE-3 [OME$^+$92]. GRAPE-4 [Ano94a, FM95, FM96, MTE94, MT95, TME94].

GRAPE-5 [KFM99, KFMT00]. GRAPE-6 [MFK00, MKF01, MKFD02, MKFN03].

GRAPE-8 [MD12]. GRAPE-DR [MHI07].

gradients [Sat10].

gravitating [TYON12]. Gravitational [CDM98, SWW94, Wam99, DHM03, MD12, OME$^+$92, SCM$^+$90].

Gravity [BOX00, Xu95]. GreeM [IFM09].

Green [BM09, Tau03b]. Greengard [Alu94, Alu96, HM95, SB98].

Green’s [CB14]. Grid [Ber95, Bor86, Boy92a, HTG02, Bes00, Car06, DM90, RS20, ZGI$^+$10].

grid-calculated [DM90]. gridded [TW11].
Gridless [AGR88b, AGR88a]. grids [GOS99, HW10]. ground [TCW08]. Group [Wel91]. groups [AB95, Kan15]. Guest [DS00, GW98]. guided [Sat10].
guided-mode [Sat10]. Guidelines [BV96b, BV96a]. guns [NH97]. GvFMM [BSSF96a, BSSF96b].
half [BSL09, CB14, GSC01, GG16]. half-space [BSL09, CB14, GG16]. Halos [ZQSW94]. Hamiltonian [CDF10].
Hanover [Mak93]. Hardware [HZH+18, ATMK03]. Harmonic [CAJ09, GD07b, GODZ10]. harmonics [PJY96, ST02, WL96, YR98]. HARP [KMT94]. HARP-1 [KMT94]. Hartree [KAN96, WJGHG96a, CK20, KAN95].
Hashed [WS93]. Haskell [TL14]. head [GODZ10, KMC09]. head-related [GODZ10, KMC09]. heavy [RTZ+96].
heavy-ion [RTZ+96]. Held [HTA+97, HM86, AG88, Ano97b, K+96, Rod89].
Helmholtz [AP03, BKM09, CD13, CC15, CHL06, CCG+06a, CCG+06b, CC10, CC12, DDL13, Dar02, GHRW98, GD03, GD09, GAD13, GS98b, NN12, Nil04, OLL04, ON08a, QCQ15, RS97, Rok98, Sta95b, Sta95a, TCD17, VVO2, WZC19, WZC+20].
Hermite [KMT94, NMH06].
Heterogeneous [ADB94, HGD11, LCL+12].
Hierarchical [Alu94, AGPS98, BH86, BJWS96, BH88, Deh02, Dem95, Dem96a, Dem96b, HS95, HJ96, SHG95, SHT+95, EG09b, HNY+09, HSA91, JP89, MG05, PG94, Sin92, VCM00, Wam99, WS92, Xue98, YGSR01]. hierarchical-element [VCM00]. High [ACM97, BGI+99, BK96, CFR08, CFR10, FHM99, GBMN06, HL15, Ho12, HZH+18, IEE94b, IEE96b, IEE98, LCK11, Nil04, TWCY06, WWF02, DC07, GH08, GC08, IYK16]. High-Density [WWF02]. High-frequency [BK96]. High-order [TWYC06, DC07, GH08].

High-Performance [FHM99, IEE94b, IYK16]. Higher [PNB94, RRR05]. Highly [BS97, OME+92, YBNI13, ZB19]. Hilton [IEE90]. holes [MKF00]. homogeneous [CL91, YRGS13]. homogenisation [HNO06]. host [SMH98]. Hotel [IEE97].
Hub [HL15]. Hut [ALA+01, Ano94b, BJWS96, BGLM05, GKS94, GKS98, SHT+95, WSH+12, ZBS11, ZBS15]. Hybrid [HEGH14, JMC97, WN14, DKPH04, LQL04, LC93, OFH+08, SGG+04]. hydraulic [RSBS19]. hydrodynamics [GCH+18].
Hyglac [WSB+97]. hyper [DHM03].
hyper-systolic [DHM03]. Hypercube [BNE93, BEM94, BME90, DK93].
hypercubes [SS89].

I/O [Mak93]. ICCAM [BGPW00]. ICCAM-98 [BGPW00]. ICS [KK88].
IEEE [IEE96b, IEE02, PA02, ACM97, Kar95].
Igniting [ACM03]. II [CC05, PGB05, WSB+97]. Illinois [SLCL98a, SLCL98b]. image [DC07].
imaging [Ano97b]. impact [GIS98].
Implementation [And92, HJ96, Lin94, MPPA96, NPR93, OP07, YB01, AHL93, Bes00, BJWS96, Bha97, CCG+06a, Dar00b, GR88b, Hav03, KP05b, KP08, LO96b, Mak93, OCK+03, RS06, Sin95, WHG94].
Implementations [BS97, WLMP99, BHE+94, Buh03, TL14].
Implementing [KN95, SL91, MRH14, SL97a].
Implications [Sin92, SHG95, DRS96]. implicit [CC13]. imposing [YS18].
Improve [HLL+18]. Improved [MPPA96, YR99, HR98, PRT92, PA14].
Improvement [Ich02]. Improving [CDCD97, GSS98a, GSS00, KK16], incident [CCLK09]. inclusion [HNO06]. Incomplete [MG07]. Independent [Alu94, APG94, AGPS98, Ano94c, SB98, MR07, YS18].
India [IEE98]. indirect [GAD13, Ham11, LHL08].

Induction [Pie93]. industrial [And08, GLS06, Syi03]. Inexact [LOSZ07a, LOSZ07b]. inextensible [VGZB09]. infinite [KS04, Mil08].

Inhomogeneous [SHMC97, SMC97, CL91, SM97, SHM98]. Innovation [ACM03]. Insight [IEE02]. Institute [BR93, HM86]. instruction [TYON12, TYNO12].

Integral [MG11, EG09a]. Integral-Equation [MG11, EG09a]. Integrals [BL05, Gus98, ZZ93, BL98]. Integration [DGR96, Oku96, WZC⁺17, NMH06].

integrations [CDF10]. Integrator [Per99, SP99, KM00, KMT94]. integrators [FLZB97a, FLZB97b, Sha06]. Intel [FQG⁺92]. Interacting [BP88, BP93].

interaction [GF06b, GF06a, HLL⁺18]. Kan15, YAO18, ZD05]. Interactions [BFO99, DD95, GGM01, LS93, ATM03, AO10, BAL91, BPK85, CFH89, CKB11, DK92a, DK92b, DK92c, EGHT97, Ess95, GH02, HJZ09, NT94, PJY95, SKT93, SKT94, ZHS10].

interatomic [CKS91]. InterCom [BSvdG⁺94]. interconnecting [LS05, LOSZ07a, LOSZ07b, OSW06b].

Intercontinental [ZGI⁺10]. Interfaces [HB93, Kro02]. interfacial [Kro01]. interior [Mil08]. Intermolecular [Pie93].

International [BR93, BGPW00, ERT12, Hol12, IEE94a, IEE95, IEE96a, IEE96b, IEE97, IEE98, KKL11, MBA97]. Interpolation [Boy92a, DGR96, KLZ⁺06, BLA05, GD07a, Sar03, Tak14].

interpolation-based [Tak14]. Interprocessor [BSvdG⁺94]. Introduction [DS00, GW98]. Inverse [CDGS03, CDGS05, CPD17, Beh06, BN07, FPG05, HC10, LZA04, MG09, TCD17, TCD20]. Inverting [GGM01]. Investigations [hYtWbWL08].

inviscid [Kro02]. Invited [HOST95]. involving [AB95, EG09a, Erg11, Liu95]. ion [RTZ⁺96]. ionic [BPK85, CL91, DC07].

J [BEM94, Da01]. Jacobi [CC04]. Jose [ACM97]. Jr [ACM99]. July [IEE96a, IEE96c, IEE97, RSS96]. June [HM86, IEE94a, IEE95, Mak93].

