A Bibliography of Publications about the Fast Multipole Method

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

14 September 2021
Version 2.155

Title word cross-reference

1 [TPKP12]. $\mathbf{15K}$ [WGL+98]. 2
[GRZ04, Lab98, Liu08, ON08a, RS94, VGZ09, WYW05, WXQL08]. 3
[BDMN03b, BHR04, BHGR04, CDM98, DDL13, Dar02, GP08, GD03, JMC97, NW89, NH97, ON08b, PG94, Pta21, QCG15, Sar03, TCD17, WY05, WLL+07, WZC+17, WZC19, WCZ+20, WZC21a, WZC21b, iYNK02, YB01, ZY05]. $\$50$/\text{Mflop}$ [WSB+97].

$\mathbf{7.3}$/\text{Mflops} [KFM99]. 3 [PG96b]. $h = 0$
[DNS90]. H^2 [HXC21]. K [MG05, CK95b].

LU [MG07]. R^N [CBN02]. N [Aar85, Alu94, APG94, Alu96, AGPS98, AAL+01, And99, Ano94a, Ano94c, ADB94, ADBG99, Bag02, Bar86, BADP96, BAAD+97, BADG00, BAD01, BS97, BN97, BOX00, Bor86, BDS07, BME90, BEM94, DH86, Dem95, Dem96a, Dem96b, DHM03, FRE+08, FM95, FM96, FQG+92, HTG02, HJ96, IFM09, IHM05, Kat89, KFM99, KFMT00, KMT94, LKM02, Liu94, MIES90, MTES94, MT95, MD12, MG05, MMC99, Mcd97, NMH06, Oku96, PGB05, Per99, PRL03, SWW94, Sal96, Sha96, SP99, Sin92, SHG95, SHT+95, SRK+12, TMES94, TWY06, TYON12, TYNO12, Ten98, TL14, WPM+02, WS92, WS93, WN14, WSWL95, WSH+12, Xu95, Yin15, YF05, Ano94b, CK95a, CK95b, GKS94, GKS98, Gre90b, HNY+09, HN10, HS95, INS+20, KK95, Xue98]. $N \log N$
[AO10, DYP93, ADO11]. ν [SH07]. $O(\log_2 n)$
[JBL02]. $O(N)$

[BSL11, Deh02, DTG96, OFK14, Xue98].

1
\(O(N \log N)\) [BH86, FGM11, PJY95]. \(r^{-\lambda}\) [CJ05]. \(R^{-r}\) [SH07]. \(r \pm 12\) [Pan95]. \(t\) [MPZ21].

-Body
[Ano94b, CK95b, GKS94, KK95, BEM94, GKS98, Gre90b, HNY+09, HN10, HS95, IN5+20, Xue98, AGPS98, AAL+01, And99, ADB94, Bag02, BADG00, BS97, BN97, BOX00, FM96, HTG02, HJ96, KFM99, KFMT00, SWW94, SHG95, SHT+95, Ten98, WPM+02, WS93, Xu95, Yin15, YF05, Aar85, Alu94, APG94, Aro94a, Ano94c, ADBGP99, Bar86, BADP96, BAAD+97, BAD01, BDS07, BME90, BME93, CK95a, DH86, Dem95, Dem96a, Dem96b, DHM03, FRE+08, FM95, FOG+92, IFM09, IM05, Kat89, KMT94, LKM02, Liu94, MIEM90, MTE94, MT95, MD, MG05, MME99, NMH06, Ouk96, PGB05, Per99, PRL03, Sal96, Sha06, SP99, Sin92, SRK+12, TME94, TWY06, TYO12, TL14, WS92, WN14, WSL95, WSH+12].

-1D [NH97, Pta21, WZC21b, BDMN03b, CD98, DDL13, Dar02, GROZ04, GD03, JMC97, NW89, Sar03, TPKP12, WYW05, WZC19, WZC21a, YB01, ZY05].

-2D [Lab98].
-3D [MG05].

-Nearest-Neighbors [CK95b].

-Accurate [SRP06, AHLP93, Dac06, EG09a, EG13, HHKP09, HLM19, ZGD+16].

-Accelerator [CKE08, HZH+18, LCZ07, SWW99, VCM00, BK96, KCF+05, SGD+04].

-Accelerating [GHRW98, MG09, WC94a].

-Acceleration [CKE08, HZH+18, LCZ07, SWW99, VCM00, BK96, KCF+05, SGD+04].

-accelerator [ATMK03, MD12].

-Achieves [WGL+98].

-Achieving [SSF96].

ACM [IEE02, Kar95].

ACM/IEEE
acoustic

acoustic-structure

adaption

adaption

Adaptive

Adapted

adaptation

Addition

address

Advanced

Advances

algebra

Algebraic

Algorithm

ALiCE

Algorithmic

ALGOL

Algorithms

Almost

Alpha

Alpha/Linux

Alternative

AMBER

AMBERCUBE

AMS

Analyse

Analyzing

analyzing

Annual

anomalies

Antennas

anterpolation

Application

Approach

approximate
approximating [LX17]. Approximation [ADO11, LSCM96, AO10, GP08, ST06].
approximations [CK20, DC07, HW11, Lem04, RŚZ09]. Apr [Dem95, Dem96a, Dem96b]. April [PA02, Wel91]. Aqueous [GP93].
Arbitrary [LS93, WZC+17, GSC01, GL96, KS98b, LM02, Tau03b, YRGS13].
Architectural [DRS96]. Architecture [Lea92, NMH06, Sin92, TYON12, TYNO12].
Architectures [MPZ21, SHG95, HGD11, INS+20, LCL+12, MMC99].
array [CKS91]. article [Dac10]. ASCI [WSB+97]. aspects [CHJN03]. assemblies [CPP93, LDB96].
Astrophysical [Ano94a, KFM99, MTES94, MT95, MFKN03, WS92, HN10, TME94].
Astrophysics [FQG+92, HNY+09]. asymptotic [BK96, Dar00a]. atom [DKG92c, FRE+08]. Atomic [AC94, DKG92a, Kon93]. Atoms [McD97, Pie93].
Australian [Ano92]. Automatic [RGK12]. Autotuning [HEGH14].
Baltimore [IEE96a, IEE02]. Banff [ERT12].
Balancing [PD89].
Barnes [AAD+01, An94b, BJW96, BGLM05, GKS94, GKS98, INS+20, MPZ21, SHT+95, WSH+12, ZBS11, ZBS15]. barrier [WHG+06b]. barycentric [WV85].
Based [AAB+17, CD13, GSS98a, GSS00, MP96, YB01, AO10, BLA95, BN98, BHG905, FMI+93, GROZ04, GKD09, GPO8, HHPK09, HLL08, HLT+18, LM02, LDB96, Liu08, NN12, Sud04, Tak14, WL96, WCZ+20, WVK21, ZHPS11, ZGD+16]. bases [FBHJ04, TW03]. basis [BLA05, BL97, BN98, BCR01, Buh03, CBN02, GH08, GDDC08, GD07a, LCZ07, Yin06].
BEM [SGD+04]. Beach [IEE95]. Behaviour [ON90a]. Beltrami [SHMC97, SM97, SMC97].
BEM-FEM [MB05]. Beowulf [WWF02].
Best [Cip00]. Between [AAB+17, Pie93, CDM98, RŚZ09]. beyond [ZB14].
Bianisotropic [SHMC97, SHM98].
Biomolecular [SRPD06, YBK+11, GCH+18, KP08, LCM07, LCHM10, LCHM13, SKT93].
block-diagonal [CG04]. blocking [TSIM16]. Blue [FRE+08]. BO12 [LB91].
board [ATMK03]. Bodies [BT95]. Body [AGPS98, AAL+01, And99, An94b, ADB94, Bag02, BAD00, BS97, BN97, BOX00, CK95b, FM96, GKS94, HP95, HTGQ92, HJ96, KFM99, KFMT00, K95, Pie93, SWW94, SHG95, SHT+95, Ten98, WPM+02, WZC+17, WS93, Xu95, Yin15, YF05, Aar85, Ah94, AP94, Alu96, An94a, An94c, ADBGP99, App85, Bar86, BAD96, BAAD+97, BAD01, BDS07, B690, B943, B943, BEND94, CK95a, DH96, Dem95, Dem96a, Dem96d, DHM93, EIM+92, EFT+93, FRE+08, FM95, FQG+92, GKS98, Gre90b, HFKM98, HNY+09, HN10, HS95, IFM90, INS+20, IHM05, Kat89, KMT94, LKM02, Li94, MIES90, MTS94, MTF95, MD12, MG05, MCM99, NMO6, OME+92, Oku96, PGB05, Per99, PG96a, PRL93,
Sal96, Sha06, SP99, Sin92, SRK$^{+12}$, SCM$^{+90}$, TMES94, TWYC06, TYON12, TYNO12, TL14, WS92, WN14, WSWL95].

body [WSH$^{+12}$, Xue98, ZBG15]. Bologna [Ano95a]. Boltzmann [BH03, LCHM10, LCHM13, WZC21b]. Book [Gav11]. Born [ADO11, HC10]. Boston [K$^{+96}$]. both [HNY$^{+09}$]. Boulevard [ACM99]. boundaries [Mil08]. Boundary [BH03, BR93, Bre04, LJ96b, LJ96a, MBA97, OSW06b, SS07, WZC$^{+17}$, WSW$^{+95}$, AP03, Atk97, BSL09, Bes00, BWS$^{+95}$, BHR04, BHGR04, Car06, Car07, CWGH97, CKW08, DMC20, Gas97, GBMN06, Gav11, GOS99, GP08, GD09, GODZ10, GAD13, Ham11, KMC09, KCF$^{+05}$, LOSZ07a, LOSZ07b, LCFQ18, LHL08, Lin95, Liu08, Liu09, LC94, Mil08, OSW05, OSW06a, OI08, OKS09, ON08a, ON09a, ON09b, PN95, QCG15, RS20, R$^{+99}$, SGG$^{+04}$, Sat10, SKT93, Sin95, Tak14, TCD17, TCD20, TW03, Taut04, VGB09, WY05, WY07b, WY07a, WSWL95, XJM08, Yin09, iYNK02, YAO18, YAO20, YSM05, BR93].

Boundary-Integral [LJ96b].

boundary-value [Lin95]. Bounds [GSS98a, GSS00, WK18]. breast [ES04]. Breit [JdR$^{+18}$]. Bridging [AAB$^{+17}$]. Broadband [WJYO06, GD09]. Brownian [BGLM05, BLB06, GROZ04, PSPS95, PSS95]. Calculating [BFO99, DM90, LCHM10, LCHM13, SKT94].

Calculation [Deh02, HA17, NT96, BHR96, BH03, FGM11, LDB96, OLLL03, RCWY07]. Calculations [BGGT90, Ber95, CDGS03, CDGS05, KSS10, SK11, PN94, AILS$^{+21}$, CSA95, CK20, KK16, KS98a, LCM07, PA14, SKT93, WH96a, WJGH96b, WH96b].

Calderon [NN12]. California [ACM97, Rod98, Ful97, IEE95, PA02]. Canada [IEE97, HBM10]. Cancer [ES04]. Canonical [LC93, KM00]. Capacitance [YB01, JC04, NW89]. Capacitive [GSS98a, GSS00, WK18]. Cardinal [Boy92b]. Carlo [ESRS01].

Carrier [SB98]. Cartesian [CSA95, CS82, HF92, HLL$^{+18}$, Le97, SH07]. Case [BGLM05, GROZ04, PSPS95, PSS95]. Cauchy [CL12, LCD14]. CE2014 [MBS15]. cells [CC13, CWD08, DKG92a, DKG92c, GDK89, KS98b, KN95, LM02, FL13].

Center [ACM99, Hol12, IEE90, Kar95, Pan95, MK00]. Central [EIM$^{+92}$]. Century [Cip00]. challenge [Bha97]. Challenge [AC94, CC13, GY08, Kan15].

case-grained [PA14]. Coarse-graining [GB11]. coated [ZCG00]. COBE [ZQSW94]. Code [ADB94, Bag02, BH89, Bar90, BADG00, CDM98, CWA14, IFM09, SLCL98a, SLCL98b, BAP96, BAAD$^{+97}$, BAD01, BCAD06, DMC20, Dub96, GY08, GDK98, JdR$^{+18}$, JKCG908, JP98, LWL$^{+02}$, PD89, PG94, Spr05, Wam99, WSH$^{+12}$].

Codes [SWW94, WSW$^{+95}$, NMH06, Pud16].
WSWL95. Coefficients [GD03, Beb06, FST05, KS11]. Cold [ZQSW94]. collective [BSvdG+94].

Collision [BT95, WN14, JdR+18]. collisional [TYON12]. collisionless [TYNO12]. Combined [JMBC98, AiI+21, KM00]. Combining [CDGS03, CDGS05, CWD08, DDL13, DM12, FLZB97a, FLZB97b, GDDC08, PRT92, ZB95]. Comment [KAN96, WJGHG96a]. Comments [PG96b]. Communication [HP95, YTK14, BSvdG+94, IYK16, KP08, SS89, TPKP12]. Communications [KP05a, AiI+21]. Companion [HDG+15].

