A Bibliography of Domain Decomposition

Petter Erling Bjørstad
Institutt for Informatikk
Høytidsenteret
Universitetet i Bergen
Bergen, Norway N-5020

Tel: +47-55544171
FAX: +47-55544199
E-mail: Petter.Bjorstad@ii.uib.no (Internet)

30 January 2019
Version 2.31

Abstract

This bibliography records publications on domain decomposition.

Title word cross-reference

1 [Lt93]. 2 [CJSS08, GHS93, HLM91b, Kra09, LC08, MCL02, Tal93]. 2nd [DHY03].
3 [BIP01, BM93a, BIA05, DGS01, Dry88, HK98a, JNo2, KY98, Kra09, Kuz99b, Kuz91a]. C1 [Osw89a]. c [MS02]. H [BPS04, Ain96a, Ain96b, GG03, Rac95, ST00a].
H(curl) [Hie03]. H – LU [BO07]. HH [GKB09]. hp
[BPO95, Kor01, Kor02, OPF97, SP03]. ILU [CGK94]. k [LP95]. k – ε [KLM02]. k × k [LP95]. k → ∞ [LP95]. L2
O(N2logN) [BBM00]. p [Ain96a, Ain96b, BGP99, BCMP91, Beu02, Beu05, Fal03, GOS05, KI96, KJ99, ML91, ST00a]. P1 [Osw93]. P1/P1 [ST00b]. P1 [Jia06].
Qn [Pav00]. Qn−2 [Pav00]. V [Kwa03, SX99]. W1/2(S) [Nep84].

-adaptive [Rac95]. -approximation [Sme89]. -body [GKS98]. -cycle
[Kwa03, SX99]. -D [Dry88, BIP01, BIA05, CJSS08, JNo2, Kuz99b, Kuz91a, Lt93].
-dimensional [Il’69]. -discretizations
[Kor02]. -FEM [Beu02, Beu05]. -Level
[MCL02]. -line [LP95]. -LU [GKB09].
-matrices [BPS04, Tar94]. -robust
[GOS05]. -type [BGP99]. -uniform [MS02].
-version [KJ99, BCMP91, BPO95, KJ96, Kor01, ML91]. -wavelet
[Fal03].

/II [Ano91].

1-d [Lag99a, ILW07]. 13th [PSB+94]. 1987
[GGMP88b]. 1989 [CLM89]. 1994
[HWP95]. 1995 [PB96].
2 [GPS89]. 2-D
[ARIV97, JY01, Lag99b, LW07]. 2-nd
[RT75]. 2003 [ACM03]. 2D
[CW99b, Mar07]. 2nd [Kor02].

3 [PR95, Van93]. 3-d
[KR07, KR08, ARIV97, Geo96, Kwa03,
LJ06a, LJ07b, Yu99a, PR95].

3-Dimensional [Van93]. 36 [TV01]. 3d
[DRSW04, AGLK08, CPS99, C89, Geo99,
GH99, HPS02, KKYxx, KRW05, KHD05,
LL08, SS98]. 3D-multibody [KHD05]. 3rd
[BGPW89].

3-dimensional [BDOP07]. 432 [MS90]. 4th
[Mar07].

6th [GT94].

8 [CZ95]. 840 [Boy05]. 860 [Van93]. 870
[LC08].

'91 [EJL92, IEE91]. '92 [Ano93]. '93
[IEE93]. '94
[DW94b, GT94, Lip94, PSB+94, XCH96].
95 [AMM96, DDF10, Lit97]. 95i [CZ95]. 97
[BKR+98]. 99 [BH00a]. 9th [Ano96a].

= [CG88]. 6yö [Ano98a].

Abhandlungen [Sch90]. Absorbing
[EZ98a, EZ98b, TH01, GP01, JN01a]. abstract
[GO95]. Accelerated
[DH98, Che05, DH97a]. Acceleration
[GKW90, BGD05, BWA92, DL01, Lai92].
Accelerations [GH03]. Accelerators
[QFR03]. Accumulation [LG95b].

accuracy [WR09, Zho97a, Zhu10], accurate
[BFK+98, Kop98, SRB01], accurately
[BVVW97]. Achieving [NPY+97]. ACM
[CLM89]. Acoustic
[BGT97, CF99, HK98a, mM04]. Acoustics
[Wir02, KN02]. across [Bla00]. Actas
[Ano91]. acting [Krä05]. active [PGW09].

Ada [Lit97]. adapted [DRSW04, Osw91c]. Adaptive
[BL04, CQ95, Cic96, EHI+00, Ewi89a, FM99,
GGQ96, HM87, HE98, Hop03, JN02, Kor97,
Man92a, McC89a, NRWF08a, OPF97,
SHHG93, SR92, TM97, Yu01, BFH+95,
BJ01, BPO95, BFF96, CSX05, CM00,
DNS00a, EG90, Fal03, GRN99, GMCQR09,
IL05, JN03, McC84, MT86a, MCR99b, PS00,
Rac95, RSVV08, Tse00, WL03]. adaptivity
[VPDH08]. Additive
[Bja89, BDDV97, BDR00, Cai90, Cai91, C94,
C95, CPZ00, DW87, Dry89, DW98a,
DW91, DW92a, FL00, Hac91a, JN99, P91,
PR95, BN07, Bre95, BPS04, CKY2, CDS20,
CDS04, C96, DG70, FNS02, Geo96, GO95,
Hua96, LO5, Mar07, MP08, Nab03, RXH05,
SV95, Zho97c]. Additivnye [SV99a].

ADENA [Suz97]. ADI
[AIIV98, JM06a, Ma96, Van93]. adjoint
[TSu96]. Advanced
[AB95, PB96, Rep08,
BBC03, FDKN04, HW96, KL07, Mil93,
NTT00, dCGQ06, PB96]. Advances
[DSV94, KNS99, IKM+99, KS99].

Advection
[BZ06, LMO00, ALW99, BD03b,
CQ95, Cic96, ETY98, GGQ96, GTN03,
HC03, LT03, Loh92, NMB10, RL02, RL04,
SB89, TT99b, TV93, Tro96b, WVE97].

Advection-Diffusion
[LMO00, ALW99,
CQ95, Cic96, ETY98, GTN03, HCO3, LT03,
Loh92, RL02, RL04, SB89, TT99b, TV93].

Advection-Diffusion-Reaction
[BZ06]. advection-reaction [WVE97].

aeroacoustic [AF04]. aeroacoustics
[DLPW02, USDM06]. Aerodynamic
[Key95, PC97]. aerodynamics [CGK94].
aeroelasticity [BC07a]. age [GG08].
age-structured [GG08]. Aggregation
[JKKM01, SST05, Sal04, SV96a].

Aggregation-Based [JKKM01, SST05]. AIAA
[TV01]. air [Syd94]. airfoil
[HMZ94]. Aitken [BGD02, GBD05].
Aitken-like [BGD05]. Aitken-Schwarz
[BD05]. Akad. [AL90a, AL90b].
akustiki [Zav82]. Albuquerque [IEE91].

algebra [CDG95, CDG96]. Algebraic [AP96, Bol96, CGLO1, DDF10, HLM91a, Kuz98c, MS05a, FNS02, H0s7, KL90, LSS+9b, Pop02, Prá93, RMS03, Tar94].

algebra [Voe83]. Algorithm [Bab58, BDV96, BGT9V9, Cai90, CF88, CMS92, CMS94, Dan02, DS02, Dry81, Dry89, EWI1, JN02, SW09, Smi91, Smi92a, Smi93, TM9V9, YCC10, AL90a, ARIV97, Bal05, BSS04, BBM00, BP06, Bog06b, Bog08, BGT88, CHH04, Cha97, CCJ99, IC929, CH94a, DDD91, DV9+10, DLP9Y93, DZ04, FLS94, GEF05, GZW+00, HTJ88, IB04, H0s94a, JM06c, KM91a, KM92, KKS90, LAe92, LL97, LLC+06, LM06, MB10, Ø69, Ova07, PS93, Per92, RT606, SS66, Sat03, SHJ98b, SL904, Sob36, SR05, SB98, Tah92, TY07, Tu07, WZ10, WR09, WL03, Yan00, Yan02, YD04, Zha92b, Zho97c, Zho97a, Zhu95, Boy05, LC08].

algorithme [BGT88].}

alignment [SK09]. Allen [KK03]. almost [DW10, Kor01]. along [RY97, Ru98]. alternate [MC05b].

Alternating [DW87, Wid9b, AL95, AL96, GH94c, HR09, Hua96, Lio88, Lio89, Lio90, Lu999, Mat93a, Mat93b, MN85, Mor56, MB97, Rui93, ST94, TD07, YD04].

alternée [Lio7]. alternierenden [Mor56].

AMDis [RSV98]. AMG [Haa00]. analiz [Kuz88]. analiza [IL89]. analogue [Bra96].

analyses [Ru93]. Analysis [Ald09, Ano90, Ber03, BBH88, Bou90, BPV98, CR87, Cha97, DT91, Den97, DQ03, DLP902, DS9W3, DKKV95, ES96b, EWI1, Fac98, FGRS97, GMHR07, Hac91a, HM87, Hvi90, Prz85, RVY93, RVY97, Sal04, SF73, SB91, SW93, TMS87, Var62, ADC9, BPM90, BRV90, CRC88, Che88, jFZ06, GEV008, GW96, HW96, HS94a, HC92, Jia96, Jia06, JM09, Kok08a, LP94a, LLL, LWT+03, LJ07a, LT09, Man06, MS05a, Nor01, OBG10, PP04, Prz63, RG03, RKL89, Scr88, SHJ98b, qSN90, SLL94, ST94, Ta05, TT99b, The98, WY901, WAW88, WC03, WZ10, Wri02, XT04, Ano93].

angle [YD04]. angular [BM10].

anisotropic [BDR00, BP07, KN902, KN903, Rac95, ZD04].

annaling [PD099]. Aplicaciones [CGCH93, Ano91].