Karhunen [ST06]. Kernel [CWA14, CC15, MR07, YS18, YBZL03, YBZ04, Yin06, ZHPS11].

kernel-independent [MR07, YBZL03, YBZ04, ZHPS11]. Kernels [LCD14, GR02, PSN04, XZ19]. kind [AHLP93, Tau04]. kinematics [RSZ09].

King [ACM99]. knots [PSN04]. Knoxville [IEE94b]. Kohn [BSSF06b]. Krylov [Car07, GD07a, JH08]. KWIK [DTG96].

Laplacian [GGM10]. Large [BADG00, BVW96, BV96b, CDGS03, CDGS05, FLZB97a, FLZB97b, GF06b, GF06a, HOST95, IFM09, OKF14, SRP06, SLC97, WLMP99, WY07a, ZQSW94, ATR⁺12].

BAAD⁺97, BWS⁺95, BV96a, Car09, DYP93, EG08, Erg11, EG13, GDC08, GDS06, GKD98, HHM19, JdR⁺18, KP08, LCQF18,
Message-passing [KP08]. metamaterials [OMC08]. Meter [WWF02]. Method [Alu94, AAL+01, And92, Ano94b, BT03, BK15, BPT+14, BVW96, BV96b, BL05, BH88, CL12, CC15, CS98b, CDP17, CKB11, EMRV92, GP93, GKS94, Gue97, GA96a, GA96b, GS98b, HOST95, HAS02, KLZ+06, LCD14, LSCM96, LJ96b, LJ96a, MJ96, MB16, MeK96, NT96, Ni04, PD15, RRR05, RW94, Sch94, SG97, SMC97, SHHG93, SC94, SC95, Sta95a, SP01, WC94a, WZC+17, WZC19, Yin15, ZJ91, AGR88a, AGR88b, AP00, AP03, Ami00, ATM03, AY02, BDMN03a, BDMN03b, BSL09, BS19, BG94, BWS+95, BV96a, BL98, BH03, BHR04, BHGR04, BHGR05, BSSF96a, BSSF96b, BK96, CDJ07, CL01, CC04, CC05, Car99, CWH97, CDF10, CCZ97, CKW08, CCKL09, CC+06b, CRG01, CPP93, CRW93, CB20, CFR08, CB09, Da06, Da09, Da10, DMC20, DYP93, Dar02, DM07]. method [DM12, Dar97, Dar00a, Dar00b, DH97, DH04b, DC07, DRS96, DKG92a, DKG92c, ESRS01, ECL02, FG97, FLZB97a, FLZB97b, FD09, Fuj98, FMI+93, GDC08, GSC01, Gb08, GR02, GG16, GROZ04, GKS98b, GG99, GH02, GP08, GC+18, GD05, GD06, GD09, GODZ10, Ham11, HM95, Hv03, HC10, HW10, HW11, HU97, HJZ09, HLL+18, Ich02, JH98, JC04, Kan15, KM00, KS10, KS11, KLM+09, KMC09, Kro01, KS98b, KS04, KP05b, KN95, KCF+05b, Lab98, LCL+12, LBGS16, LJ98, LCQF18, LGG+13, LH08, LC14, Lin08, Lin09, LCZ07, LC07, M195, Mak99, MB05, MR07, Mi08, MRH14, MMNB06, NT94, NH97, OSW05, OSW06a, Of08, OKS09, OKC+03, OYK+14, MOC08, OFH+08, OP07, ON09a, PN95, PPS94, PPS95, PSS95, PG96b, PA14, QC15, RRR03, RSBS19]. method [RO04, R-08, RS97, RS06, SG+04, SF18, Sat10, SL97a, SL97b, SM97, SH07, Sin95, SKPP95, SP97, Sta95b, SK04, Sud04, Sy03, Tak14, TSIM16, TCD17, TCD20, Tan03b, Tan04, TG08, VW02, VOD08, VGZB09, VCM00, WY05, WY07a, WFC08, WCZ+20, WHG94, WHG96a, WJGH96b, WHG96b, WSLW95, XJM08, YR98, YB97, YBZL03, YB12, YBNY13, iYNK02, YAO18, YAO20, YSM05, ZT07, ZHPS10, ZHPS11, ZB14, ZKL+07, ZGD+16, ZB95, AAB+17, CD13, CKE08, CC10, CC12, CFR10, DDL13, FL13, GR97, LCP93, RGKM12, SL91, YTK14, Gav11]. Method-Ecient [NT96]. Methods [Aar85, Alu94, AG88, BS93, BS97, BR93, DY98, Dem95, Dem96a, Dem96b, FQG+92, GHRW98, GW98, HEGH14, HJ96, LRW95, MBA97, SRPD06, SHG95, SHT+95, TDBEE11, VDG91, WSW+95, YF05, A+97, BLA05, BCH93, BL97, BG97, BN98, BCR01, Bes00, BDS07, Car07, CB09, Eng11, Gas97, GB06, GY08, GCC+99, Goe99, GE13, GKM96, GKO4, GD08, HS95, HGD11, IYK16, Kro99, Kro02, KP05a, KP08, LS05, LOSZ07a, LOSZ07b, LOG12, Lin95, LX17, LY14, MC92, NN12, OSW06b, Of07, Oku96, PJ96, PG96a, RS20, RS94, ST06, SKT94, SM05, Sin92, SB96, TD09, YGSR01, aYZ97, YNS+09, YBND12, ZY19, MC92]. microlithography [Ful97]. microlocal [BDMN03a, BDMN03b, Dar02, GB06]. micromagnetic [VOD08]. microprocessors [NMH06, MSV92]. Microscopic [HB83]. Microstrip [Mi96, Mi95, ZCL+98]. Microwave [Ano95a, ZC00]. militaires [Ano97b]. military [Ano97b]. million [DKG92a, DKG92c]. million-atom [DKG92c]. MIMD [FQG+92, LB92a]. mine [ESRS01]. Minimal [BF78]. Minimization [OC05]. Minneapolis [HTA+97, IEE92b]. Minnesota [EE92b]. MLFMA [SLC96]. MN [HTA+97]. mode [Sat10]. modeling [CA09, ES04, FG96, Ham11, IYK16, KP08, TD09].
[BCM02, NMDK99, NKV94, ZKL+07].

Models [AC94, HB93, PN95, SGG+04].

Modern [NMH06, SF18]. Modification [SB98]. Modified [Bar90, BADC00, CHL06, LCFQ18].

Module [DK93]. Molecular [AC94, BGGT90, BAL91, BHGS90, BP88, CDCD97, Gus98, HGS90, LBC91, LBI+97, LMCPP92, MPPA96, OKF14, WLMP99, WS91, ATMK03, BSL11, BS19, BWS+95, BSS97, BCL+92, BHE+94, BHER94, BCOY93, BCOY94, BP03, CvHMS94, DK93, EGH97, GDK99, GKZ07, KM00, LM02, LBG16, LW+98, LK94, OYK14, OP07, PGB05, PA14, SF18, SWW99, Win95, ZB95].

Molecular-dynamics [BCL+92, BP93].

Molecule [Pie93]. molecules [Kan15].

Moment [Gus98, McD97, ZZ93, BN98, CS82].

Moment-based [BN98]. Moments [PNB94, Gib08, HHKP09, Kon93].

Momentum [GCC97, YG96a, WH96b].

Monostatic [RCW97].

Monte Carlo [ESRS01].

Monterey [Ano95b, Ano96, Ano97a].

Montreal [IEE97].

Motion [Gus98, McD97, ZZ93, BN98, CS82].

Movement [CC13].

MPI [IEE96c, BCAD06, LQ96b, Per99, SP99].

MPI-2 [BCAD06].

MPSim [LBI+97].

MR [BEM94].

Multi [AP03, Ang17, BADC01, Liu08, RS20, WSH+12].

multi-disciplinary [WSh+12].

multi-domain [Liu08].

multi-grid [RS20].

Multi-level [AP03].

Multi-platform [BADC01].

Multi-scale [Ang17].

Multibody [BGI+99, JBL02, LOG12].

Multicomputers [YB01].

