A Bibliography of Publications about the Fast Multipole Method

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

24 April 2019
Version 2.133

Title word cross-reference

1 [TPKP12]. $15K$ [WGL+98]. 2 [GROZ04, Lab98, Liu8, ON08a, RS94, VGZB09, WYW05, WXQL08]. 3 [BDMN03b, BHR04, BHGR04, CDM98, DDL13, Dar02, GP08, GD03, JMC97, NW89, NH97, ON08b, PG94, QCG15, Sar03, TCD17, W05, WLL+07, WZC+17, iYNK02, YB01, ZY05]. $50/Mflop$ [WSB+97]. $7.3/Mflops$ [KFM99]. 3 [PG96b]. $h = 0$ [DNS90]. K [MG05, CK95b]. LU [MG07]. R[CBN02]. N [Aar85, Alu94, APG94, Alu96, AGPS98, AAL+01, And99, Ano94a, Ano94c, ADB94, ADBG99, Bag02, Bar86, BADP96, BAAD+97, BADG00, BAD01, BS97, BN97, BOX00, Bor86, BDS07, BME90, BME93, BEM94, DH86, Dem95, Dem96a, Dem96b, DFM03, FEN+08, FM95, FM96, FQG+92, HTG02, HJ96, IFM09, IIM05, Kat89, KFM99, KFMT00, KMT94, LKM02, Liu94, MIES90, MTES94, MT95, MD12, MG05, MMC99, McD97, NMH06, OKu96, PGB05, Per99, PRL03, SWW94, Sal96, Shao6, SP99, Sin92, SHG95, SHT+95, SRK+12, TUES94, TWYC06, TYO12, TYO12, Ten98, TL14, WPM+02, WS92, WS93, WN14, WSWL95, WSH+12, Xu95, Yin15, YF05, Ano94b, CK95a, CK95b, GKS94, GKS98, Gre90b, HNY+09, HN10, HS95, KK95, Xue98]. $N \log N$ [AO10, DYP93, ADO11]. ν [SH07]. $O((\log N)^2)$ [JBL02]. $O(N)$ [BSL11, Deh02, DTG96, OKF14, Xue98]. $O(N \log N)$ [BH86, FGM11, PJY95]. $r^{-\lambda}$ [CJ05]. $r^{-\nu}$ [SH07]. $r \pm 1_{12}$ [Pan95].
Body [Ano94b, CK95b, GKS94, KK95, BEM94, GKS98, Gre90b, HNY+,99, HN10, HS95, Xue98, AGPS98, AAL+,01, And99, AD094, Bag02, BADG00, BS97, BN97, BOX00, FM96, HTG02, HN10, KFM99, KFMT00, SWW94, SHG95, SHT+,95, Ten98, WPM+,02, WS93, Xu95, Yin15, YF05, Aar85, Alu94, APG94, Alu96, Ano94a, Ano94c, ADBGP99, Bar86, BADP96, BAAD+,97, BAD01, BDS07, BME90, BME93, CK95a, DH86, Dem95, Dem96a, Dem96b, DHM03, FRE+,08, FM95, FQG+,92, IFM09, IHI05, Kat89, KMT94, LKM02, Liu94, MIES90, MT95, MTES94, MT+,95, MCF+,96, MHI07, MKM02, Per99, PRL03, Sal96, Sha06, SP99, Sin92, SRK+,12, TMES94, TWYC06, TYON12, TL14, WS92, WN14, WSL95, WSH+,12].

-dimensional [Lab98].

-means [MG05].

-Nearest-Neighbors [CK95b].

3 [OME+,92]. 3-D [FY07a]. 3051-66 [YB97]. 33rd [IEE92a]. 3D [LO96b]. 4 [Ano94a, FM95, FM96, MTE94, MT95, TMES94]. 42 [HNY+,09].

5 [KFM99, KFMT00]. 512 [MHI07]. 512-core [MHI07]. 512-Gflops [MHI07]. 6 [MFK00, MKF01, MKFD02, MFKN03]. 8 [MD12]. '88 [KK88]. 8th [BGW00].

= [Ano97b].

A-posteriori [XTH09]. above [GSC01].

Accelerate [CS98b, LSCM96, LKM02, TYNO12].

Accelerated [BCL+,92, EB96, SH07, WZC+,17, WN14, AC17, BHE+,94, BHER94, EB94, EG01, GD09, GODZ+,10, GAD13, Ham11, JH08, LCM07, MR07, QCG15, Tak14, WLL+,07, ZD05].

Accelerating [GHRW98, MG09, WC94a]. Acceleration [CKE08, LCZ07, SWW99, VCM00, BK96, KCF+,05, SGD+,04]. accelerator [ATM03, MD12]. accomplishments [Ano90].

Accuracy [CDCD97, DY98, CB09, GL96, JP89].

Accurate [SRP06, AHLP93, Dac06, EG09a, EG13, HHKP09, ZD+,16].

achieves [WGL+,98]. Achieving [SSF96].

ACM [IEE02, Kar95]. ACM/IEEE [Kar95, ACM97]. acoustic [AD05, BSL09, BN07, CKW08, GF06b, GF06a, HW10, TCW08, WJYO06, ZD+,16].

acoustic-structure [GF06b, GF06a].

accelerator [ATM03, OLL04]. Acta [Ise97].

Adaptation [McK96]. Adapted [NT96, NT94]. adaptation [BLA05].
Adaptive [BT95, BSL90, BS97, BFO99, GE13, GP08, HEGH14, KK95, NPR93, PD15, SHHG93, SHT+95, Ten98, ZT07, AC17, BCP08, CGR88, CGR99, CHL06, CFR10, FOGB96, GY08, GL96, GCH+18, HJJ09, LCL+12, LB92a, LCHM10, LCHM13, PRL03, YBZ04, ZHPS10].

addition [HC08, KSC99].

address [HS95].

Advanced [HM86, Win95, dCGQS06, TYON12].

Advances [BLA05, SM05].

advantage [Ano92].

Adventures [CDCD97].

anities [KSS10].

AFMPB [LCHM10, LCHM13].

after [ZQSW94].

Algebraic

[Car09, YTK14, Of08, PRT92].

Algorithm

[BS00, Bor86, BFO99, CDM98, CSMCxx, Deh02, DD95, EB96, JMC97, JMMC98, KK95, Lea92, LQ96a, MBS+00, MG11, MPPA96, NPR93, OKF14, SLC96, SLC97, WC94b, WS93, WN14, YR99, ZBS15, AR91, Ahu96, AP99, ATR+12, BH86, Bar86, BJWS96, BS97, BCL+92, BP03, BCOY94, BP93, CGR88, CG04, CC13, CGR99, DRS96, EGHT97, EB94, EG08, EG09a, EG09b, Erg11, EG13, GH08, GDDC08, GKD09, GR87, GR88b, HS08, IAS91, HC10, HR98, JBBC98, KM00, KK16, KS98a, LM02, LDB96, LB01, LB92a, LB92b, LZZ04, LHL08, LC93, LC94, LWW+02, MG07, MG09, MCB07, NW98, NK94, NT09, OR99, OLL03, OLL04, PLY95, PRL03, Rah96, RCWY07, Sar03, ST02, SK04, Sud04, TCW08, TC09, WK18, WY006, WL96, Xue98, YRGS13, YB04, YO96, YB12].

algorithm [ZCG00, ZBS11, ZCL+98, ZB95, ZD05, Lea92, MB16].

Algorithms

[APG94, AGPS98, Ano94e, ADBG99, BF78, Bha97, BN97, Boy92a, CK95a, DS00, DGR96, LCE+06, Liu94, MBS+00, MBS15, Pri94, Ten98, BCP08, BHE+94, BHER04, BME93, BEM94, DMM03, Eas95, Gre94, K+96, Mak93, PRT92, Pel98, Win95, YO99].

ALiCE [HTG02].

All-to-All [HP95].

almost [FL13].

Alpha [WGL+98].

Alpha/Linux [WGL+98].

Alternative [AD05, CL91].

AMBER [DK93].

AMBERCUBE [DK93].

AMS [RSS96].

Analyse [Ano97b].

Analyses [Ham11, XWY+08].

Analysis

[AP99, AP00, BH89, ERT12, HAS02, Hol12, JMMC98, LCK11, Sat10, VDG91, Ano97b, Car07, Car09, Dar00a, EG13, JMMB98, JKK08, KSC99, NH97, OC03, OLL04, Pel98, RC97, RSS96, SGD+04, SS07, Sud04, WY05, WY07b, WY07a].

Analytic [ABD04, BBS96a, LCD14, BSS96b, DDL13].

Analytical [Gus98, LBS16, CC13].

analyze [SHM98].

Analyzing [CSM10, JMMC97].

Angeles [AG88, Rod89].

Anger [CC04].

angular [GY08, WHG96b].

Animated [BT95].

Ankara [Ano97b].

Annual [Ano95b, Ano96, Ano97a, IEE92a, Mak93, PA02].

anomalies [ON09a].

Antennas

[IEE94a, IIEE95, IIEE97, MI95].

anterpolation [Sar03].

Appendix [Ano90].

Application

[LSCM96, LJ06b, LJ96a, NH97, SGG+04, TC17, VD08, WSS+95, DHM03, ESR01, GROZ04, HNO06, LWM+02, SGD+04, YR98].

Applications

[CK95b, CCLK09, OW05, BHER04, HNY+09, LGG+13, OF07, ON05, PD98, ZY05, dCGQS06, TDBE11].

Applied

[BGP00, HDG+15, RSS06, Ano95b, Ano96, Ano97a, BN07, JdR+18, MB05, OMC08].

Approach

[ÁC94, SHMC97, WQ94a, AHLP93, BWS+95, KAN95, KAN96, PGB05, SHM98, WJHG96a, YS18].

Approximate

[Be06, CDGS03, CDGS05, CDG05, CPF05, Rei99, MG09, PRT92, YGR01].

approximating [XZ17].

Approximation

[ADO11, LSCM96, AO10, GP08, ST06].

approximations

[DC07, HW11, Lem04, RŠZ09].

Apr

[Dem95, Dem96a, Dem96b].

April

[PA02, We91].

Aqueous [GP93].

Arbitrary

[LS93, WZC+17, EIM+92, GSC01, GL96, GL96a, GL96b, LH97, SGG+04, TC17, VD08, WSS+95, DHM03, ESR01, GROZ04, HNO06, LWM+02, SGD+04, YR98].

Applications

[CK95b, CCLK09, OW05, BHER04, HNY+09, LGG+13, OF07, ON05, PD98, ZY05, dCGQS06, TDBE11].

Applied

[BGP00, HDG+15, RSS06, Ano95b, Ano96, Ano97a, BN07, JdR+18, MB05, OMC08].

Approach

[ÁC94, SHMC97, WQ94a, AHLP93, BWS+95, KAN95, KAN96, PGB05, SHM98, WJHG96a, YS18].

Approximate

[Be06, CDGS03, CDGS05, CDG05, CPF05, Rei99, MG09, PRT92, YGR01].

approximating [XZ17].

Approximation

[ADO11, LSCM96, AO10, GP08, ST06].

approximations

[DC07, HW11, Lem04, RŠZ09].

Apr

[Dem95, Dem96a, Dem96b].

April

[PA02, We91].

Aqueous [GP93].

Arbitrary

[LS93, WZC+17, EIM+92, GSC01, GL96, GL96a, GL96b, LH97, SGG+04, TC17, VD08, WSS+95, DHM03, ESR01, GROZ04, HNO06, LWM+02, SGD+04, YR98].

Applications

[CK95b, CCLK09, OW05, BHER04, HNY+09, LGG+13, OF07, ON05, PD98, ZY05, dCGQS06, TDBE11].

Applied

[BGP00, HDG+15, RSS06, Ano95b, Ano96, Ano97a, BN07, JdR+18, MB05, OMC08].

Approach

[ÁC94, SHMC97, WQ94a, AHLP93, BWS+95, KAN95, KAN96, PGB05, SHM98, WJHG96a, YS18].

Approximate

[Be06, CDGS03, CDGS05, CDG05, CPF05, Rei99, MG09, PRT92, YGR01].

approximating [XZ17].

Approximation

[ADO11, LSCM96, AO10, GP08, ST06].

approximations

[DC07, HW11, Lem04, RŠZ09].

Apr

[Dem95, Dem96a, Dem96b].

April

[PA02, We91].

Aqueous [GP93].