Aplicada [CGCH93, Ano91].

Aplicada/XIII [CGCH93]. aplicable [DPRW93]. Application [BS93a, Cai93b, CM91, ES96b, EWI1, GLPE97, Hol03, II91, JN01b, KDBG95, Nep91, Tiw00, Tr96a, Ago09a, ADC09, Car97, DDK06, DDS99a, Fra90, GP86, GJS10, yGJW09, HDY05, JN03, KR10, Krz05, Lop94, MR04, Nep84, OM97, QV91, Ron92, TMNF01, Vas92, BC07a, FNN+02, Sam98].

Applications [BM90, BM91, DGP80, GH01, HLM91b, HF88, JL91, LM72, Mil93, Wid87, AB95, AP96, BBM92a, BP08, BCL96,
4

BGS08, Bog07, BPWX91b, BBM92b, BBCM03, CP05, CDG+92, DGP84, DSV94, Ewi89b, FDKN04, FW01, GLS07a, Gu07, HT91, HK02a, Hsi00, IKM+99, Key95, KGTLO3, LW05, LWT+03, LB93, MR95, MWP01, NN87, NTT00, Pap89, PHW00, SAD+08, Sar03, SST96, Tar94, VWH01, Whitob, dCGQS06, CHH02, Tra00.

Applied [BCG94, BGPW89, DV97, GLT89, AvdH92, BV92, Bre89, BK92, Bru91, GEF05, GL86, GL90, GLC89a, HC03, KN02, KM01, LS05, LMM00, NV04, Par95, Stu10, TR93, Tha95, VMP10, WDPW04, CCCP91].

appliquees [CCCP91].

Approach [ABBB94, DG00, HLM90a, HLM91a, Pas88b, TMS87, TY98, AMS09, BBCH08, CMX09, Dou91, DL10, EG94, GNHR03, Geo99, HLM90b, Her98, HYD03, IAK06, KT96, LJO7b, Lit97, MDTC08, MQ88, NP93, PAF+97, PHR07, RMS93, SM07, WA03, XT04].

approksimatsii [Lap89].

approximants [MDTC08].

approximating [PS92].

approximations [AFL96, KMM91, Sch94].

arrays [RBS94].

Arising [Loh92, Tou01].

arugorizumo [Ano98b].

aspect [AH02, ML91].

Aspects [FL00, NZ99, Qua94, Wen06].

ASPIN [MC05a].

assemblies [OBG10].

assumptions [BPWX91a, MS07].

Asymptotic [Abr00, Kla98, PP04, Cor90, PV08, Scr88, SC96].

Asymptotic-Domained [SC96].

Asynchronous [GMH08, HM87, LLP01, LLP03, SC92, AA96, EB99, MGLS91, TTH99].

atmospheric [MSW98, WME95].

Atomic [PBL08, XGB10].

Atomic-to-Continuum [PBL08].

Augmented [Ago95, Ald09, DH05, LS95].

August [GT94, IEE94b, Lop94, PSB+94].

automated [Lit97].

Automatic [Dag93, Bab90, IAK06].

Augmented [Ago95, Ald09, DH05, LS95].

B. [Xu97].

B.V.P.s [HM91b].

bacteria [IU98].

balanced [CP05, DRSW04].

Balancing [ByS99, CM92, CMW93, CMW95, GG08, Gol03, HKD96, HN05, Man92b, MB92, MB96, PY03, TMV94, YHBM96, DMP98, LT09, MD03].

Balcan [Rat90].

Barcelona [PB96].

bargaining [SAM10].

Barnes [GKS98].

Based [An96b, MOVW96, BZ06, CA02, DD91, DD94, DG00, Du01, DY02, GLPE97, GL00, Haa97b, Hae91a, JK01, KK99, LG95b, SST05, TCK91, Yu01, AN95, ADP02, CPS99, Che97, CH09, ICS06, CH92, DS9a, DGK02, Dos95, DNS00a, DNS00b, DH05, DH97a].

April [LCHS96, PB96].

APS [GT94].

arbitrarily [GG03, LP94a, MT86b].

Arbitrary [SFM05, AR04, Lui09, XO94b, XO94a].

ARC2D [BB91].

Architecture [WAW88].
DH98, DZ04, Dua06, Fen98, FGGV08, jFZ06, GK09, GRN99, GKB09, GHL00, HG08, HK96, HJ97a, HR09, HE98, HC91, JY01, KRT91b, Kok07, Kok08a, KHD05, Kuh98, KT05, Lae98, LLPJ08, LKY07, LG87, Lee00, Lee06, LCO04, Liu99, LJ06b, LLS89, LLS91, MDT08, MKP96, MC05b, MY07, Par04, RMSS03, RTE06, Sal04, Sha90, Str96, SHS09, TD07, WVE97, Woh01, Yse90, Yu94, hY98, Yu99b, ZY07, hCD00, HK08.

Bases [Yse85, Yse86a, GTZ88, KI96, Osw89a, WST09]. Basic [BY92, Ste01]. Basin [FFN02, Kok07]. Bases [BDY88, BLB00, Ong89, Sch98, SW90, TCK91].

Battlefield [DMP98]. Bayesian [PHW00]. BDD [GS10]. BDDC [BCLP10, DGS07]. BE [HK96].

Beams [Leu99, QFR03, BM10, Leu98b]. Begründung [Mor56]. Behavior [GH01, CP96]. Belgium [DRV00, LCHS96]. Bellman [CFLS94, FLS94]. BEM [BP08, HST95, Kuh98, SST96].

Benchmark [HXA96]. BEM/FEM/GSM [BP08]. BEM/FEM/GSM [BP08]. Benchmark [HXA96]. bending [BCLP10, Bre95].

Bereichserlegung [Rat00]. Bergen [Ano96a]. Bernoulli [Leu98b]. Besov [Osw90b]. Besov-Sobolev [Osw90b]. best [JN01a]. BETI [BDS08]. Between [KNY98a, CG92, CH06, KN02, Nab03, Yu95]. bez [La92]. BGK [CDL04]. BI [HW90, MCC06]. Bi-CG [MMC06].

Bicubic [Bia93]. bicubics [MR99]. bidomain [MP09, SPBV05, SP08]. bifurcation [CCJ99]. Biharmonic [GP79, Osw92a, Wid84, Zha91, Zha92c, Zha92e, AE07, Bjo80, Bra66, Jia96, NMB10, Osw91d, qSnH09]. bilinear [Sch74].

Bitsadze-Samarski [Tut08]. Bitsadze-Samarski [JK01]. Bivariate [LG87, LS09]. Björstad [Xu97]. Blending [OSCH00]. Block [AP88, BP07, DD94, KKYxx, KAL07, KY89, Man98b, Tar94, Che05, EB99, Fra90, Kok08b, Kok09, KL90, LP95, Ma96]. block-ADI [Ma96]. Block-Centered [DD94]. block-parallel [Che05]. block-tape [KL90]. BLOPEX [KAL07]. BLT [WGZ+10]. Bodies [Dan02, DP09]. Body [Kra09, GKS98, Hua04, Kok08b, Kok09]. body-plate [Hua04]. Boltzmann [Cor94, CDL04, LY98, TM94, Tiw00].

Boundary [ABLS05, Ano89a, BIP01, BBKM01, BLP91, BPP07, DY02, Fen83, GL88, GK97, HW96, HS96, KRT91a, KR03, KST98, LL00, LZ00, LM72, LB93, Nep86, NP01, OSW96, Poh06, Ste94, TMS87, TP08, Yse85, Yse86c, ZZ02, AQ04, AEZ00, Ast78, BM01, BIM05, Bla00, Bog00, BB02, Bra66, CKL98, Cha97, Che97, CW99b, CM00, Dav01, Dos95, DD04, Dub01, EG09, EZ98a, E298b, EG94, GOD+07, Gas93b, GM98, Geo99, Gil01, GGL04, GP01, GW87b, GHS99, Gro01, GH94c, GZW+00, HT88, HXG01, HSW00, Hsi00, HC92, JK01, JN01a, JY01, Jia06, KRT91b, KMN93, KW93, KST01, KM91b, Kuh96, Lai94b, LW00, LP06, LGS7, Lin09, Loh92, LOM98, MST96, Mil93, Mor89, NR94, Nep84, Nor01, PWSB91, PP97, QV91, RG03, Ron92, RZ98, SD04]. boundary
[Sha94, Shi95, Shi99, Ste95, Ste96, SW97, SW99, Tha95, TV04, Tou01, TV01, Tut08, Vab09, Vab91, WB91, X094a, pY93, Yan02, YD04, Yn94, hY98]. boundary-degenerate [GH94c]. Boundary-Fitted [TMS87].

Boundary-Value [ABLS05, QV91].

Bounds [VPDH08, BS00, BH03, Sch71].

BPX [Osw91a, Osw93].

BPX-preconditioner [Osw93, Osw91a].

Brain [HWP95].

branched [LP94a].

bridging [XGB10].

Brussels [LCHS96].

BSSOR [KKYxx].

Building [PW02].

Burgers [Abd93, PR90, XS09].

BVPs [KG90].

C [BB09, CR88]. C-shaped [CR88].

C.E.D.Y.A. [CGCH93, Ano91]. CA [BBG95]. cable [LP94a]. Cahn [KK03].

calcium [NRWF08a, NRWF08b].

calcul [Tid92]. Calculation [TY98, HW09].

Calculations [BGTV89, DL01, LP86, Kuh98, SK92].

California [IEE94b]. canonical [Bog06a, Bog06b]. CANUM [CD08].

capabilities [ELL99]. Capacitance [Dry81, Dry82, Dry84, QL88a]. Capital [PB96].

cardiac [FF95, FPP04]. Carlo [ABLS05, AGLK08, ARZ00, ARZ01, N'K91, NS00, WLH97]. Cartesian [TT01].