Multidimensional [CK95b, BCP08, BL98].

multigrid [Gas97, IHM05, MC92, OF08].

Multilevel [CSMC2x, GS98b, MG11, SLC96, SLC97, TCW08, TC09, A+97, ATR+12, BDMN03b, DM12, EG08, EG09a, EG09b, Erg11, EG13, GDDC08, GKD09, HS08, HC10, LZZL04, LC94, MG07, MG09, RCW07, Sar03, WJY06, YRG13].

Multiple [BS93, BSS97, FLZB97a, FLZB97b, KM00, Kro02].

multiplication [XWT09].

multiply [GGM93].

multipoint [PRT92].

Multipolar [LS93].

Multipole [AAC+17, Ano92, BT03, BK15, BPT+14, Ber95, BVW96, BV96b, BS00, BL05, BFO99, Boy92b, CDM98, CDN03, CDN05, CL12, CD13, CC15, CSMP04, CE08, CS08b, CC10, C112, CJ05, CPU10, CPU11, DDL13, DY98, EB96, EMR92, FL13, GP93, GSS98a, GSS98b, GR97, GR98, GW98, Gue97, GD03, GA96a, GA96b, GS98b, HOST95, HAS02, HA17, HEG14, JMC97, JMBC98, Kon93, KLZ+06, KK95, Le97, Lea92, Lem98, LCD14, Lin95, LSCM96, LJ96b, LJ96a, LO96a, LCP93, LRW95, MI96, MBS+00, MG11, MB16, MC97, McK96, MPPA96, NT96, Nil04, NRP93, OC05, Pan95, PNB94, PD15, RR90, RGK12, RW94, SRP06, SPS96, SL91, SL97b, Sch94, SG97, SHMC97, SM97, SHHG93, SHT+95, SC94, SC95, SL96, SL97, Sta95a, SP01].

Multipole [WC94a, WC94b, WLMP99, WZC+17, WZC19, YR99, Y15, YTK14, YB01, ZJ91, ZZ93, ALP93, AGR88a, AGR88b, AP99, AP00, AP03, AM00, ATMK03, AYO20, AT9+12, AC17, BDMN03a, BDMN03b, BS97, BS19, BWS+95, BV96a, BSS97, BCL+92, BHE+94, BHER94, BL98, BN03, BHGR04, BHGR05, BSSF96a, BSSF96b, BK96, CD10, CC04, CC05, Car09, C188, CSA95, CWH97, CDF10, CC97, CKW08, CCKL09, C1999, CCG+06b, CR10, CPR93, CSS9, CWD08, CR93, CB20, CFR08, CB09, CK20, Dac06, Dac09, Dac10, DMC02, Dar02, DM07, DM12, Dar97, Dar08, Dar08b, DHO4a, DH04b, DC07, DRS96, DK92a, DK92c, ESRS01, ES04, EB94, Eng11, EG08, EG09a, EG09b, Erg11, EG13, EG01, FOCB96, FLZB97a, FLZB97b, FPG05, FD09, Fu98, GDDC08, Gas97, GBNM06, GF06b].
multipole [GF06a, Gav11, GSC01, GIS98, GY08, GR02, GG16, GROZ04, GKD09, GE13, GB11, GR88b, GG89, GG90, GH02, GCH+18, GD05, GD06, GD08, GD09, GODZ10, GAD13, Ham11, HHKP09, HS08, Hav03, HC10, HW10, HW11, HF92, HU97, HR98, HG0D11, HJZ09, HLL+18, IYK16, Kan15, KM00, KSS10, KS11, KLM+09, KMC09, KS98a, KS98b, KS04, KP05a, KP05b, KPO8, KAN95, KN95, KAN96, KCF+05, Lab98, LM02, LDB96, LOSZ07b, LCL+12, LBGS16, LB91, LB92a, LB92b, LJ98, LZL04, LOG12, Lem04, LCQF18, LGG+13, LC14, Liu08, Liu09, LX17, LY14, LCZ07, LCM07, LCHM10, LCHM13, LWN+02, MF95, Mak99, MG07, MG09, MD08, MB05, MR07, MRH14, MNPB06, NW99, NT09, NT94, NN12, NH97, OSW05, OSW06a, Ob07, Os08, OKS09, OCK+03, OYK+14, OC03, OMC08, OFH+08].

multipole-accelerated [BHE+94, BHER94, ZD05].

Multipole-Based [GSS98a, GSS00, YB01, LDB96].

multipole-to-local [CFR08, YS18].

Multipoles [And92, AC94, GSS98b, HLL08, LHL08, Mak99, OLL03, OLL04].

Multiprocessor [SHG95, LMCP92, Sin92, Ske89].

Multiprocessors [BB87, HS95].

multiquadrics [CBN02].

Multiresolution [NKV94].

Multiscale [ERT12, TW03].

Multithreaded [ZBS15].

Multivariable [BL05].

multiwavelet [FBHJ04].

Napa [PA02].

natural [AO10].

Near [Bor86, CAJ09, ON09a, Rei99].

near-rigid [CAJ09].

Nearest [CK95b].

Neighbor [Bor86].

Neighbors [CK95b].

Neptune [MKFD02].

network [LB91].

Networking [ACM97, Hol12, LCK11].

networks [Kan15, LJ98].

Neumann [GGM93].

New-version-fast-multipole-method [LCM07].

Newport [IEE95].

News [Kan15].

NH [Mak93].

no [BEM94].

Node [BK15, FRE+08].

Node-Level [BK15].

Non [BB87, BCP08, DR95].

non-equispaced [DR95].

Non-Uniform [BB87].

Nonbond [DKG92a].

nonbonded [ATMK03].

nonequispaced [PSN04].

nonlinear [CAJ09].

nonlinearly [CC13].

nonoscillatory [GR02].

nonplanar [YB97].

 nonsmooth [Beb06].

 normal [GG16].

 Nose [BVW96].

 Notre [IEE96c].

November [ACM96, ACM97, ACM99, ACM03, H012, IE90, IE92b, IE93, IE94c, IE02, K+96, LCK11].

nuclear [PGB05].

number [GDK89, Ich02].

numbers [JdR+18, WYW05].

numerica [Lee97].

Numerical

[CL91, GKKZ07, Kro02, Pri94, TDBE11, dCGQS06, Att97, BCM02, BCH93, CDF10, CG97, CHJN03, Dar00b, GCG+99, Gre90b, GM94, GG98, KSC99, Kro01, OR89, PRT92, RSS96, TYNO12, Wam99, ERT12].

O [Mak93].

Object

[BT95, SHCM97, ES01, SM97, SHM98].

Off-Loading [HL15]. One [Ano94a, MTES94, WWF02, FRE+08, HM95, MR07, SK04, YR98].

one-dimensional [SK04, YR98].

One-Tflops [Ano94a, MTES94]. onto [Boy92a, LB92a]. open [CKB11]. Opening [And08]. Operators [CJ05, Beb06, CS82, CB20, ESM98, FBHJ04, Rah96, Mak93, MHI07, MG05, NKV94, OCK+03, RC97, SRK+12, Sta95b, TMES94, WLL+07, WSL95, WSL95, WSH+12, YF98, YBZL03, YBNY13, Mak93, Rod89, TL14, TBDE11]. Parallelism [BGLM05]. Parallelization [LB91, Lea92, TCD20, BOCY93, DK93, EG08, EG09b, SWW99]. parallelized [OME+92]. Parallelizing [CV95b]. Parallel [Dem96a, Dem96b].

parameter [CRG01]. Parametric [SC94]. Part [Dem96a, Dem96b]. Particle

[BOX00, DYP93, Gre87, MFKN03, Pri94, VTG91, AGR88a, CCR88, CC13, CB09, CKB11, DKPH04, ECL02, GKS94, GG89, GG90, KM00, KK16, Kro99, KP05a, LRR+99, PJY95, WY05, WS95b, YGRS01].

Particles [BP88, HE88, BP93, CPP93, DKG92a, GKS94, Ich02, JrR+18, Kon93, LDB96, YRGS13]. partition [AYO20].