Arbitrary
BHGR04, Car06, Car07, CWHG97, CWK08, Gas97, GBMN06, Gav11, GOS99, GP08, GD09, GODZ10, GAD13, Ham11, KMC09, KCF+05, LS05, LOSZ07a, LOSZ07b, LCQF18, LHL08, Lin95, Liu08, Liu09, LC94, Mil08, OSW05, OSW06a, O808, OSK09, ON08a, ON09a, ON09b, PN95, QCG15, RŠŽ09, SGG+04, Sat10, SKT93, Sin95, Tak14, TCD17, TW03, Tan04, VZG09, WY05, WY07b, WY07a, WSWL95, XJM08, Yin99, iYNK02, YAO18, YSM05, BR93].

Boundary-Integral [LJ96b].

boundary-value [Lin95].

Bounds [GSS98a, GSS00, WK18].

box [FD09].

breast [ES04].

Breit [JdR +18].

Bridging [AAB +17].

Broadband [WJYO06, GD09].

Brownian [DHM03].

Building [TD09].

buried [ESRS01, GSC01].

C [BGLM05].

CA [B+95, Ano95b, Ano96, Ano97a, Kar95, Wel91].

Calculate [BVW96, BV96b, BV96a, KMC09].

calculated [DM90, YA018].

calculates [ATMK03].

Calculating [BF099, DM90, LCHM10, LCHM13, SKT94].

Calculation [Deh02, HA17, NT96, BH86, BH03, FGM11, LDB96, OLL03, RCWY07].

Calculations [BGGT90, Ber95, CDGS03, CDGS05, KS10, SL11, PN94, CSA95, KK16, S98a, LCM07, PA14, SKT93, WHG96a, WJGH96b, WHCG96b].

Calderon [NN12].

California [ACM97, Rod99, Fu97, IE95, PA02].

Canada [IE97, HB93].

cancer [ES04].

Canonical [LC93, KM00].

Capacitance [YB01, JC04, NW89].

capacitive [SGD+04].

Cardinal [Boy92b].

Carlo [ESRS01].

Carrier [SB98].

Cartesian [CSA95, CS82, HF92, HL+97, Le 97, SH07].

Case [BGLM05, GROZ04, PPS95, PSS95].

Cauchy [CL12, LCD14].

CE2014 [MBS15].

cell [CC13, CWD08, DKG92a, DKG92c, GDK89, KS98b, KN95, LM02, FL13].

cells [DKG92c].

Center [ACM99, Hol12, IE90, Kar95, Pan95, MFK00].

central [EIM+92].

challenge [Bha97].

channels [Gre90a].

characteristic [GDD08].

Characterization [CB09].

Charge [ČA94, CC13, GY08, Kan15].

charge- [CC13].

charged [AB95, CPP93, KN95].

Charges [ČA94, CD07, CD07].

Chebyshev [Boy92a, LRW95].

Chem [Dac10].

Chemistry [ADG96, Mat95, SPS96, Les96].

Chennai [IEE98].

chips [MHI07].

Chiral [SM97, SHM98].

Christoffel [BT03].

cibles [Ano97b].

City [Hol12, RSS96].

Clara [Fu97].

class [PA14].

classical [Gre94, Rok85].

close [ZD05].

closed [BHR04].

closest [CK95a].

Closet [SW94].

Cluster [PN94, HN10, WGL+98, YNS+09].

clustering [MG05, SW+05].

Clusters [ADB94, BP88, HL15, ZBS15, GIS98, GD05, Kon93].

Coarse [GB11, PA14].

coarse-grained [PA14].

Coarse-graining [GB11].

coated [ZCG00].

COBE [ZQSW94].

Code [ADB94, Bag02, BH89, Bar90, BADG00, CDM98, CWA14, IFM09, SLCL98a, SLCL98b, BAD96, BAAD+97, BAD01, BCAD06, Dub06, GY08, GKD9, JdR+18, JKCG08, JP98, IWM+02, PD98, PG94, Spr05, Wam99, WSH+12].

Codes [SW94, WSW+95, NMH06, Pud16, WSWL95].

Coefficients [GD03, Beb06, FST05, KS11].

Cold [ZQSW94].

collective [BSvdG+94].

Collision [BT95, WN14, JdR+18].

collisional [TYON12].

collisionless [TYON12].

Combined [JMBN98, KM00].

Combining [CDGS03, CDGS05, CWD08, DLL13, DM12, FLZB97a, FLZB97b, GDDC08, PRT92, ZB95].

Comment [KAN96, WJGH96a].

Comments [PG96b].

Communication [HP95, YTK14, BSvdG+94, IYK16, KOP8, SS89, TPK12].

Communications [KP05a].

Companion [HD+15].

Comparison [BN97, CDM98,
EG09a, RŠŽ09, WPM+02, Ess95, SKPP95. competitive [Ano92]. Complement [MG11]. Complex
[CSMxx, MGM95, MBS15, SL096, SL097, SYl03, AC17, BGGC06, CC10, CC12, NW89, Rei99, TW03, ZB95]. complexes [KSS10].

Complexity [JBL02, Pan92, YTK14, Dur00a]. component [CKB11, JKCGJ08]. composite [EG13, GM94]. Composites [SMC97, GH98, WY05, WY07a].

Comput [BEM94]. Computation [Gue97, GD03, GD05, GDZ10, McD97, MSV92, Pie93, YRGS13, ATMK03, AO10, FOCB96].

Computational [Bat03, BGPW00, JBL02, Kat89, Les96, Mat95, MBS15, TDBEE11, Ano95b, Ano96, Ano97a, OMH+94, SM05].

Computationally [KM00]. Computations [ERT12, Pan92, KAN95, KAN96, OKS09, SYl03, VOD08, WJGHG96a, YF98].

Computer [AT87, Ano94a, BGGT90, BP88, CKE08, FM96, HE88, IEE92a, KFMT00, MTFES94, MFKN03, Bar86, EIM+92, EFT+93, FMI+93, FM95, HFKM98, HGS90, KMT94, MIES90, MT95, MHI07, OMH+94, OYK+14, OME+92, SC+M9, TME94].

Computers [FHM99, LCP93, MT98, DK93, LBI+97, NKV94, OCK+03]. Computing [ACM97, B'+95, BGI+99, HTA+97, Hol12, IEE94b, IEE96b, IEE98, LCK11, Mat95, PA02, SHMC97, WWF02, WSW+95, CGL03, CPP93, IYK16, MHI07, MCM99, PRT92, Rod89, SH07, Xue98].

Concise [PJY96]. condition [YAO18]. conditions [CWHG97, SHTK93, Sin95]. Conducting [GA96a, HAS02]. Conduction [RO04].

Conference [ACM96, ACM97, Ano92, Ano95a, B'+95, BR93, HTA+97, Hol12, IEE94b, IEE96c, IEE98, IEE02, Kar95, KK88, LCK11, MC92, MBA97, Rod89, Wei91]. conformal [OR89]. Congress [BGPW00]. congressi [Ano95a].

Constructing [BF78]. construction [HKNF97]. constructions [Pud16]. containing [WYW05]. continued [Dem95]. continuous [FGM11, LBGS16, WJGHG96b].

continuum [BCM02]. Contour [Sch94, VCM00, ZG+16]. control [GKD09]. controlled [Dac09, Dac10].

coordinates [HF92]. Copper [MC92]. core [MHI07]. Corrected [Dac10]. correction [JH08]. corrections [MCBB07]. corrector [TWY06]. correlated [Sa96].

Correlations [ZQSW94]. Cosmological [Bag02, BH88, IMF09, YF05, Spr05].

Coulomb [ADG96, BFG09, CFH89, DNS90, DKG92a, DKG92b, DKG92c, DTG96, GGM01, GH02, HNZ99, HS98, KPS04, SSF96, SM05].

Coulombic [HAI17, PG96b, SK93]. Coupled [LS05, MBS15, PNB94, SGD+04, NMDK99].

Coupling [BDN03a, BDN03b, Dar02, DM07, GBMN06, MB05]. course [BG97].

CPU [HEG14]. crack [JYK02]. cracks [ON08a, WY05]. CRAY [BAAD+97].

creeping [Kro09, Kro01, Kro02]. Cross [Gue97, GP08]. Crystal [MPPA96].

crystals [ON08b]. CS [Dem95, Dem96a, Dem96b]. Cubic [WWF02]. cultura [Ano95a]. Current [CGL03, Les96]. curved [GH08]. curves [STZ14]. Custom [PA02]. cutoff [KLM+09].

cutoffs [DKG92b]. cylinders [CG97, ZCG00]. Cylindrical [SHMC97, SMC97, SM97, SHM98].
D [NH97, BDMN03b, BHR04, BHGR04, CDM98, DDL13, Dar02, GRJZ04, GP08, GD03, GA96b, JMC97, Liu08, NW89, ON08a, ON08b, PG94, QCQG15, RS94, Sar03, TCD17, TPKP12, VGBZ09, WYW05, WY05, WY07a, WLL+07, WXQL08, WZC+17, iYNK02, YB01, ZY05]. Dame [IEE96c].

Dangers [BS93].

Dark [ZQSW94].

Data [AAL+01, And99, BGLM05, HJ96, LY14, NPR93, SS89, SHT+95, WPM+02, BADP96, BAAD+97, DR95, KP08, LOSZ07a, RŚZ09, WS92, YGSR01]. Data-driven [LY14].

Data-Parallel [HJ96, NPR93].

data-sharing [BADP96]. data-sparse [LOSZ07a].

Databases [Mak93]. DC [IEE94c]. debugging [RC97].

December [Ano92, IEE98, Kar95, K+96, Rod89].

Decomposition [BK95, BJWS96, BP03, BCOY93, BCOY94, CvHMS94, CWD08, LM02, OSW06b, RTA+08, ZT07].

Decoupled [PGdS+15], deferred [JH08].

defformable [Ros06, ZD05]. della [Ano95a].

Delta [FGQ+92]. Dense [CPD17, GSS98b, GGGC06, CG97, PG94].

densities [GY08]. Density [AC94, LBGS16, PN94, WWF02, KAN95, KAN96, WJGHG96a, WJGHG96b].

dependence [RC97], dependent [MD98].

deployment [FL13]. Derivation [WHG94].

dervative [BN07], derivatives [BSS96b].

Derive [RGKM12].

Descent [JMC97, JMB98, ESR501].

Descent-Fast [JMB98].

description [HF92]. Design [BG1*99, Lea92, ZBS15, And08].

detect [TD09].

Detection [BT95, ESR801, JdR+18]. Determination [PNB94, Dac06].

Developer [IEE96c].

Development [ATMK03, TDBE11].

developments [CC15].

Diagonal [Rah96, AP99, CG04, ESM98, KSC99, Rok98].

Diagonalizations [HC08].

Diego [Kar95].

Dielectric [BWW96, MG11, CDJ07, DC07, EG09a, Erg11, JMBM98, ZCG00]. difference [LC14].

different [BME93, BEM94].

Differentiation [DGR96, KLZ+06].

Difficulties [BSS97].

Diffusion [CM06, KP08, STZ14].

digest [IEE94a, IEE95, IEE96a, IEE97].

DIMACS [Bha97].

dimension [MR07].

Dimensional [JMB98, LS93, Pri94, SC95, WSW+95].

BSL09, BL97, BCR01, CWW08, CC10, CC12, ERS01, ES04, ECL02, ESM98, GH98, GD09, Kro01, Lab98, LCQF18, NT09, OLLL03, PPS95, PSS95, RRR03, SK04, Tak14, TC09, TG08, WY07b, WSWL95, XJW08, YR98, YB97].

Dimensions [CS98a, LO96a, McK96, Ni04, RRR05, SL91, BPT07, GRR99, CHL06, CCG+06a, CCG+06b, EG01, GR88a, GR97, GH02, GD06, LB92b, MCB07, Rok90, Rok98, SKPP95, TSM16, YBZ04, SL97a]. dipolar [CPP93, CFH89, KN95].

Direct [Aar85, CPD17, BME90, BME93, BEM94, FL13, GL96, LHOL8, NHM06]. direction [HM95].

Directional [BPT+14].

Dirichlet [GGM93, Mi08].

disciplinary [WSH+12].

 discretization [BDMN03a, BDMN03b, Dar02, BGMN06].

discretizations [Beb06]. Discretized [VTG91].

dispersions [CG97].

distorted [HC10].

Distributed [AC94, IEE96b, MB16, SRPD06, YB01, BCOY93, DK93, GB11, HGD11, KP05b, LBC91, LMCP92, MCM09, MRH14].

Distributed-Memory [MB16, DK93, LMCP92].

Distribution [Ahu94, APG94, AGPS98, Ano94c, BAAD+97].

Distribution-Independent [Ahu94, APG94, AGPS98, Ano94c].

divide [CG04]. divide-and-conquer [CG04].