Comparison [BN97, CDM98, EG09a, RŠZ09, WPM+02, Ess95, SKPP95]. competitive [Ano92]. Complement [MG11]. Complex [CSMxx, MGM95, MBS15, SLC96, SLC97, SY03, AC17, BGGC06, CC10, CC12, NW89, RS20, REI99, TW03, ZB95]. complexes [KSS10]. Complexity [JBL02, Pan92, YTK14, Dar00a].

component [CKB11, JKCGJ08]. composite [EG13, GM94, Pta21]. Composites [SMC97, GH98, WY05, WY07a]. Comprehensive [AC94]. compressible [ECL02]. Compression [YGRS01, XTH09].

Comput [BEM94]. Computation [Gue97, GD03, GD05, GODZ10, McD97, MSV92, Pie93, YRGS13, ATMK03, AO10, FOCH96, TXL19]. Computational [Bat03, BGWP00, JBL02, Kat89, Les96, Mat95, MBS15, TDBEE11, Ano95b, Ano96, Ano97a, OMH+94, SM05].

Computationally [KM00]. Computations [ERT12, Pan92, KAN95, KAN96, OKS09, SY03, VOD08, WJGHG96a, YF98].

Computer [AT87, Ano94a, BGGT90, BP88, CKE08, FM96, HE88, IEE92a, KFMT00, MTES94, MFKN03, Bar86, EIM+92, EFT+93, FMI+93, FM95, HFKM98, HGSS90, KMT94, MIES90, MT95, MHI07, OMH+94, OYK+14, OME+92, SCM+90, TMES94].

Computers [FHM99, LCP93, MT98, DK93, LBI+97, NKV94, OCK+03]. Computing [ACM97, B+95, BGI+99, HTA+97, Hol12, IEE94b, IEE96b, IEE98, LCK11, Mat95, PA02, SMHC97, WRF02, WSW+95, GL03, CPP93, IYK16, MHI07, MCM99, PRT92, Rod89, SH07, Xue98]. concise [PJY96]. condition [YAO18, YAO20]. conditions [CWHG97, SKT93, Sin95].

Conducting [GA96a, HAS02]. conduction [RO04]. Conference [ACM96, ACM97, Ano92, Ano95a, B+95, BR93, HTA+97, Hol12, IEE94b, IEE96c, IEE98, IEE02, Kar95, KK88, LCK11, MC92, MBA97, Rod89, Wel91]. conformal [OR89]. Congress [BGPW00]. congressi [Ano95a]. conjunction [CCKL09]. connected [GGM93]. Connection [BME90, WS91, ZJ91]. conquer [CG04].

Correlations [ZQSW94]. Cosmological [Bag02, BVH88, IFM09, YF05, SPR05].

Coulomb [ADG96, BFO99, CHF89, DNS90, DKG92a, DKG92b, DKG92c, DTG96]. GGM01, GH02, HJJZ09, HLL+18, KS98a,
disciplinary [WSH+12]. discontinuity [RSBS19]. discretization [BDMN03a, BDMN03b, Dar02, GBMN06].
discretizations [Bebo6]. Discretized [VTG91].
displacements [RSBS19]. distorted [HC10].
Distributed [AC94, IEE96b, MB16, SRPD06, YB01, BCOY93, DK03, GB11, HGD11, KP05b, LBC91, LMCP92, MMC99, MRH14].
DNA [FOCB96]. domain [BCOY93, BCOY94, CWD08, GP08, LM02, Liu08, LCZ07, Mil08, OSW06b, OFH08, RŠ09, VW02]. domains [BHR04, GGM93, GK04, RS20]. Don’t [Bar90]. doubly [GK04]. doubly-periodic [GK04]. DR [MH07]. DREAM [OMH+94].
DREAM-1A [OMH+94]. driven [BSL11, LY14]. dual [CCKL09, LCQF18, Liu08, WVK21]. dual-level [LCQF18]. Dynamic [HEGH14, BAAD+97, CK95a, dynamic [LCQF18].
Dynamical [SWW94, WSLW95]. Dynamics [BGGT90, BHGS90, BP88, CDCD97, HM86, JBL02, LCP93, MPPA96, NT96, OKF14, Sch94, TDBEE11, WLMP99, ATMK03, AliS+21, BSL11, BAL91, BSS97, BCL+92, BHE+94, BHER94, BCOY93, BCOY94, BP93, CcHMS94, DK93, EGHT97, FMI+93, GDE89, GKI10, HGS90, Ich02, KM00, KP05a, LM02, BLC91, LBI+97, LMCP92, LWM+02, LRJ+99, NVK94, NT94, OHM+94, OUK+14, OP07, PGB05, SF18, SKE89, VGZB09, VCM00, WS91, Win95, ZB95].
Dynamo [BSL11].
Economization [LRW95]. Editor [GW98].
Editors [Cip00, MBS+00, DS00]. EEG [KCF+05]. effects [AB95, BPK85].
Efficiency [HZH+18, HLL+18, KK16].
Efficient [BS97, DH04a, EG08, HS08, HYS21, NT96, RS06, SKT93, Ami00, App85, Bar86, BHR04, CL91, CCZ97, CWD08, EG09b, GR88b, KM00, KKB+21, Krost, KS98a, LDB96, OF08, PN95, RS20, SIM16, WL96, WHG94, YF98, ZGD+16].
eigendecomposition [CG04]. eigensolver [ZGD+16]. Eighth [HTA+97]. elastic [CCZ97, TC99]. elasticity [GKM96].
elastodynamic [CB14]. elastoplastic [WY07b]. Elastostatic [WZC+17, GG16, GH98, HLL08, Liu08, MB05, iYNK02, ZY05].
elasticities [OSW05, PN95]. Electric [Gus98, PNB94, ZZ93, ABD04, CS82, HF92, WFC08]. Electrically [HAS02, GDC08].
Electrode [HB93]. Electrode-Electrolyte [HB93]. Electrolyte [WZC21b]. electrolyte-dielectric [WZC21b].
Electromagnetic [CSMCxx, EMRV92, GA96a, GA96b, SLC97, BGGC06, Car09, ESRS01, ES04, GH08, HYS21, MG07, MD98].
emotions [Ano95b, Ano96, Ano97a, CJL+97, Erg11, Gib08, LGZ04, OMC08].
Electromagnetism [SRPD06, BWS+95, FGM11, LCHM10, LCHM13, YBK+11]. Element [BR93, LJ96b, Lj96a, MBA97, WZC+17, WYS+95, BSL09, Bebo6, BWS+95, BH03, BHR04, BHGR04, CWK08, DMC20, Gav11, GP08, GD09, GODZ10, Ham11, KMC09, KCF+05, LS05, LOSZ07a, LOSZ07b].
LCQF18, LHL08, Liu08, Liu09, OSW05, OSW06b, Ofo8, OKS09, PN95, SGG+04, Sat10, SS07, TCD17, TCD20, VW02, VCM00, WY05, WY07b, WY07a, WSWL95, XJM08, YSM05]. Element-Boundary [LJ96a, SGG+04].

Elements [BR93, Bre04, FST05, GAD13, Pta21, Ros06].

Elizabeth [IEE97].

Elliptic [A+97, Beb06, FST05, LC14].

Elliptical [Ros06].

Elongation [KLM+09].

Embedded [RS20, SHM98].

EMC [HU97].

Employing [RKRRL21].

Energetic [BPK85].

Energies [DTG96, FGM11].

Energy [HZH+18, BSSF96a, BSSF96b, CC13, CPP93, FOCB96]. energy-conserving [CC13].

Engineering [MBS15, SM05].

Ensemble [LCP93].

Entire [Sar03]. Equation [CD13, GHRW98, GD03, MG11, Nil04, SC95, Sato95a, WZC19, AP03, ABD04, BH03, CHL06, CCG+06a, CCG+06b, CC10, CC12, CRW93, DDL13, Dar02, EG09a, GGM93, GKM96, GR97, GK04, GD06, GD09, GAD13, Kro99, LHL08, LC94, MCBB07, MMNB06, NN12, OLL04, ON08a, ON09a, QCG15, RS97, Rok98, Sta95b, Tak14, WLL+07, WFC08, WZC21a, WZC21b, iYNK02, ZC00, ZKL+07].

Equations [DY98, AHLP93, AD05, Atk97, BDMM03a, BDMM03b, Car06, Car07, CCZ97, DH04b, Fuj98, Gas97, GBM06, GO890, GD07b, Hav03, LSL04, LC14, LC93, NT09, ON08b, ON09a, ON09b, RSZ09, RO04, Rok85, Rok90, RS94, Tau04, TG08, VW02, WLL+07, WZC+20, Yin09, XZ19, ZC00].

equispaced [DR95]. equivalent [RKRRRL21]. equivalent/check [RKRRRL21]. Erratum [BEM94, FLZB97a, SL97a]. Error [BH89, CC04, CC05, GKD09, GSS98a, GSS00, KSC99, OC05, PSSPS95, PSS95, SP97, Dac09, Dac10, OC03, Pel98, WK18, Dar00a].

error-controlled [Dac09, Dac10].

Error-estimates [PSS95]. errors [AP00].
CKB11, Dac06, Dar97, DY98, Dem95, Dem96a, Dem96b, DD95, DR95, DGR96, EB94, EB96, EMR92, ESM98, EG13, FOCB06, Gas97, Gav11, GSC01, GP93, Gre94, GHRW98, GW98, Gue97, GD06, GD07a, GD08, GAD97, GA96a, GA96b, GS98b, HOST95, HAS02, HC10, HA17, HEHG14, JMC97, JMBC98, JBMC98, KLZ06, KM99, KCF05, LCD14, LHL08, Liu09, LX17, LC93, LSCM96, LC96b, LW95, LRW95, MI95, MI96, MBS00, Mak04, MG11, MB16, MB05, MG95, McK96, Fast [MPPA96, MMNB06, NW89, NT96, Ni04, NPR93, Of07, OKS09, PS04, PD15, Pri94, QC15, RR05, RW94, RS94, SHTW94, Sch94, SG97, SHMC97, SMC97, SHTW95, SC95, SL96, LSC96, LSC97, Sta95a, SP01, STZ14, TXL19, WC94a, WC94b, WLM99, WY05, WY07b, WXQ08, WZC97, WC91, WCZ21a, WCZ21b, WSW95, WXY06, XJMY8, YR99, Yin09, Yin15, YNS09, YAO20, YB01, ZY05, AHR93, AR91, AGR88a, AGR88b, AP99, AP00, AP03, Ami00, ATM93, AY02, AI93, ATR12, AC17, BDM03a, BDM03b, BSL09, BG07, BS99, BWS95, BV96a, BSS97, BCM92, BP03, BSS96a, BSS96b, BK96, CDJ07, CC04, CC05, Car09, CRR88, CWW97, CDF10, CKL09, CGR99, CHL06, CCG96b, CRG01, CPP93, CWD08, CRW93, CB20, CFR08, CB09, Da99, Da00, DMC20, Da02, DM07]. Fast [DM12, Da00a, Da00b, DH04a, DH04b, DC07, DRS96, ESR01, ES04, Eng11, EG08, EG09a, EG09b, Erg11, EG01, EMM91, FLZ97a, FLZ97b, FGP05, FD09, Fuj98, GDC08, GBMN06, GF06b, GF06a, GIS98, GY08, GR02, GG16, GROZ04, GDK09, GE13, GR87, GR88b, GG89, GG90, GS91, GH02, GCH98, GD05, GD09, GODZ10, Ham11, HKPK99, HS08, Hav03, HLL08, HYS21, HW10, HW11, HU97, HR98, HGD11, HJZ90, HLL18, IYK16, Kan15, KM00, KSS10, KS99, KKB21, Kon93, KLM09, KS98a, KS98b, KS04, KP05a, KP05b, KP08, KAN95, KAN96, Lab98, LOSZ07, LCL12, LBGS16, LB91, LB92a, LB92b, LB98, LZ04, LCQF18, LGG13, LC14, Liu08, LY14, LCZ07, LCM07, LCHM10, LCHM13, LWM02, Mak99, MG07, MG09, MR07, MRH14, MS10, NT99, NN12, NH97]. Fast [OR89, OSW05, OSW06a, Of08, OCK03, OY14, OMC08, OLL03, OLL04, OFH08, OP07, ON09a, PYY96, PPS94, PPS95, PPS96, PA14, Pta21, Ral96, RRR03, RS20, RS90, RRRL21, RS619, RTZ96, RO04, RTA8, RS97, RS06, RCWY07, SGG04, Sar03, Sat10, SL97a, SL97b, ST06, SWW99, SM97, SHM98, SH07, ST94, Sin95, SKPP95, SP97, Sta95b, SB96, ST02, SK04, Sud04, Syl03, Tak14, TM16, TCD17, TCD20, Tan03b, Tan04, TCD08, TC09, TG08, TD09, VD08, WK18, WYYY06, WL96, WY05, WY07a, WLY+07, WFC08, WSW20, WH94, WJHG94a, WH96a, WJHG96b, WH966b, WVB21, WS95, XWT09, YRGS12, hYtWbW08, YR98, YB97, YBZL03, YBZ04, Ym06, YB9+11, YBNY12, YB12, YBNY13, iYNK02, YAO18, YSM05, ZCG00, ZTH07, ZHP50, ZHP50, ZB14, ZC19, ZCL98, ZKL07, ZGD16]. Fast [ZB95, AAB17, Boy92b, CD13, CB14, CKE08, CFR10, DL13, EM19, FL13, GR97, GS98a, Lea92, LCF93, RGK12, SL91, SLCL98a, SLCL98b, YTK14]. Fast-multipole [Dar97, EG01, Take14, ZCL98]. FCCM [PA02]. FE [SGD04]. February [B95]. FFEM [MB05]. ferrofluids [HHM19]. FFT [TPK12]. FFTM [HLL08, HLL08, OLL04]. fiber [WY07a]. fiber-reinforced [WY07a]. Field [LSCM96, PA02, ADM04, BHR04, BHR05, HW11, KKB+21, MD98, OOS90, WFC08, Xue98]. Field-Programmable [PA02]. Fields [CK95b, Gre87, SHMC97, SMC97, SB98, YR99, CK95a, CG97, DC07, ESM98, GG16,
Gre88, GR88a, GM94, GH98, HR98, OLLL03, Pel98, RKRLR21, ST06, SM97, VOD08.