Pentium [WSB+97]. Perfect [HAS02]. perfectly [GROZ04, GKD09].

Performance [ACM97, BGI+99, BK15, Car07, FHM99, HL15, Hol12, IEE94b, IEE96b, IEE98, LCK11, IWM+02, MKF01, NMH06, RC97, SF18, SKT94, WPM+02, CFR08, CFR10, IYK16, MD12, Sha06, WSB+97].
Performing [Sar03]. Periodic [CWHG97, RO04, RW94, Ami00, BS19, CPP93, CFH89, DKG92c, FLZB97a, FLZB97b, GK04, HM95, HNO06, KS98a, KS98b, KS04, LDB96, LBSG16, LCZ07, NN12, ON08a, ON08b, ON09a, ON09b, PG96b, SKT93, Sin95, YB97, YAO18, YAO20]. periodicity [YS18].

Portland [ACM99, IEE93]. posed [HM95]. posteriori [XTH09]. Potential [CK95b, Gre87, Gre90a, HA17, SPS96, YR99, CK95a, GB11, Gre88, GR88a, GD07b, HHKP09, HF92, HR98, LCQF18, Mil08, OLL03, PA14, Rok85, Tan03a, WXQL08]. Potentials [CJ05, MB16, MK96, Pie93, DM90, LDB96, SH07]. power [PRT92]. PPPM [YF05, ZB14]. Practical [BN97, Pan95, CAJ09, Mak93]. practice [CK00]. Prager [GCH18, LGG13]. pragmatic [SB96]. Precise [Ami00]. preconditioned [BGGC06, GD07a]. Preconditioner [CDGS03, CDGS05, CPD17, Car06, DDL13, OF08, TCD17]. Preconditioners [MG11, ABD04, Car09]. Preconditioning [NN12, Beb06, FFP05, LKL04, MG07, MG09, RCWY07]. predictor [TWY06]. predictor-corrector [TWY06]. preeminent [YB12]. preprocessing [SK04]. Prescription [GS98b, CRW93]. presented [Ano97b]. Pressure [YAO18, YRGS13]. Price [WSB97]. Price/performance [WSB97]. Princeton [HM86, HDG15]. Principles [OKF14]. Pro [WSB97]. Problem [APG94, AGPS98, Ano94a, Ano94c, Dem95, Dem96a, Dem96b, HTG02, MIES90, Mil08, SCF96, WXQL08]. Problems [BB87, EMRV92, GA96b, KK95, LJ96b, LJ96a, MG11, MBS15, SSW94, SG97, WZC17, AP00, AD05, ATR12, BS09, Bes00, BCF08, BHGR04, BHGR05, BGGC06, CC04, CC05, Car09, EG90, EG90a, Erg11, FST05, Fuji98, GCCD08, GL06, HM95, HNO06, HU97, JH08, Lab08, LCQF18, Lin95, Lin08, MIES90, Oku96, ON08a, ON08b, ON09a, Rah96, RSB09, RO04, SCM10, TWYC06, WJYO06, WY07b, WS09].

Proceedings [ACM96, ACM97, AG88, ERT12, Hol12, HM86, IEE02, Kar95, LCK11, Rod89, Ano92, Ano95a, IE92a, IE98, KK88, PA02, Wei91, B95, BGPW00, HB03, HTA97, IEE90, IE92b, IE93, IE94b, IE96c].

Proceedings. [IEE96c]. process [JdR18]. processes [Sal96]. Processing [B95, HTA97, BCOY94, Rod89]. Processor [WWF02, FL13, MHI07]. processors [GD08]. produced [Kon93]. products [And08]. Professor [Wil00].
Program [CDCD97, YB01, App85, LBI+97, WS95b, Win95]. Programmable [PA02, HFKM98]. Programming [MRH14]. Programs [BGLM05, RC97].

PROGRAPE [HFKM98]. PROGRAPE-1 [HFKM98]. Progress [Ano95b, Ano96, Ano97a]. Prolate [KLZ+06]. Propagation [Ano97b, IEE94a, IEE95, IEE96a, IEE97, WC94a, WC94b, CHJN03, GLS06]. propagator [ZB95]. properties [WY05, WY07a]. Protein [NT96, Kan15, KSS10, KS11, NT94]. protein-protein [KSS10]. proteins [ZB95]. protonatable [Kan15]. Provably [Ten98]. pseudo [CKS91, OFH+08]. pseudo-pairwise [CKS91]. pseudospectral [OFH+08]. pseudoparticle [Mak99]. Pseudospectral [Boy92b, KLZ+06]. Purpose [Ano94a, BGGT90, CKE08, FM96, FHM99, KFMT00, MTE984, MT98, MFKN03, EIM+92, EFT+93, FMI+93, FM95, HFKM98, KMT94, MIES90, MT95, OMH+94, OME+92, SCM+90, TMES94].

Quadrature [WK18]. Quantum [SPS96, KLM+09, SSF96]. quartic [WHG96b]. quasars [SWJ+05]. Queen [IEE97].

Radar [Gue97, Ano97b, Ano97b]. Radial [Buh03, BLA05, BL97, BN98, BCR01, CBN02, GD07a, PSN04, Yin06]. Radiation [CSMCxx, SG97, CWK08, YRGS13]. Radiosity [SHT+95, HSA91, MMNB06].

Recurrence [CSA95]. Recursions [GD03]. Red [WSB+97]. redefinition [PJY96].

Scalability [RS97]. Scalable [Ano94b, BHE+94, BHER94, GKS94].
GKS98, HAS02, HGD11, IEE94b, MSV92, OCK+03, OKF14, YB12. scalar [GD07b, KSC99]. Scale [BADG00, OKF14, SRPD06, WLMP99, ZQSW94, Ang17, ATR+12, EG08, Erg11, EG13, FLZB97a, FLZB97b, GF06b, GF06a, HLM19, KP08, LCQF18, LCZ07, LWM+02, PN95, WY05, WY07a, WSH+12, WXY+08]. Scaling [CDCD97, FRE+08, YBNY12, Goe99, KLM+09, SSF96, WJHG96b]. Scattered [HOST95]. Scattering [BVW96, EMRV92, GA96a, GA96b, HAS02, JMC97, JMBC98, LJ96b, LJ96a, SHMC97, SM97, SLC97, ZCG00, AP99, AP00, AD05, BN07, BGGC06, CC04, CC05, Car09, CWK08, DH04a, ESR01, EG08, Eg09a, Fu98, GH08, GSC01, GD05, HC10, HW10, JBMC98, Lab98, LC94, MG07, Rah96, RTZ+96, Rok09, SM97, SHM98, TCW08, TC09, WJYO06]. scheduling [YF98]. scheme [NMDK99, NMH06, WLL+07]. Schrödinger [ZKL+07]. Schur [MG11]. Schwarz [BT03]. Sci [BEM94]. Science [FHM99, IEE92a]. sciences [SM05]. Scientific [B+95, HTA+97, MT98, MSV92, CGL03, LMK02, MI07, PD89, Rod89]. Screened [BFO99, GH02, HJZ09, ZHPS10]. Seattle [IE96a, LCK11]. Second [IE96c, AHP93, BSSF96b, KS11, Tan04]. Section [Gue97]. seismic [Fuj98]. self [TYON12, self-gravitating [TYON12]. Seminar [RS96]. semiseparable [CG04]. sensitivity [DH86]. Sensor [Ano97b]. separated [Eng11]. September [Ano95a]. Sequential [WSW+95]. series [CC04, CC05, ZHPS11]. set [TYON12, TYNO12]. Sets [CK95b, PD15, Eng11]. Seventh [B+95]. Sham [BSSF96b]. shape [LM02]. shaped [YRGS13]. shared [HS95, RC97, Ske89]. shared-memory [Ske89]. sharing [BADD96]. shells [CAJ90]. short [BG97, BP93]. short-range [BP93]. shunt [SGD+04]. SIAM [B+95, BEM94, HTA+97, RSS96, Rod89]. Sides [BT03]. signature [Ano97b]. Siloxane [MPPA96]. Siloxane-Based [MPPA96]. SIMD [TYON12, TYNO12]. simple [AB95, PJY95]. Simulating [ZBG15, ZG+10, VHGB99, ZB95]. Simulation [AT87, And99, BADG00, CKS91, FM96, HE88, KFM99, LCE+06, MI96, Ten98, WPM+02, AG88a, App85, BCM02, BAAD+97, BCL+92, DR96, FLZB97a, FLZB97b, FM93, GF06b, GZK07, HN10, HGS90, HHM91, KMT94, LM02, LWM+02, MI95, MFK00, MKF02, MI95, MFK00, MKF02, MD12, OXY+14, OM08, PG94, SW99, Spr05, TYON12, TYNO12, WYW05, Win95, YB97, YNS+09, YBNY13]. Simulations [Aar85, AAL+01, Ano94b, ADBGP99, Bag02, BHGS90, BH88, GP93, GKS94, HP95, IFM09, KFMT00, LRJ+99, MT98, MFK03, MPPA96, OKF14, SRPD06, SW+05, WLMP99, WN14, YF05, AGR88b, ATMK03, AB95, BAL91, BDS07, BCOY93, BCOY94, CL91, CRR88, CWD08, CB09, DKG92a, EIM+92, FFT+93, EGHT97, ESR01, FOCB96, FRT+08, GF06a, GKS98, GR87, GDS98, GCH+18, HFKM98, HNY+09, KM00, K+96, Kro99, KP08, LBC09, LMK02, MT95, MG05, MCM99, OM+92, PA14, Sal96, Sha06, SKT93, SKT94, TEM99, VCM00, Wan99, WS92, WSH+12, Xue98]. simulator [BSL11]. Sinc [Boy92a]. Single [CJ05, GP08]. Singular [FBHJ04, QC95, RTA+08]. singularities [Pel98]. sized [Sat10]. sizes [LCZ07]. Skeletons [SW94]. Slater [Gus98, ZZ93]. Slater-Type [Gus98, ZZ93]. slightly [ZD05]. Society [IEE95, IEE96a, IEE97]. Software [Kan15, TDBEE11, SF18, TYNO12]. solid [Bat03, PJY96, WL96, hYtWbWL08]. solids [WYW05]. Solution [ATR+12, GA96a, LJ96b, LJ96a, SG97, SC94, SC95, AHP93, AP03, AD05, Atk97, BH03, BHGR04, BHGR05, CJL+97, EG08,