DNA [FOCB96].

domain [BCOY93, BCOY94, CWD08, GP08, LM02, Liu08, LCZ07, Mil08, OSW06b, OFH+08, RŚZ09, VW02]. domains [BHR04, GGM93, GK04].

don’t [Bar90].

doubly [GK04].

doubly-periodic [GK04].

dr [MHI07].

DREAM [OMH+94].
DREAM-1A [OMH⁺94]. Driven
[BSL11, LY14]. Drops [ZD05]. Dual
[CCKL09, LCQF18, Liu08]. Dual-level
[LCQF18]. Dynamic
[HEGH14, BAAD⁺97, CK95a, FG96, MG05].
Dynamical [SWW94, WSWL95].
Dynamics [BGGT90, BHGS90, BP88,
CDDC97, HM86, JBL02, LCP93, MPPA96,
NT96, OKF14, Sch94, TDBEE11, WLMP99,
ATMK03, BSL11, BAL91, BSS97, BCL92,
BHE⁺94, BHER94, BCOY93, BCOY94,
BP93, CvHMS94, DK93, EGHT97, FMI93,
GDK89, GKZ07, HGS90, Ich02, KM00,
KP05a, LM02, LBC91, LBI97, LMCPP92,
LWM⁺02, LRJ⁺99, NVK94, NT94, OMH⁺94,
OY⁺14, OP07, PG05, SF18, Ske89,
VGZB09, VCM00, WS91, Win95, ZB95].
DynamO [BSL11].

Economization [LRW95]. Editor [GW98].
Editors [MBS⁺00, DS00]. EEG [KCF⁺05].
effects [AB95, BPK85]. Efficiency
[HLL⁺18, KK16]. Efficient
[BS97, DH04a, EG08, HS08, NT96, RS06,
SKT93, Ami00, App85, Bar86, BHR04,
CL91, CCZ97, CWD08, EG09b, GR88b,
KM00, Kro01, KS98a, LDB96, OF08, PN95,
TSIM16, WL96, WHG94, YF98, ZGD⁺16].
eigendecomposition [CG04]. Eigensolver
[ZGD⁺16]. Eighth [HTA⁺97]. Elastic
[CCZ97, TC09]. Elasticity [GKM96].
elastodynamic [CB14]. Elastoplastic
[WH07b]. Elastostatic [WZC⁺17, GG16,
GH98, HLL08, Liu08, MB05, iYNK02, ZY05].
elastostatics [OSW05, PN95]. Electric
[Gus98, PN94, ZZ93, AB04, CS82, HF92,
WFC08]. Electrically [Has02, GDDC08].
Electrode [HB93]. Electrode-Electrolyte
[HB93]. Electrolyte [HB93].
Electromagnetic [CSMCxx, EMRY92,
GA96a, GA96b, SLC97, BGCO6, Car09,
ESR01, ES04, GH08, MG07, MD98].
electromagnetics [Ano95b, Ano96, Ano97a,
CJL⁺97, Erg11, Gib08, LZZL04, OMC08].

Electromagnetism
[CDGS03, CDGS05, BDMN03a, BDMN03b,
Car06, Car07, DM07, SY103]. Electron
[GIS98, NH97]. Electronic
[Goe99, Kon93, KS98a, SSF96].

Electrostatic
[CFH89, NT96, Pei98, BAL91, BHGR04,
GHHR05, CC13, CG97, DM90, EGHT97,
FOCB96, GB11, GM94, LCM07, NT94,
OKS09, PA14, SGD⁺04, SSKT94, YAO18].

Electrostatics [SRP06, WBS⁺95, FGM11,
LCH10, LCHM13, YBK⁺11]. Element
[BR93, LJ96b, LJ96a, MBA97, WZC⁺17,
WS⁺95, BSL09, Beb06, WBS⁺95, H03,
BHR04, BHGR04, CWW08, Gav11, GP08,
GD09, GODZ10, Ham11, KMC09, KCF⁺05,
LS05, LOSZ07a, LOSZ07b, LQF18, LHL08,
Liu08, Liu09, OSW05, OSW06b, OF08,
OKS09, PN95, SGG⁺04, Sat10, SS07,
TC17, VW02, VCM00, WY05, WY07b,
WY07a, WSWL95, XJ08, YSM05].

Element-Boundary [LJ96a, SGG⁺04].
elements
[BR93, Bre04, FST05, GAD13, Ros06].

Elizabeth [IEE97]. Elliptic
[A⁺97, Beb06, FST05, LC14]. Elliptical
[Ros06]. Elongation [KLM⁺09]. Embedded
[SHM98]. EMC [HU97]. Energetic
[BPK85]. Energies [DTG96, FGM11].

Energy [BSF96a, BSF96b, CC13, CPP93,
FOCB96]. Energy-conserving [CC13].

Engineering [MBS15, SM05]. Ensemble
[LCP93]. Entire [LCZ07]. Entirely
[Sar03].

Equation [CD13, GHRW98, GD03, MG11,
Ni04, SC95, Sta95a, AP03, AB04, BH03,
CHL06, CCG⁺06a, CCG⁺06b, CC10, CC12,
CR93, DDL13, Dar02, EG09a, GGM93,
GKM96, GR97, GK04, GD06, GD09,
GAD13, Kro09, LHL08, LC94, MCB07,
MMNB06, NN12, OLL04, ON08a, ON09a,
QCG15, RS97, Rok98, Sta95b, Tak14,
WLL⁺07, WFC08, iYNK02, ZC00, ZKL⁺07].

Equations [DY98, AHLP93, AD05, Atdk97,
BDMN03a, BDMN03b, Car06, Car07,
CCZ97, DH04b, Fuj98, Gas97, GBMN06, GOS99, GD07b, Hav03, LZL04, LC14, LC93, NT09, ON08b, ON09a, ON09b, RSZ09, RO04, Rok95, Rok90, RS94, Tan04, TG08, VW02, WLL+07, Yin09, ZX19, ZC00].

equispaced [DR95]. **Erratum** [BEM94, FLZB97a, SL97a]. **Error** [BH89, CC04, CC05, GKD09, GSS98a, GSS00, KSC99, OC05, PSPS95, PSS95, SP97, Dac09, Dac10, OC03, Pel98, WK18, Dar00a]. **error-controlled** [Dac09, Dac10]. **Error-estimates** [PSS95]. **errors** [AP00]. **estimates** [CC04, CC05, PSPS95, PSS95, SP97]. **Euler** [RS94]. **Eulerian** [NMDK99]. **EuMC** [Ano95a]. **European** [Ano95a]. **Evaluate** [CDM98]. **Evaluating** [CS98a, CS98b]. **evaluated** [ZZ93]. **Evaluation** [CS98a, CS98b, CWA14, CBN02, EGHT97, ESM98, Gas97, GG16, Gre88, GR88a, GM94, GH98, HS08, KSC99, MKF01, MMC99, OR89, PRT92, PJY95, Rei99, SF18, VOD08]. **Evaluations** [CS98b]. **event** [BSL11]. **event-driven** [BSL11]. **evolution** [SWJ+05]. **Ewald** [Ami00, BAL91, CL91, DYP93, DNS90, FMI+93, KM00, LS93, PG96b, SL97b, SKPP95]. **exascale** [YB12]. **Excitation** [GIS98]. **execution** [BDS07, LY14, YF98]. **exhibition** [Ano95a]. **Existence** [YSM05]. **Expansion** [Le 97, OC05, Pan95, SPS96, AHL93, OC03, WL96, WXQL08, WK18]. **Expansions** [Boy92b, Cj05, McD97, RGKM12, AR91, GB11, Len08, MD08, SH07]. **explicit** [JP89, Pud16]. **exponential** [TWYC06]. **Expressions** [Pan95, CS82]. **extended** [KS11]. **Extending** [CDJ07, DC07]. **Extension** [GY08, TYON12]. **eXtensions** [TYON12]. **exterior** [AP03]. **Extraction** [YB01, JC04, NW89]. **extreme** [WSH+12]. **facilities** [RTZ+96]. **FAMUSAMM** [EGHT97]. **Far** [LSCM96, HW11]. **Far-Field** [LSCM96, HW11]. **Fast** [And92, BT95, BL97, BN98, BCR01, BPT07, BK15, BPT+14, BF78, BCP08, BKM09, BVW96, BV96b, BS00, BL98, BL05, BFO99, Boy92a, BHR04, BHGR04, BHGR05, CDM98, CDGS03, CDGS05, CL12, CC15, CSMCxx, CCZ97, CS98a, CS98b, CWA14, CN02, CJL+97, CC10, CC12, CPD17, CKB11, Dac06, Dar97, DYC98, Dem95, Dem96a, Dem96b, DD95, DR95, DGR06, EB94, EB96, EMRV92, ESM98, EG13, FOCB96, Gas97, Gav11, GSC01, GP93, Gre94, GHRW98, GW98, Gue97, GD06, GD07a, GD08, GD13, GA96a, GA96b, GS98b, HOST95, HAS02, HC10, HA17, HEGH14, JMC97, JMC98, JMB98, KLZ+06, KMC99, KCF+05, LCD14, LHL08, Liu09, LX17, LC93, LSCM96, LJ96b, LJ96a, LO96a, LRW95, MI95, MI96, MBS+00, Mak04, MG11, MB16, MB05, MGM95, McK96]. **Fast** [MPPA96, MMNB06, NW89, NT96, Nil04, NPR93, O87, OKS09, PSN04, PD15, Pri94, QCG15, RRR05, RW94, R94, SWW94, Sch94, SG97, SHMC97, SM97, SHHG93, SHT+95, SC94, SC95, SLC96, SLC97, Sta95a, Sp01, STZ14, WC94a, WC94b, WLMP99, WYW05, WY07b, WXQL08, WZC+17, WS95, WY+08, XM08, Y99, Yin09, Yin15, YNS+09, YB01, ZY05, AHL93, AR91, AGR88a, AGR88b, AP99, AP00, AP03, Ami00, ATMK03, ATR+12, AC17, BDMN03a, BDMN03b, BSL09, BG97, BWS+95, BV96a, BSS97, BCL+92, BP03, BSSF96a, BSSF96b, BK96, CDJ07, CC04, CC05, Car09, CRR88, CWHG97, CDF10, CW08, CCKL09, CG99, CHL06, CCG+06b, CRG01, CPP93, CWD08, CRW93, CFR08, CB09, Dac09, Dar01, Dar02, DM07, DM12, Dar00a, Dar00b, DHO4a, DHO4b, DC07, DRS96, ESR01, ES04]. **fast** [Eng11, EG08, EG09a, EG09b, Erg11, EG01,
FGM11, FLZB97a, FLZB97b, FPG05, FD09, Fuji98, GDDC08, GBMN06, GF06b, GF06a, GIS98, GYO8, GR02, G16, GROZ04, GKD09, GE13, GR87, GR88b, GG88, GG90, GS91, GH02, GCH±18, GD05, GD09, GODZ10, Ham11, HHKP09, HS08, Hav03, HLL08, HW10, HW11, Hu97, HR98, HGD11, HJZ09, HLL±18, IYK16, Kan15, KMK00, KS10, KS11, Kon93, KLM±09, KS98a, KS98b, KSO4, KP05a, KP05b, KP08, KAN95, Kan96, Lab98, LOSZ07b, LCL±12, LBGS16, LB91, LB92a, LB92b, LJ98, LLL04, LCQF18, LGG±13, LC14, Liu08, LY14, LCZ07, LCM07, LCHM10, LCHM13, LW±02, Mak99, MG07, MG09, MR07, MRH14, NT09, NN12, NH97, OR±99, OSM05, OSW06a, O98, OCK±03, OYK±14, OMC08, OLL03, OLL04, OFH±08, OP07, ON09a, PJY96, PSPS94. fast [PSPS95, PSS95, PA14, Rah96, RRR03, RSZ09, RTZ±96, RO04, RTA±08, RS97, RS06, RCWY07, SGG±04, Sar03, Sat10, SL97a, SL97b, ST06, SWW99, SM97, SHM98, SH07, SKK94, Si95, SKPP95, SP97, Sta95b, SB96, ST02, Sk04, Sud04, Sy03, Tak14, TSIM16, TCD17, Tau03b, Tau04, TCW08, TC09, TG98, TD09, VOD98, WK18, WY006, WL96, WY05, WY07a, WLL±07, WFC08, WH94, WJG96a, WHG96a, WJG96b, WH96b, WSWL95, XWT09, YRGS13, hvtWbWLO8, YR98, YB97, YBZL03, YBZ04, Yin06, YBK±11, YBNN12, YB12, YBN13, iYNK2, YAO18, YSM05, ZCG90, ZT07, ZHPS10, ZHPS11, ZB14, ZX19, ZCL±98, ZKL±07, ZGD±16, ZB95, AAB±17, Boy92b, CD13, CB14, CKE08, CFR10, DDL13, EMT99, FL13, GR97, GS98a, Lea92, LCP93, RGKM12, SL91, SLCL98a, SLCL98b, YTK±14].