Cascadic [BD97, BD96]. Case [DW87, GLPE97, MM89b, MM89a, NW91, QL94, WId88c, WId89b, BP04, Bjo89, Hua95, Hua96, Kwa03, Os94, ZH92].

casting [LPL00, LLP01, LPSL02, LLP03, LL01, Pie04, PLL05, TD08]. cathode [SXYWX09].

cavities [HW09]. cavity [BK87]. CEDAR [Ber89, BB91, Fra90, FGM90]. Cell [QFR03, WLH97, CH04, CWD08, ELV88, Kwa03, Mis94, SXYWX09]. cell-centered [ELV88, Mis94].

cell-centred [CHH04].

cells [AIIV98].

Center [DD94, ELV88, Kwa03, Mis94]. Centre [CA02]. centred [CHH04]. CFD [CP97, HG08, Nor01]. CG [HLM93, MMC06].

CG-Verfahren [HLM93]. CGBI [KW01]. Chain [Kus97].

Chained [HKD96]. challenge [Lit97].

Change [BGTV97, TCK91]. channel [yGJ09, KW01]. Chaotic [Hua97].

characteristic [ALW99, Cha05, Cha06, Li06, LY08, RY97, TJDE97, WVE97, Yan00].

characteristic-based [WVE97].

characteristics [ADP02, Rui98].

characteristics-based [ADP02]. Chast [EZK84]. Chausées [GGMP88b].

Chebyshev [DSS09b, Dev90, SK92, sX96].

chemical [Eng09]. Chimera [BPL03].

China [KNS99, SM98, Ano89a].

Chislennoe [EZK84]. chislennogo [II'89].

Chislennye [II'90, Kuz90a, Kuz92].

Chislennyi [Kuz88a]. Choice [IK95].

Choosing [Ste06a]. circular [KT96, Wu92].

circulation [MSW98, WME95]. Class [Sch96, Xu92b, AR04, FL05, LT03, LT09, Mie88, Rui93, Sch94, WS04].

Classes [II'69].

Classical [Wid89b]. Classification [LYK07].

Clifford [STJ04]. Climate [ABB94]. cluster [SV96a]. clusters [CP05, KW96].

CO [ACM01]. coarse [BDV97, CS95, CS96, DNS00a, DNS00b, FC94, HSW10, NV04, SAR03, VTB97].

course-space [DNS00b].

Cocoyoc [HK90]. Code [CP97, DRSW04].

Coefficient [CH91, MG05, GVT03, N92, Osw91c, SLC04, Su94].

Coefficients [BGTV97, N91, SAR93, TK01, AIHV98, BN07, Cha04, Cha06, DP05, GM91, IHW07, K502, LLP08, MB96, SAR03, Zhu08].

collaborating [MR94a]. Collider [ZC95a].

Colliding [QFR03]. Collision [WH97].

Collocation [Bia93, BD03a, Qua90, Bia92, Dev90, DHY03, KMH91, LV90, MDC08, MRI99, PHR07, QL88b, YH03, ZAM89, ZAM92].

color [SLLZ94, SB89]. combination [AL95, AL96].

combinations [Li97].

combinatorics [HK98b]. combined [KMZ90].

Combining [CWD08].
Combustion [BW89c, BW89b].
Communication [Den97, MJC99, BB09, IBA02]. Como [QPKW94], compact [Zha87], Comparative [FRC+95]. Comparison [CGK92a, CGK93, CGK94, GLC89a, KPW95, KNY98a, LPSL02, RL02, Wid88a, Bou90, FHW04, KPW96, KG87, NV04, RKL89]. Comparisons [Nab03].
Compatible [Buf06]. Compensation [MC97]. Complement [CGL01, Man89b, Man90d, Bre99, CG89, DS95b, HKK05, PPRZ06]. complementary [MW04]. complex [FDS99, HK02a, STJ04, Tru85].
Complexity [GK88, Lio00, CS95]. complicated [KS05]. component [Bou90, Kuz86a]. Components [Dag93, BK87, BB09]. composed [TS01]. Composite [yGjW09, BC07b, KRT91a, Mas87, MCC84, MT86a, RT06, SD07, Vah91, XGB10]. composites [TG04, TP93, XT04]. Composition [Leb86, RT06].
Compositional [Fos96]. Compressible [Hes98, AKCHW01, CFS97, CPS99, CW99b, DW10, DL01, DN06, DL10, GO03, HXG01, Hes97, LL08, NP01, Tid95, Tou01, Yan00].
Computation [BL01, Boy05, BDG+97, Chi81, Gai95, Hop03, IU98, KMM91, Kop89, LP94a, NZZ94, PAF+97, PS88, PS93, Cor90, XCH96].
Computational [ARS95, AvdH92, BCT99, Bat01, BS93b, BK92, BGPW89, Cha88, Goe98, GLK+09, HM87, IOD98, KGT03, RSSV90, REB+92, Sat01, STDH02a, STDH02b, STDH02c, Tra00, VIT05, Wen06, WB91, AMS09, Cha89, DLW02, FL05, HCO2, HMZ94, KCC89, Key03, KRW05, KM03, KLO7, Mil93, PB96, TL88, MIL02, Ned95].
Computations [GV09, MB92, AB95, BBCH08, BK87, Goy99, KMN93, Kho96, OSCH00, TV01].
Computer [AFL96, GL81, KMM91, PB96, PSB+94, BV92, De 91, KM01, Pri95, Sch88, Suz97].
Computers [BS92a, FL00, GK89, Men88a, Men91b, WLH97, BT06, Geo99, Hei95, MB94, Meu89, PdOG99]. Computing [ACM01, BBG+95, BM91, Dan91, GL86, GLT89, GL90, Gro92, GT94, HK98b, IEE94a, IEE94b, LS09, AML96, AM06, BM10, CDG+92, DDGM89, DLM+92, DW94b, EJL92, jFZ06, GW89, GP86, GZW+00, KX94, La94a, LNT84, LCHS96, MLW01, NN92, PS07, RBS94, WA03, GV87, Koe01].
concave [YD04]. Concepts [MNW08, RSVV08]. concerning [Kur93, Sch74, Xu91]. Concurrent [GW89].
condition [Bre99, EG94, GZW+00, SHS09].
conditioned [Ovt93]. Conditions [Ben96, MRS94, SFNW05, Ast78, BM01, Bla00, CW99b, CM00, DH97a, DH98, Dub01, EZ98a, EZ98b, Gt01, GP01, GW87b, Gro1, HXG01, JNO1a, JMO6b, LS05, Loh92, NR94, NP01, NMB10, PRL10, QX08, RG03, SFNW02, SD04, Stu10, Tou01, TV01, ZY07].
Conference [BBG+95, DRV00, GV87, GLT89, GKL+09, GT94, HK+02b, IEE94a, IEE95, IEE96, KX95, KX94, QPKW94, Tra00, XCH96, CLM89, LCHS96, Ano96b, Ano96a, Ano96c, DNN95, Koe01, LCW99, MMO90, MIL02, Mor90, Sam98].
Conformal [Dri99, Gai95, PS88, Pap89, PS90, PS92, PS95]. Conforming [Kar94, Kar97, Osv29a, BM93a, CH90, KP90, pLH93, MS05b]. Congrès [CD08].
Congress [CGC93, Ano91]. Congress [BGWP89, PSB+94, JMM+94]. Congressi [GT94]. Conjugate [GL89b, Hes56, KNGK04, Man90d, Mey90, SW93, Yse86a, CGPT05, CH93, COG76, DM89, Ewi89b, jFZ06, GAF09, MJC99, Men88b, PPS8].
conjugation [SD04]. Connected [Dag93].
Connecting [PBL08]. Conservation [Qa90, TW07, BPO95, HSS07].
Conservative
conserving [HB10]. Constant [CH91, MG05, AIIV98]. constrained [BGH+07, DD07, Ulb07].
constraint [BF03, constraints [For07, HB10, MD03]. Construction [CH92, DS99, BPS66a, BPS87, BPS88, BPS99, Hua01, Ovt93]. Contact [Ala07, Dan02, HF88, Kra09, DP09, DV96, DFS98, DNS00a, DGS01, DHSV02, DKV+10, Kok08b, Kok09, KS05, KHD05, LKY07, LS98, PGW09, IR08]. Contact/Impact [HF88]. contained [HC92]. contaminant [TAA03]. contamination [DL10].
continuation [CCJ99, Vas92]. continuity [WW89]. continuous [DKKV95, KD92, LPL00, LLP01, LLP03, LL01, Pie04, PLL05]. Continuum [HF88, PBL08, BFG+03, TKH09, XGB10]. continuum-to-atomistic [XGB10]. contrôlre [DFLR93, LP98b]. Contractivity [PAJ10]. Control [Ben96, CLYZ99, FMP+98, HN06, Kus97, LL00, Len99, BV92, Bou02, BL91, GH98, HN05, KS99, KD92, Lag99b, LL04, Leu98a, LP98b, SM07, SD04]. controllability [BDG+97, CGPT05, Lag99a]. Convection [Bog02b, Ca91, CK89, JN01b, JN02, Bog02a, BP06, BP07, Bog08, Bor05, CSX05, DDS89a, DDS89b, JN03, Kuz99b, KT94, Li06, LY09, MS02, RY97, Rui98, Tse00, Vab06, WC03, WY97, Zho97b, ZYD09, ZYD10].
Convection-Diffusion [Ca91, CK89, JN02, Bog02a, BP06, BP07, Kuz93, Kuz90b, KT94, Li06, MS02, Rui98, Vab96, ZYD10]. Convection-Dominated [JN01b, Bor05, JN03, Zho97b].
conventional [HM00]. Convergence [Bjo89, BPWX91a, BPWX91b, CGK90, CGK92b, CHL91, DP09, Du01, Hac91a, Jia06, KK97, Kok08a, LL97, LT09, MD03, MLB99, NN97, RY93, RL89, SST05, TT99b, TW07, Wid89b, Yse86a, Bal05, CZ96, Cha97, ICI93, CH94a, EB99, FNS02, FFS98, GHN99, Gu97, Kwa03, LP95, LSL89, Ma96, Osw94, SLLZ94, VTBK97, Wan01, Yu96, Zen96, ZZZS02]. Convergent [Sch96, GEF05]. converges [GG03]. convex [Caz97, TX99, FGRS07]. Cooperative [SAM10]. Coordinate [TMS87, IK95]. Coordination [EA96]. coprocessor [Lt93]. corners [RS01]. Corrected [LSS09a, SL06]. Correction [MCL02, BS84b, DLPW02, Hac84, Hua97, LXZ03, LL09, NV04, OX99, PS07, TX99, Xu92a, Jun10]. corrections [BC07b, Rui98]. corrector [PLL05, ZYD09].
Cytogenetic [LYK07]. cytoplasmic [Kha08].
D [KY89, KR07, KR08, Lag99a, ARIV97, BIP01, BM93a, FLA05, CJS08, DGS01, Dry88, Geo96, GHS93, HK98a, ILW07, JY01, JN02, Kra09, Kuz90b, Kuz91a, Kwa03, Lag99b,Lt93, LJS06, LJ07b, LC08, LW07, PR95, TAL93, Yan10, Yu99a]. D-D [Yan10]. dam [LLP01]. Dame [IEE96]. d’Analyse
Décima [CD08]. dans [Sob36, Tid92, d’H92]. DAP [LL88, Wai88]. d’approximations [Tid92].