Solved [MG11]. solvent [DC07].

Solver [BOX00, CPD17, MGM95, SLCL98a, SLCL98b, Xu95, AC17, BME90, CCZ97, CHL06, EG01, GL96, GP08, HLL08, Kan15, LJ98, LCHM10, LCHM13, RS20, SRK + 12].

Solvers [GSS98b, BME93, BEM94].

Solving [HTG02, VTG91, Car06, Car07, LC93, LC94, MCBB07, MNNB06, OLL04, XJM08, ZCL + 98]. some [Sha06].

Source [SB98, CKB11]. Source [CAJ09].

Space [BT95, BLA05, CvHMS94, ZT07].

Special [Ano94a, BGGT90, CKE08, FM96, FH99M, KFMT00, MTES94, MT98, MFKN03, EIM + 92, EFT + 93, FMI + 93, FM95, HFKM98, KMT94, MIES90, MT95, OM + 94, OME+92, SCM + 90, TMES94, MC92].

Special-Purpose [Ano94a, CKE08, FM96, FH99M, KFMT00, MTES94, MT98, MFKN03, FM95, HFKM98, KMT94, MIES90, MT95, OM + 94, OME+92, SCM + 90, TMES94].

spectra [ES04].

Spectral [RCWY07, OPF+08, PN95].

Speeding [CK20, AO10]. sphere [BP03, CDJ07, DC07, Lin95]. spheres [GD05]. spherical [GODZ10, KSC99, PJY96, ST02, YR98].

Spline [CS98b, DKG92b]. Splines [CS98a, BL97, BCR01, BPT07].

Square [GGM01]. Stability [Nil04, Sud04]. stable [DH04b]. standard [BCP08]. static [VOD08].

Station [ERT12]. statistical [Kan15]. Steepest [JMC97, JMBC98, ERSR01].

steepest-descent [ERSR01].

Stellar [HM86].

Step [BS93, FLZB97a, FLZB97b, KM00, RCWY07]. stepping [BSS97].

stochastic [FST05, Sal96].

Stokes [YF05].

Stokesian [Ich02].

Storage [Hol12, LCK11].

Strategy [BB87, BCOY93, EG09b].

stratified [ZCL + 98]. Stress [BS19, GG16].

Strips [GA96a]. strong [Kan15].

Structural [BPK85].

Structures [BAGD00, NT96, ZQSW94, AYO20, GF06b, GF06a, Goe99, Kat89, KS98a, NT94].

Structures [And99, CSMCxx, GGM01, MI96, RW94, WPM + 02, Car09, CWK08, EG13, LCZ07, WS92, ZCL + 98, ZY05].

studies [RTZ + 96]. Study [BGLM05, HM86, Pri94, Dar97].

studying [Kro01].

sub [LCZ07]. sub-entire-domain [LCZ07].

Subdivision [BT95].

Summation [CWA14, LS93, Ami00, BAL91, IHM05, SF18, ZB14].

Summer [RSS96].

Sums [DNS90, BG94, DYP93, KS04, RO04, SL97b].

Sunnyvale [Wel91].

Supercomputers [FQG + 92, HM86, BAD01].

Supercomputing [ACM96, Ano92, IEE90, IEE92b, IEE93, IEE94c, Kar95, Ano92, KK88].

Surface [MG11, CCZ97, ERSR01, ZBG15]. Surfaces [CSMCxx, HAS02, JMC97, JMBC98, GH08, JBM98]. Surfaces-Wire [CSMCxx].

suspended [VGZB09]. switch [SGD + 04].

Switching [HL15].

Symbolic [Pie93, CB20].

symmetric [CG04, DMC20, OSW06a].

Symposium [Ano97b, HB93, IEE92a, IEE94a, IEE95, IEE96a, IEE96b, IEE97, PA02, K + 96, Mak93].

Syracuse [IEE96b].

System [BGJ + 99, RGKM12, BAAD + 97, TMES94, ZB95, HTG02]. Systems [AAB + 17, CPD17, GP93, Gre87, HEGH14, MT98, VTG91, YF05, AB95, BS19, BWS + 95, BGGC06, CL91, CDF10, CF89].
DYP93, DKG92c, EIM+92, EFT+93, Gre88, Ich02, KS98a, KS98b, KN95, LM02, LBGS16, LB92a, LBI+97, LCM07, LCHM10, LCHM13, PGB05, PG96b, TYON12, YB12, YAO20, ZB95]. Systolic [BHGS90, DHM03].

T3D [BAAD+97]. tails [ADG96].
tangential [GH08]. Target [SB98, GSC01].
targets [Ano97b]. Task [AAB+17].
Task-Based [AAB+17].
tear [BS93, MD98, BSS97, FLZB97a, FLZB97b, GD07b, KM00, OFH+08, RC97, SRK+12, VW02, Xue98]. Time-dependent [MD98].
time-domain [VW02]. time-efficient [YF98]. time-harmonic [GD07b].
time-step [KM00]. Top [DS00, MBS+00].
topological [BN07]. toroidal [CKS91].
Toronto [HB93]. Touchstone [FQG+92].
TPM [Xu95]. traces [HLL+18]. trained [HHPK09]. transfer [GODZ10, KMC09].
Transform [EB96, EB94, GS91, HLL08, HW11, LHL08, OLLL03, OLL04, Sar03, ST02, Sod04, Boy92b, EMT99, GS98a].
Transputers [BHGS90]. Transputing [Wel91].
treatment [KS98a]. Tree [And99, ADB94, ADBGP99, BH89, Bar90, BADG00, BOX00, BH88, CDM98, CWA14, JdR+18, SW99, WPM+02, WS93, WN14, WSW+95, AYO20, BADP96, BAAD+97, BAD01, BCA06, BJWS96, Dub06, GY98, JP89, PG94, PG96a, Pud16, Wam99, WS92, WSL95, WSH+12, Xue98, JCGJ08]. Tree-Code [CDM98]. Treecode [KFM99, Mak04, SW94, DKPH04, WS95a, WSB+97].
Treecodes [GSS99a, GSS00].
TreePM [Bag02, IFM09, YF05].
Trees [BF78]. trenches [TCW08]. Trends [MBS15, Car09, CGL03, Les96].
triangulated [RS94]. Truly [APG94, Ano94c]. truncated [TCW08].
truncating [BPK85].
Truncation [OC03, AP00, AB95, CC04, CC05].
tube [Lin95]. tumors [ES04]. tuned [YB12].
tuning [MKF01, NH06].
turbulence [HNY+09, YNS+09, YBNY13].
Turkey [Ano97b].
Two [LS93, MeK96, Pan95, Pie93, RRR05, BL97, Car06, CHL06, CCG+06a, CC10, CC12, ECL02, EGO1, GH98, JKCGJ08, Kuo01, NT09, PSS95, RRR03,
Two-Center [Pan95]. Two-dimensional [JKCGJ08].