Fifth [Ano92, IEE96b, MC92, IEE98].

filtering [BP03, YR98]. fine [Bar86]. fine-grain [Bar86]. Finite [FST05, LJ96b, LJ96a, Beh06, Ich02, LS05, LCZ07, SGG+04, Sat10, VW02].

fitting [BS19, CK20, LBGS16, MSS20, TWYC06]. Flexibly [YS18]. floating [LKM02]. floating-point [LKM02]. Flow [Pri94, ECL02, Gre90a, GKM96, GK04, NMDK99, Tau03a]. Flows [GCC+99, WSW+95, BCH93, Kro99, Kro01, Kro02].

Fluid [SWW94, TDBEE11, Bat03, OMH+94, VGZ90, WSWL95]. fluids [Ang17, BPK85, LRJ+99, ZB14]. FLY [BAD01, BCAD06]. FM [BN07]. FM-BEM [BN07]. FMA [LO96b]. FMBEM [CWK08]. FMD [LWM+02]. FMM [CCG+06a, EMRV92, HNO06, HJZ09, HZH+18, MRH14, ON08a, ON08b, ON09b, PG96b, SGD+04, SB08, YS18, ZHPS10].

Forces [BP88, CDM98, NT96, Pie93, WZC+17, BH03, CKS91, DM90, LDB96]. Forest [MPZ21]. Form [CJ05, AP99, BCP08, SH07]. Formation [FM96, FM95, SWJ+05]. forms [KSC99, Rah96, Rok98]. Formula [CL12].

formulæ [NN12]. Formulation [AAL+01, JBL02, CB14, CWK08, CCLKL9, CFR08, CFR10, DM07, GD07b, Liu08, OSW06a, DM12]. Formulations [Ane04b, GKS94, MG11, EG09a, GKS98].

Fortran [GDK89]. Foundations [IEE92a]. four [BCR01]. four-dimensional [BCR01].

Fourier [Boy92b, EMT99, Boy92a, CD13, DR95, EB94, EB96, HLL08, HW01, LHL08, OLLL03, OLL04, Sar03, ZHPS11].

Fourier-Based [CD13]. Fourier-series-based [ZHPS11]. FPGAs [LKM02]. Fractal [PD15]. Fractional [WHR96a]. fracture [XWY+08, ZBG15].

fracturing [RSBS19]. framework [TPK12]. Francisco [B+95]. Fredholm [AHLP93]. free [BSL11, BKM09, Car06].

Frequencies [GHRW98, DH04b, ZC00]. Frequency [Nil04, BK96, DH04a, KMC09, QCG15, TSIM16, ZC00]. frontiers [And08].

Fully [VTC91, RSBS19]. function [BLA05, BKM09, GDDC08, GD07a, GODZ10, LX17].

Functional [DRS96, BS19, KAN95, KAN96, LBGS16, MSS20, WJGH96a, WJGH96b]. Functions [Boy92b, BL97, BN98, BCR01, Buh03, CBN02, KMC09, LCZ07, Tau03b, Yin06].

Future [EMT99].

GADGET [Spr05]. GADGET-2 [Spr05]. galactic [MFK00]. galaxies [SWJ+05].

Galaxy [FM96, FM95]. Galerkin [AHLP93, AP03, DM20, HKS05, OSW05, XWT09].

Gap [AAB+17]. Gauss [GS98a, GS91].

Gaussian [BSSF96a, BSSF96b, KS98a, Le 97, Ros06, Sal96]. Gegenbauer [CC05].

General [LCD14, McD97, BS11, FG96]. Generalization [Boy92b]. Generalized [ADO11, CBN02, GR02, KAN95, KAN96, ST06, SK04, WJGH96a, YR98].

generating [CB20]. Generation [HL15, Sal96]. geometric [CDF10].

Geometries [MG95, AC17, KS98b, NW89]. Geometry [SC94, TW03]. Gflops [MHI07, WGL+98].

giant [RTZ+96]. gigaflaps [WSB+97].

GMRES [BGGC06]. Good [Ten98].

GOTPM [DKPH04]. GPU [GE13, Ham11, KL15, HEGH14, Kan15, MPZ21, WN14, WK21].

GPU-accelerated [Ham11, WK21].
hyper-systolic [DHM03]. Hypercube [BME93, BEM94, BME90, DK93]. hypercubes [SS89].

I/O [Mak93]. ICCAM [BGPW00]. ICCAM-98 [BGPW00]. ICS [KK88].

IEEE [IEE96b, IEE02, PA02, ACM97, Kar95]. Igniting [ACM03]. II [CC05, PGB05, WSB+97]. Illinois [SLCL98a, SLCL98b]. imaging [DC07].

Improvement [Ich02]. Improving [CDD97, GSS98a, GSS00, MPZ21, KK16]. incident [CCKL09]. inclusion [HNO06].

Incomplete [MG07]. Independent [Ahu94, ACG94, AGPS98, Ano94c, SB98, MR07, YS18, YBZL03, YBZ04, Yin06, ZHPS11].

India [IEE98]. indirect [GAD13, Ham11, LHL08]. Induction [Pie93]. industrial [And08, GLS06, Syl03].

Inexact [LOSZ07a, LOSZ07b]. inextensible [VGZB09]. infinite [KS04, Mi08]. Inhomogeneous [SHMC97, SMC97, CL91, SM97, SHM98].

Innovation [ACM03]. Insight [IEE02]. Institute [BR93, HM86]. instruction [TYON12, TYNO12]. Integral [CL12, GKM96, GK04, Kro99, LJ96b, LJ96a, MG11, SC95, ZC00, AP03, AB04, AD05, Atk97, BDMN03a, BDMN03b, Bes00, Car06, Car07, CCZ97, CCKL09, DM07, EG09a, Fui98, Gas97, GMBN06, GOS99, LZL04, LC93, LC94, NT09, OSW06a, ON09a, RŠZ09, RO04, Rok85, Rok90, Ros06, Tak14, TW03, Tau04, VGZB09, WLL+07, WFC08, Yin09, iYNK02, ZX19, ZGD+16].

Integral-Equation [MG11, EG09a]. Integrals [BL05, Gus98, ZZ93, BL98].

Integration [DGR96, Oku96, WZC+17, NMH06]. integrations [CDF10]. Integrator [Per99, SP99, KM00, KMT94]. integrators [FLZB97a, FLZB97b, Sha06]. Intel [FQG+92]. Interacting [BP88, BP93]. interaction [GF06b, GF06a, HLL+18, Kan15, YAO18, ZD05]. Interactions [BFO99, DD95, GGM01, LS93, ATMK03, AO10, BAL91, BPK85, CFB89, CKB11, DKG92a, DKG92b, DG92c, EGHT97, Ess95, GH02, HJZ09, NT94, PJY95, SKT93, ST94, ZHPS10]. interatomic [KCS91].

InterCom [BSvdG+94]. interconnecting [LS05, LOSZ07a, LOSZ07b, OSW06b]. Intercontinental [ZG+10]. Interfaces [HB93, Kro02]. interfacial [Kro01]. interior [Mil08]. Intermolecular [Pie93].

International [BR93, BGPW00, ERT12, Hol12, IEE94a, IEE95, IEE96a, IEE96b, IEE97, IEE98, KK88, LCK11, MBA97].

Interpolation [Boy92a, DGR96, KLZ+06, BLA05, GD07a, Sar03, Tak14, WVK21]. interpolation-based [Tak14].

Interprocessor [BSvdG+94]. Introduction [DS00, GW98]. Inverse [CDGS03, CDGS05, CPD17, Beb06, BN07, FPG05, HC10, LZL04, MG09, TCD17, TCD20]. Inverting [GGM01]. Investigations [hYWbWL08].

inviscid [Kro02]. Invited [HOST95]. involving [AB95, EG09a, Erg11, Lin95]. ion [RT+96]. ionic [BPK85, CL91, DC07].

issue [MC92]. issues
Mak93, Italy [Ano95a, MBA97]. Iteration [GD07a]. Iterative [GSS98b, AD05, FG96, GDDC08, HC10, Mil08].

J [BEM94, Dac10], Jacobi [CC04], Jose [ACM97]. Jr [ACM99], July [IEE96a, IEE96c, IEE97, RSS96]. June [HM86, IEE94a, IEE95, Mak93].

Karhunen [ST06]. Kernel
[WCA14, HXC21, CC15, MR07, YS18, YBZL03, YBZ04, Yin06, ZHPS11].

Kernel-independent [MR07, YBZL03, YBZ04, ZHPS11]. Kernels [LCD14, GR02, PSN04, ZX19].

kind [AHLP93, Tau04]. kinematics [RSZ09].

Knox [ACM99]. KNN [MPZ21]. knots [PSN04].

Knoxville [IEE94b].

Kohn [BSSF96b]. Krylov [Car07, GD07a, JH08].

KWIK [DTG96].

Laplace [GGMG93, GR97, LHL08, WZC21a]. Laplacian [GGGM01]. Large [BADG00, BVW96, BV69b, CDGS03, CDGS05, FLZB97a, FLZB97b, GF60b, GF60a, HOST05, IFM09, OKF14, SRPD06, SLC97, WLMP99, WY07a, ZQS9W4, ATR+12, BAAD+97, BWS+95, BV96a, Car90, DYP93, EG08, Erg11, EG13, GDDC08, GLS06, GK89, HHH19, JDr+18, KP08, LCFQ18, LBI+97, LCZ07, LWM+02, PN95, PG69b, TC09, WY05, WY05, WXY+08].

Large-Scale [BADG00, OKF14, SRPD06, GF60b, GF60a, ATR+12, EG08, Erg11, EG13, HHH19, LCFQ18, LCZ07, PN95, WXY+08]. Lattice [LS93, BG94, KS04, RO04]. Laugh [Bar90].

Layer [McK96, GKD09]. Layered [GA96a, GA96b, WZC19, GROZ04, WZC+20, WZC21a, WZC21b]. layers [GROZ04]. Learning [RGK12, HHKP99].

Leave [Wil00]. Legendre [AR91, Sud04].

lensing [Wam99]. Less [WN14]. LET [HL15].

Letters [MBS+94, CKB11, TYNO12]. limited [BDS07]. Line [YR99]. Linear [CPD17, Goe99, Pud16, WJGHG96b, BH03, BGGC06, KLM+09, OSW05, SSF96].

Local [RGK12, CFR08, MCBB07, RRRL21, YS18]. Locality [SHT+95]. locally [GH98].

Loève [ST06]. logarithmic [JP89]. Logical [Bor86].

Loki [WY99]. London [DKG92a].

Long [Pie93, AO10, BAL91, BPK85, Ess95].

Long-Range [Pie93, Ess95]. lossy [GSC01].

low [GHRW98, DH04a, QCG15, TSIM16, TPKP12]. low-communication [TPKP12]. low-frequency [DH04a, TSIM16]. LSS [BCAD06]. Luther [ACM99].

M [PG96b]. M2L [KKB+21, TSIM16]. machine [HHKP09, BME90, WS91, ZJ91].

Machines [PA02, BCOY93, KP05b, LBC91, Mak93].

magneto-static [VOD08]. magnetorheological [LRJ+99].

magnetostatic [BHGR05]. malignant [ES04].