Fast-multipole
[Dar97, EG01, Tak14, ZCL±98, FCCM [PA02].

Field
[LSCM96, PA02, ABD04, BHGR04, BHGR05, HW11, MD98, OKS09, WFC08, Xue98].

Field-Programmable [PA02]. Fields
[CK95b, Gre87, SHMC97, SM09, SB98, YR99, CK95a, CG97, DC07, ESM98, GG16, Gre88, GR88a, GM94, GH98, HR98, OLL03, Pe98, ST06, SM97, VOD98].

Fifth [An09, IE96b, MC92, IE95]. filtering [BP03, YR98]. fine [Bar86]. fine-grain [Bar86].

Finite
[FST05, LJ96b, LJ96a, Beb06, Ich02, LS05, LCZ07, SGG±04, Sat10, VW02].

Finite-Element [LJ96b]. finite-sized [Sat10]. First [OKF14, AHLP93].

First-Principles [OKF14].

FISC
[SLCL98a, SLCL98b]. Fitted [AC94].

fitting [LBGS16, TWY06].

Flexibly [YS18]. floating [LKM02]. floating-point [LKM02].

Flow [Pri94, ECL02, Gre90a, GKM96, GK04, NM009, Tau03a].

Flows [GCG±99, WSW±95, BCH93, Kro99, Kro01, Kro02]. Fluid [SWW94, TDBEE11, Bat03, OMH±94, VGB09, WSWL95].

fluids [Ang17, BPK85, LR±99, ZB14].

FLY [BAD01, BCA06]. FM [BN07]. FM-BEM [BN07].

FMA [LJ96b].

FMBEM [CW08].

FMD [LW±02]. FMM
[CNG±06a, EM02, HNO06, HJZ09, MRH14, ON08a, ON08b, ON09b, PG96b, SGG±04, SB98, YS18, ZHPS10].

Fock [KAN96, WJG96a, KAN95].

Fokker [Lem98, Lem04].

Force [Deh02, BH86, EIM±92, JP98, KK16, Xue98, YR98].

force-calculation [BH86]. Forces
[BP88, CD98, NT96, Pie93, WZ±17, BH03, CSM91, DM90, LDB96]. Form
[CJ05, AP99, BCP08, SH07].

Formation [FM96, FM95, SW±05]. forms [KSC99, Rah96, Rok98].

Formula [CL12].

formulae [NN12].

Formulation
[AAL±01, JBL02, CB14, CKW08, CKL09, CCR08, CFR10, DM07, GD07b, Liu08, OSW06a, DM12].

Formulations
[Ano94b, GKS94, MG11, EG09a, GKS98].
Fortran [GDK89]. Foundations [IEE92a]. four [BCR01]. four-dimensional [BCR01]. Fourier [Boy92b, EMT99, Boy92a, CD13, DR95, EB94, EB96, HLL08, HW10, LHL08, OLLL03, OLL04, Sar03, ZHPS11].
Fourier-Based [CD13]. Fourier-series-based [ZHPS11]. FPGAs [LKM02]. Fractal [PD15]. Fractional [WHG96a]. fracture [XWY+08, ZBG15]. framework [TPKP12]. Francisco [B+95]. Fredholm [AHL93]. free [BSL11, BKM09, Car06]. Frequencies [GHRW98, DH04b, ZC00]. Frequency [Nil04, BK96, DH04a, KMC09, QCG15, TSIM16, ZC00]. Functional [BCR01, Buh03, CBN02, KMC09, LCZ07, Tau03b, Yin06]. Functional [Boy92b, BL97, BN98, BCR01, Buh03, CBN02, KMC09, LCZ07, Tau03b, Yin06]. Future [EMT99].

GOTPM [DKPH04]. GPU [GE13, Ham11, HL15, HEGH14, Kan15, WN14].

head-related
heavy
heavy-ion
Held
Helmholtz
Hermite
Hermite
Heterogeneous
Hierarchical
hierarchical-element
High
High-Density
High-frequency
High-order
High-Performance
Higher
Highly
Hilton
hyperical-element
homogeneous
homogenisation
host
Hub
Hut
Hybrid
Hydrgal
hyper
hypervystolic
Hypercube
I/O
 ICCAM-98
IEEE
Igniting
Implementation
Implementing
Implications
implicit
imposing
Improve
Improved
incident
implementation
Incomplete
Independent
India
Inexact
Inextensible
Inhomogeneous
Innovation
Institute
Instruction
Integral
I/O
Integral-Equation [MG11, EG09a]. Integrals [BL05, Gus98, ZZ93, BL98]. Integration [DGR96, Oku96, WZC+17, NMH06].

ingebrations [DF10]. Integrator [Per99, SP99, KM00, KMT94]. integrators [FLZB97a, FLZB97b, Sha06]. Intel [FG+92]. Interacting [BP88, BP93]. interaction [GF06b, GF06a, HLL+18, Kan15, YAO18, ZD05]. Interactions [BF099, DD95, GGM01, ATMK03, AO10, BAL91, BPK85, CFH89, CKB11, DKG92a, DKG92b, DKG92c, EGHT97, Ess95, GH02, HJJZ09, NT94, PJY95, SKT93, SKT94, ZHPS10]. interatomic [CS91]. InterCom [BSvdG+94]. Interconnecting [LS05, LOSZ07a, LOSZ07b, OSW06b]. Intercontinental [ZGI+10]. Interfaces [HB93, Kro02]. interfacial [Kro01]. interior [Mi08]. Intermolecular [Pie93]. Interpolation [Boy92a, DGR96, KLZ+06, BLA05, GD06a, Sar03, Tak14]. interpolation-based [Tak14]. Interprocessor [BSvdG+94]. Introduction [DS00, GW08]. Inverse [CDGS03, CDGS05, CPD17, Beb06, BN07, FPG05, HC10, LZZL04, MG09, TCD17]. Inverting [GGM01]. Investigations [hYtWbWL08]. inviscid [Kro02]. Invited [HOST95]. involving [AB95, EG09a, Erg11, Lin95]. ion [RT+96]. ionic [BPK85, CL91, DC07]. irGPU.proton.Net [Kan15]. Irregular [Boy92a, Kan15, YF98]. isotropic [GKM96, GH98]. issue [MC92]. issues [Mak93]. Italy [An95a, MBA97]. iteration [GD07a]. Iterative [GS98b, AD05, FG96, GDDC08, HC10, Mi08].

Lagrangian [NMDK99]. Lake [Hol12]. Landau [Len98, Len04]. language [MRH14]. Laplace [GGM93, GR97, LHL08]. Laplacian [GGM01]. Large [BADG00, BVW96, BV96b, CDGS03, CDGS05, FLZB97a, FLZB97b, GF06b, GF06a, HOST95, IFM09, OKF14, SRPD06, SLC97, WLMP99, WY07a, ZQSW94, ATR+12, BAAD+97, BWS+95, BV96a, Car09, DYP93, EG08, Erg11, EG13, GDDC08, GLS06, GKD89, JdR+18, KP08, LCQF18, LBI+97, LCZ07, LWM+02, PN95, PG96b, TC09, WYW05, WY05, XWY+08]. Large-Scale [BADG00, OKF14, SRPD06, GFO6b, GF06a, ATR+12, EG08, Erg11, EG13, LCFQ18, LCZ07, PN95, XWY+08]. Lattice [LS05, BS04, RO04]. Laugh [Bar90]. Layer [McK96, GKD09]. Layered [GA96a, GA96b, GROZ04]. layers [GROZ04]. Learning [RGKM12, HHKP09]. Leave [Wil10]. Legendre [AR91, Sud04]. lenses [Wan99]. Less [WN14]. LET [HL15]. Letters [MB+00]. Level [BK15, CJK05, AP03, DKG92a, LCQF18]. library [BSvD+94, CKB11, TYNO12]. limited [BDS07]. Line [YR99]. Linear [CPD17, Goe99, Pie93, Pu16, WJG96b, BH03, BGGC06, KLM+09, OSW05, SSF96]. lines [JH08]. link [GDK98]. Linux
[WGL+98]. **Liquid** [MPPA96]. **Liquids** [AT87, CKS91]. **lithography** [YB97]. **Load** [SHT+95, Ten98, BAAD+97, FG96, MG05, PGdS+15]. **Loading** [HL15]. **Local** [BGK12, CFR08, MCBB07, YS18]. **Locality** [SHT+95]. **Loève** [ST06]. **logical** [JP89]. **Logical** [Bor86]. **Loki** [WSB+97]. **London** [DKG92a]. **Long** [Pie93, AO10, BAL91, BPK85, Ess95]. **Long-Range** [Pie93, Ess95]. **lossy** [GSC01]. **Low** [GHRW98, DH04a, QCG15, TSIM16, TPKP12]. **Low-frequency** [DF04a, TSIM16]. **LSS** [BCAD06]. **Luther** [ACM99]. **M** [PG96b]. **M2L** [TSIM16]. **machine** [HHKP09, BME90, WS91, ZJ91]. **Machines** [PA02, BCOY93, KP05b, LBC91, Mak93]. **Macromolecular** [LCE+06, Ske89]. **macromolecules** [BH03, FLZB97a, FLZB97b]. **macroscopic** [LDB96]. **Madras** [IEE98]. **Magnet** [Gus98]. **magneto** [VOD08]. **magneto-static** [VOD08]. **magnetorheological** [LRJ+99]. **magnetostatic** [BHGR05]. **malignant** [ES04]. **Many** [HP95, PG96a, Pie93, App85, EIM+92, EFT+93, HFKM98, OME+92, SCM+99]. **Many-Body** [HP95, Pie93, PG96a, App85, EIM+92, EFT+93, HFKM98, OME+92, SCM+99]. **map** [GGM93]. **MAPLE** [McD97, Pie93]. **Mapping** [BT03, LB92a]. **mappings** [OR89]. **March** [Ano95b, Ano96, Ano97a, Ful97, HTA+97]. **Martin** [ACM99]. **Maryland** [IEE96a]. **Massachusetts** [K+96]. **Massively** [BP88, IFM09, JBL02, KP05b, LO96a, LCP93, MFKN03, LCL+12, LBI+97, MIH07, SRK+12, TMS94, WSH+12]. **Massively-Parallel** [MFKN03, MIH07]. **matched** [GROZ04, GKD09]. **materials** [GM94, NKV94, K+96]. **Matérn** [CWA14]. **Mathematical** [BCM02, CHJN03, Dar97]. **Mathematics** [BGPW00, HDG+95, Ano90, RSS96, dCGQS06]. **Matrices** [Pan92, CG04, Dac06, XTH09]. **Matrix** [PNB94, SP01, Car06, FG96, XWT09]. **matrix-free** [Car06]. **matrix-vector** [XWT09]. **Matter** [ZQSW94, FRE+08]. **Maxwell** [DH04a, YB98, GBN06, GD07b, Hav03, ON08b, ON09a, ON09b, ZC00]. **May** [AG88, IEE94b]. **MD** [IEE02, DK93]. **means** [MG05]. **mechanic** [SWW99]. **mechanical** [GD07b, Hav03, ON08a, ON09b, ZC00]. **mechanical-electrostatic** [GD07b]. **mechanical-electrostatic** [GD07b]. **mechanics** [BCM02, DKB97]. **medium** [ZCL+98]. **MEG** [KCF+95]. **MEG/EEG** [KCF+95]. **Memory** [MB16, YB01, BCOY93, DK93, KP05b, LBC91, LMCP92, MMC99, RC97, Ske89]. **MEMS** [SGD+04]. **mesh** [BOX00, DYP93, DKPH04, KM00]. **meshes** [HKS05, ZBG15]. **meshless** [BLA05, YNS+09]. **Message** [KP08]. **Message-passing** [KP08]. **metamaterials** [OMC08]. **Meter** [WWF02]. **Method** [Alu94, AAL+91, And92, Ano94b, BT03, BK15, BPT+14, BVW96, BV96b, BL05, BH88, CL12, CC15, CS98b, CDP17, CKB11, EMRV92, GP93, GKS94, Gue97, GA96a, GA96b, GS98b, HST95, HAS02, KLZ+06, LCD14, LSCM96, LJS96b, LJS96a, MI96, MB16, MK96, NT96, Nil04, PD15, RRR05, RW94, Sch94, SG97, SMC97, SHHG93, SC94, SC95, Sta95a, SP01, WC94a, WZC+17, Yn15, ZJ91, AGR88a, AGR88b, AP00, AP03, Ami00, ATMK03, BDN03a, BDMM03b, BSL90, BG94, BWS+95, BV96a, BL98, BH03, BHR04, BHGR04, BHGR05, BSSF96a, BSSF96b, BK96, CDJ97, CL91, CC04, CC05, Car09, CWHG97, CDF10, CCZ97, CKW08, CCKL09, CCZ+06b, CRG01, CPP93, CRW93, CFR08, CB09, Dac06, Da90, Dac10, DYP93, Dar02, DM07,
DM12, Dar97, Dar00a, Dar00b. **method** [DH04a, DH04b, DC07, DRS96, DKG92a, DKG92c, ERSS01, ECL02, FGM11, FACB96, FZLB97a, FZLB97b, FD09, Fu98, FM+93, GDCO8, GSC01, Gib08, GR02, G16, GROZ04, GKS98, GGR90, GH02, GP08, GCH+18, GD05, GD06, GD09, GODZ10, Ham11, HM95, HC10, HW10, HW11, HU97, HJZ09, HLL+18, Ich02, JD08, JC04, Kan15, KM00, KS11, KLM+09, KMC09, Kro01, KS98b, KS04, KP05b, KN95, KCF+05, Lab08, LCL+12, LBG16, LB18b, LCG+F18, LGG+13, LHL08, LC14, Liu08, Liu09, LCZ07, LCM07, MI95, Mak99, MB05, MR07, Mi08, MRH14, MMBN06, NT94, NH97, OSW05, OSW06a, OS08, OKS09, OCK+03, OYK+14, OMC08, OFH+08, OP07, ON09a, PN95, PSS94, PSS95, PSS95, PG96b, PA14, QC+15, RRR03, RO40, RTA+08, RS97, RS06, SG+04]. **method** [SF18, Sat10, SL97a, SL97b, SM97, SH07, Sin95, SKPP95, SP97, Sta95b, SK04, Sud04, Syl03, Tak14, TSM16, TCD17, Tau03b, Tau04, TG08, VW02, VOD08, VZGB09, VCM00, WY05, WY07a, WFC08, WHG94, WHG96a, WJGHG96b, WHG96b, WSL195, XM08, YR98, YB97, YBZL03, YB12, YBNY12, YF05, A+97, BLA05, BHC93, BL97, BG97, BN98, BCR01, BES00, BDS07, CAB07, CB102, CJL+97, CWD08, CK00, Eng11, Gas97, GBMN06, GY08, GC+99, Goe99, GE13, GKM96, GKO4, GD08, HSG95, HGD11, IYK16, Kro99, Kro02, KP05a, KP08, LS05, LOSZ07a. LOSZ07b, LOG12, Lin95, LX17, LY14, MC92, NN12, OSW06b, OF07, Oku96, PJY96, PG96a, RS94, ST06, SKT94, SM05, Sin92, SB96, TD09, YGSR01, aYZ97, YNS+09, YBNY12, ZI19, MC92]. **microlithography** [Fu97]. **microlocal** [BDMN03a, BDMN03b, Dar92, GBMN06]. **micromagnetic** [VOD08]. **microprocessors** [NMH06, MSV92]. **Microscopic** [HB93]. **Microstrip** [MI96, MI95, ZCL+98]. **Microwave** [An095a, ZC00]. **militaires** [An097b]. **military** [An097b]. **million** [DKG92a, DKG92c]. **million-atom** [DKG92c]. **MIMD** [FQG+92, LB92a]. **mine** [ESRS01]. **Minimal** [BF78]. **Minimization** [OC05]. **Minneapolis** [HTA+97, IEE92b]. **Minnesota** [IEE92b]. **MLFMA** [SLC96]. **MN** [HTA+97]. **model** [Sat10]. **model** [CAJ09, ES04, FG96, Ham11, IYK16, KP08, TD09]. **modeling** [BCM02, NMDK99, NKV94, ZKL+07]. **Models** [AC94, HB93, PN95, SG+04]. **modern** [NMH06, SF18]. **Modification** [SB98]. **Modified** [Bar90, BADG00, CHL06, LCQF18]. **module** [DK93]. **Molecular** [AC94, BGGT90, BAL91, BHGS90, BP88, CDCD97, Gus98, HGS90, LBC91, LB197, LCPP09, MPPA96, OKF14, WLM09, WS91, ATM03, BSL11, BWS+95, BSS97, BCL+92, BHE+94, BER94, BOCY93, BOCY94, BP93, CVHMS94, D93, EGHT97, GDK89, GKM97, KZ00, LM02, LBS16, LWM+02, NKV94, OYK+14, OP07, PGB05, PA14, SF18, SWW99, Win95, ZB95]. **molecular-dynamics** [BCL+92, BP93]. **Molecule** [Pie93]. **molecules** [Kan15]. **Moment** [Gus98, Mc9D7, ZZ93, BN98, CS82]. **moment-based** [BN98]. **Moments** [PN9B4, Gib08, HHKP09, Kon93]. **momentum** [GY08, WHG96b]. **monostatic** [RCW07]. **Monotonic** [bor86]. **Monte**
Monterey
[Ano95b, Ano96, Ano97a]. Montréal
[IEE97].