Darcy [CMX09, DQ03, DQV07, GS10].

Data [Ha997b, LS90, Bab90, BG91, BB91, CLM95, IL05, Jun97, KPW95, Nie09, OD93, Per92].

Database [LYK07, RM88]. databases [Don89].

datalog [Don89].

Davidson [GSv03].

DDM [DL10, LPP02, LMO99].

DDMs [CTD05].

Decisions [YSF03]. Decomposed

Decomposing [Don89]. Decomposition

Decomposition [ABLS05, Ago88, Ain96b, ARZ01, ABBB94, An96a, Bip01, BGT97, BJNN02, BL04, BP08, BCT99, BL00, Ben04, Ben96, BB00, Benu02, Benu05, Bia93, BD03a, BDV96, BMOV96, BW99a, BMS90, BS92a, BC94, BK01, BW99c, BS93, Bog02b, BGT97, BEP90, BEP92, BIA05, BZ06, Cai89, CG90, CGK92a, CW92, CGK93, Cai93b, Cai93a, CGK94, Cai95, CPR+03, CP97, CAL96, CR87, Cha87, Cha88, CH88, CG88, CGPW90, CGPW90, CM91, CH91, CHL91, CMS92, CKM92, CM92, CG92, CMS94, CA02, Cia94, CW91, CM92, CDG92, CWW92, CM93, DFD10, DS99, Dan02, DS02, DD91, DD94, DT91, Den97, Den03, DV97, DQV07, DKW08, Dr09, DPW86, Dry88, DW99b, DW90, DW93c, DG94, DG96, DG00, Du01, DY02, ES96a, EA96, Ewi89a, ELP93, FR92, Fen00, GFRS07, FL00]. Decomposition

[FM99, Gar94, GK97, GLPE97, GP86, GMP98a, GWP98, GMP98b, GKW90, GKM91, GI98, GI91, GI92, GS92a, GS92b, Gro02, GH01, GL00, GH01, HLM90a, HLM91a, HLM91b, Ha97b, Hac91a, HE95, HKD96, HNO6, He93a, Hem95, Hes98, HZ03, Hu05, KKK01, JN01b, JN02, JLO7, JG02, KRT91b, KK99, Kar97, KG98, KG90, KX95, KN98a, KST98, KDBG95, Kla98, KW00a, Kus97, Kuz98e, Kuz91b, LL00, LBCW99, LS09, Lar99, Leu99, LP94b, LCG+10, LMO00, LB96, MRS94, Man89a, Man92b, MB92, Man93, Man90d, Mar01, MR88, MCL02, Mat89, MPRW98, Mun98, Mun91b, Muy90, MPS86, MG05, MR92, MR94b, Mu95, Nep86, Nep91, NO90, NPY+97, OPF97, OL99, PS10, PBL90, Pas88b, Pav92, QL94, Qua98, Qua90, QPKW94, QSV06, RM88, RY93, RGG96]. Decomposition

[SFN05, SST05, Sch98, Sch96, SL06, Smi90, SW90, Smi91, Smi92b, SBGP98, ST98, Tai02, TMS98, TM98, TW07, TY98, TCK91, TK01, Wid99a, Wid99b, XZ98, YCC10, Yu01, YHBM96, Zha92, Zha92a, ZS01, ZS02, AQ90, Ad03, AA9+00, AK90, Ab96, AE98a, AE98b, ABR0, AARS09, AARRS10, AJT99, AR03, AE07, Ad94, AF85, AS86, AS87, AS88, AS90a, AL90b, ACG9, AT95, AD96, AG08, AL93, An96a, AL99, AR04, AJR+00, Al95, AM06, ACM08, AR0Z, AV99, ADC09, AAH06, AF04, AL97, AMS09, AK6W01, AI95, AP88, AF02, Bab90, BG91, Bad03, BIW94, Bad06, BBM92a, BJ01, BZ96, BS04, BWA92, BBCH98, BM89, BRC90, BK00, Ber03, Ber04, BK87, Bet07, BMS91, Bl92, Bl00, Bl04]. decompomposition [BB09, BBM90, BBR89a, BS92b, BS93a, Bog99, Bog00, BD01, Bog02a, BD03b, BP06, Bog06b, BP07, Bog08, Bo96, BW99b, BBR09, BO07, BB02, BGT88, BBBBB05, BVB97, BP90, BWPX91b, BPV98, BS90, BS91, ByS99, Bre99, BS00, BH03, BK06, BBM92b, BM93b, BDG+97, Bru91, Bu92, Bu98, BA89, CGK92b, CS96, CFL94, Co92, C91, CQ95, Car97, CKL98, CD95, CDG96, CGM01, CHH02, CHH04, CR85b, CR88, Cha98, Cha99, CES91, C94, CS94, CZ95, CS97, Cha04, Cha05, Cha06, CP05, CP96, Che88, CS98, CE96, CE97, CH09, ICS96, CC99, Chi81, CH92, IC939, CH93, CH94a, CH94b, CH97, Cie96, CMV+06, CW90, CW99b, CM00, CG94, Cot91, CM95, CF99, DS95a, DS96, DG07, DDD06, Dar04, Dav01, DDD91, DD92,
De 91, DS92, Dek01]. decomposition

[DDS89a, DDS89b, Des90, Des91, DS95b, DGP84, DP08, DGP80, DMPG83, DGPT88, DQ03, DP09, DV10, DW01, DL01, DLN02, DN06, DMR09, Doo91, Doo90, Doo95, DV96, DFS98, DNS00a, DNS00b, DGS01, Dou91, Dou92, DY96, DH97a, DH98, DH97b, DT07, DZ04, Dua06, DTH09, Ego00, EE97a, EG09, EHI*00, EZ98a, EZ98b, EG97b, ETV94, ETY98, Ewi91, ELL99, FEN+02, Fal03, FC94, FMT99, FLP00, FML00, FL05, Fen98, Fen07, FGGV08, FSS06, For07, Fra90, jFZ06, FFS98, Fun88, FQZ88, GGM00, GGM02, GL88, GOD+07, GNHR+03, Gas92, Gas93b, Gas93a, GG94, GQ96, GM98, GK09, GM91, Geo06, Geo99, GR99, GT88, Gk02, GVT03, GH98, GL04, GRW05, GPD83, GP85, GW87a, GPP94, GPSW97, GLP+06, GZ02, GJS10, GCMG90, GW87b]. decomposition

[GR06, GH89, Goy99, GLS07b, GKB09, Gra02, GK88, GH94a, GH94b, GH95, GH97, GHS93, GL00, GZW+00, yGJW09, GM99, Gus93, GHF90, GHF01, HLM90b, HL91, HLM92, Haa97a, Haa00, Hac84, Hac03, HT88, HB04, HS94a, He96, HK97, HK98a, Hei93b, Hei95, HJ97a, HRO9, Her98, HK+02b, HYD03, HDY05, HYS07, HB10, Hes97, Heu09, Hie05, HND06, HJS97, HZ93, HS94b, Hol03, HOK1, Hop03, HIRW05, HCH02, HC03, HS00, HC91, HC92, Hu99, HW09, HSW10, Hua93, Hua95, Hua97, Hua04, IP98, II*91, IL05, IVA93a, IVA93b, IBA02, IK95, IAK06, JK01, Jan07, JNO1a, JL08, JY01, Jia96, JN03, JM06a, JM06b, JM06c, JM06d, Jun09, JM09, Jun10, KPW95, KP96, KN02, Kau87, KR90, KL95, KP90, KT96, Kat94, KG87, KGE89, Key99]. decomposition