Many [HP95, PG96a, Pie93, App85, EIM+92, EFT+93, HFKM98, HYS21, INS+20, OME+92, SCM+90]. Many-Body [HP95, Pie93, PG96a, App85, EIM+92, EFT+93, HFKM98, OME+92, SCM+90].

many-core [HYS21, INS+20]. map [GGM93]. MAPLE [McD97, Pie93].
Mapping [BT03, LB92a]. mappings [OR89]. March [Ano95b, Ano96, Ano97a, Ful97, HTA+97]. Martin [ACM99]. Maryland [IEE96a]. Massachusetts [K+96]. Massively [BP88, IFM09, JBL02, KP05b, LO96a, LCF93, MFKN03, LCL+12, LBI+97, MIH07, SRK+12, TME94, WSH+12]. Massively-Parallel [MFKN03, MIH07]. matched [GROZ04, GKD09]. materials [GM94, NKV94, Pta21, K+96]. Matern [CWA14]. Mathematical [BCM02, CHJN03, Dar97]. Mathematics [BGPW00, HDG+15, Ano90, RSS96, dCGQS06]. Matrices [HXC21, Pan92, CG04, Dar06, XTH09]. Matrix [HXC21, PNB94, SP01, Dar06, FG96, XWT09]. matrix-free [FG96]. matrix-vector [XWT09]. Matter [ZQSW94, FRE+08]. Maxwell [DH04b, DY98, GBMN06, CG04, Dac06, XTH09]. May [AG88, IEE94b]. MD [IEE02, DK93]. means [MG05]. mechanic [SW99]. mechanical [SGD+04, Dar97, Dar00a, Dar00b, DH04a, DH04b, DC07, DSGQS06, Dac06, Dac09, Dac10, DMC20, DYP93]. method [Dar02, DM12, Dar97, Dar00a, Dar00b, DH04a, DH04b, DC07, DR96, DKG92a, DKG92c, ERSRS01, FGM11, FOCB96, FLZB97a, FLZB97b, FDO9, Fuj98, FMI+93, GDDC08, GKS98, GG89, GG90, GH02, GP08, GCH+18, GD05, GD06, GD09, GDZ10, Ham11, HM95, Hav03, HC10, HW10, HW11, HU97, HZJ09, HLL+18, Ich02, JH08, JC04, Kan15, KM00, KSS10, KS11, KKB+21, KLM+09, KMC09, Kro01, KS98b, K+04, KP05b, Kn95, KCF+05, Lab98, LCL+12, LBG16, LG09, LGQ+13, LHL08, LC14, Lin08, Lin09, LCZ07, LCM07, LI95, M99, MB05, MR07, Mil08, MRH14, MMNB06, MSS20, NT94, NH97, OSW05, OSW06a, Of08, OKS09, OCK+03, OYK+14, OMC08, OFH+08, OP07, ON09a, PN95, PSP94, PSP95, PSS95, PG96b]. method [PA14, QCG15, ROR3, ROKR21, RSB19, RO04, RTA+08, RS06, SGG+04, SF18, Sat10, SL97a, SL97b, SM97, SH07, Sin95, SKPP95, SP97, Sta95b, SK04, Sud04, SY03, Tak14, TS16, TCD17, TCD20, Tan03b, Tan04, TXL19, TG08, VW02, VOD08, VGZB09, VCM00, WY05, WY07a, WFC08, WZC+20, WZC21a, WZC21b, WH94, WH96a, WJHG96b, WHG96b, WVK21, WSL95, XJM08, YR98, YB97, YBLZL03, YB12, YBY13, YIN02, YAO18, YAO20,
YSM05, ZT07, ZHPS10, ZHPS11, ZB14, ZKL+07, ZGD+16, ZB95, AAB+17, CD13, CKE08, CC10, CC12, CFR10, DDL13, FL13, GR97, LCP93, RGKM12, SL91, YTK14, Gav11. Method-Ecient [NT96].

Methods [Aar85, Alu94, AG88, BS97, BS93, DY98, Dem95, Dem96a, Dem96b, FQG+92, GHRW98, GW98, HEGH14, HJ96, LRW95, MBA97, SRPD06, SHG95, SHT+95, TDTEE11, VTG91, WSW+95, YF05, A+97, BLA05, BCH93, BL97, BG97, BN98, BCR01, Bes00, BDS07, CCL97, CDD08, CK00, Eng11, Gas97, GCG+99, Goe99, GE13, GKM96, GK04, GD08, HGD11, IYK16, Kro99, Kro02, KP05a, KP08, LS05, LOSZ07a, LOSZ07b, LOG12, Liu95, LX17, LY14, MC92, NN12, OSW06b, Otk06, Oku96, PJY96, PG96a, RS20, RS94, ST06, SKT94, SM05, Sin92, SB96, TD90, YGSR01, aYZ97, YNS+09, YBNY12, ZX19, MC92].

[AAB⁺17, And92, BT03, BK15, BPT⁺14, Ber95, BVW96, BV96b, BS00, BL05, BFO99, Boy92b, CDM98, CDGS03, CDGS05, CL12, CD13, CSMCxx, CKE08, CS88b, CC10, CC12, CJ05, CFR10, CPD17, CK11, DDL13, DY98, EB96, EMRV92, FL13, GP93, GSS98a, GSS00, GR97, GHRW98, GW98, Gue97, GD03, GA96a, GA96b, Gus98, GS98b, HOST95, HAS02, HA17, HEGH14, JMC97, JMB09, Kon93, KLZ⁺06, Kk95, Le97, Lem98, LCD14, Lin95, LSCM96, LJ96b, LJ96a, LO96a, LCP93, LRW95, MBS⁺00, MG11, MB16, McD97, McK96, MPPA96, NT06, Nil04, NPR03, OCU05, Pan95, PNB94, PD15, RRR05, RGKM12, RW94, SRPD06, SWS96, SL91, SL97b, Sch94, SG97, SMC97, SHHG93, SHT⁺95, SC94, SC95, SLC96, SLC97, Sta95a, SC94, SC95, SLC96, SLC97, Sta95a, SP01].

Multipole [WC94a, WC94b, WLMP99, WZC⁺17, WZC19, YR99, Yin15, YTK14, YB01, ZJ91, ZZ93, AHHLP93, AG88a, AG88b, AP99, AP00, AP03, Ami00, ATMK03, AY020, AiIS⁺21, ATR⁺12, AC17, BDMN03a, BDMN03b, BS09, BG97, BS19, BWS⁺95, BV96a, BS97, BHE⁺94, BHER94, BL98, BH03, BHGR04, BHGR05, BSSF96a, BSSF96b, BK96, CDJ07, CC04, CC05, Car09, CG88, CSA95, CWHG09, CDF10, CCZ97, CWK08, CCKL09, CG99, CCG⁺06b, CR901, CPP93, CS82, CWD08, CRW93, CB20, CFR08, CB09, CK12, Dac06, Dac09, Dac10, DMC20, Dar02, DM07, DM12, Dar97, Dar00a, Dar00b, DH04a, DH04b, DC07, DR96, DK92a, DK92c, ESR01, ES04, EB94, Eng11, EG08, EG09a, EG09b, Erg11, EG13, EG01, FOCB06, FLZB97a, FLZB97b, FPG05, FD09, Fuj98, GDC08, Gas97, GBM06]. **Multipole** [GF06b, GF06a, Gav11, GSC01, GIS98, GY08, GR02, GG16, GroZ04, GKD09, GE13, GB11, GR88b, GG89, GG90, GH02, GCH⁺18, GD05, GD06, GD08, GD09, GODZ10, GAD13, Ham11, HHKP09, HS08, H03, HYS21, HC10, HW10, HW11, HF92, HU97, HR98, HGD11, HJZ09, HLL⁺18, IYK16, Kan15, KM00, KSS10, KS11, KKB⁺21, KLM⁺09, KMC09, KS98a, KS98b, KS04, KP05a, KP05b, KP08, KAN95, KN95, KAN96, KCF⁺05, Lb98, LM02, LDB06, LOSZ07b, LCL⁺12, LBS16, LB91, LB92a, LB92b, Lj98, LZL04, LQ04, Lm04, LCQF18, LGG⁺13, LC14, Li09, Li09, LX17, LY14, LCZ07, LCM07, LCHM13, LWM⁺02, MJ95, MK99, MG07, MG09, MD98, MB05, MR07, MRH14, MMNB06, MS20, NW89, NT09, NT94, NN12, NH97, OSW05, OSW06a, Of07, Of08, Oks09, OCK⁺03]. **Multipole** [OYK⁺14, OC03, OMC08, OFH⁺08, OP07, ON09a, PRT92, PN95, PJY96, PPS94, PPS95, PSS95, PA14, PTA21, QC15, Rah96, RS20, RŽ09, RKR121, SB10, RTZ⁺96, RO04, RA⁺08, RS97, RS06, RCWY07, SG⁺04, SF18, Sar03, Sat10, SL97a, ST06, SWW99, SM97, SH98, SKT94, Sin95, SKP95, SP97, Sta95b, SB96, SK04, Sud04, STZ14, Syl03, Tak14, TSIM16, TCD17, TCD20, Tau03b, Tau04, TXL19, TCW08, TC09, TG08, TD09, VOD08, WJY006, WL96, WY050, WY07b, WY07a, WL⁺07, WQ0L08, WC⁺20, WCZ21a, WCZ21b, WH94, WJHG06a, WHG96a, WHG96b, WHG96b, WV2K11, XYW⁺08, XJ08, YS18, YRGS13, hYtWbWL08, YR98, YB97, YBZL03, YB02, Yn06, YNS⁺09, YBK⁺11, YBNY12, YB12, YBNY13, iYNK02, YAO18, YAO20, YSM05, ZCG00, ZT07, ZH10, ZHPS11, ZX19, ZCL⁺98, ZY05, ZKL⁺07]. **Multipole** [ZGD⁺16, ZB95, ZD05, CB14].

Multipole-accelerated [BHE⁺94, BHER94, ZD05].

Multipole-Based [GSS98a, GSS00, YB01, LDB96].

multipole-to-local [CFR08, YS18].

Multipoles [And92, AC94, GSS98b, HLL08, LHL08, Mak99, OLL03, OLL04].

Multiprocessor
Multiprocessors [BB87, HS95].
multiadrics [CNB02]. Multiresolution
[VK94]. Multiscale [ERT12, TW03].
Multithreaded [ZBS15]. Multivariable
[BL05]. multiwavelet [FBHJ04].

Name [Cip00]. Napa [PA02]. natural
[AO10]. Near
[BT06, CAJ09, ON09a, Rei99]. near-rigid
[CAJ09]. Nearest [CK95b]. Neighbor
[Bor86]. Neighbors [CH95b]. Neptune
[MKFD02]. network [LB91]. Networking
[ACM97, Hol12, LCK11]. networks
[Kan15, LJK98]. Neumann [GGM93].
New-version-fast-multipole-method
[LCM07]. Newport [IEE95]. News [Kan15].
NH [Mak93]. no [BEM04]. Node
[BB87, FNR08]. Node-Level [BBK15].
Non-Uniform [BB87], nonbond [DK92a].
nonbonded [ATMK03]. nonequispaced
[PSN04]. nonlinear [CAJ09]. nonlinearly
[CC13]. nonsymmetric [GR02]. nonplanar
[BB97]. nonsmooth [Benn06]. normal
[GG16]. Nose [VVW96]. Notre [IEE96c].
November [ACM96, AC97, ACM99,
ACM03, Hol12, IEE90, IEEM92b, IEEM93,
IEEM04, IEEM02, KJ99, LCK11]. nuclear
[PG95]. number [GBK98, Ich02].
numbers [JdR18, WYCW05]. numerica
[Ise97]. Numerical
[CL91, GKK07, Krc02, Pri94, TDBE11,
dCGQS06, Atk97, BCM02, BCH93, CDF10,
C97, CHJN03, Dar00b, GCG99, Gre90b,
GM94, GH98, KSC99, Krc01, OR99, PRT92,
RSS96, TNYO12, Wam99, ERT12].

O [Mak93]. Object
[BW95, SHMC97, ESR901, SM97, SHM98].
Objects [BVW96, BV96b, SLC96, SLC97,
BV96a, EG09a, Erg11, TC90]. Oblique
[SM97, CCKL09]. obstacles [Mak93]. Oct
[WS93]. Oct-Tree [WS93]. October
[An97b, HB93, IEEM92a]. Off [HL15, DH86].
Off-Loading [HL15]. One
[An94a, MTES94, WW92, FSR08, HM95,
MR07, SK04, YR98].

one-dimensional [SK04, YR98].
One-Tflops [An94a, MTES94]. onto
[BV92a, LB92a]. open [CK91]. Opening
[And98]. OpenMP [AAB17]. operator
[CFR08, Lem98, Lem04, YS18]. Operators
[CAJ05, Beb06, E82, CB29, ESM98, FBHJ04,
Rah96, Rok98, TW03]. OPFMM [CRG01].
opportunities [An90]. Optical [Fal97].
Optimal [DKG92b, HHJK90, BWS95,
BME90, CRG01, MG90, PRL03].
optimal-parameter [CRG01].
Optimization [BK15, MBS15].
Optimizations [DCM20]. Optimizing
[PD15, ZBS11, CB20]. Orbits
[GS98, Le 97, ZZ93, KS98a]. Order
[BT06, LS93, RRR05, Ah96, DC07, GH98,
GBMN06, GL96, PRL03, Pia21, TWY906,
Tat93a, Tat04]. Oregon [ACM99, IEE93].
organic [CKS91]. organization [AO10].
organizations [TD09]. Origin [Le 97].

orthotropic [ON09b]. oscillatory [XZ19].
other [ZB95]. overlapping [KP05a].
overview [SB96].