Mountain [MC92]. mover [CC13, MPI
[IEE96c, BCAD06, LO96b, Per99, SP99].

MPI-2 [BCAD06]. MPSim [LBI +97].

MR [BEM94]. Multi
[AP03, Ang17, BAD01, Liu08, WSH +12].
multi-disciplinary [WSH +12].
multi-domain [Liu08]. Multi-level [AP03].
multi-platform [BAD01]. Multi-scale [Ang17].

Multicomputers [YB01]. Multicore
[HEGH14, ZBS15]. Multidimensional
[CK95b, BCP08, BL98]. multigrid
[Gas97, IHM05, MC92, Of08]. Multilevel
[CSMCxx, GS98b, MG11, SLC96, SLC97, TCW08, TC90, A +97, ATR +12, BDMN03b, DM12, EG08, EG09a, EG09b, Erg11, EG13, GDDC08, GDK09, HSO8, HC10, LZZ04, LC94, MG07, MG09, RCW07, Sar03, WJY006, YRG13].

Multiple [BS93, BSS97, FLZB97a, FLZB97b, KM00, Kro02]. multiplication [XWT09]. multiply
[GGM93]. multipoint [PRT92].

Multipolar [LS93]. Multipole
[ABB +17, And92, BT03, BK15, BPT +14, Ber95, BV97, BV96b, BS00, BL05, BFO99, Boy92b, CDM98, CDG03, CDG05, CL12, CD13, CC15, CSMCxx, CKE08, CS98b, CC10, CC12, CJO5, CFRI0, CPD17, CKB11, DDL13, DYY98, EB96, EMW92, FL13, GP93, GSS98a, GSS00, GR97, GHRW98, GWW98, Gu197, GD03, GA96a, GA96b, Gus98, GS98b, HOST95, HAS02, HA17, HEGH14, JMC97, JMB198, Kon93, KLV +06, KKV5, Le97, Lea92, Lem98, LCD14, Lin05, LSC96, LJ96b, LJ96a, LO96a, LCF93, LRRW95, ML96, MBS +00, MG11, MB16, MD97, MK96, MPA96, NT96, Nl04, NPR93, OC05, Pan95, PN94, PD15, RR05, RGK12, RW94, SRP06, SPS96, SL91, SL97b, Sch94, SG97, SHMC97, SMC97, SHHG93, SHT +95, SC94, SC95, SLC96, SLC97, Sta95a, SP01].

Multipole
[WC94a, WC94b, WLMP99, WZC +17, YR99, Yln15, YTK14, YB01, ZJ91, Z93, AHP93, AG88a, AG88b, AP99, AP00, AP03, Ami00, ATMK03, ATR +12, AC17, BDMN03a, BDMN03b, BSL09, BG97, BWS +95, BV96a, BSS97, BCL +92, BHE +94, BHER94, BL98, BH03, BHG94, BHR40, BHG05, BSSF96a, BSSF96b, BK96, CD07, CC04, CC05, Car09, CGR88, CSA95, CWGH97, CDF10, CC97, CWK08, CCLK09, CGR99, CCG +06b, CRG01, CPP93, CS82, CWD08, CRW93, CFR08, CB09, Dac06, Dac09, Dac10, Dar02, DM07, DM12, Darr97, Dar00a, Dar00b, DH04a, DH40b, DC07, DRS96, DKG92a, DKG92c, ESRS01, ES04, EB94, Eng11, EG08, EG09a, EG09b, Erg11, EG13, EG01, FOBC96, FLZB97a, FLZB97b, FFG05, FDD99, Fug09, GDDC08, GSG7, GBMN06, GFF06b, GF06a, Gap11, GSC01, GIS98, GY08, GR02].

multiplot [GG16, GROZ04, GKD09, GE13, GB11, GR88b, GG89, GG90, GH02, GCH +18, GD05, GD06, GD08, GD09, GODZ10, GAD13, Ham11, HHKP99, HS08, HAV03, HC10, HW10, HW11, HF92, HU97, HR89, HGD11, HJZ09, HLL +18, IYK16, Kan15, KM00, KSS10, KSL11, KLM +09, KMC09, KS98a, KS98b, KS04, KP05a, KP05b, KP08, KAN95, KNK95, KAN96, KCF +05, Lab98, LM02, LDB96, LOSZ07b, LCL +12, LBGS16, LB91, LB92a, LB92b, LJ98, LZZ04, LOG12, Lem04, LCFQ18, LG +13, LCM14, Liu09, LX17, LY14, LC07, LCM07, LCHM10, LCHM13, LWM +02, M95, MAK99, MG07, MG09, MD98, MB05, MR07, MR14, MNMB06, NW89, NT94, NR12, NH97, OSW05, OSA06a, O907, OF08, OKS09, OCK +03, OYK +14, OC03, OMC08, OFH +08, OP07, ON09a, PRT92, PN95, PJY96, PSS094].

multiplot [PSPS95, PSS95, PA14, QCG15, RAH96, RZSO9, RTZ +96, RO04, RTA +08, RS97]
RS06, RCWY07, SGG+04, SF18, Sar03, Sat10, SL97a, ST06, SWW99, SM97, SHM98, SMT94, Sin95, SKP05, SP97, Sta95b, SB96, SK04, Sud04, STZ14, Sy03, Tak14, TSIM16, TCD17, Tau03b, Tau04, TCM08, TC09, TG08, TD09, VOD08, WJYO06, WL96, WY05, WY05, WY07b, WY07a, WLL07, WXQL08, WHG94, WJGHG96a, WHG96a, WJGHG96b, WHG96b, XWW+08, XJM08, YS18, YRGG13, hYtWbWL08, YR98, YB97, YBZL03, YB01, LDB96.

Multipole-Based [GSS98a, GSS98b, HLL08, LHL08, Mak99, OLLL03, OLL04].

Multiprocessor [SHG95, LMCPP92, Sin92, Ske89].

Multiprocessors [BB87, HS95].

Multiquadrics [CBN02].

Multiresolution [NKV94].

Multiscale [ERT12, TW03].

Multithreaded [ZB95, ZD05, CB14].

multipole-accelerated [BHE+94, BHER94, ZD05].

Multipole-Based [BHE+94, BHER94, ZD05].

Multipole-Based [GSS98a, GSS00, YB97].

Multipole-Based [GSS98a, GSS00, YB01, LDB96].

Multipole-to-local [CFR08, YS18].

Multipoles [And92, AC94, GSS98b, HLL08, Mak99, OLLL03, OLL04].

Multitask [SM97, CCKL09].

Obstacles [Mak93].

Oblique [SM97, CCKL09].

October [Ano97b, HB93, IEE92a].

Opening [HLS95, MR07, SK04, YR98].

One [An94a, MTE94, WWF02, FRE+08, HM95, MR07, SK04, YR98].

One-Dimensional [SK04, YR98].

Opportunities [An90].

Optimal [DKG92b, HHKP09, BWS+95, BME90, CRG01, MG05, PRL03].

Optimal-Parameter [CRG01].

Optimization [BK15, MBS15].

Optimizing [PD15, ZBS11].

Orbitals [Gus98, Le 97, ZZ93, KS98a].

Order [BB87, BCP08, DR95].

non-equispaced [DR95].

non-standard [BCP08].

Non-Uniform [BB87].

nonbond [DKG92b].

nonbonded [ATMK03].

nonequispaced [PSN04].

nonlinear [CAJ09].

nonlinearly [CC13].

nonscillatory [GR02].

nonplanar [YB97].

nonsmooth [Beb06].

normal [GG16].

Nose [BVW96].

Notre [IEE96c].

November [ACM96, ACM97, ACM99, ACM03, Ho12, IE90, IE92b, IE93, IE94c, IE90, K+96, LCK11].

nuclear [PGB05].

number [GGK99, Ich02].

numbers [Dr+18, WYW05].