[Key03, KX94, Kho96, KM90, Kim94, Kim98a, Kin98b, KM91a, KM92, KST01, KW99, Kla06, KR10, KM03, Koj91, Kok07, Kok08a, Kok08b, Kok09, KM91b, Kon90, Kop89, KKNR05, KI96, KJ99, Kor01, Kor02, KR07, KR08, KL90, KW00b, Krä05, Kruo5, KHD0, Kuh96, Kuh98, KT05, Kurf93, KW08, KTS8, Kuz86a, KT87, KL88, Kuz88b, Kuz89c, Kuz89a, Kuz89d, Kuz98b, KKS90, Kuz90b, Kuz90c, Kuz91a, KN92, Kuz98, Kru02, Kva88, KN02, KP03, Lae92a, Lae93a, Lae93b, LG95a, Lag99a, Lag99b, LL04, Lai92, Lai93, Lt93, Lai94a, Lai94b, LCP97, LW98, LW00, LLP01, LPS02, LLP03, LLP08, LT03, Lay92, LR95, LVM88, LS95, LG87, Lee00, Lee06, Leu98b, Leu98a, LS98, LL93b, LL95, LL97, Li97, LZ00, Li06, LLL+06, LY07, LJ07b, LY08, LT09, LY09]. decomposition

[LL89, pLL90, pLH93, LSS00a, LC08, LC04, LK98, LW07, LH90, Lin90, Lj06b, LR00, LLS89, LSL89, LSS91, Li92a, Li92b, Li92c, LM06, LM07, LOM98, LMM00, Lui99, LY98, LB94, MSY09, MS10, MvdV01, MW04, MST96, Man90c, ML91, MB96, MD03, MKM86, Mar89a, MQ88, MQ98, McC89b, MG91, MNW08, MB94, Meu88b, Meu97, Meu91, MGLS91, MC05b, MT95b, MY07, MGM05, MC06, MS90, ML97, MB99, Mrä98, Mrä97, MS02, Mur98, NK91, Nab03, NRWF08a, NPH09, NR94, NRdS95, NN97, Nat95, Nat97, NHD+03, Nep97, Nep07, Nep92, NP93, NMB10, OB10, OSM06, OM07, Ova97, Ove93, PAF+97, PdO99, PV08, PWSB91, PB94, PS88, PS90, PS92, PS95, Par94, Par04, Pas88a, Pas91, Pav99, Pav00, PS09, PT03, PY03, PRL0, PC97]. decomposition

[PR90, PPR92, PS07, Phi90, Phi92, Pie04, Pin92, PP04, PPS07, PAJ10, PS00, PGR07, Prä93, Pri95, QX06, Qua87, QL88b, QV90, QLY91, Qua91, Qua94, QV99, Rac95, RS01, RV04, RV05, RBY97, RG03, RHGT10, Roa95, Roe93, RP89, Rsl92, Ron99, Run96, Ry97, Rui98, RW92, SSZ98, SFNW02, SK09, Sal04, SV95, SV99b, Sas03, SIR08, Sbo91, SW91, SZB+07, SST96, Sch94, Scr88, Scr91, qSnH09, Sha90, Sha94, SC96, SLCO4, Shi95, SV96b, SAM10, SBG96, SR92, SC92, Ste94,
Ste95, Ste96, SW97, SW99, Ste05b, ST00a, SMT08, SS93, Stu10, Su94, SHS09, SXYWX09, SM10, Su97, ST00b, Swa93, Tai94, TT99a, Tai03, TRV91, TR93, Tal93, TMV94, TM97, TT99b, TV99, TB97, TD07, Tha95, Tho91, TY07, Tid95, Tor94, Tos04.

decomposition [TV04, TH01, Tru96a, Tru85, Tse00, TMNF01, TS01, Tsu96, Tut08, TAA03, Ulb07, USDM06, Vab90, Vab96, Vab08, Vas90, Vas92, VMP10, WZC10, WVE97, WY97, Wan01, WA03, Wan06, WR09, WGZ+10, Whi00a, Wid96, WK01, Woh01, WLO6, WW89, Wu92, WL03, WS04, XO94b, XO94a, XS09, sX96, Xu92a, XS94, Xu96, XTW10, pY93, Yan96, Yan00, Yan02, Yan10, Ye98a, Ye98b, Yot01, Yu94, Yu96, Yu97a, hY98, Yu99a, Yu99b, Zam89, Zam87, Zen96, ZY07, Zha95, ZH91, Zha92a, ZH92, Zha93, ZL96, ZS00, Zha06, ZZY08, ZC95b, Zho97b, ZZZhS02, ZHL03, ZW05, Zhu95, ZZ02, ZD04, Zhu08, ZDY09, Zhu10, ZDY10, d’H92, d’H93, dCD00, ATO95, AD96, Agy98, BGT88, Des91, GGM00, LS98, d’H92, Mur97, Xu97, Des90, De 91, Tho91.

decomposition/fictitious [GPP94].

decomposition/upwind [Fuj98].

Decompositions [HSY04, BH00b, CC97, CH09, FW04, FRC+95, HK08, Hu04, NZ92, SL88a].
d’écoulements [Tid92]. Decoupled [MP90].

defect [BB84b, BC07b, DLPW92, Hac84]. Defined [II’69].
definite [GL81, CDS04]. deformation [PS91, NJ07].
degenerate [BN07, GH94c]. degenerating [Shi93].
degree [Osw90b]. dekompozitsii [Lae92b, Lae92c, LL93a, Lap89]. del [Ano91].

delamination [TP93]. d’Élasticité [De 91]. Delaunay [JG02].

delay [GH01, VG05]. d’éléments [AT95, LS98].

dependence [GG03].
dependencies [RM88]. Dependent [DY02, BIW04, IVA93b, SC96, Ulb07, Vab98, ZYD09]. depths [BA04].
description [BHHA73]. Design [ES96b, Ber89, WZC10].

designed [BS92a]. determining [Su94].
developer [IEE96]. Development [AGLK08, Tid01, BGOD02].
developments [GH97]. device [BS93a, CG94, LA93, LSS+99b, WZ89]. devices [AM06, LJI07a].
devoted [BP08]. diagnostics [BS93a].
diagonal [Man89b]. diagonalization [WK01]. Diakoptics [Lai94a].

Differenciales [CGCH93, Ano91].

difference [Bog06c, Dry81, Vab96, Bog99, Bog06a, Bog06b, BA90, Bra66, CHF94b, DDD91, Gra02, GH00, Hua90, Hua93, Kop98, KL88, Kwa03, Li06, LLI+99, LLI06, LLI+06, LY07, LY08, LY09, LM06, LM07, Mas87, MY07, MSW98, Mis94, Nep94, NZZ94, OSCH00, RTE06, TY07, TS01, Vab92, WZC10, WR09, WME+95, Zn95]. Differences [DD94, BCDM88].
different [BA04, Tid92, Tid95, Yu99b].

Differentiable [II’69]. Differential [BB84b, Ban90, BJN02, BCLP96, Ben96, Cai89, CGPW90, CKM+92, CW91, GGMP88a, GGMP88b, GKM+91, GKL+90, HM87, Joh87, LW07, McC89a, Men88a, NO90, Smi90, SGBP98, WS94, ARRS10, Bab57, BFH+95, BFM00, Bab05, BJ01, BL00, BT06, CQQ0, CE97, DS92, DFRW93, DY96, DTH09, FM+98, GN08, GWS7b, GR88, GH01, Hac91b, Hac92b, Hac92c, HDTC08, Men89, Qua91, QV99, RPY97, SCR88, TEM88, TV91, Xu09, ZZYY08, ZG87].

Differential-algebraic [Hos97].

Differentialgleichungen [Bab57].

cdifférents [Tid92]. diffuse [Grii01].

diffusion [Bog02b, BZ06, Cai91, CK89, HP05, JS92, Kla98, LMO00, ALW99, Bog92a, BD03b, BP06, BP07, Bog90, CQ95, CIC96, ETY98,
GKR02, Gas92, GTN03, GLC89a, HB04, HC03, Kha08, KPP09, Ku93, Kuz90b, KNT94, Ku09, LRH07, LT03, Li06, LY09, Loh02, MS02, N'91, NMB10, Par04, PF05, RS01, RL02, RL04, RY97, Ru93, Su94, SB89, TT09b, TV93, Tro96b, Vab96, WY97, XT04, ZY09, ZYD10.

diffusion-type [GLC89a].

dilemma [KW08].

dimensional [Fun88, LL08, Nov99].

Dimensional [Ago88, AIIV97, Dry89, DW93b, GP79, HF88, JN01b, MPS86, TMS87, WLT97, Yu01, ARR99, AIIV98, BDOP07, BA04, Bes87, Bou05, BHO3, DG07, EE97a, Gröt1, H110, JN03, Jn09, KL05, Kr06, Kuz92a, Lay92, Lj07a, LS99a, LM06, OD09, PR90, Poh90, RSO1, Stu10, Su94, SB98, TV91, TV19, TV01, WZC10, x96, Zha92a, ZY09, Van93, Hes97].

dimensionally [LBB10].

Dimensions [Bel04, Cai93a, CPR+, DW92a, DSW93, GS92a, GS92b, HZ03, Man02, MB92, Man92c, Ong89, Pas88b, PW93, Smi91, Sm92a, Sm93, TK01, BCMP91, BS00, Bu06, Hi95, KIM07, KW02, Liu99, Man90c, MS05b, MC05b, Pas88a, PW00, PW02, SM08, Tos01, TV04].

Direct [BA05, Ha03, HK05, PG03, GNHR+, KP90, Nce67]. directed [Per92].

directed-undirected [Per92].
directes [Nce67].

direction [AL95, AL96, MT05].

Dirichlet [Bör99a, Bör99b, Dry89, HLM09a, HLM09b, HLM10a, HLM10, HCM03, K09, Poi96, W29d, Yan02, Zha91, Zha92c, Zha92e].

Dirichlet-Signorini [NK92].

Dirichlet/Robin [HC03].

Continuous [BGT97, Nep91, Sar93, TK01, BPO95, Cha04, Cha06, DP05, DG07, GM91, GRW05, HSS07, ILW07, KW02, Krz05, Lae93a, LLP08, LT03, TV01, Sar0, dCD00].

Discrete [MRS04, Osv99b, BIM05, Fen07, He96, Hu99, MS02, Vas86].

Discretisation [Mat89].