P [PG95b]. PA [ACM96], Package
[HXC21]. pair [CK95a]. Pairwise
[BP88, CKS91]. Palazzo [An95a]. Panel
[An97b, RRR03]. Panels [RR95]. Paper
[HOST95]. Papers [Ah97b, IEEM92a].
parabolic [JH08]. paradigms [MMC99].
Parallel [AAL17, An94b, ADB94,
ADG99, B+95, BADG00, BPT14,
Bha97, BS97, BP88, CDCCD97, GKS94,
GCH18, HAS02, HTA97, HP95, HJ96,
IFM09, HJM05, JLB02, JKCG08, Liu94,
LO96a, LO96b, LC93, MFF03, Mak04,
Mat95, MBS15, NRR93, OFK14, Per99,
Pri94, SWW94, SP99, Sin95, SHHG93,
T098, TDBE11, WS93, WSS95, Xu95,
Parallelism \cite{BGLM05}, Parallelization \cite{LB91, Lea92, TCD20, BCOY93, DK93, EG08, EG09b, HYS21, SWW99}, parallelized \cite{AiIS21, OME92}, Parallelizing \cite{CvHMS94, Sta95a}, parameter \cite{CRG01}, Parametric \cite{SC94}, Park \cite{RSS96}, Part \cite{Dem96a, Dem96b}, Particle \cite{BOX00, DYP93, Gre87, MFKN03, Pri94, VTG91, AGR88a, CGR88, CC13, CB09, CKB11, DKPH04, ELC02, FMI93, GY08, GR87, Gre88, KM00, KK16, Kro99, KP05a, LRJ99, PJY95, WY05, WS95b, YGSR01}. Particle-in-cell \cite{CC13}. Particle-Mesh \cite{BOX00, DKPH04}, particle-particle \cite{PJY95}, particle-reinforced \cite{WY05}. Particles \cite{BP88, HE88, BP93, CPP93, DKG92a, GDK89, Ich02, JdR18, Kon93, LDB96, YRGS13}. partition \cite{AYO20}. Partitioning \cite{BB87, Ten98, EG09b, GYO05}, passing \cite{KP08}, PDEs \cite{A+97}. PEACH2 \cite{HL15}. PEC \cite{GSC01}. Peculiar \cite{ZQS94}. pedestrian \cite{CRW93}. penetrable \cite{ESRS01}. Pennsylvania \cite{IEE92a}. Pentium \cite{WSB97}. Perfect \cite{HAS02}. perfectly \cite{GROZ04, GDK09}. Performance \cite{ACM97, BGI+99, BK15, Car07, FHM99, HL15, Hol12, IE94b, IE96b, IE98, LCK11, LWM+02, MKF01, NMH06, RC97, SF18, SKT94, WPM+02, CFR08, CFR10, HXC21, IYK16, INS+20, MD12, Sha06, WSB+97}. Performing \cite{Sar03}. Periodic \cite{CWGH97, RO04, RW94, Ami00, BS19, CPP93, CFH89, DKG92c, FLZB97a, FLZB97b, GKO4, HM95, HNO06, KS98a, KS98b, KS04, LDB96, LBGS16, LCZ07, NN12, ONOsa, ONOsb, ONO9a, ONO9b, PG96b, SRT93, Sin95, YBS97, YAO18, YAO20}. periodicity \cite{YS18}. Petascale \cite{OYK14, YBNY13}. Pfiops \cite{MH07}. PGAS \cite{MRH14}. PGAS-FMM \cite{MRH14}. Phantom \cite{TNO12}. Phantom-GRAPE \cite{TNO12}. Phoenix \cite{ACM03}. photonic \cite{ON08b}. Phys \cite{Dac10}. physics \cite{Gre94, PG96a}. Piecewise \cite{GSS98b}. Pipeline \cite{HZH+18}. Pittsburgh \cite{ACM96, IEE92a}. plan \cite{Ano90}. Planar \cite{GGM01}. Planck \cite{Lem98, Lem04}. plane \cite{GKM96, MD98}. planetesimals \cite{MKFD02}. plasma \cite{AGR88b, JKCGJ08, PG94}. plasmon \cite{GIS98}. plasmonic \cite{ATR+12}. platform \cite{BAD01}. platforms \cite{IKY16}. plus \cite{CG04}. PMD \cite{Win95}. Point \cite{CK95b, HXC21, LKM02, Rei99}. points \cite{STZ14}. Poisson \cite{WZC21b, AC17, BH03, GL96, LJ98, LCHM10, LCHM13, MCBB07, MGM95, Mi108, RS20, RŠž09, VGT91}. polar \cite{BP85}. polarisable \cite{HHKP09}. Polarizability \cite{PNB94}. polyelectrolyte \cite{FOCB96}. Polygons \cite{BT03}. polyharmonic \cite{BL97, BCR01, BPT07}. polymers \cite{BCOY94}. Polynomial \cite{DGR96, PRT92, Rei99}. Polynomials \cite{Pan95, CAJ09, Mak93}. practical
Prager [GCH+18, LGG+13].

pragmatic [SB96]. Precise [Ami00].

preconditioned [BGGC06, GD07a].
Preconditioner [CDGS03, CDGS05, CPD17, Car06, DDL13, Of08, TCD17].

Preconditioners [MG11, ABD04, Car09].

Preconditioning [NN12, Beb06, FPG05, LZW04, MG07, MG09, RWY07].

predictor [TWYC06]. predictor-corrector [TWYC06].

preeminent [YB12].

preprocessing [SK04].

Prescription [GS98b, CRW93].

presented [Ano97b].

Pressure [YAO18, YRGS13].

Price [WSB+97]. Price/performance [WSB+97].

Princeton [HM86, HGC+15].

Principles [OKF14].

Problem [APG94, AGPS98, Ano94a, Dem95, Dem96a, Dem96b, HTG02, MTE94, Yin15, CCKL09, DH86, DHM03, Gre90b, IHM05, Kat89, KS98a, Mil08, Pud16, SSF96, TL14, WXQL08].

Problems [BB87, EMV92, GA96b, KK95, LJ96b, LJ96a, MG11, MBS15, SWW94, SG97, WZC+17, AP90, AD95, ATR+12, BSL09, Bes00, BCP08, BHGR04, BHGR05, BGGC06, CC04, CC05, Car99, EG08, EG09a, Erg11, FST05, Fuj98, GDDC08, GLS06, HM95, HNO06, HU97, JH08, Lab98, LCQF18, Lin95, Liu98, MIES90, Oku96, ON08a, ON08b, ON09a, Rah96, RSBS19, RO04, SCM+90, TWYC06, WJYO06, WY07b, WSLW95, XWY+08, XJM08, iYNK02, ZY05].

Proceedings [ACM96, ACM97, AG88, ERT12, Hol12, HM86, IEE02, Kar95, LCK11, Rod89, Ano92, Ano95a, IEE92a, IEE98, KK88, PA02, Wel91, B+95, BGPW00, HB93, HTA+97, IEE90, IEE92b, IEE93, IEE94b, IEE96b].

Proceedings. [IEE96c].

processes [JaR+18].

process [Sal96].

Processing [B+95, HTA+97, BCOY94, Rod89].

Processor [WWF02, FL13, HYS21, MIH07].

processors [GD08].

products [And08].

Program [CDCD97, YB01, App85, LBI+97, WS95b, Win95].

Programmable [PA02, HFKM98].

programming [MRH14].

Programs [BGM05, RC97].

PROGRAPE [HFKM98].

PROGRAPE-1 [HFKM98].

Progress [Ano95b, Ano96, Ano97a].

Prolate [KLZ+06].

Propagation [Ano97b, IEE94a, IEE95, IEE96a, IEE97, WC94a, WC94b, CHJ03, GL06].

propagator [ZB95].

properties [WSB97].

Quadrature [WK18].

Quantum [PS96, KLM+09, SSF96].

quartic [WHG96b].

quasars [SWJ+05].

Queen [IEE97].

Radar [Gue97, Ano97b, Ano97b].

Radial [Bu03, BLA05, BL97, BNC98, BCR01, CB02, GD07a, PS04, Ym06].

Radiation [CSMCxx, SG97, COK08, YRGS13].

Radiosity [SHT+95, HSA91, MMN06].

Radome [BVW96].

Random [MP221, CG97, ESR01, ST06].

Range [Pie93, AO10, BAL91, BDS07, BP93, Ess95, KMC09].

range-limited [BDS07].

rank [HW11].

Rapid [Gre87, KLZ+06, Rok85, Rok90, BH93, EGT97, Gre88, GR88a, HSA91, PJY95].

Ray [WC94a, WC94b].

Ray-Propagation
[WC94b]. RCS
[BVW96, BV96b, BV96a, Gue97, RCW97].
reacting [NMDK99]. reaction [DC07].
ready [BAD01]. Real
[MSS20, MKF01, SH07]. Real-time
[MSS20]. realistic [NKV94], rectangular
[AYO20]. Recurrence [CSA95].
Recursions [GD01]. Red [WSB97].
redefinition [PJY96]. Reduced
[HW11, HF92, DKG92c]. Reduced-rank
[ZB95]. regime [QCG15]. region
[MKFD02]. regular [Besse0, CDF10, HW10].
regularization [JP98]. reinforced
[WH05, WH07]. related [Ano90, BCH93,
GCG99, GODZ10, KMC09, ON08b].
relations [CSA95]. Remarks [CCG96a].
Renewing [Ano90]. renormalization
[BG94]. Reply [KAN96]. representation
[DM07, GODZ10, STZ14, TW03]. Research
[ERT12, Ano90]. resonances
[GIS98, RTZ96]. Resonant [ES04, SA10].
Resource [HZH98]. review
[Ano95b, Ano96, Ano97a, Gav11]. reviews
[Les96]. Revision [CC12, ZHS910].
Revisiting [KS04]. Rigid
[BT95, JBL02, CAJ11, CH006, ZBG15].
rigid-inclusion [HNO06]. rigorous
[SKPP95]. Ring [BHGS90]. Rockefeller
[IEE90]. Rohlin [HM95, HS08, SB98].
Rome [MBA97]. Root [GGM01]. Rotating
[WHG96b]. Rotation [GD03, Dac06].
Rotne [GCH98, LGG913]. Rough
[JM97, JMB98, ESR01, JMB98].
Round [DH98]. Round-off [DH98].
RPFYMM [GCH98]. run [RC97].
run-time [RC97]. Runs [Bar90]. Routine
[AAB917].

SA1 [MG96]. Salt [Hol92]. sampling
[LX17]. San [ACM97, B95, Kar95]. Santa
[Sav97]. Savart [Ros06]. SC11 [LCK11].
SC2002 [IEE02]. SC2003 [ACM03]. SC97
[ACM97, ACM97]. SC99 [ACM99].

Scalability [RS97]. Scalable
[An94b, BHE94, BHER94, GKS94,
GKS98, HAS02, HGD11, IEE94b, MSV92,
OKC93, OKF14, YB12]. scalar
[GD07a, KSC99]. Scale [BADG00, OKF14,
SRPD06, WLMP99, QSWS94, Ang17,
ATR92, EG08, Erg11, EG13, FLZB97a,
FLZB97b, GF06b, GF06a, HHM19, INS92,
KPO8, LCQF18, LCZ97, LWM92, PN95,
WY05, WY07a, WS15, WXY08].
Scaling [CDC97, FRE98, YBY12,
Goe99, KLM99, SSF96, WJGH96b].

Scatterers [HOST95]. Scattering
[BVW96, EMMR92, GA96a, GA96b, HAS02,
JMC97, JMB98, LJ96, LJ96a, SHMC97,
SMC97, SLC97, ZCG00, AP99, AP00, AD05,
BN07, BGC06, CC04, CC05, Car09,
CWK08, DHO4a, ESR01, EG08, EG09a,
Fuj98, GH08, GSC01, GD05, HC10, HW10,
JBCMC98, Lab98, LCG9, MGO7, RAK96,
RTZ96, Rok90, SM97, SHM98, TCM98,
TC90, WJY06]. scheduling [YF98].
schedule [NMD99, NMH06, WLL97].

Schrödinger [ZK107]. Schur [MG11].

Schwarz [BT03]. Sci [BEM94]. Science
[FH99, IEE92a]. sciences [SM95].
Scientific [B95, HTH97, MT98, MSV92,
CGL03, LKM02, MI107, PD99, Rad98].
Screened [BFO99, GH02, HJZ09, ZHS10].

Seattle [IEE94a, LCK11]. Second
[IEE96c, AHP93, BSS96b, KS11, TAN04].

Section [Gue97]. seismic [Fuj98]. self
[TY912]. self-gravitating [TY912].
Seminar [RS99]. semiseparable [CG04].
sensitivity [DH98]. Sensor [Ano97b].
separated [Eng11]. September [Ano95a].