Numerica [Ise97].

Numerical [CL91, GKZ07, Kro02, Pri94, TDBEE11, dCGQS06, Atk97, BCM02, BCH93, CDF10, CG97, CHJN03, Dar00b, GCC+99, Gre90b, GM94, GH98, KSC99, Kro01, OR89, PRT92, RSS96, TYNO12, Wam99, ERT12].

O [Mak93].

Object [BT95, SHMC97, ESR01, SM97, SHM98].

Objects [BVW96, BV96b, SLC96, SLC97, BV96a, EG90a, Erg11, TC09].

Oblique [SM97, CCKL09].

Oct [WS93].

Oct-Tree [WS93].

October [An097b, HB93, IEE92a].

Off-Loading [HL15].

One [An94a, MTE94, WWF02, FRE+08, HM95, MR07, SK04, YR98].

one-dimensional [SK04, YR98].

Opening [And08].

OpenMP [AAB+17].

operator [CFR08, Lem08, Lem04, YS18].

Operators [CJ05, Beb06, CS82, ESM98, FBH04, Rah96, Rok98, TW03].

OPFMM [CRG01].

opportunities [An90].

Optical [Ful97].

Optimal [DKG92b, HHKP09, BWS+95, BME90, CRG01, MG05, PRL03].

optimal-parameter [CRG01].

Optimization [BK15, MBS15].

Optimizing [PD15, ZBS11].

Orbitals [Gus98, Le 97, ZZ93, KS98a].

Order [BB87, LS93, RRR05, Alu96, DC07, GH98, GBMN06, GL96, PRL03, TWYC06, Tau03a, Tau04].

Oregon [ACM99, IEE93].

organic [CKS91].

organization [AO10].
Polygons [BT03]. polyharmonic [BL97, BCR01, BPT07]. polymers [BCOY94]. Polynomial [DGR96, PRT92, Rei99]. Polynomials [Pan92]. Polytechnic [BR93]. Portable [BK15, BS97, OCK03, WS95b, WS95a]. Portland [ACM99, IEE93]. posed [HM95]. posteriori [XTH09]. Potential [CK95b, Gre87, Gre90a, HA17, SPS96, YR99, CK95a, GB11, Gre88, GR88a, GD07b, HHKP09, HF92, HR98, LCQFI8, Mil08, OLLL03, PA14, Rok85, Tau03a, WXQL08]. Potentials [CJ05, MB16, Pie93, DM00, LDB96, SH07]. power [PRT92]. PPPM [YF05, ZB14]. Practical [BN97, Pan95, CAJ09, Mak93]. practice [CK00]. Prager [GCH18, LGG13]. pragmatic [SB96]. Precise [Ami00]. preconditioned [BGGC06, GD07a]. Preconditioner [CDGS03, CDGS05, CPD17, Car06, DDL13, OF08, TCD17]. Preconditioning [MG11, ARD04, Car09]. Preprocessing [NN12, Beb06, FPG05, LZL04, MG07, MG09, RCWY07]. predictor [TWY07]. predictor-corrector [TWY07]. preeminent [YB12]. preprocessing [SK04]. Prescription [GS98b, CRW93]. presented [Ano97b]. Pressure [YAO18]. YRGS13. Price [WSB97]. Price/performance [WSB97]. Princeton [HM86, HDG15]. Principles [OKF14]. Pro [WSB97]. Problem [APG94, AGPS98, Ano94a, Ano94c, Dem95, Dem96a, Dem96b, HTG02, MTE94, Yin15, CCKL09, DH86, DHM03, Gre90b, IHHM05, Kat89, KS98a, Mil08, Pud16, SSF96, TL14, WXQL08]. Problems [BB87, EMRV92, GA96b, KK95, LJ96b, LJ96a, MG11, MBS15, SWW94, SG97, WZC+17, AP00, AD05, ATR+12, BSL09, Bes00, BCP08, BHGR04, BHGR05, BGGC06, CC04, CC05, Car09, EG08, EG09a, Erg11, FST05, Fuj98, GDDC08, GLS06, HM95, HNO06, HU97, JH08, Lab98, LCQFI8, Lin95, Liu08, MIES90, Oku96, ON08a, ON08b, ON09b, Rah96, RO04, SCM+90, TWY06, WYO06, WYO7b, WSWL95, WXY+08, XJM08, iYNK02, ZY05].

Proceedings [ACM96, ACM97, AG88, ERT12, Hol12, HM86, IEE02, Kar95, LCK11, Rod89, Ano92, Ano95a, IEE92a, IEE98, KK88, PA02, We91, B+95, BGPW00, HB93, HTA+97, IEE90, IEE92b, IEE93, IEE94b, IEE94c, IEE96b]. Proceedings. [IEE96c]. process [JdR+18]. processes [Sal96]. Processing [B+95, HTA+97, BCOY94, Rod89]. Processor [WWF02, FL13, MIH07]. processors [GD08]. produced [Kon93]. products [And08]. Professor [Wil00]. Program [CDCD97, YB01, App85, LBI+97, WS95b, Win95]. Programmable [PA02, HFKM98]. programming [MRH14]. Programs [BGLM05, RC97]. PROGRAPE [HFKM98]. PROGRAPE-1 [HFKM98]. Progress [Ano95b, Ano96, Ano97a]. Prolate [KLZ+06]. Propagation [Ano97b, IEE94a, IEE96a, IEE97, WC94a, WC94b, CHJN03, GLS06]. propagator [ZB95]. properties [WY05, WY07a]. Protein [NT96, Kan15, KSS10, KS11, NT94]. protein-protein [KSS10]. proteins [ZB95]. protonatable [Kan15]. Provably [Tak98]. pseudo [CK91, OFH+08]. pseudo-pairwise [CK91]. pseudo-spectral [OFH+08].

psuedoparticle [Mak99]. Pseudospectral [Boy92b, KLZ+06]. Purpose [Ano94a, BGGT90, CKE08, FM96, FM99, KFMT00, MTE94, MT98, MKF93, EIM+92, EFT+93, FM+93, FM95, HFKM98, KMT94, MIES90, MT95, OMH+94, OME+92, SCM+90, TMES94].

Quadrature [WK18]. Quantum [SPS96, KLM+90, SSF96]. quartic
Special-Purpose
[Ano94a, CKE08, FM96, FHM99, KFMT00, MTES94, MT98, MFKN03, FM95, HFKM98, KMT94, MIES90, MT95, OMH+94, OME+92, SCM+90, TMES94]. Spectra
[ES04]. Spectral
RCWY07, OFH+08, PN95]. Speeding
[AO10]. Sphere
BP03, CDJ07, DC07, Lin95]. Spheres
[GD05]. Spherical
GOD210, KSC99, PJY96, ST02, YR98]. Spline
[CS98b, DKG92b]. Splines
[CS98a, BL97, BCR01, BPT07]. Square
[GGM01]. Stability
[Ni04, Sud04]. Stable
[DH04b]. Standard
[BCP08]. Static
[VOD08]. Station
[ERT12]. Statistical
[Kan15]. Steepest
[JMC97, JMB98, ESRS01]. Steepest-descent
[ESRS01]. Stellar
[HM86]. Step
[BS93, FLZB97a, FLZB97b, KM00, RCVW07]. Stepping
[BS97]. Stochastic
[FST05, Sal96]. Stokes
[GTK96, GK04, Tau03a, TG08, WLL+07]. Stokesian
[Ich02]. Storage
[Hol12, LCK11]. Strategy
[BB87, BCOY93, EG09b]. Strong
[BPK85]. Structural
[BADG98, NT96, ZQSW94, GF06b, GF06a, Goe99, Kat98, KS98a, NT94]. Structures
[An99, CSMCxx, GGM01, MI96, RW94, WPM+02, Car09, CWK08, EG13, LCZ07, WS91, ZCL+98, ZY05]. Studies
[RTZ+96]. Study
[BGLM05, HML66, Pri94, Dar97]. Studying
[Kro01]. Sub
[LCZ07]. Sub-entire-domain
[LCZ07]. Subdivision
[BT95]. Summation
[CWA14, LS93, Ami00, BAL91, IHM05, SF18, ZB14]. Summer
[RS96]. Sums
[DNS90, BG94, DYP93, KS04, RO04, SL97b]. Sunnyvale
[Wel91]. Supercomputers
[FQG+92, HM86, BAD01]. Supercomputing
[ACM96, Ano92, IEE90, IEE92b, IEE93, IEE94c, Kar95, Ano92, KK88]. Surface
[MG11, CCZ97, ESRS01, ZBG15]. Surfaces
[CSMCxx, HAS02, JMC97, JMB98, GH08, JBM98]. Surfaces-Wire
[CSMCxx]. Suspended
[VGZB09]. Switch [SGD+04]. Switching
[HL15]. Symbolic
[Pie93]. Symmetric
[CG04, OSW96a]. Symposium
[Ano97b, HB93, IEE92a, IE94a, IE95, IEE96a, IEE96b, IEE97, PA02, K+96, Mak93]. Syracuse
[IEE96b]. System
[BGI+99, RKGK12, BAA+97, TMES94, ZB95, HTG02]. Systems
[AAB+17, CPD17, GP93, Gre87, HEGH14, MT98, VTM91, YF05, AB95, BWS+95, BGGC06, CL91, CDF10, CFH89, DYP93, DKG92c, EIM+92, EFT+93, Gre88, Ich02, KS98a, KS98b, KN95, LM02, LBGS16, LB92a, LBI+97, LCM07, LCHM13, PGB05, PG96b, TYON12, YB12, ZB95]. Systolic
[BHGS90, DHM03]. T3D
[RAA+97]. Tails
[ADG96]. Tangential
[GH08]. Target
[SB98, GSC01]. Targets
[Ano97b]. Task
[ABB+17]. Task-Based
[AAB+17]. Tearing
[LS05, LOSZ07a, LOSZ07b, OSW96b]. Technique
[WCZ+17, Gas97, KLM+09]. Techniques
[CDGS03, CDGS05, PRT92, SWW99]. Telescoping
[LRW95]. Template
[BGLM05]. Tennessee
[IEE94b]. Tensor
[CB14, CSA95, GCH+18, HC08, HLL+18, LGG+13, YAO18]. Tensors
[PNB94]. Terabytes
[IEE02]. teraFLOPS
[TMES94]. Term
[DNS90]. Terms
[JP89]. Test
[ABB5]. Tflops
[Ano94a, HNY+99, HN10, MTES94, MFK00, MKFD02]. Theorem
[KSC99, Lab98]. Theorems
[HCO8]. Theoretical
[CC15]. Theory
[AP99, Buh03, CK00, GD07b, K+96, LBGS16, Pel98, Rok85, Rok90, Tau03a]. Thermodynamics
[Kan15]. Thin
[ZCL+98, CAJ09, ZY05]. Thin-stratified
[ZCL+98]. Third
[KK88, Rod89, Bha97].
Thousands [BT03]. Three
[CS98a, JMBC98, LO96a, Nil04, Pie93, Pri94, SL91, SC95, WSW+95, YB97, BSL09, BPT07, CWW08, CRR99, CCG+06b, ESR01, ES04, ESM98, GR88a, GR97, GH02, GD06, GD09, LB92b, LCQF18, MCBB07, OLL03, PSS95, SL97a, Tak14, TSI16, TC09, TG08, WSL95, YBZ04].

Three-Body [Pie93].

Three-Dimensional
[JMBC98, Pri94, WSW+95, YB97, BSL09, CWW08, ESR01, ES04, ESM98, LCQF18, OLL03, PSS95, Tak14, TC09, TG08, WSL95].
tiers
[WHG96a].

Time
[BS03, MD98, BSS97, FLZB97a, FLZB97b, GD07b, KM00, OFH+08, RC97, SRK+12, VW02, Xue98].

time-dependent
[MD98].
time-domain
[VW02].
time-efficient
[YF98].
time-harmonic
[GD07b].
time-step
[KM00].

topological
[BN07].
toroidal
[CKS91].

Toronto
[HB93].

Touchstone
[FQG+92].

TPM
[Xu95].

traces
[HLL+18].

trained
[HHKP09].

transfer
[GODZ10, KMC09].

Transform
[EB06, EB94, GS91, HLL08, HW11, LHL08, OLL03, OLL04, Sar03, ST02, Sud04, Boy92b, EMT99, GSS98a].

Transformation
[DNS90].

transforms
[DR95].

transient
[ESM98].

Translation
[GD03, ESM98, GD07b, Rah96, Rok98, TSM16].

translator
[HS08].

transpose
[TH08].

Transputer
[Wel91, CKS91, LB91].

Transputers
[BHGS90].

Transputing
[Wel91].

treatment
[KS98a].