Discretization [DV97, Woh01, Yse85, DP03, DW03, DP05, DGS07, DT07, FMW04, HRO9, MD08, Tu07, Yu96].

Discretizations [Ben05, Mar01, BM01, Bu06, Kor02, KR07, KR08, Mar07, MP09, Osv91d, PW00, Tid95, XZ99].

discretized [GH95, ST00b, Xu90].
dismantling [PS93].

dispersed [DDK06].

disperse [PS10, CJS08].

Displacement [ADP02, PY08, Yan00].

Disappearance [BBTD05].

Disconnection [Geo73, MB94].

Discontinued [BGT97, NEP91, AM06, ACM08, ARZ00, ARZ91, AB99, AF04, BIP01, BIW04, Bad06, BGT97, BJNN02, BL04, BP08, BCT99, BL00, Be04, Ben95, Ben96, BBCH08, BB06, Beu02, Beu05, Bia93, BD03a, BDV96, BMOV96, BW99, BMS90, BS92a, BCG94, BKK01, Bl00, BW90c, BS92b, BS93b, Bog00, BD01, B02b, BD03b, BW90, BB02, BGT89, BVW97, BEP90, BEPP92, BS90, BS91, BIA05, BZ06, Cai99, CG90, CG92a, CW92, CK93, Cai93b, Cai93a, CG94, Cai95, CPR+, CZ91, Car97, CP97, CAL96, CR87, Cha87, Cha88, CH88, CG98, Cha98, CGPW99, CK98, CGPW90, CM91, CES91, CH91, CHL91, CMS92, CMK+, CM92, CG92, CSV94, CMS94, Cha04, Cha05, Cha06, CP96, CEL96, CE97].

Domain [CGPT05, CA02, CH97, Cha94, CMV+, CW99, CG94, CW91, CMW92, CW92]
EG09, EHI+00, EZ98a, EZ98b, EG94, EE97b, ETV94, EY98, Ewi91, FNF+02, Fal03, FC94, FMT99, FLP00, FLM00, FL05, Fen98, Fen07, FMW04, FRC+95, Fra90.

domain

[jFZ06, Fuj98, FFS98, FQZ88, GL88, GOD+07, GNHR+03, Gas92, Gas93b, GG94, GGQ96, GMH08, GM98, GK90, GM91, Geo96, Geo99, GRN99, GK02, GVT03, GHP10, GGL04, GRW05, GJS10, GCMGRG09, GCP91, GR09, GH93, GH95, GH07, GH93, GHL00, GZW+00, yGjW09, GM09, Gus03, GFF90, HLM90b, HL91, Haa97a, Haa00, Hac84, Hac03, HTJ88, HB04, HS94a, HK07, Hei93b, Hei95, HJ97a, HR09, Her98, HYD03, HY10, HSS97, HB10, He97, HND06, HJ97b, HS94b, Hol03, HK97, HZ93, HS94b, Hol03, HK01, Hop03, HC98, HC02, HC03, HC91, HC92, Hu99, Hu04, HW09, HSW10, Hua95, Hua04, It91, IL05, IVA93b, IBA02, IK95, Jan07, JN01a, JL08, JY01, Jia96, JN03, JG03, JM06c, JM06d, Jun09, JM09, Jun10, Jun97].

domain

[KPW95, KPW96, Kan87, KL95, KP90, KT96, KG87, Key99, Kho96, Kim94, Kim98b, KM91a, KM92, KST01, KW99, Kla06, KR01, KM03, Koj91, Kok07, Kok08a, Kok08b, Kok09, Kon90, KKNR05, KI96, Kor02, KR07, KR08, KW00b, Kri05, KHD05, Kuh98, KT05, Kur93, KW08, KT83, Kuz86a, Kuz88b, Kuz90c, Kuz90d, Kuz92b, KKS90, Kuz90c, Kuz91a, KN92, Kuz98, Kva88, Lae92a, Lae93b, LG95a, Lai92, Lt93, Lai94a, Lai94b, LCP97, LW98, LW00, LLP01, LPSL02, LLP03, LLPJ08, LT03, LR95, LVM88, LG87, Lee00, Lee06, Leu98b, LS98, LL93b, LL97, LZ00, LLL+06, LJ07b, LT09, LLY9, LL99, pL90, pLH93, LSS99a, LC08, LK98, LW07, L909, Lio09, Lj06b, LRL00, LSS89, LSL89, LSL91, LM06, LM07, LOM98, LMM00, Lui09, LY98, MSY09, MS10, MvdV01, MW04].

domain

[Man90c, MB96, MD03, MKM86, MQ88, MQ91, MC89b, MG91, MNW08, MB94, Meu91a, MC05b, MT86b, MY07, MGM05, MMC06, MS90, MLB97, MLB99, MS02, N9K91, N803, NRF08a, NPH09, NR94, NN97, NHD+03, Nsp92, NP93, NZZ94, NMB10, OBG10, OSW06, OMT02, Ova07, PAF+97, PDG99, PV08, PS88, PS90, PS92, Par95, Par04, PS09, PY03, FRL10, PR90, Per92, PS07, PH90, PH92, PAJ10, PHR07, Pr93, Pri95, QX06, QL88a, QLV91, Qua94, Rac95, RV04, RV05, RVY97, RG03, RHGT10, Roa95, Roe89, Roe93, Ron92, Ru96, LY97, RW92, SK09, Sal04, SV95, SS98, Saz03, SIR08, SW91, SST96, Sch94, Scr88, Scr91, qSnH09, Sha90, Sha94, SC96, SP01, Sh95, SV96b, Sh99, SR92, SC92, Ste94, Ste95, SW97].

domain [Ste05b, SS93, Ste10, Su94, SBSH90, SYXW90, SM10, Suz97, ST00b, Swa93, TJDE97, Tal03, Tal93, TM94, TM97, TT99b, TV99, TD07, TY07, TH01, Tr96a, Tru5, Tse00, TMNF01, TS01, Tsu96, Tut08, TAA03, Ulb07, USD06, Vab90, Vab96, Vas90, Vas92, Vas86, VMP10, VIA94, WZC10, WVE97, WY97, Wan01, WA03, Wan06, WR09, WGZ+10, Woh01, Wu92, WS04, XS09, sX96, Xu96, XGB10, XTW10, pY93, Yan96, Yan02, YD04, Yan10, Yot01, Yu94, Yu96, Yu99a, Yu99b, Zam98, Zen96, ZY07, Zhao95, ZH91, Zha92a, ZH92, ZL96, Zha06, ZC95b, Zho97b, ZHL03, Zhu95, ZDD02, ZD04, ZYD09, Zhu10, ZYD10, dCD00, Aoa96a, Des00, Des91, GGM00, HK+02b, KX94, LBCW99, Tho91, Xun97, dH92, HDY05].

Domain- [GGM00]. Domain-Decomposed [CK89, CR85a, Roe98, SS98].

Domain-Composition [BCT99, GLPE97, TRV91, ALb95, BO07, Fuj98, MG91, Des91, dH92].

domain-decomposition [Fuj98].

Domain-oriented [Gri94]. domaine [Des90, Des1, GGM00, dH92]. Domaines [De 91, AT95, AD96, Ag08, BGT88, LS98, Tho91]. domains [AB88, Ast78, Bon90, CH06, Cot91, GH90, GP01, Gri85, KRT91a,
Kar94, Kuz02, Lui09, MW04, Poh06, RTö06, Sch94, TS01, TP08, Yu96, Yu97a, Gee98.

Dominated [JN01b, Bor05, CSX05, ETY98, GGG96, JN03, WC03, Zho97b], **d’ondes** [Des91], **double** [PHR07].

DP [DW03, DP05, KL05, Kim07, KW02, KPR08, MS07, MD08, Ste05a]. **Drift** [Kla98]. **DSDADI** [LRH97].

Dual [Cow93, DP03, ERMD08, FLP00, KRW05, KR06, LW05, Li03, LJ06a, LJ07b, Poh06, Tos04, TP08]. **Duality** [Dos95, DNS00a, DNS00b].

Duality-based [DNS00b]. **duct** [CKY02].

Dynamic [GJS10, HKD96, LL00, Leu98b, Leu99, NPY+97, YSF03, Geo96, Gol03, GR03, KW99, KR06, KO90, MMRT02, Roe93, Sar03, Sob36, Zam92]. **dynamische** [Rat00].

E. [Bel44]. **Each** [Mey90]. **Easier** [DHK06]. **EBE** [HF88]. **ECMI** [BMPV08]. **École** [GGMP88b]. **economics** [Gus85].

Ecuaniones [CGCH93, Ano91]. **Edge** [TK01, Tos04]. **effect** [DM98]. **Effective** [TG04, KMN93, MDTC08, MMC06].

Effects [MR88]. **efficiencies** [FRC+95].

Efficiency [Kra09, HZ93]. **Efficient** [AEZ00, ARR81, BCM91, BDR02, CMS92, CMS94, DMW01, Ewi89a, FR92, HS96, HSY04, Kuh98, Man89a, MSW98, SW97, TV99, Van93, BEPS88, CWD08, DL10, FC94, Hos07, HMZ94, Jun09, KP90, Kha08, Krä05, MNW08, NMB10, Ste96, ZYD10]. **efficiently** [Wen04]. **effiziente** [Ste96].

eigen [CJSS08]. **eigen-oscillation** [CJSS08]. **Eigendecomposition** [CH91].

eigensolvers [Knj98b]. **Eigenvalue** [MG05, Bet07, FDS99, GSv03, GCP91, KALO07, Kuz86a, Kuz86b, Ove88].

eigenvector [Nie09]. **Eighth** [GLT89].

Elastic [Dan02, CF99, DP09, Fen98, Hu04, OX99, VMP10, d’H93]. **Elasticité** [Sob36].