Sequential [WSW95]. series
[CC04, CC05, ZHS11]. set
[TY912, TY912]. Sets
[CK95b, PD15, Eng11]. Seventh [B95].
Sham [BSS96b]. shape [LM92]. shaped
[YRGS13]. shared [H95, RC97, SKE89].
shared-memory [Ske89]. short
[BAD96]. shells [CAJ90]. short
[GODZ10, KSC99, PJY96, ST02, YR98].

Spline [CS98b, DKG92b]. Splines [CS98a, BL97, BCR01, BPT07]. Square [GGM01]. Stability [Nil04, Sud04]. stable [DH04b]. standard [BCP08]. static [VOD08]. Station [ERT12]. statistical [Kan15].

Steepest [JMC97, JMB98, ESR01]. steepest-descent [ESR01]. Stellar [HM86]. Step [BS93, FLZB97a, FLZB97b, KM00, RCWY07]. stepping [BSS97].

Storage [Hol12, LCK11]. Structural [BPK85]. Structure [BADG00, NT96, ZQSW94, AYO20, GF06b, GF06a, Goe99, Kat89, KS98a, NT94].

Structures [And99, CSMCxx, GGM01, MI96, RW94, WPM+02, Car09, CWK08, EG13, LCZ07, WS92, ZCL+98, ZY05].

Studies [RTZ+96]. Study [BGLM05, HM86, Pri94, Dar97]. studying [Kro01]. sub [LCZ07]. sub-entire-domain [LCZ07]. Subdivision [BT95]. Summation [CWA14, LS93, Ami00, BAL01, IHH05, SF18, ZB14].

Summer [RSS96]. Sums [DNS90, BG94, DYP93, KS04, RO04, SL97b].

Sunnyvale [Wel91]. Supercomputers [FQG+92, HM86, BAD01].

Supercomputing [ACM96, Ano92, IEE90, IEE92b, IEE93, IEE94c, Kar95, Ano92, KK88]. Surface [MG11, CC97, ESR01, ZBG15]. Surfaces [CSMCxx, HAS02, JMC97, JMB98, GH08, JBC98, RKRL21]. Surfaces-Wire [CSMCxx]. suspended [VGBZ09].

SW26010 [HYS21]. switch [SGD+04].

Switching [HL15]. Symbolic [Pie93, CB20]. symmetric [CG04, DMC20, OSW06a]. Symposium [Ano97b, HB93, IEE92a, IEE94a, IEE95, IEE96a, IEE96b, IEE97, PA02, K+96, Mak93]. Syracuse [IEE96b].

System [BGI+99, RKGM12, BAAD+97, TMES94, ZB95, HTG02]. Systems [AAB+17, CPD17, GP93, Gre87, HEGH14, MT98, VDG91, YF05, AB95, BS19, BWS+95, BGGC06, CL91, CDF10, CFH89, DYP93, DKG92c, EIM+92, EFT+93, Gre88, Ich02, KS98a, KS98b, KN95, LM02, LBGS16, LB92a, LBI+97, LCM07, LCHM10, LCHM13, PGB05, PG96b, TYON12, YB12, YAO20, ZB95]. Systolic [BHGS90, DHM03].

T3D [BAAD+97]. tails [ADG96].

tangential [GH08]. Target [SB98, GSC01].

targets [Ano97b]. Task [AAB+17].

Task-Based [AAB+17]. Taylor [WCZ+20].

tearing [LS05, LOSZ07a, LOSZ07b, OSW06b].

Technique [WZC+17, Gas97, KLM+09].

Techniques [CDGS03, CDGS05, PRT92, SWW99].

Telescoping [LRW95]. Template [BGLM05].

Tennessee [IEE94b]. tensor [BS19, CB14, CSA95, GCH+18, HC08, HLL+18, LGG+13, YA018].

Tensors [PNB94]. Terabytes [IEE02]. teraFLOPS [TMES94]. Term [DNS90]. terms [JP89].

test [AB95]. Tflops [Ano94a, HNY+09, HN10, MTE94, MFK00, MKF01, MKFD02]. theorem [KSC99, Lab98]. theorems [HC08].

Theoretical [CC15]. theory [AP99, BS19, Buh03, CK00, GD07b, K+96, LBGS16, MSS20, Pel98, Rok85, Rok90, Tau03a].

thermodynamics [Kan15]. Thin [ZCL+98, CAJ09, ZY05]. Thin-stratified [ZCL+98].

Third [KK88, Rod89, Bha97].

Thousands [BT03]. Three [CS98a, JMB98, LO96a, Nil94, Pie93, Pri94, SL91, SC95, WSW+95, YB97, BS19, BPT07, CWK08, CGR99, CCG+06b, ESR01, ES04, ESM98, GR88a, GR97, GH02, GD06, GD09, LB92b, LCQF18, MCB97, OLLL03, PSS95, SL97a, Tak14, Tsim16].
Three-Body [Pie93], Three-Dimensional [JMBC98, Pri94, WSWL95, YB97, BSL90, CWK08, ESRS01, ES04, ESM98, LCQF18, OLL03, PSS95, Tak14, TC09, TG08, WSWL95, YAO20].

Three-Dimensional [Pie93].

Three-Dimensional [JMBC98, Pri94, WSWL95, YAO20].

Time [BS90, MD98, BSS97, FLZB97a, FLZB97b, GD07b, KM00, MSS20, OFH90, RC97, SRK91, VW02, Xue98].

Time-dependent [MD98, MSS20].

Time-domain [VW02].

Time-efficient [YF98].

Time-harmonic [GD07b].

Time-step [KM00].

Top [Cip00, DS00, MBS00].

Topological [BN07].

Toroidal [CKS91].

Toronto [HB93].

Touchstone [FQG92].

TPM [Xu95].

translates [HLL18].

trained [HHKF09].

transfer [GODZ10, KMC09].

Transform [EB96, EB94, GS91, HLL08, HW11, LHL08, OLL03, OLL04, Sar03, ST02, Sud04, Boy92b, EMT99, GS98a].

Transformation [DNS90].

transforms [DR95].

Transient [BB97].

Trees [BF78].

Trees [BF78].

trees [HLL18].

trenches [TCW08].

Trends [MBS15, Car09, CGL03, Les96].

triangulated [RS94].

Truly [APG94, Ano94c].

truncated [TCW08].

Truncating [BPK85].

Truncation [OC03, AP00, AB95, CC04, CC05].

tube [Lin95].

tumors [ES04].

tunel [YB12].

tuning [MK01, NMH06].

turbulence [HNY09, YNS09, YB12].

Turkey [Ano97b].

Two [LS93, McK96, Pan95, Pie93, RRR05, BL97, Car06, CHL06, CCG96a, CC10, CC12, ECL02, EG01, GH98, JKCGJ08, Kro01, NT09, PSS95, RRR03, Rok90, Rok98, RCWY07, SKPP95, WY07b, XJM08, YB04, YAO20].

Two-Center [Pan95].

Two-component [JKCGJ08].

Two-Dimensional [LS93, BL97, CC10, CC12, ECL02, GH98, Kro01, NT09, PSS95, RRR03, WY07b, XJM08].

two-grid [Car06].

two-step [RCWY07].

Type [Gus98, ZZ93].

U.C.L.A [AG88].

U.S. [Ano90].

ultra [DM07, DM12].

ultra [DM07, DM12].

ultracold [JKCGJ08].

Uncertainty [MBS15].

Unified [JBL02].

Uniform [BB87].

uniqueness [YSM05].

unit [DKG92c, KS98b].

University [IEE94a].

unknowns [YBK11].

Unrelaxed [PNB94].

unstructured [HKS05, MSV92].

UPC [ZBS11].

Updates [Kan15].

Updating [HA17].

upon [TD09].

Uranus [MKFD02].

USA [Hol12, HM86, IEE96c, ACM97, IEE02, K96].

Use [HM86, SPS96, Bes00, Mak93, PJY96, SM97].

User [Wel91].

Using [BVW96, BV96b, BP88, CL12, CKE08, CS98b, CPD17, GA96a, HE88, HXC21, LKM02, LSW95, MI96, MPFA96, Per99, SG97, SHMC97, SM97, SP99, SC94, BS19, BV96a, Bor86, BH88, CKS91, CVHMS94, DM07, ERS01, ES04, ESM98, Gas97, GF06b, GF06a, GD05, HC10, HLL18, Kan15, KM00, LBGS16, LB91, L98, LO96b, LCZ07, LWM90, MI95, MRH14, MSS20, OYK14, Pri94, RC97, RS20, Sat10, Syl03, Tau03a, WY07a, WS92, WSWL95, YB97, YBK11, YBNY13, ZCG00].

UT [Hol12].

Utah [RSS96].
vacancies [Kon93]. value
[Lin95, ON09a, ON09b, RTA98]. values
[LX17]. variable [Tau03a, Tau04]. variables
[JP89]. Variants [YTK14, BHER94].
Variational [DM12, DM07]. Vector
[CS98a, TYON12, HC08, XWT09]. Vectorized
[Bor86, GDK89, BP93]. Velocities
[ZQSW94]. versatile [WS95a].
Version [GS98a, NT96, SP01, GG89, GG90,
GR97, GH02, LCM07]. very
[BSSF96a, BE90, LBI97, PPS94].
vesicles [VGZB97]. via [AGR88b, GB11,
Gue97, GD07a, GODZ10, WJGH96b].
videoscopie [Ano97b]. virial [KS11].
virtual [XJM08]. viscous
[BLA05, VGZB97]. Vlasov [VTG91]. Vol
[Bat03]. Volterra [ZX19]. Volume
[MB16, NT09]. Volumetric
[ZKL07, HW10]. Vortex
[BCH93, CK00, DD95, RRR05, WSW95,
aYZ97, BLA05, CWD08, ECL02, HM95,
Ros06, RS94, SWL05, AG88].
vortex-in-cell [CWD08]. vorticle
[Ang17]. voxel [Ham11].
W [MD12]. WA [LCK11]. Waals
[DKG92b]. Warp [MPZ21]. Washington
[IEE94a, IEE94c]. Water [BAL91, HHH09].
wave
[BSL09, Bes00, BGCC06, CZZ07, CCKL09,
CHJN03, CRW93, ESR01, ESM98, GLS06,
LC94, MD98, Tak14, TCV08, TC09].
Wavelet
[HKS05, BP03, RŠŽ09, WZ09, XTH09].
wavelet-BEM [XTH09]. Wavelets
[A97, CM06, Tau03a]. WAVES [CHJN03].
weak [DM07, DM12]. well [Eng11].
well-separated [Eng11]. wFMM [CC12].
Wheeler [JdR18]. Who [Wil00]. Wide
[MPZ21, KMC09]. Wide-Warp [MPZ21].
wideband [CC15, CCG+06a, CCG+06b,
NT09, CC10, CC12]. Wigner [Dac06].
WINE [FMI+93]. WINE-1 [FMI+93].
Winter [ERT12]. Wire [CSMCCx].
without
[ADG96, And92, HP95, Mak99, Pel98].
Wood [ON09a]. Worcester [BR93]. work
[BDP96, DTG96, Rei99]. work [BDP96].
Workshop [ERT12, HM86, AG88].
workstations [LJ98]. World [Wil91].
WOTUG [Wil91]. Would [Wil00].
X [Ful97]. X10 [MRH14]. x86
[TYNO12, TYNO12]. x86 [NMH06]. XV
[BR93]. XXVI [Bre04].
Yamakawa [GCH18, LGG13]. York
[IEE90, IEE90, IEE96]. Yukawa
[BFO99, HJJ18, ZHS10].
zero [GS96, SF18, ZC00]. zero-multipole
[SF18]. Zonal [BDS07].

References

Ainsworth:1997:WMM
M. Ainsworth et al., editors. Wavelets, multilevel methods
and elliptic PDEs, Numerical mathematics and scientiﬁc
computation. Oxford University Press, Walton Street,
QA374 .W38 1997. The Seventh EPSRC Numerical Analysis
Summer School was held at the University of Leicester
during the summer of 1996, from the 8th to the 19th of
July.

Agullo:2017:BGB
Emmanuel Agullo, Olivier Aumage, Berenger Bramas,
Olivier Coulaud, and Samuel Pitoiset. Bridging the gap

[AC17] T. Askham and A. J. Cerfon. An adaptive fast multipole ac-

Antonuccio-Delogu:1994:PTB

Antonuccio-Delogu:1999:PTA

Adamson:1996:CCT

Anandakrishnan:2011:GBA

Anderson:1988:VMP

Aluru:1998:DIH

Ambrosiano:1988:FMM

Ambrosiano:1988:GPS

[AGR88b] John Ambrosiano, Leslie Greengard, and Vladimir

Allen:1993:GIM

Andoh:2021:AMM

Aluru:1994:DIH

Aluru:1996:GBA

Amisaki:2000:PEE

Anderson:1992:IFM

[Christopher R. Anderson. An implementation of the...