Tree
[An99, ADB94, ADGBP99, BH89, Bar90, BADG00, BOX00, BH88, CDM98, CWA14, Jdr+18, SWW94, WPM+02, WS03, WN14, WSW+95, BAP96, BAD+97, BAO01, BCAD06, BJWS96, DUB66, GY08, JP09, PD89, PG94, PG96a, Pud16, Wan99, WS92, WSL95, WSH+12, Xue98, JKS09, JKW09].

Tree-Code
[CDM98].

Treecode
[KFM99, Mak04, SW94, DKPH04, WS95a, WSB+97].

Treecodes
[GSS98a, GSS00].

TreePM
[Bag02, IFM09, YF05].

Trees
[BF78].

trenches
[TW08].

trends
[MBS15, Car09, CGL03, Les09].

triangulated
[RS94].

Truly
[APG94, Ano94c].

truncated
[TW08].

truncating
[BPB95].

Truncation
[OC03, AP00, AB95, CC04, CC05].

tube
[Lin95].

tumors
[ES04].

tuned
[YB12].

tuning
[MKF01, NMO06].

turbulence
[HB+09, YNS+09, YBNY13].

Turkey
[An097b].

Two
[LS93, MCK96, Pan95, Pie93, RRR05, BL97, Car06, CHL06, CCG+06a, CC10, CC12, ECL02, EG01, GH98, KJCG08, Kro01, NTO9, PSPS95, RRR03, Rok90, Rok98, RCW07, SKPP95, WY07b, XJ08, YBZ04].

Two-Center
[Pan95].

two-component
[JKCG08].

Two-Dimensional
[LS93, BL97, CC10, CC12, ECL02, GH98, Kro01, NTO9, PSPS95, RRR03, WY07b, XJ08].

two-grid
[Car06].

two-step
[RCW07].

Type
[Gus98, ZZ93].

U.C.L.A
[AG88].

U.S.
[An090].

ultra
[DM07, DM12].

ultra-weak
[DM07, DM12].

ultracold
[JSG08].

Uncertainty
[MBS15].

Unified
[JBL02].

Uniform
[BB78].

uniqueness
[YSM05].

unit
[DKG92c, KS98b].

Universe
[BBAG00, ZGI+10, BAD01].

University
[IEE94a].

unknowns
[YBK+11].

Unrelaxed
[PNB94].

unstructured
[HKS05, MSV92].

UPC
[ZBS11].

Updates
[Kan15].

Updating
[HA17].

upon
[TD09].

Uranus
[MKF02].

USA
[Hol12, HM86, IEE96c, ACM97, IEE02, Kar95, K+96].

Use
[HM86, SPS96, Bes00, Mak93, PJY96, RTA+08, SM97].

User
[Wel91].

Using
[BVW96, BV96b, BP88, CL12, CKE08, CS98b, CPD17, GAA96, HE88, LKM02, LRW95, MI96, MPA96, Per99, SG97, SHMC97, SMC97, SP99, SC94, BV96a, Bor86, BH88, CJK91, CvdHMS94, DM07, ESR01, ES04, ESM98, Gas97, GF06b, GF96a, GD05, HC10, HLL+18, Kan15, KM00, LBGS16, LB91, LJK98, LO96b, LCZ07, LWM+02, MI95,
REFERENCES

MRH14, OYK +14, Pri94, RC97, Sat10, Syl03, Tau03a, WY07a, WS92, WSWL95, YB97, YBK +11, YBNY13, ZCG00. UT [Hol12]. Utah [RSS96].

vacancies [Kon93]. value [Lin95, ON08a, ON09b, RTA +08]. values [LX17]. variable [Tau03a, Tau04]. variables [JP89]. Variants [YTK14, BHER94].

Variational [DM12, DM07]. Vector [CS98a, TYON12, HC08, XWT09]. Vectorized [Bor86, GDK89, BP93]. Velocities [ZQSW94]. versatile [WS95a].

Version [GS98a, NT96, SP01, GG89, GG90, GR97, HC08, LCM07]. very [BSSF96a, BSSF96b, LBI +97, PSPS94]. vesicles [VGBZ09]. via [AGR88b, GB11, Gue97, GD07a, WJGHG96b].

Vortex [BCH93, CK00, DD95, RRR05, WSW +95, aYZ97, BLA05, CWD08, ECL02, HM95, Ros06, RS94, WSL05, AG88].

vortex-in-cell [CWD08]. vorticle [Ang17]. voxel [Ham11].

W [MD12]. WA [LCK11]. Waals [DKG92b]. Washington [IEE94a, IEE94c]. water [BAL91, HHKP99]. wave [BSL09, Bes00, BGGC06, CCZ97, CCKL09, CHJN03, CRW93, ESR01, ESM98, GLS06, LC94, MD98, Tak14, TCW08, TC09].

Wavelet [HKS05, BP93, RŠZ09, XWT09, XTH09]. wavelet-BEM [XTH09]. Wavelets [A +97, CM06, Tau03a]. WAVES [CHJN03].

Wood [ON09a]. Worcester [BR93]. work [BADD96, DTT96, Re09]. work- [BADD96]. Workshop [ERT12, HM86, AG88].

workstations [LJ98]. World [We91]. WOTUG [We91]. Would [Wil00].

X [Fu97]. X10 [MRH14]. x86 [TYON12, TYNO12]. x86_64 [NMH06]. XV [BR93]. XXVI [Bre04].

Yamakawa [GCH +18, LGG +13]. York [IEE90, IEE90, IEE96b]. Yukawa [BFO99, HJZ09, ZHPS10].

zero [GG16, SF18, ZC00]. zero-multipole [SF18]. Zonal [BDS07].

References

Agullo:2017:BGB [AAB +17] Emmanuel Agullo, Olivier

Amor:2001:DPF

Aarseth:1985:MTS

Auffinger:1995:STE

Antoine:2004:APE

Angyan:1994:CAM

REFERENCES

Antonuccio-Delogu:1994:PTB

Antonuccio-Delogu:1999:PTA

Adamson:1996:CCT

Anandakrishnan:2011:GBA

Anderson:1988:VMP

Aluru:1998:DIH

Ambrosiano:1988:FMM

Amбросиано:1988:GPS

Allen:1993:GIM

Aluru:1994:DIH

Aluru:1996:GBA

Amisaki:2000:PEE

Anderson:1992:IFM

Anderson:1999:TDS

REFERENCES

REFERENCES

Anonymous:1995:ECP

Anonymous:1995:PAC

Anonymous:1996:PAC

Naval Postgraduate School, ????, 1996. Two volumes.

Anonymous:1997:PAC

Anonymous:1997:RSA

Anandakrishnan:2010:ABN

Ramu Anandakrishnan and Alexey V. Onufriev. An \(N\log N\) approximation based on the natural organization of biomolecules for speeding up the computation of long range interactions. Journal of Computational Chemistry, 31(4): 691–706, March 2010. CODEN JCCHDD. ISSN 0192-
REFERENCES

Amini:2000:ATE

Amini:2003:MLF

Aluru:1994:TDI

Appel:1985:EPM

Alpert:1991:FAE

Method, and this paper shows how they can be computed in $O(N)$ time.

Allen:1987:CSL

Atkinson:1997:NSB

Amisaki:2003:DHA

Ying:1997:VM

Bailey:1995:PSS

Becciani:1997:PTC

REFERENCES

REFERENCES

Bathe:2003:CFS

Berger:1987:PSN

Becciani:2006:FMP

Beale:1993:VFR

Board:1992:AMD

Babuska:2002:MMN

REFERENCES

REFERENCES

REFERENCES

[BGPW00] F. Broeckx, M. J. Goovaerts, R. Piessens, and L. Wuytack,

Barnes:1986:HFC

J. E. Barnes and P. Hut. A hierarchical $O(N \log N)$ force-calculation algorithm. *Nature*, 324(6270):446-449, 1986. CODEN NATUAS. ISSN 0028-0836 (print), 1476-4687 (electronic). This paper appears to be the origin of fast multipole algorithms; its $O(N \log N)$ complexity was later improved to $O(N)$ [GR87]. See also [App85], which might predate this work.

Bouchet:1988:CSU

Barnes:1989:EAT

Bordner:2003:BES

Bhatt:1997:PA

Board:1994:SIM

REFERENCES

REFERENCES

REFERENCES

Brunet:1993:HAD

Blelloch:1997:PCB

Beatson:1998:FER

Bonnet:2007:FBT

Boris:1986:VNN

Bode:2000:TPM

Boyd:1992:FA

John P. Boyd. A fast algorithms for Chebyshev, Fourier

Benson:2014:PDF

Brebbia:1993:BEX

Brebbia:2004:BEX

Biesiadecki:1993:DMT

Blackston:1997:HPE

Board:2000:FMA

Bapat:2009:AFM

M. S. Bapat, L. Shen, and

REFERENCES

REFERENCES

REFERENCES

H. Cheng, W. Crutchfield, Z. Gimbutas, L. Greengard, J. Huang, V. Rokhlin, N. Yarvin, and J. Zhao. Remarks on the implementation of the wideband FMM for the Helmholtz equation in two dimensions. In *Inverse problems, multi-scale analysis and

REFERENCES

REFERENCES

Cruz:2011:FMM

Chau:2008:AFM

Chynoweth:1991:SOL

Caillol:1991:NSH

Cecka:2012:FMM

Coifman:2006:DW

REFERENCES

Challacombe:1995:RR

Chao:19xx:MFM

Clark:1994:PMD

Chen:2014:FST

Cocle:2008:CVC

Challacombe:1997:PBC
Matt Challacombe, Chris White, and Martin Head-Gordon. Periodic boundary conditions and the fast multipole method. *Journal of Chemical Physics*, 107(23):10131–??, 1997. CO-
REFERENCES

DEN JCPA6. ISSN 0021-9606 (print), 1089-7690 (electronic).

Chen:2008:FFM

Dachsel:2006:FAD

Dachsel:2009:ECF

Dachsel:2010:CAE

See [Dac09].

Darve:1997:FMM

Darve:2000:FMMa

Darve:2000:FMMb

Darrigrand:2002:CFM

[Dem96b] James Demmel. Fast hierarchical methods for the
REFERENCES

[Ding:1992:ALSb] Hong-Qiang Ding, Naoki Karasawa, and William A. Goddard, III. Atomic level

REFERENCES

Deem:1990:TCS

Dutt:1995:FFT

Dikaiakos:1996:FAS

Dongarra:2000:GEI

Dombroski:1996:KCE

Dubinski:1996:PTC

Dembart:1998:AFM

REFERENCES

REFERENCES

El-Shenawee:2001:MCS

Esselink:1995:CAL

Fann:2004:SOM

Fong:2009:BBF

Franklin:1996:GMI

Fedichev:2011:CEM

Fukushige:1999:HPS

Toshiyuki Fukushige, Piet Hut, and Junichiro Makino.
REFERENCES

Fortin:2013:ADD

Figueirido:1997:LSS

Fukushige:1995:BSG

Fukushige:1996:BSG

Fukushige:1993:SPC

T. Fukushige, J. Makino, T. Ito, S. K. Okumura,

H. Fujiwara. The fast multipole method for integral equations of seismic scattering

Fuller:1997:OMX

Gurel:1996:ESS

Gurel:1996:FMM

Gumerov:2013:FMA

Gaspar:1997:FSB

Gavrilyuk:2011:BRF

REFERENCES

Gumerov:2006:FMM

Gumerov:2007:FRB

Gumerov:2007:SPF

Gumerov:2008:FMM

Gumerov:2009:BFM

Garcia:2008:ISE

Grest:1989:VLC

Goude:2013:AFM

[GE13] Anders Goude and Stefan

\textbf{Gaul:2006:LSSb}

\textbf{Gaul:2006:LSSa}

\textbf{Greengard:1989:PVF}

\textbf{Gimbutas:2016:FMM}

\textbf{Greenbaum:1993:LED}

REFERENCES

REFERENCES

=Grytsenko:2008:ACA=

=Greengard:1987:FAP=

=Greengard:1988:REPb=

=Greengard:1988:EIF=

=Greengard:1997:NVF=

=Gimbutas:2002:GFM=

=Greengard:1987:REP=

=Greengard:1988:REPa=

[Gre88] Leslie Greengard. *The rapid evaluation of potential fields

Greengard:1990:PF

Greengard:1990:NSB

Greengard:1994:FAC

Ginste:2004:FMM

Gyure:1998:PMH

Greengard:1991:FGT

Greengard:1998:NVF

[GW98] Leslie Greengard and Stephen Wandzura. Guest Editor’s introduction: Fast multipole

He:2008:DVT

Hesford:2010:FIS

Higham:2015:PCA

Hockney:1988:CSU

Holm:2014:DAA

Hinsen:1992:RDE

Hamada:1998:PPS

REFERENCES

ver Spring, MD 20910, USA, 1998.