Elasticity [BH88, KW00a, Smi90, Sni92b, CS89, De 91, DW10, DKV+10, FHW04, Geo96, Gol03, GR03, KW99, KR06, KW00b, KO90, MMRT02, Roe93, Sar03, Sob36, Zam92].

élastiques [d’H92]. **elasto** [EG09].

elasto-plasticity [EG09]. **elastodynamics** [LZ00]. **electrical** [AA06].

Electromagnetic [WLH97, CJSS08, Hei95, Hop03, HW09, LJ06a, LJ07b, NZZ94, PRL10, SS98].

electromagnetics [HPS02]. **Electron** [TMS87]. **electronic** [BBCH08].

electrostatics [HS94b].

electrothermomechanical [Hop03, HIRW05]. **Element** [Ain96b, Ano89a, Ano96b, BGP91, CMS92, CMS94, DMW01, Ewi89a, FR92, HS96, HSY04, Kuh98, Man89a, MSW98, SW97, TV99, Van93, BEPS88, CWD08, DL10, FC94, Hos07, HMZ94, Jun09, KP90, Kha08, Krä05, MNW08, NMB10, Ste96, ZYD10]. **efficiently** [Wen04]. **eigensolver** [CJSS08]. **Eigendecomposition** [CH91].

eigensolvers [Knj98b]. **Eigenvalue** [MG05, Bet07, FDS99, GSv03, GCP91, KALO07, Kuz86a, Kuz86b, Ove88], **eigenvector** [Nie09]. **Eighth** [GLT89].

Elastic [Dan02, CF99, DP09, Fen98, Hu04, OX99, VMP10, d’H93]. **Elasticité** [Sob36].

Elasticity [BH88, KW00a, Smi90, Sni92b, CS89, De 91, DW10, DKV+10, FHW04, Geo96, Gol03, GR03, KW99, KR06, KW00b, KO90, MMRT02, Roe93, Sar03, Sob36, Zam92].

élastiques [d’H92]. **elasto** [EG09].

elasto-plasticity [EG09]. **elastodynamics** [LZ00]. **electrical** [AA06].

Electromagnetic [WLH97, CJSS08, Hei95, Hop03, HW09, LJ06a, LJ07b, NZZ94, PRL10, SS98].

electromagnetics [HPS02]. **Electron** [TMS87]. **electronic** [BBCH08].

electrostatics [HS94b].

electrothermomechanical [Hop03, HIRW05]. **Element** [Ain96b, Ano89a, Ano96b, BGP91, CMS92, CMS94, DMW01, Ewi89a, FR92, HS96, HSY04, Kuh98, Man89a, MSW98, SW97, TV99, Van93, BEPS88, CWD08, DL10, FC94, Hos07, HMZ94, Jun09, KP90, Kha08, Krä05, MNW08, NMB10, Ste96, ZYD10]. **efficiently** [Wen04]. **eigensolver** [CJSS08]. **Eigendecomposition** [CH91]. **eigensolvers** [Knj98b]. **Eigenvalue** [MG05, Bet07, FDS99, GSv03, GCP91, KALO07, Kuz86a, Kuz86b, Ove88], **eigenvector** [Nie09]. **Eighth** [GLT89].

Elastic [Dan02, CF99, DP09, Fen98, Hu04, OX99, VMP10, d’H93]. **Elasticité** [Sob36].

Elasticity [BH88, KW00a, Smi90, Sni92b, CS89, De 91, DW10, DKV+10, FHW04, Geo96, Gol03, GR03, KW99, KR06, KW00b, KO90, MMRT02, Roe93, Sar03, Sob36, Zam92].

élastiques [d’H92]. **elasto** [EG09].

elasto-plasticity [EG09]. **elastodynamics** [LZ00]. **electrical** [AA06].

Electromagnetic [WLH97, CJSS08, Hei95, Hop03, HW09, LJ06a, LJ07b, NZZ94, PRL10, SS98].

electromagnetics [HPS02]. **Electron** [TMS87]. **electronic** [BBCH08].

electrostatics [HS94b].
GW87a, GLC89a, HL09, Hei03, HDY05, HJ97b, Hua01, Jia06, JT06, JN03, KPR08, KJ99, KNGK04, Kuh96, Kuz05, LP06, LR95, LVM88, LS98, LZ00, LJ06a, LJ07b, LL89, LCO04, LSS+09b, LK98, LH09, LL06b, LMM00, MR04, Man90a, Man90b, Man90c, Mar07, MD08, MQ88, MS05b, NK01, NC88, OSW06, Osw89b, Osw90a, Pav92, PW00, PY03, Poh06, PS00, Rae95, RX05, RHGT10, Rui96, RW92, SHJ89b, SX99, SXC02, SK92, ST96, Ste95, SW97, Str72, SB98, ST00b, Tem88, Tha95, The98, Tos04, TS03, Tu7, TP08, VPHD08, WAW88, Wai88, Wid96, Wid97, WK01, XZ99, pY93, Yan00, Yan02, Ye98a, Ye98b, Yse90, Zha92b, ZL96, ZZ02, dCD00.

Element-based [dCD00]. Element-by-element [SHJ89a, TL88]. Element-capacitance [Dry84]. Element-free [VPDH08]. Element-level [LJ06b]. Element/Newton [MB94]. Elementov [Lae93c]. Elements [CW91, CMW93, Cow93, DD91, GKW90, HS96, Man92a, OR82, Osw91a, PW93, Sar93, BCLP10, BBKMO1, BCDM88, Boy05, BPP07, By99, BM93b, CMW95, DS95a, GHS99, GH95, GH97, HW96, Hie03, He05, Hua95, Hu96, HM00, KR08, LL88, LW05, ML01, MQ89, MO8+93, Osw91d, Osw92b, Os93, PRPZ06, Pav00, PS07, QV91, SX97, SK99, Ste94, SW99, Tho91, Tro96b, Whi00b, Tho91]. Eleventh [LBCW99]. Ellipsoids [PGJ93]. Elliptic [PRJ93]. Elliptical [GPS89, KX95, SAM10, Ano89a, GLT89]. Embedding [Pri95, CGPT05]. Embedding/controllability [CGPT05]. Emden [OD09]. employing [GM09]. Enclosed [KW08]. energetic [BM10]. Energy [QFR03, MD03]. engine [BW89b]. Engineering [GPS89, KX95, QPKW94, AGVL80, AAM06, CCCC91, GL86, GL90, GPSW97, HK+02b, KX94, SAM10, Auro89a, GLT89]. enhance [GHP10]. enhanced [Sar03, TS03]. entrant [RS01]. ENUMATH [BKR+98]. Environment [Ala07, Dan91, GGO8, Lum01, Pin92]. Environments [YSF03, MMC06, WA03]. EPS [GT94]. EPS-APS [GT94]. Equation [BGT97, Dri99, GP79, Lar99, MRS04].
Equations [Bab58, Ban90, BJNN02, BLB00, Ben96, BCG94, Cai89, Cai90, Cai91, CGPW90, CWW92, DD91, DV97, Don91, EES83, GGMP88a, GGMP88b, GKL92, GL00, HM87, Hes98, HZ03, JCL07, Joh87, Kla98, Kus97, LL00, MM89b, MM89a, MPR98, McCS9a, Men88a, NO90, PS10, Qua89, Sch06, SL06, Smi90, SBGP98, ST98, YCC10, ZS02, AAH98, Abr00, ARRS10, AD96, ALW99, AV99, ARIV97, AIIV98, AIIV00, Bab57, BFH95, BQ90, BPM90, Bal05, BJ01, BCLP96, BL00, Bla07, Bog07, BVW97, BT06, CFS97, CPS99, CFS94, CQ90, CKL98, Cha04, Cha06, Che95, Che97, CH94a, CH94b, Cic96, Cor94, Cot91, CF99, DW94a, DS92, DS95b, DHY03, DRGM04, DP98, DGP90, DMP93, DL00, DMO9, DPN90, DPRW93, DYP96, DZ04, DTH09]. equations [EB99, FMP98, FLS94, Fen98, Fen07, FH95, Fuj98, Fun88, GGM92, GQ96, GQS00, GPP94, GN08, GW87b, Gra02, GL69a, GK88, GRO7, GHL00, Hac91b, HST95, HL96, HK97, HL09, Hes97, He99, Hos97, HSW00, Hso00, HW90, Hua90, Hua93, JL08, KRT91a, KRT91b, Kat94, KG87, Kha08, KRO93, Kla06, Kor02, RO8, KK03, KL90, Kuz05, Kva88, Lae92a, Lae93b, LG95a, LL04, LW98, NT84, Lay92, LZX03, Lee06, LL97, Li03, LW06, LY09, LSS09a, LCO04, LB93, LH09, Loh92, LR00, Lu92a, Lu92b, Lu92c, LMM00, Lu99, LB94, MS10, MDTC08, MST96, Mar05, MN89, MT86a, Me94, Meu89, Mil00, Mis94, N9K91, Nec67, NC88, Pas91, PW02, PS07, Phi92, QLV91, Qua91, QV99, RS01, RL04, RV05, RVY97, Ron99, RZ98, Rui93]. equations [RY97, SM07, SV96a, SPBV05, SZB97, Scr91, Seq95, Shi93, SR92, Ste96, ST00a, Tah92, Tem88, Tid95, Tiw00, TKH90, Tor94, Tou01, TGSS10, TV91, Tro96b, TS01, VIA94, VW97, WW98, WS04, Xu96, Xu09, Ye98b, hY98, Zha92b, Zha93, ZL96, ZYY08, ZG87, Zhuo08, ZYD09, ZYD10, AD96, Nec67]. Equivalence [BY92, HM00]. equivalences [Sch05]. equivalent [KW93]. erasures [CK08]. Errata [Cor90]. Erratum [CZ95]. Error [Buf02, BTV09, FX04, HE98, Rep08, Rui93, Sch71]. Estimate [CGK90, Bu02, CGK92b, HE98, LSL99, Osw94]. Estimates [BP91, BX91, CMI39, Gu97, Osw91b, OL99, BPW91, BPW91b, FX04, KK97, Kur93, Osw99, Rep08]. Euclidean [LC08]. Euler [CPS99, DDK06, DL06, GIL01, Leu98b, Tiw00]. EUROPE [LCHS96]. European [DRV00, MMT90, JMM94, Lip94]. Evaluation [HXA96, MPS86, Luc98, MKP96]. Evolution [HE95, AIV95, HK97]. evolutionary [Bog98]. Exact [BDG97, LL00, HXG01, Lag99]. examinations [Lit97]. exclusion [BC96]. Exemplar [FRG97]. exercise [PP04]. exhibition [LCHS96]. expanded [LH09]. expansions [Nat95, Nat97]. Experiences [GS92a, GS92b]. Experiments [Fra90, FGM90, Meu91b, PR95, BIM05, DY96, HTJ88]. Explicit [DD92, DD94, Lae93b, LG95a, SL06, ZS02, Bla92, CPS99, DG07, KPP07, LSS09a, LJO6b, TD07, TL88, ZYD09, ZYD10]. Explicit-Implicit [SL06, ZS02, Lae93b, LG95a, LSS09a, ZYD09]. Explicit/Implicit [DD94, DD92, Bla92, ZYD10]. exponential [BDP07, OD09]. Extension
extensions [LKY07]. Exterior [DY02, Alb95, Cot91, FMT99, FML00, GM98, HK96, JY01, Yu99a, ZD04]. external [GHS93, Tid92, TV01]. externes [Tid92]. extrapolation [HL09, LSL97, Rüd97, RZ98]. extrusion [EE97a].