Two-dimensional [LS93, BL97, CC10, CC12, ECL02, GH98, Kro91, NT09, PSS95, RRR03, WY07b, XJM08]. two-grid [Car06].

two-step [RCWY07]. Type [Gus98, ZZ93].

Uranus [MKFD02]. USA [Hol12, HM86, IEE96c, ACM97, IEE02, Kar95, K +96]. Use [HM86, SP96, Bes00, Mak93, PJY96, RTA +08, SM97]. User [Wel91]. Using [BVW96, BV96b, BP88, CL12, CKE08, CS98b, CPD17, GA96a, HE88, LKM02, LRW95, MIF96, MPPA96, Per99, SG97, SHMC97, SMC97, SP99, SC94, BS19, BV96a, Bor86, BH88, CS99, CvHMS94, DM07, ERS01, ES98, ESM98, Gas97, GF06b, GF06a, GD05, HC10, HLL +18, Kan15, KM00, LBGS16, LB91, LJ98, LK06b, LC07, LW +02, MI95, MRH14, OYK +14, Pri94, RC97, RS20, Sat03a, Sat03b, YB97, YBNY13, ZCG00]. UT [Hol12]. Utah [RS96].

Vacancies [Kon93]. value [Lin95, ON08a, ON09b, RTA +08]. values [LX17]. variable [Tan03a, Tan04]. variables [JP89]. Variants [YTK14, BHER94].

Variational [DM12, DM07]. Vector [C98a, TYON12, HC08, XWT09]. Vectorized [Bor86, GDK89, BP93].

Velocities [ZQSW94]. versatile [WS95a].

Version [GS98a, NT96, SP01, GG89, GG90, GR97, GH02, LCM07]. very [BSSF96a, BSSF96b, LBI +97, PSPS94].

vesicles [VGZB09]. via [AGR88b, GB11, Gue97, GD07a, GODZ10, WJGHG96b].

 Videoscopie [Ano97b]. virtual [XJM08]. viscosity [BLA05, VGZB09]. Vlasov [VTG91]. Vol [Bat03]. Volterra [ZX19]. Volume [MB16, NT09]. Volumetric [ZK +07, HW10]. Vortex [BCH93, CK00, DD95, RRR05, WSW +95, aY97, BLA05, CWD08, ECL02, HM95, Ros06, RS94, WSL95, AG88].

Voxel [Ham11].

W [MD12]. WA [LCK11]. Waals [DKG92b]. Washington [IEE94a, IEE94c].

water [BAL91, HHKP09]. wave [BSL09, Bes00, BGGC06, CCZ97, CCKL09, CHJN03, CRW93, ERS01, ESM98, GLS06, LC94, MD98, Tak14, TCV08, TC09].

Wavelet [HKS05, BP03, RŠŽ09, XWT09, XTH09]. wavelet-BEM [XTH09]. Wavelets [A +97, CM06, Tan03a]. WAVES [CHJN03].

Wood [ON09a]. Worcester [BR93]. work [BADP96, DTG96, Rei99]. work- [BADP96].

Workshop [ERT12, HM86, AG88].

Workstations [LJ98]. Work [Wel91]. WOTUG [Wel91]. Would [Wil00].

X [Ful97]. X10 [MRH14]. x86
REFERENCES

[TYON12, TYNO12]. x86_64 [NMH06]. XV [BR93]. XXVI [Bre04].

Yamakawa [GCH+18, LGG+13]. York [IEE90, IEE90, IEE96b]. Yukawa [BFO99, HJZ09, ZHPS10].

zero [GG16, SF18, ZC00]. zero-multipole [AAL+01]

References

[TYON12, TYNO12]. x86_64 [NMH06]. XV [BR93]. XXVI [Bre04].

Yamakawa [GCH+18, LGG+13]. York [IEE90, IEE90, IEE96b]. Yukawa [BFO99, HJZ09, ZHPS10].

zero [GG16, SF18, ZC00]. zero-multipole [AAL+01]

References

[AAB+17] Pascal Auffinger and David L. Beveridge. A simple test for evaluating the truncation effects in simulations of systems involving charged zero [GG16, SF18, ZC00]. zero-multipole [AAL+01]

Antoine:2004:APE

Angyan:1994:CAM

Askham:2017:AFM

ACM:1996:SCP

ACM:1997:SHP

ACM:1999:SOC

ACM:2003:SII

Antoine:2005:AIE

Antonuccio-Delogu:1999:PTB

Antonuccio-Delogu:1999:PTA

Adamson:1996:CCT

Anandakrishnan:2011:GBA

Anderson:1988:VMP

REFERENCES

REFERENCES

|---|---|

REFERENCES

Anonymous:1997:RSA

Anandakrishnan:2010:ABN

Amini:2000:ATE

Amini:2003:MLF

Amini:1999:ADF

Aluru:1994:TDI

This paper proves that Greengard’s algorithm is not $O(N)$ for non-uniform distributions.

Appel:1985:EPM

Alpert:1991:FAE

Allen:1987:CSL

Atkinson:1997:NSB

Amisaki:2003:DHA

Araujo:2012:SLS

Andoh:2020:EFM
REFERENCES

Ying:1997:VM

Bailey:1995:PSS

Becciani:1997:PTC

Becciani:2000:MPT

Becciani:1996:WDS
REFERENCES

Bagla:2002:TCC

Bathe:2003:CFS

Belhadj:1991:MDS

Barnes:1986:USS

Barnes:1990:MTC

Berger:1987:PSN

Becciani:2006:FMP

REFERENCES

REFERENCES

Bespalov:2000:URG

Bentley:1978:FAC

Boschitsch:1999:FAM

Berman:1994:RME

Beatson:1997:SCF

Bunse-Gerstner:2006:PGC

Bakker:1990:SPC

A. F. Bakker, G. H. Gilmer, M. H. Grabow, and K. Thompson. A special purpose com-

[Barnes:1986:HFC] J. E. Barnes and P. Hut. A hierarchical $O(N \log N)$ force-calculation algorithm. *Nature*, 324(6270):446–449, 1986. CODEN NATUAS. ISSN 0028-0836 (print), 1476-4687 (electronic). This paper appears to be the origin of fast multipole algorithms; its $O(N \log N)$ complexity was later improved to $O(N)$ [GR87]. See also [App85], which might predate this work.