Anonymous:1994:TDA

Anonymous:1995:ECP

Anonymous:1995:PAC

Anonymous:1996:PAC

Anonymous:1997:PAC

Anonymous:1997:RSA

Anandakrishnan:2010:ABN

Amini:1999:ADF

Amini:2000:ATE

Amini:2003:MLF

Aluru:1994:TDI

Appel:1985:EPM

Alpert:1991:FAE

Allen:1987:CSL

Atkinson:1997:NSB

Amisaki:2003:DHA

Araujo:2012:SLS

Andoh:2020:EFM

Ying:1997:VM

Bailey:1995:PSS

Becciani:1997:PTC

Becciani:2000:MPT

Becciani:2001:YRF

Becciani:2002:WDS

Bagla:2002:TCC

Belhadj:1991:MDS

Barnes:1986:USS

Barnes:1990:MTC

Bathe:2003:CFS

Berger:1987:PSN

[BB87] Marsha Berger and Shahid Bokhari. A partitioning stra-

Becciani:2006:FMP

Beale:1993:VFR

REFERENCES

REFERENCES

Bentley:1978:FAC

Boschitsch:1999:FAM

Berman:1994:RME

Beatson:1997:SCF

Rick Beatson and Leslie Greengard. A short course on fast multipole methods. In Ainsworth et al. [A+97], pages 1–37. ISBN 0-19-850190-0. LCCN QA374.W38 1997. The Seventh EPSRC Numerical Analysis Summer School was held at the University of Leicester during the summer of 1996, from the 8th to the 19th of July.

Bunse-Gerstner:2006:PGC

Bakker:1990:SPC

REFERENCES

Baldini:1999:HPC

Bischof:2005:DPC

Broeckx:2000:PIC

Barnes:1986:HFC

J. E. Barnes and P. Hut. A hierarchical $O(N \log N)$ force-calculation algorithm. *Nature*, 324(6270):446–449, ???? 1986. CODEN NATUAS. ISSN 0028-0836 (print), 1476-4687 (electronic). This paper appears to be the origin of fast multipole algorithms; its $O(N \log N)$ complexity was later improved to $O(N)$ [GR87]. See also [App85], which might predate this work.

Bouchet:1988:CSU

Barnes:1989:EAT

Bordner:2003:BES

A. J. Bordner and G. A. Huber. Boundary element solution of the linear Poisson–Boltzmann equation and a multipole method for the rapid calculation of forces
REFERENCES

Bhanot:1996:HDP

Burkholder:1996:HFA

Beckmann:2015:PNL

Beylkin:2009:FCF

Beatson:1997:FER

Bokanowski:20198:FMM

Bokanowski:2005:FMM

Barba:2005:AVV

Brunet:1990:OHD

Brunet:1993:HAD

Boris:1986:VNN

Bode:2000:TPM

Boyd:1992:FACb

Boyd:1992:MEP

Boyer:1988:MDC

Buchholtz:1993:VAM

Bohme:2003:FAF

Martin Böhmle and Daniel Potts. A fast algorithm for filtering and wavelet decomposition on the sphere. *Electronic Transactions on Numerical Analysis*, 16:70–92,
Brooks:1985:SEE

Beatson:2007:FEP

Benson:2014:PDF

Brebbia:1993:BEX

Brebbia:2004:BEX

Biesiadecki:1993:DMT

Blackston:1997:HPE

David Blackston and Torsten Suel. Highly portable and efficient implementations of parallel adaptive N-body methods. In ACM [ACM97], pages
REFERENCES

REFERENCES

0009-2614 (print), 1873-4448 (electronic).

REFERENCES

[Bindiganavale:1996:DNR]

[Bharadwaj:1995:FMB]

[Chadwick:2009:HSP]

REFERENCES

2009. CODEN IJNMBH. ISSN 0029-5981 (print), 1097-0207 (electronic).

Chaillat:2014:NFM

Coles:2020:OSA

Cherrie:2002:FER

Carayol:2004:EEF

Carayol:2005:EEF

Cho:2010:WFM

Cho:2012:RWW

Chen:2013:APM

Chaillat:2015:WFM

Cheng:2006:RIW

Cheng:2006:WFM

Chen:2009:ADI

REFERENCES

2091 (print), 1097-0363 (electronic).

Chen:1997:FMM

Cecka:2013:FBF

Crowley:1997:AIS

Chartier:2010:RFM

Carpentieri:2003:CFM

Carpentieri:2005:CFM

[CG04] S. Chandrasekaran and M. Gu. A divide-and-conquer algo-

Chen:2003:CTS

Carrier:1988:FAM

Cheng:1999:FAM

Chen:2003:CTS

Cheng:2006:AFS

Cipra:2000:BCE

Chowdhury:2005:SLM

Indranil Chowdhury and Vikram Jandhyala. Single level multipole expansions and operators for potentials
REFERENCES

Chew:1997:FSM

Callahan:1995:ADC

Callahan:1995:DMP

Cottet:2000:VMT

Csoka:2020:SDF

Cruz:2011:FMM

Chau:2008:AFM

Chynoweth:1991:SOL

Coifman:2006:DW

Coulier:2017:IFM

Pieter Coulier, Hadi Pouransari, and Eric Darve. The inverse

from three-dimensional structures. *Journal of Computational Acoustics*, 16(2):303–320, 2008. ISSN 0218-396X.

REFERENCES

REFERENCES

demmel/cs267/lecture27/
lecture27.html.

[DGR96] A. Dutt, M. Gu, and V. Rokhlin. Fast algorithms
for polynomial interpolation, integration, and differentia-
1711, October 1996. CODEN SJNAAM. ISSN 0036-
1429 (print), 1095-7170 (electronic).

[DH86] Herwig Dejonge and Piet Hut. Round-off sensitivity in the
N-body problem. In Hut and McMillan [HM86], pages
1986.

[DH04a] Eric Darve and Pascal Havé. Efficient fast multipole method
for low-frequency scattering. Journal of Computational
ISSN 0021-9991 (print), 1090-
2716 (electronic).

[DH04b] Eric Darve and Pascal Havé. A fast multipole method for
Maxwell equations stable at all frequencies. Philosophical
transactions of the Royal Society of London Series
A, 362(1816):603–628, March
15, 2004. CODEN PTR-
MAD, PTMSFB. ISSN 1364-
503X (print), 1471-2962 (electronic).

[DHM03] Ernst Nils Dorband, Marc Hemsendorf, and David Mer-
ritt. Systolic and hypersystolic algorithms for the
gravitational N-body problem, with an application to
Brownian motion. Journal of Computational Physics, 185
(2):484–511, March 1, 2003. CODEN JCTPAH. ISSN
0021-9991 (print), 1090-2716
(electronic). URL http:
//www.sciencedirect.com/
science/article/pii/S0021999102000670.

[DK93] Stephen E. Debolt and Peter A. Kollman. AMBER-
CUBE MD, parallelization of AMBER’s molecular dynam-
ics module for distributed-
memory hypercube comput-
329, March 1993. CODEN JCHDD.
ISSN 0192-8651 (print), 1096-987X
(electronic).

[DKG92a] Hong-Qiang Ding, Naoki Karasawa, and William A.
Goddard, III. Atomic level
simulations on a million par-
ticles — the cell multipole
method of Coulomb and Lon-
don nonbond interactions. Journal of Chemical Physics,
REFERENCES

REFERENCES

REFERENCES

ISSN 1064-8275 (print), 1095-7197 (electronic).

[Ergul:2008:EPM]

[Ergul:2009:CIE]

[Ergul:2009:HPS]

[Eichinger:1997:FAR] M. Eichinger, H. Grubmüller, Helmut Heller, and Paul Ta-

REFERENCES

REFERENCES

Fukushige:1999:HPS

Figueirido:1997:ELS

Fukushige:1995:BSG

Fukushige:1996:BSG

REFERENCES

[Frauenfelder:2005:FEE] Philipp Frauenfelder, Christoph Schwab, and Radu Alexandru Todor. Finite elements for el-

I. P. Gavrilyuk. Book review: *Fast multipole boundary element method*. Math-
REFERENCES

Gramada:2011:CGE

Gatard:2006:HOB

Giovannini:1999:FRN

Gumerov:2003:RCM

Gumerov:2005:CSC

Nail A. Gumerov and Ramani Duraiswami.
 REFERENCES

Gumerov:2006:FMM

Gumerov:2007:FRB

Gumerov:2007:SPF

Gumerov:2008:FMM

Gumerov:2009:BFM

Garcia:2008:ISE

Grest:1989:VLC

GDK89 Gary S. Grest, Burkhard Dünweg, and Kurt Kremer. Vectorized link cell Fortran code for molecular dynamics

REFERENCES

Gerchikov:1998:EMP

Greengard:2004:IEM

Ginste:2009:ECP

Greengard:1996:IEM

Grama:1994:SPF

Grama:1998:SPF

ACM Distinguished Dissertation Award, and was later published as a book [Gre88].

REFERENCES

REFERENCES

0020-7608 (print), 1097-461X (electronic).

REFERENCES

REFERENCES

REFERENCES

Harbrecht:2005:WGB

Herbordt:2015:LLG

He:2008:FES

Huang:2018:IEC

Hut:1986:USS

Hamilton:1995:RGM

Tomasz Hrycak and Vladimir

Holt:1995:HBM

Hanninen:2008:EER

Hanrahan:1991:RHR

Heath:1997:PES

Ho:2002:SBP

Hoyler:1997:FMM

G. Hoyler and R. Unbehauen. The fast multipole method for

Hesford:2010:FMM

Hesford:2011:RRA

Huang:2021:HHP

Hao:2021:EPM

Huang:2018:HPH

Tian Huang, Yongxin Zhu, Yajun Ha, Xu Wang, and Meikang Qiu. A hardware pipeline with high energy and resource efficiency for FMM

Yao:2008:IFM

Huang:2018:HPH
REFERENCES

REFERENCES

IEEE:1994:IAP

IEEE:1995:IAP

IEEE:1996:IAP

IEEE:1996:PFI

IEEE:1996:PSM

IEEE:1997:IAP

IEEE:1998:FIC

IEEE:2002:STI

Ishiyama:2009:GMP

T. Ishiyama, T. Fukushige, and J. Makino. GreeM: Massively parallel TreePM code

REFERENCES

Jandhyala:1998:FAA

Jiang:2004:NCE

Jansen:2018:TCC

Jia:2008:KDC

Jeon:2008:PTC

Jandhyala:1997:HFS

Jernigan:1989:TCL

Kaxiras:1996:MTS

Kutteh:1995:GFM

Kutteh:1996:RCG

Kantardjiev:2015:SNU

REFERENCES

Karin:1995:PAI

Katzenelson:1989:CSB

Kaw:1999:GSP

Atsushi Kawai, Toshiyuki Fukushige, and Junichiro Makino. 7.3 Mflops astrophysical N-body simulation with treecode on GRAPE-5. In ACM [ACM99], page ??

Kaw:2000:GSP

Kartashev:1988:SPI

REFERENCES

Masaaki Kawata and Masuhiro Mikami. Computationally efficient canonical molecular dynamics simulations by

Kreuzer:2009:FMB

Kokubo:1994:HSP

Kutteh:1995:ICM

Kondratyev:1993:MME

Kurzak:2005:COF

Kurzak:2005:MPI

7315 (print), 1096-0848 (electronic).

Kurzak:2008:MPI

Kropinski:1999:IEM

Kropinski:2001:ENM

Kropinski:2002:NMM

Kudin:1998:FMA

Kudin:1998:FMM

Kudin:2004:RIL

REFERENCES

Lazarski:2016:DFT

Lim:1997:MDV

Lu:1993:FAS

Lu:1994:MAS

Liska:2014:PFM

Letourneau:2014:CFM

Leimkuhler:2006:NAM

Benedict Leimkuhler, Christophe Chipot, Ron Elber, Aatto

Lu:2010:AAF

Lu:2013:AAF

Lathrop:2011:SPI

Lashuk:2012:MPA

REFERENCES

0782 (print), 1557-7317 (electronic).

Lu:2007:NVF

Lambert:1996:MBA

Leathrum:1992:PFA

Steven R. Lustig, Sanjeev Rastogi, and Norman Wagner. Telescoping fast multipole methods using Chebyshev economization. Journal of Computational Physics,
REFERENCES

[Lambin:1993:ESM]

[Langer:2005:CBF]

[Lu:1996:AFA]

[LWM+02]

[Liu:2017:FMM]

[Ltaief:2014:DDE]

[Lee:2004:SIP]
REFERENCES

Makedon:1993:PDA

Makino:1999:YAF

Makino:2004:FPT

Mattson:1995:PCC

Margonari:2005:FMM

Malhotra:2016:ADM

Marchetti:1997:ICB

M. Marchetti, C. A. Brebbia, and M. H. Aliabadi, editors. International Conference on Boundary Element Methods (19th: 1997: Rome,
REFERENCES

Itay), volume 19. Computational Mechanics, Southamp-
1997.