He:2008:FES

Huang:2018:IEC

Hut:1986:USS

Hamilton:1995:RGM

Hamada:2010:TAB

Houzaki:2006:FPR

REFERENCES

Hamada:2009:THB

Hollingsworth:2012:SPI

Hamilton:1995:FMM

Hendrickson:1995:PMB

Hrycak:1998:IFM

Holt:1995:HBM

Hanninen:2008:EER

REFERENCES

Hanrahan:1991:RHR

Heath:1997:PES

Hoyler:1997:FMM

Hesford:2010:FMM

Hesford:2011:RRA

Andrew J. Hesford and Robert C. Waag. Reduced-rank approximations to the far-field transform in the gridded fast multipole method.
REFERENCES

Yao:2008:IFM

Ichiki:2002:ISD

IEEE:1990:PSN

IEEE:1992:ASF

IEEE:1992:PSM

REFERENCES

IEEE:1996:IAP

IEEE:1996:PFI

IEEE:1996:PSM

IEEE:1997:IAP

IEEE:1998:FIC

IEEE:2002:STI

[IEE02] IEEE, editor. SC2002: From Terabytes to Insight. Proceed-

[Ishiyama:2009:GMP]

[Izaguirre:2005:PMS]

[Iserles:1997:AN]

[Ibeid:2016:PMC]

[Yoshida:2002:NFM]

[Jaramillo-Botero:2002:UFM]
REFERENCES

Jandhyala:1998:FAA

Jia:2008:KDC

Jansen:2018:TCC

Jandhyala:1998:CSD
REFERENCES

REFERENCES

[KF99] Atsushi Kawai, Toshiyuki Fukushige, and Junichiro Makino. 7.3/Mflops astrophysical N-body simulation with treecode on GRAPE-5. In ACM [ACM99], page ??

pean supercomputing accomplishments, and performance and computations — v. 3.
Supercomputer design, hardware and software.

Krishnan:1995:PAF

Kozyshenko:2016:IAE

Korchowiec:2009:ECT

Kreuzer:2009:FMB

Kokubo:1994:HSP

Kutteh:1995:ICM

Kondratyev:1993:MME

Kropinski:1999:IEM

Kropinski:2001:ENM

Kropinski:2002:NMM

Kudin:1998:FMA

Kudin:1998:FMM

Kudin:2004:RIL

Kim:2011:CSV

Koc:1999:EAN

S. Koc, Jiming Song, and W. C. Chew. Error analysis for the numerical evaluation of the diagonal forms of the

[Leathrum:1992:MAF]

[Leathrum:1992:PFMb]

[Liem:1991:MDS]

[Lazarski:2016:DFT]
Lim:1997:MDV

Lu:1993:FAS

Lu:1994:MAS

Liska:2014:PFM

Letourneau:2014:CFM

Leimkuhler:2006:NAM

Lustig:1993:FMM

Li:2018:MDL

Lu:2007:AFM

Lambert:1996:MBA

LeRouzo:1997:MEC

Leathrum:1992:PFMa

Lemou:1998:MEF

Lemou:2004:MAF

Mohammed Lemou. On multipole approximations of the
REFERENCES

Leszczynski:1996:CCR

Liang:2013:FMM

Lim:2008:FFT

Kian Meng Lim, Xuefei He, and Siak Piang Lim. Fast Fourier transform on multipoles (FFTM) algorithm for Laplace equation with direct and indirect boundary ele-

Linton:1995:MMB

Liu:1994:PIB

Liu:2008:FMB

Liu:2009:FMB

Lu:1996:AFMb

Lu:1996:AFMa

Lee:1998:PPS

Lienhart:2002:UFP

Lakshinarasimhulu:2002:CMB

Lin:1992:MDD

Lu:1996:MPF

REFERENCES

Lu:1996:PIF

Lo:1999:SPD

Lee:2012:MMM

Langer:2007:IDS

Langer:2007:IFM

Ly:1999:SPD

Lambin:1993:ESM

ISSN 0020-7608 (print), 1097-461X (electronic).

Langer:2005:CBF

Lu:1996:AF

Lupo:2002:LSM

Liu:2017:FMM

Ltaief:2014:DDE

Lee:2004:SIP

Makedon:1993:PDA

F. Makedon, editor. Parallel I/O and databases: 2nd Annual symposium on issues and obstacles in the practical implementation of parallel algorithms and the use of parallel machines — June 1993, Hanover, NH, Dartmouth Institute for Advanced Gradu-
ate Studies in Parallel Computation. DIAGS, Hanover, NH, USA, 1993.

Makino:1999:YAF

Makino:2004:FPT

Mattson:1995:PCC

Marchetti:1997:ICB

Malhotra:2000:LEF

REFERENCES

CODEN CSENFA. ISSN 1521-9615 (print), 1558-366X (electronic). URL http://dlib.computer.org/cs/books/cs2000/pdf/cs3004.pdf. See [DS00, BS00].

Mehl:2015:RTC

Mandel:1992:SIM

McCorquodale:2007:LCA

McDowell:1997:CGM

McKenney:1996:AFM

Marengo:1998:TDP

Edwin A. Marengo and Anthony J. Devaney. Time-dependent plane wave and
REFERENCES

Makino:2012:GAG

Makino:2000:TSB

Makino:2003:GMP

Marzouk:2005:MCO

Malas:2007:IPM

Malas:2009:AMF
Malas:2011:SCP

McKenney:1995:FPS

Makino:2007:GDP

MacDonald:1995:FSM

Macdonald:1996:FSM

Makino:1990:GSP

REFERENCES

Makino:2001:PET

Makino:2002:TSP

McCurdy:1999:ECP

Morice:2006:FMM

McKenney:1996:MDS

Martinsson:2007:AKI
REFERENCES

8275 (print), 1095-7197 (electronic).

Mehrotra:1992:USC

Makino:1994:GOT

Nishida:1997:AFM

Nilsson:2004:SHF

Nakano:1994:MMD

Najm:1999:CLE

Nitadori:2006:PTB

Niino:2012:PBC

Nyland:1993:DIA

Niedermeier:1994:SAM

REFERENCES

REFERENCES

Of:2007:FMM

Of:2008:EAM

Ooi:2008:HFM

Osei-Kuffuor:2014:SAL

Okunbor:1996:IMB

Ong:2004:FFT

Ong:2003:FA

REFERENCES

Olyslager:2008:FMM

Okumura:1992:GHP

Otani:2008:FPB

Otani:2008:PFM

Otani:2009:BPF
Y. Otani and N. Nishimura.

Otani:2009:FOP

Ormseth:2007:IFM

ODonnell:1989:FAN

Of:2005:AFM

Of:2006:FMM

Of:2006:BET

Günther Of, Olaf Steinbach, and Wolfgang L. Wendland. Boundary element tearing and interconnecting domain decomposition methods. In Multifield problems in solid and fluid mechanics, volume 28 of Lect. Notes Appl. Com-
Ohno:2014:PMD

Poczek:2002:FAI

Poursina:2014:IFM

Pan:1992:CCM

Panas:1995:PET

Park:1989:BBT

REFERENCES

Pouransari:2015:OAF

Pellegrini:1998:EFS

Pereira:1999:PBI

Pfalzner:1994:HTC

Pfalzner:1996:MBT

Pollock:1996:CPF

Papa:2005:CMD

REFERENCES

Pearce:2015:DLB

Piecuch:1993:MSC

Perez-Jorda:1996:CRS

Peirce:1995:SMM

Pluta:1994:DHE

Pringle:1994:NST

Pruett:2003:ABA

Pan:1992:PCT

Potts:2004:FCR

Petersen:1994:VFM

Petersen:1995:EEFa

Petersen:1995:EEFb

REFERENCES

1995. CODEN PRLAAZ. ISSN 0080-4630.

REFERENCES

Rossi:2006:EBS

Ramachandran:2003:FTD

Ramachandran:2005:FMM

Russo:1994:FTV

Rokhlin:1997:SFM

Rudberg:2006:EIF

Renegar:1996:MNA

REFERENCES

[Ravnik:2009:CBW]

[RoDriguez:2008:USV]

[Salmon:1996:GCC]

[Sarvas:2003:PIA]

Rokhlin:1994:FMM

[Sarv-as:2003:PIA]
REFERENCES

[SF18] Shun Sakuraba and Ikuo Fukuda. Performance eval-

Sendur:1997:SRP

Sabariego:2004:CME

Sabariego:2004:AFM

Shanker:2007:ACE

Sharp:2006:BSP

Singh:1995:IHB

REFERENCES

Singh:1993:PAF

SHHG93

Shanker:1998:FMA

SHM98

SHMC97

Shanker:1997:FMA

Sin92

Singer:1995:PIF
J. K. Singer. Parallel implementation of the fast multipole method with periodic

Schmidt:1997:EIF

Schmidt:1997:MES

Song:1996:MFM

Song:1997:MFM

Song:1998:FISa

Shanker:1997:OSI

Simos:2005:ACM

Shanker:1997:SIC

Solvason:1997:EEF

Sun:2001:MVF

Springel:2005:CSC

Scherbinin:1996:UME

Speck:2012:MST

Sagui:2006:NDM

Saad:1989:DCH

Schanz:2007:BEA

Strain:1996:ALS

Suda:2002:FSH

Schwab:2006:KLA

REFERENCES

Stalzer:1995:PFMb

Stalzer:1995:PFMa

Sun:2014:FMR

Suda:2004:SAF

Salmon:1994:STC

Springel:2005:SFE

Salmon:1994:FPT

John K. Salmon, Michael S. Warren, and Gregoire S. Winckelmans. Fast parallel tree codes for gravitational and fluid dynamical N-body

Schwichtenberg:1999:AMM

Sylvand:2003:CIC

Takahashi:2014:IBF

Tausch:2003:SBP

Tausch:2003:FMM

Tausch:2004:VOF

REFERENCES

Tornberg:2008:FMM

Totoo:2014:PHI

Taiji:1994:GTM

M. Taiji, J. Makino, T. Ebisuzaki[1][W03] and D. Sugimoto. GRAPE-4: a teraFLOPS massively parallel special-purpose computer system for astrophysical N-body simulations. In IEEE, editor, *Proceedings of the Eighth International Par-

Tang:2012:FLC

Takahashi:2016:EBM

Tausch:2003:MBS

Tang:2006:HOP

Vosbeek:2000:ACD

Veerapaneni:2009:BIM

VandeWiele:2008:AFM

REFERENCES

Victory:1991:CAF

Van:2002:DF

Wambgsanss:1999:GLN

Wagner:1994:RPA

Wagner:1994:RPF

Welch:1991:TPW

Wang:2008:FSM

Warren:1998:AAL

White:1994:DEI

White:1996:FTF

White:1996:RAQ

Wilson:2000:PWW

Windemuth:1995:AAM

White:1996:CGF

White:1996:LSD

[WJGHG96b] C. A. White, B. G. Johnson, P. M. W. Gill, and M. Head-Gordon. Linear scaling density functional calculations via

Computer Society Press order number RS00160.

Haitao Wang and Zhenhan Yao. Large scale analysis of mechanical properties in 3-D fiber-reinforced composites

REFERENCES

REFERENCES

[YF98] Tao Yang and Cong Fu. Space/time-efficient scheduling and execution of parallel irregular computations. *ACM Transactions on Programming Languages and Systems*, 20(6):1195–1222, November 1998. CODEN ATPS DT. ISSN 0164-0925 (print), 1558-4593 (elec-
REFERENCES

Norman Yarvin and Vladimir Rokhlin. A generalized one-dimensional fast multipole method with application to filtering of spherical harmonics. Journal of Computa-
REFERENCES

Zhang:2014:PFS

Zhu:2015:SRB

Zhang:2011:OBH

Junchao Zhang, Babak Behzad, and Marc Snir. Optimizing the Barnes–Hut algorithm in UPC. In Lathrop et al. [LCK11], pages 75:1–75:11. ISBN 1-4503-0771-X. LCCN ????

Zhang:2015:DMB

Zhao:2015:SRB

Zhang:2000:SDC

Zhao:1998:TSM

Zinchenko:2005:MAA

Zheng:2016:AEA

Zwart:2010:SUI

Zhao:2007:VFM

Zhiqin Zhao, Narayan Kovvali, Wenbin Lin, Chang-Hoi Ahn, Luise Couchman, and Lawrence Carin. Volumetric fast multipole method for

Zurek:1994:LSS

Zhang:2007:ASD

Zhang:2019:FMM

Zhao:2005:FMB

Zheng:1993:EMM