Bordner:2003:BES

Bhatt:1997:PA

Boehncke:1990:MDS

Olivier Bokanowski and Mohammed Lemou. Fast mul-

[BN07] Marc Bonnet and Nicolas Neto-

Bohme:2003:FAF

Brooks:1985:SEE

Beatson:2007:FEP

Benson:2014:PDF

Brebbia:1993:BEX

Brebbia:2004:BEX

Biesiadecki:1993:DMT

REFERENCES

REFERENCES

REFERENCES

Bindiganavale:1996:GUFa

Bindiganavale:1996:DNR

Bharadwaj:1995:FMB

Chadwick:2009:HSP

Carpentieri:2006:MFT

Carpentieri:2007:PAP

Carpentieri:2009:APF

Cruz:2009:CAF

Chaillat:2014:NFM

Coles:2020:OSA

Cherrie:2002:FER

Carayol:2004:EEF

Carayol:2005:EEF

Cho:2010:WFM
Min Hyung Cho and Wei Cai. A Wideband Fast Multipole Method for the two-
REFERENCES

Cho:2012:RWW

Chen:2013:APM

Cheng:2006:WFM

Cheng:2006:WFM

Chaillat:2015:WFM

REFERENCES

REFERENCES

Chandrasekaran:2004:DCA

Chen:2003:CTS

Carrier:1988:FAM

Cheng:1999:FAM

Chen:2006:AFS

Chowdhury:2005:SLM

Indranil Chowdhury and Vikram Jandhyala. Single level multipole expansions and operators for potentials of the form $r^{-\lambda}$. *SIAM*
REFERENCES

[CK11]
REFERENCES

Pieter Coulier, Hadi Pouransari, and Eric Darve. The inverse fast multipole method: Using a fast approximate direct solver as a precondition for
REFERENCES

Christiansen:1993:FMM

Choi:2001:NPO

Chen:1998:FEV

Chen:1998:UFM

Challacombe:1995:RR

Matt Challacombe, Eric Schwegler, and Jan Almlof.

REFERENCES

Dachsel:2006:FAD

Dachsel:2009:ECF

Dachsel:2010:CAE

Ddarvige:2000:FMMa

Ddarvige:2000:FMMb

Darrigrand:2002:CFM

Deng:2007:EFM
deCastro:2006:NMA

Draghicescu:1995:FAV

Darbas:2013:CAP

Demmel:2002:HFC

Demmel:1995:FHM

Demmel:1996:FHMa

Demmel:1996:FHMb

Dutt:1996:FAP

A. Dutt, M. Gu, and V. Rokhlin. Fast algorithms for polynomial interpolation,

Dejonge:1986:USS

Darve:2004:EFM

Darve:2004:FMM

Dorband:2003:SHS

Debolt:1993:AMP

Ding:1992:ALSb

Ding:1992:OSC

Hong-Qiang Ding, Naoki

Ding:1992:RCM

Dubinski:2004:GPH

Davis:1990:CEF

Darrigrand:2007:CUW

Darrigrand:2012:CUW

Dansou:2020:OFM

REFERENCES

Darden:1993:PME

Elliott:1994:FFT

Elliott:1996:FFT

Eldredge:2002:VPM

Ebisuzaki:1993:GSP

Ethridge:2001:NFM

Ergul:2008:EPM
REFERENCES

2345, 2008. CODEN IET-PAK. ISSN 0018-926x (print), 1558-2221 (electronic).

Ergul:2009:CIE

Ergul:2009:HPS

Ergul:2013:FAA

Eichinger:1997:FAAR

Eisenthal:1992:FMM

Eichinger:1997:FAAR

Ebisuzaki:1992:GSP

Eichinger:1997:FAAR

Ebisuzaki:1992:GSP

Engheta:1992:FMM

Edelman:1999:FFF

Engblom:2011:WSS

Ergul:2011:SLS

Engquist:2012:NAM

El-Shenawee:2004:RSM

Ergin:1998:FET

El-Shenawee:2001:MCS

Esselink:1995:CAL

Fann:2004:SOM

Fong:2009:BBF

Franklin:1996:GMI

Fedichev:2011:CEM

REFERENCES

REFERENCES

Fuller:1997:OMX

Gurel:1996:ESS

Gaspar:1997:FSB

REFERENCES

[GE13] Anders Goude and Stefan

REFERENCES

Greengard:2004:IEM

Ginste:2009:ECP

Greengard:1996:IEM

Griebel:2007:NSM

REFERENCES

REFERENCES

Grytsenko:2008:ACA

Greengard:1987:FAP

Greengard:1988:REPb

Greengard:1988:EIF

Greengard:1997:NVF

Gimbutas:2002:GFM

Greengard:1987:REP

Greengard:1988:REPa

[Gre88] Leslie Greengard. *The rapid evaluation of potential fields
REFERENCES

Greengard:1990:PFC

Greengard:1990:NSB

Greengard:1994:FAC

Ginste:2004:FMM

CODEN IETPAK. ISSN 0018-926x (print), 1558-2221 (electronic).

Greengard:1991:FGT

Greengard:1998:NVF

Gyure:1998:PMH

REFERENCES

Geng:2001:FMM

Grama:2000:IEB

Guerel:1997:FRC

Guseinov:1998:AEM

Greengard:1998:GEI
Leslie Greengard and Stephen Wandzura. Guest Editor’s introduction: Fast multipole

REFERENCES

REFERENCES

ver Spring, MD 20910, USA, 1998.

Herbordt:2015:LLG

He:2008:FES

Huang:2018:IEC

Hut:1986:USS

Hamilton:1995:RGM

Hamada:2010:TAB

REFERENCES

REFERENCES

Hanninen:2008:EER

Hanrahan:1991:RHR

Heath:1997:PES

Ho:2002:SBP

Hoyler:1997:FMM

Hesford:2010:FMM
Andrew J. Hesford and Robert C. Waag. The fast multipole method and Fourier convolution for the solution of acoustic scattering on regular volumetric grids. Journal of Computational Physics,
REFERENCES

[Hesford:2011:RRA]

[JCh02]

[IEEE:1990:PSN]

[IIEEE92a]
REFERENCES

IEEE:1992:PSM

IEEE:1993:PSP

IEEE:1994:IAP

IEEE:1994:PSH

IEEE:1994:PSW

IEEE, editor. Proceedings, Supercomputing '94: Washington, DC, November

IEEE:1996:PFI

IEEE:1996:PSM

IEEE:1998:FIC

IEEE:2002:STI

Ishiyama:2009:GMP

Izaguirre:2005:PMS

Iserles:1997:AN

Ibeid:2016:PMC

Yoshida:2002:NFM

Ken ichi Yoshida, Naoshi Nishimura, and Shoichi Kobayashi. A new fast multipole boundary integral equation method
REFERENCES

Jaramillo-Botero:2002:UFM

Jandhyala:1998:FAA

Jiang:2004:NCE

Jansen:2018:TCC

Jia:2008:KDC

Jeon:2008:PTC

Byoungseon Jeon, Joel D. Kress, Lee A. Collins, and Niels Grønbech-Jensen. Parallel TREE code for two-component ultracold plasma
REFERENCES

Jandhyala:1998:CSD

Jandhyala:1997:HFS

Jernigan:1989:TCL

Kaxiras:1996:MTS

Kutteh:1995:GFM

Kutteh:1996:RCG

REFERENCES

Kantardjiev:2015:SNU

Karin:1995:PAI

Katzenelson:1989:CSB

Kybic:2005:FMA

Kawai:1999:MAB

Atsushi Kawai, Toshiyuki Fukushima, and Junichiro Makino. 7.3/Mflops astrophysical N-body simulation with treecode on GRAPE-5. In ACM [ACM99], page ??.

Kawai:2000:GSP

REFERENCES

CODEN PASJAC. ISSN 0004-6264.