Makino:2000:LEF

Jun Makino, John Board,
Klaus Schulten, Peter Borcherds,
and Rubin D. Orduz Z. Let-
ters to the editors: “The
Fast Multipole Algorithm”
and “The Top 10 Algo-
rithms”. Computing in Sci-
ence and Engineering, 2
CODEN CSENAF. ISSN
1521-9615 (print), 1558-366X
(electronic). URL http:
//dlib.computer.org/cs/
books/cs2000/pdf/c3004.
pdf. See [DS00, BS00].

Mehl:2015:RTC

Miriam Mehl, Manfred Bischof,
and Michael Schäfer, edi-
tors. Recent Trends in
Computational Engineering
— CE2014: Optimization,
Uncertainty, Parallel Algo-
rithms, Coupled and Com-
plex Problems, volume 105 of
Lecture Notes in Computa-
tional Science and Engineer-
ing. Springer-Verlag, Berlin,
Germany / Heidelberg, Ger-
many / London, UK / etc.,
2015. ISBN 3-319-22996-6,
3-319-22997-4 (e-book). 317
(est.) pp. LCCN QA7190;
TA329. URL http://www.springerlink.com/
content/978-3-319-22997-
3.

Mandel:1992:SIM

Jan Mandel and Graham F.
Carey, editors. Special is-
ue on multigrid methods:
from the Fifth Copper Moun-
tain Conference on Multi-
grid Methods, volume 9(9–
10) of Communications in ap-
plied numerical methods. Wi-
ley, New York, NY, USA,
1992. ISBN ???. LCCN ???
Two volumes. Selected
papers from the Fifth Copper
Mountain Conference on Mul-
tigrid Methods, Colorado,
April 1991.

McCorquodale:2007:LCA

Peter McCorquodale, Phillip
Colella, Gregory T. Balls,
and Scott B. Baden. A lo-
cal corrections algorithm for
solving Poisson’s equation in
three dimensions. Communi-
cations in Applied Mathemat-
ics and Computational Sci-
ence, 2:57–81, 2007. ISSN
1559-3940 (print), 2157-5452
(electronic).

McDowell:1997:CGM

Sean A. C. McDowell. Compu-
tation of general multi-
pole moment expansions for
N atoms by MAPLE. Inter-
national Journal of Quan-
tum Chemistry, 62(4):343–
351, April 15, 1997. CO-
DEN IJQCB2. ISSN 0020-
7608 (print), 1097-461X (elec-
tronic).
REFERENCES

McKenney:1996:AFM

Marengo:1998:TDP

Makino:2012:GAG

Makino:2000:TSB

Makino:2003:GMP

Marzouk:2005:MCO

Malas:2007:IPM

REFERENCES

ISSN 1064-8275 (print), 1095-7197 (electronic).

Malas:2009:AMF

Malas:2011:SCP

Makino:2007:GDP

MacDonald:1995:FSM

Macdonald:1996:FSM

Makino:1990:GSP

Miller:2008:IBP

Makino:2001:PET

Makino:2002:TSP

McCurdy:1999:ECP

Moric:2006:FMM

McKenney:1996:MDS

REFERENCES

Makino:1998:SSS

Makino:1994:GOT

Nishida:1997:AFM

Nilsson:2004:SHF

Nakano:1994:MMD

Najm:1999:CLE

REFERENCES

REFERENCES

Ohnuki:2003:TEA

Ohnuki:2005:EMM

Ogata:2003:SPI

Of:2007:FMM

Of:2008:EAM

Ooi:2008:HFM

Osei-Kuffuor:2014:SAL

REFERENCES

CODEN SJOCE3. ISSN 1064-
8275 (print), 1095-7197 (elec-
tronic).

[OKS09] G. Of, M. Kaltenbacher, and
O. Steinbach. Fast multipole
boundary element method for
electrostatic field compu-
tations. COMPEL, 28(2):304–
319, 2009. ISSN 0332-1649.

[Oku96] Daniel I. Okunbor. Inte-
gration methods for N-body
problems. In Proceedings of
Dynamic Systems and Appli-
cations, Vol. 2 (Atlanta, GA,
1995), pages 435–442. Dy-
namic, Atlanta, GA, 1996.

[OLL04] Eng Teo Ong, Heow Pueh Lee,
and Kian Meng Lim. A fast
Fourier transform on multi-
poles (FFTM) algorithm for
solving Helmholtz equation
in acoustics analysis. Jour-
nal of the Acoustical Soci-
ety of America, 116(3):1362–
1371, September 2004. CO-
DEN JASMAN. ISSN 0001-
4966.

[OLL03] E. T. Ong, K. M. Lim, K. H.
Lee, and H. P. Lee. A fast al-
gorithm for three-dimensional
potential fields calculation:
fast Fourier transform on mul-
tipoles. Journal of Compu-
tational Physics, 192(1):
CODEN JCTPAH. ISSN
0021-9991 (print), 1090-2716
(electronic). URL http:
//www.sciencedirect.com/
science/article/pii/S0021999103003772.

[OMC08] Femke Olyslager, Lieven
Meert, and Kristof Cools.
The fast multipole method
in electromagnetics applied
to the simulation of metama-
terials. Journal of Compu-
tational and Applied Mathe-
ematics, 215(2):528–537, June
1, 2008. CODEN JCAMDI.
ISSN 0377-0427 (print), 1879-
1778 (electronic). URL http:
//www.sciencedirect.com/
science/article/pii/S0377042706007643.

[OME+92] S. K. Okumura, J. Makino,
T. Ebisuzaki, T. Ito, T. Fukushige,
D. Sugimoto, E. Hashimoto,
K. Tomida, and N. Miyakawa.
GRAPE-3: highly paralle-
lized special-purpose com-
puter for gravitational many-
body simulations. In IEEE,
editor, Proceedings of the
Twenty-Fifth Hawaii Inter-
national Conference on System
Sciences, 1992, pages 151–
160. IEEE Computer Soci-
ety Press, 1109 Spring Street,
Suite 300, Silver Spring, MD
20910, USA, 1992.

[OMH+94] Y. Ohno, J. Makino, I. Hachisu,
T. Ebisuzaki, and D. Sugi-

Otani:2008:FPB

Otani:2008:PFM

Otani:2009:BPF

Otani:2009:FOP

Ormseth:2007:IFM

ODonnell:1989:FAN

REFERENCES

[Susanne Pfalzner and Paul Gibbon. A 3D hierarchical tree code for dense...

Pfalzner:1996:MBT [PG96a]

Pollock:1996:CPF [PG96b]

Papa:2005:CMD [PGB05]

Pierce:2015:DLB

Piecuch:1993:MSC [Pie93]

Perez-Jorda:1995:SAR [PJY95]

REFERENCES

0009-2614 (print), 1873-4448 (electronic).

Petersen:1994:VFM

Petersen:1995:EEFa

Petersen:1995:EEFb

Ptaszny:2021:FMB

Pudlak:2016:LTC

Qu:2015:FMA

REFERENCES

Rahola:1996:DFT

Rajamony:1997:PDS

Rui:2007:STS

Reif:1999:ACP

Razavi:2012:ALS

Rejwer-Kosińska:2021:ELF

REFERENCES

[RRR03] Prabhu Ramachandran, S. C. Rajan, and M. Ramakrishna. A fast, two-dimensional panel...

REFERENCES

Renegar:1996:MNA

Ravnik:2009:CBW

Rodriguez:2008:USV

Ringbom:1996:FSG

Rokhlin:1994:FMM

Salmon:1996:GCC
John Salmon. Generation of correlated and constrained Gaussian stochastic

REFERENCES

Sugimoto:1990:SPC

Sakuraba:2018:PEZ

Sendur:1997:SRP

Sabariego:2004:CME

Sabariego:2004:AFM

Shanker:2007:ACE

Sharp:2006:BSP

REFERENCES

REFERENCES

Singh:1992:IHB

Singer:1995:PIF

Suda:2004:APA

Skeel:1989:MDS

Solvason:1995:RCE

Shimada:1993:ECC

Shimada:1994:PFM

REFERENCES

Shanker:1997:OSI

Simos:2005:ACM

Shanker:1997:SIC

Solvason:1997:EEF

Sidonio:1999:PBI

Sun:2001:MVF

Springel:2005:CSC

REFERENCES

[Sagui:2006:NDM] Papers from the fourth edition of *Algorithms for Macro-

REFERENCES

5718 (paper), 1088-6842 (electronic).

Schwab:2006:KLA

Stalzer:1995:PFMb

Stalzer:1995:PFMa

Sun:2014:FMR

Suda:2004:SAF

Salmon:1994:STC

Springel:2005:SFE

REFERENCES

Salmon:1994:FPT

Schwichtenberg:1999:AMM

Sylvand:2003:CIC

Takahashi:2014:IBF

Tausch:2003:SBP

Tausch:2003:FMM

Tausch:2003:FMM
Tausch:2004:VOF

Tong:2009:MFM

Takahashi:2017:AIF

Takahashi:2020:PIF

Tong:2008:MFM

Tranouez:2009:BUF

Tromeur-Dervout:2011:PCF

[TDBEE11] Damien Tromeur-Dervout, Gunther Brenner, David R.

REFERENCES

Takahashi:2016:EBM

Tausch:2003:MBS

Tang:2006:HOP

Tian:2019:FCS

Tanikawa:2012:PGN

Tanikawa:2012:BSS
REFERENCES

[135]

Wagner:1994:RPF

cal Technology Letters, 7(10):435–438, July 1994. CODEN MOTLEO. ISSN 0895-2477 (print), 1098-2760 (elec
tronic).

Wang:2020:TEB

Bo Wang, Duan Chen, Bo Zhang, Wenhong Zhang, Min Hyung Cho, and Wei Cai. Taylor expansion based fast multipole method for 3-

Welch:1991:TPW

Peter (Peter H.) Welch, editor. Transputing ’91: proceedings of the World Transputer User Group (WOTUG) Con
ference, 22–26 April 1991, Sunnyvale, CA. IOS Press, Postal Drawer 10558, Burke,

Wang:2008:FSM

Wu Wang, Yang De Feng, and Xue Bin Chi. A fast solution method for an electric field inte

Warren:1998:AAL

509058.509130.

White:1994:DEI

C. A. White and M. Head-Gordon. Derivation and efficient implementation of the fast multipole method. Journal of Chemical Physics, 101

White:1996:FTF

C. A. White and M. Head-Gordon. Fractional tiers in fast multipole method calcu
lations. Chemical Physics
White:1996:RAQ

White:1996:LSD

White:1996:CGF

White:1996:RAQ

Windemuth:1995:AAM

Windemuth:1995:AAM

Wala:2018:FAE

REFERENCES

Wang:1996:EFM

Wang:2007:PFM

Wang:1999:LSM
Zhiqiang Wang, James Lupo, Alan McKenney, and Ruth Pachter. Large scale molecular dynamics simulations with fast multipole implementations. In ACM [ACM99], page ??

Watanabe:2014:GAH

Waltz:2002:PCT

Windemuth:1991:MDC

Warren:1992:ANS

Warren:1993:PHO

Warren:1995:PPV

Warren:1995:PPP

Warren:1997:PPI

Winkel:2012:MPM

Winckelmans:1995:AFP

Winckelmans:1995:FST

Wilson:2021:GAF

Warren:2002:HDC

Wang:2005:NFM

Wang:2007:LSA

Wang:2007:FMB

Wang:2005:FMB

Wang:2017:BEM

Wang:2019:FMM

Wang:2021:FMMa

Wang:2021:FMMb

Xu:2008:FMV

(XJM08) Qiang Xu, Yantao Jiang, and Dong Mi. Fast multipole virtual boundary ele-

Xiao:2009:PCW

Xu:1995:NPB

Xue:1998:THT

Yoshii:2018:PTE

Xiao:2009:FMV

Xu:2008:FMB

Yoshii:2020:FMM

REFERENCES

Yeung:1997:TNL

Yuan:2001:PIF

Yokota:2011:BEU

Yokota:2012:SFM

Yokota:2013:PTS

Ying:2009:FAB

Ying:2015:BPF

Yokota:2009:FMM

Yang:2013:CRP

Yarvin:1998:GOD

Yarvin:1999:IFM

Yang:2018:FIP

YU:2005:EUS

YOKOTA:2014:CCF

ZHOU:1995:NMD

ZHANG:2014:PFS

ZHANG:2011:OBH
Junchao Zhang, Babak Behzad, and Marc Snir. Optimizing the Barnes–Hut algorithm in UPC. In Lathrop et al. [LCK11], pages 75:1–75:11. ISBN 1-4503-0771-X. LCCN ???.

ZHANG:2015:DMB
Zhao:2000:IES

Zhang:2000:SDC

Zhao:1998:TSM

Zinchenko:2005:MAA

Zheng:2016:AEA

Zwart:2010:SUI

REFERENCES

Zhang:2010:RFY

Zhang:2011:FSB

Zhao:2007:VFM

Zurek:1994:LSS

Zhang:2007:ASD

REFERENCES

Zhang:2019:FMM

Zhao:2005:FMB

Zheng:1993:EMM