Kartashev:1988:SPI

Krishnan:1995:PAF

Kozynchenko:2016:IAE

Korchowiec:2009:ECT

Kovvali:2006:RPP

Kawata:2000:CEC
Masaaki Kawata and Masuhiro Mikami. Computationally efficient canonical molec-

REFERENCES

Liem:1991:MDS

Lazarski:2016:DFT

Lu:1993:FAS

Lu:1994:MAS

Liska:2014:PFM

Letourneau:2014:CFM

REFERENCES

Leimkuhler:2006:NAM

Lu:2010:AAF

Lu:2013:AAF

Lathrop:2011:SPI

Lashuk:2012:MPA

Lu:2007:NVF

Lu:2007:AFM

Lambert:1996:MBA

Li:2018:MDL

Le:97

REFERENCES

Leathrum:1992:PFMa

Lemou:1998:MEF

Lemou:2004:MAF

Leszczynski:1996:CCR

Liang:2013:FMM

Lim:2008:FFT

Linton:1995:MMB

Liu:1994:PIB

[Liu94] Pangfeng Liu. The Parallel Implementation of N-body Al-
Liu:2008:FMB

Liu:2009:FMB

Lu:1996:AFMb

Lu:1996:AFMa

Lee:1998:PPS

Lienhart:2002:UFP

Lakshminarasimhulu:2002:CMB
Lin:1992:MDD

Lu:1996:MPF

Lu:1996:PIF

Lee:2012:MMM

Ly:1999:SPD

Langer:2007:IDS

Langer:2007:IFM

Lustig:1995:TFM

Lambin:1993:ESM

Langer:2005:CBF

Lu:1996:AF

Lupo:2002:LSM

Liu:2017:FMM

Ltaief:2014:DDE

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
</table>
REFERENCES

Marchetti:1997:ICB

Makino:2000:LEF

[Mehl:2015:RTC]

Mandel:1992:SIM

McCorquodale:2007:LCA

Malas:2007:IPM

Malas:2009:AMF

Malas:2011:SCP

Makino:2007:GDP

MacDonald:1995:FSM
Macdonald:1996:FSM

Makino:1990:GSP

Makino:2001:PET

Makino:2002:TSP

Miller:2008:IBP

Morice:2006:FMM

J. Morice, K. Mer-Nkonga, and A. Bachelot. Fast multipole method for solving the radiosity equation. In *Numerical mathematics and ad-
REFERENCES

106

McKenney:1996:MDS

Martinsson:2007:AKI

Milthorpe:2014:PFI

Mehrotra:1992:USC

Makino:1995:ABS

Makino:1998:SSS

Makino:1994:GOT

Nishida:1997:AFM

Nilsson:2004:SHF

Nakano:1994:MMD

Najm:1999:CLE

Nitadori:2006:PTB

Niino:2012:PBC

Kazuki Niino and Naoshi Nishimura. Preconditioning based on Calderon’s formu-
REFERENCES

Nakashima:2009:WFM

Nabors:1989:FMA

Ohnuki:2003:TEA

Nyland:1993:DIA

Niedermeier:1994:SAM

Niedermeier:1996:FVS

[NT90]

[Oku96] Daniel I. Okunbor. Integration methods for N-body

Otani:2008:FPB

Otani:2008:PFM

Otani:2009:BPF

Otani:2009:FOP

Ormseth:2007:IFM

ODonnell:1989:FAN

Of:2005:AFM

Of:2006:FMM

Of:2006:BET

Ohno:2014:PMD

Pocek:2002:FAI

Poursina:2014:IFM

Pan:1992:CCM

Victor Pan. Complexity of computations with matrices and polynomials. *SIAM
REFERENCES

Pandas:1995:PET

Park:1989:BBT

Pouransari:2015:OAF

Pellegrini:1998:EFS

Pereira:1999:PBI

Pfalzner:1994:HTC

Pfalzner:1996:MBT

REFERENCES

REFERENCES

0021-9606 (print), 1089-7690 (electronic).

REFERENCES

ISSN 0163-5999 (print), 1557-9484 (electronic).

Rui:2007:STS

Reif:1999:ACP

Razavi:2012:ALS

Rodin:2004:PCP

Rodrigue:1989:PPS

Rokhlin:1985:RSI

REFERENCES

REFERENCES

tosh and UNIX; no paper form published.

Rudberg:2006:EIF

Rapaka:2020:EPS

Rezaei:2019:AFM

Renegar:1996:MNA

Ravnik:2009:CBW

Rodriguez:2008:USV

[José Luis Rodriguez, Jose Manuel Taboada, Marta G. Araújo, Fernando Obelleiro Basteiro, Luis Landesa, and Inés García-Tuñón. On the use of the singular value decomposition in the fast multi-

环:1996:FSG

罗:1994:FMM

萨:2003:PIA

萨:2010:AFS

萨:2010:PIF

REFERENCES

the Carrier, Greengard, and Rokhlin FMM for independent source and target fields. [SCM+98]

Song:1994:FMM

Song:1995:FMM

Schmitt:1994:CDF

Sugimoto:1990:SPC

Sakuraba:2018:PEZ

Sendur:1997:SRP

Sabariego:2004:CME

R. V. Sabariego, J. Gysselink, P. Dular, J. De Coster, F. Henrotte, and

Sabariego:2004:AFM

Shanker:2007:ACE

Sharp:2006:BSP

Singh:1995:IHB

Singh:1993:PAF

Shanker:1998:FMA

REFERENCES

Shanker;1997:FMA

Singh;1992:IHB

Singh;1995:LBD

Singer;1995:PIF

Suda;2004:AP

Skeel;1989:MDS

Robert D. Skeel. Macromolecular dynamics on a shared-memory multiprocessor. Technical Report CSRD 929; Numerical Computing Group 89-5, University of Illinois at Urbana-Champaign, Center for Supercomputing Research and Development,
Urbana, IL 61801, USA, October 1989. 15 pp.

REFERENCES

Song:1996:MFM

Song:1997:MFM

Song:1998:FISa

Song:1998:FISb

Shanker:1997:OSI

Simos:2005:ACM

Shanker:1997:SIC

REFERENCES

REFERENCES

molecular Modelling, Leicester, UK August 2004.

Stalzer:1995:PFMb

Suda:2004:SAF

Salmon:1994:STC

Springel:2005:SFE

Salmon:1994:FPT

Schwichtenberg:1999:AMM

Sylvand:2003:CIC

Guillaume Sylvand. Complex industrial computations in electromagnetism using the fast multipole method. In
REFERENCES

[Takahashi:2014:IBF]

[Tausch:2004:VOF]

[Tong:2009:MFM]

[Takahashi:2017:AIF]
REFERENCES

Totoo:2014:PHI

Taiji:1994:GTM

Tang:2012:FLC

Takahashi:2016:EBM

Tausch:2003:MBS

Tang:2006:HOP

REFERENCES

REFERENCES

REFERENCES

www.supercomp.org/sc97/

www.sciencedirect.com/
science/article/pii/S0010465511004012.

www.sc-2002.org/
paperpdfs/pap.pap210.pdf.

REFERENCES

Wang:2007:LSA

Wang:2007:FMB

Wang:2005:FMB

Wang:2017:BEM

Wang:2019:FMM

Xu:2008:FMV

Xiao:2009:PCW

REFERENCES

[Xuo:1995:NPB]

[YB01] Yanhong Yuan and Prith Banerjee. A parallel implementation of a fast multipole-
REFERENCES

Rio Yokota:2012:TSF

Rio Yokota:2013:PTS

Lexing Ying, George Biros, and Denis Zorin. A kernel-independent adaptive fast multipole algorithm in two

Ying:2003:NPK

Yang:1998:STE

Yoshikawa:2005:PTM

Ying:2006:KIF

Ying:2009:FAB

REFERENCES

[Yu:2005:EUS] Chun Xiao Yu, Guang Xian Shen, and Yun Feng Mu. Existence and uniqueness of

[ZB95] Zhou:1995:NMD

Junchao Zhang, Babak Behzad, and Marc Snir. Optimizing the Barnes–Hut algorithm in UPC. In Lathrop et al. [LCK11], pages 75:1–75:11. ISBN 1-4503-0771-X. LCCN ???.

[ZBS15] Zhang:2015:DMB

[ZC00] Zhao:2000:IES

Jun-Sheng Zhao and Weng Cho Chew. Integral equation solution of Maxwell’s equations from zero frequency

Zhang:2000:SDC

Zhao:1998:TSM

Zinchenko:2005:MAA

Zheng:2016:AEA

Zwart:2010:SUI

Zhang:2010:RFY
Zhang:2011:FSB

Zhao:1991:PMM

Zhao:2007:VFM

Zurek:1994:LSS

Zhang:2007:ASD

Zhang:2019:FMM