F.E.M. [SS98]. FAC [McC84, MT86a]. Factorization [Ben95, DNR09, Il092, MvdV01]. factorizations [Il091, mM04]. Factorized [KYxx, Mil00]. factors [Wan06]. Family [Mu95, DW93a]. far [CW99b]. far-field [CW99b]. Fast [BLB00, Bia93, CKL98, GHS99, HW95, HST95, Hie03, Kor02, KR08, KS05, LG87, LJ07a, LG95b, McC84, SHHG93, BBM00, CR85a, CWD08, GKR02, HG08, Kho96, KR07, MT69a, RJ07, Sco94, TD08, WK01]. FastLSM [RJ07]. fat [BIM05]. faulting [BMS94a]. Fictitious [DGK102, Kuz86a, Ast78, BK87, BGG97, GPP94, JG03, Kuz02]. Fictitious [DGK102, Kuz86a, Ast78, BK87, BGG97, GPP94, JG03, Kuz02]. field [Ald09, CW99b, HK96, Hop03, RL04]. fields [Ber03, Ber04, Hei95, MGMC05, MMC06]. Fifth [CKM92, GPS89, Hen90].

fiktivnykh [BK86]. filtering [MSW98]. filtration [AK04]. fin [MR04]. find [AL97, Mei94]. fine [KM03]. finis [AT95, LS98, Tho91]. Finite [Ago88, Ain96b, BGP89, BJNN02, BB06, BKK09, Bog99, BW90, CPR93, CHH02, Ch78, CW91, CMW93, Cow93, DD91, DD94, DPW86, Dry88, Dry92, DW91, DW92a, DW93b, EW91, FR92, Feng3, Fen00, Geo73, GP85, GW98, GKW00, HK02a, Hvi90, JN01b, JN02, Joh87, LL88, LCO04, LK98, LM06, LM07, Man89a, Man92a, Man92c, Mar01, Mat98, MB94, MOP93, NK01, OR82, OPF97, Osw91b, Osw92a, PB96, Pav91, PW93, Pav93a, Pav93b, RT75, SFNW05, Sar93, Sni92b, SF73, SB91, WAW88, Wid87, Wid88a, Wid89a, Wid89d, Yse85, Yse86b, Yse86c, AL95, AL96, AEZ00, A905, AT95, An96a, AGLK08, Ald90, BCP91, BJ01, BWA92, BHA73, Bes87, BDR02, BCD88, BC70b, Bra66, Bre88, CH04, Cha05, Cha06, CSX05, CH94b, Cio96, CMW95, DS95a, DDD91]. finite [DW94a, DM09, DSDS89b, DRGM04, DW93a, DPRW93, Dry84, EG09, EHI00, ELL99, FEN92, Fen98, FX04, jFZ06, Fuj98, GGM02, GLS07a, GY09, GEVO08, GG94, GAF09, GW87a, Gra02, GLC89a, GH97, KL90, Hei03, HDY05, HJ97b, Hu09, Hu95, Hu96, HM00, Jia06, JN03, Kop89, KJ99, KNGK04, Kuz05, Kwa03, LW05, LP96, LR95, LVM88, LS98, LL706, LJ06a, Lh07b, Ly08, LL89, LS89b, LH09, Lj06b, LMM00, LL09, Man90a, Man90b, Man90c, ML91, Mar07, MD08, MQ88, MQ09, Mas87, MS05b, MY07, MSW98, Mis94, NZZ94, NC88, Osw89b, Osw9oa, Osw91d, OSCH00, PV08, Pav92, PY03, PGW09, PS00, QLV91, Rac95, RHGT10, RSN07, RW92, SFNW02, NJ98, ST96, SK99, Str72, SB98, ST96, Tem88, TL88, Th98, Tho91, TY07, Tro96b, TS01]. fine [TS03, Tu07, Wai88, WZC10, WR09, WME95, Wh00b, Wh96, Wh97, XZ99,
finite-difference
[MSW98, NZZ94, OSCH00, Sam98].
finite-element
[MSW98, NZZ94, OSCH00, Sam98].
Finite-Element
[Ain96b, Yse85, MB94, AT95, BC07b, JN03, LS98, LJ06b].
Finite-element/Newton
[MB94].
finite-volume
[LL09].
First
[DW94b, GP79, GGMP88b, Hem95, JMM+94, Bra66, KGE89, Lay92, MST96, NPH09, Pav99, GGMP88b, Pas88b].
First-Order
[Hem95, KGE89, NPH09, Pav99].
Fits
[LS09].
Fitted
[TMS87].
fixed
[Bad06].
Fixed
[BS89].
fixed-point
[Bad06].
fixi
[AS89, AS90, Il'93, SV99a].
Flatland
[BM10].
flows
[Koj91].
flexible
[Leu98a].
Flow
[FL00, GH98, JKKM01, AL93, AJR+00, AMS09, BWA92, BFK+98, BGG+97, Bru91, CPS99, CTD05, DKD06, Dev90, DL01, DPLPY93, EE97b, Ewi98b, Ewi91, GEVO08, HW95, HG08, HXG01, HE98, HZ94, JL08, KKF97, Krz05, LL08, Mur98, NV04, OSCH00, PAF+97, PS93, RHGT10, Ron92, SP03, S93, TV01, Tu07, WPT08, Wu92, Yot01].
Flow-structure-thermal
[AMS09].
flows
[AKCH01, CKY02, CES00, CW99b, DGKL02, DM09, DGPT88, DL10, GHS93, KKF97, KLM02, Kop89, KW01, LL95, Man06, MPS05, NP01, Phi90, Tid92].
Fluid
[BCT99, Cha88, Fen00, FL00, Lum01, AK04, BC07a, BQQ09, Bat01, BS08, Bre85, Cha89, Cor94, CD04, DMM07, DGPT88, DL10, Ewi89b, Ewi91, FX04, FGGV08, GDP83, GP85, GS, Gus85, HMW06, HC98, HC02, JG03, Kha08, KW08, LL95, Man03, MNW08, Nrd95, PGJ03, QL89, Rah01, RHGT10, Ron92, Sat01, TR93, TM97, TL88, WST09, XG95, DD95, Mor90].
fluid-poroelastic
[BQQ09].
Fluid-Solid
[BQ09].
fluid-structure
[BC07a, FGGV08, KW08, MNW08].
fluids
[AHP97, BK06, DMPG83, KW08, MOP+93, SHJ89a].
flux
[GY09, HSS07].
focusing
[Tah92].
Fokker
[yGjW09].
force
[SD07].
forecast
[GZW+00].
form
[Bog06a, Bog06b].
formations
[ADP02].
formed
[UI98].
forme
[Rep08, Sch74].
Formation
[BGT88, BGT89, Sme89, AD96, Bet07, CPS99, HW09, KKP07, KMS90, KL05, LC04, LL09, Nat97, PGW09, RL04, Tro96a].
formulations
[GKS98, HK96, LKY07, Mat93a, Mat93b, TL88, Tid95].
Fortran
[DDF10].
four
[OD09, SB98].
four-color
[SB99].
Fourier
[ARIV97, BIA05, Cao92, qSh09, VIA94, Zha87].
Fourteenth
[DD95, HK+02].
Fourth
[TKM+91, He93a, CES91, Gra02, MD08, Tor94, KNS99].
Fourth-Order
[He93a, CES91, Gra02].
Fowler
[OD09].
Fractional
[DD20].
fracture
[DPLPY93].
fractured
[DPLPY93].
frame
[CK08, HB10].
framed-indifferent
[HB10].
frames
[CK08].
framework
[Fal03, IK95, KNN90].
France
[GGMP88b].
Francisco
[BBG+95, IEE94].
free
[Bru91, DM09, Dos95, GEVO08, HY10, Jia06, MPS05, PWSB91, Pas91, VPDH08, WB91, XO94].
French
[AT95, AD96, Ago98, BM90, BGT88, CCCP91, De 91, Des90, Des91, GGM00, LS98, Lio78, LP98a, LP98b, Nce67, Po96, Sb96, Tho91, d'H92, Tid92].
Frequency
[Hac91a, AV99, CJSS08, FMT99, FML00, Kim98a].
friction
[BIW04, DV96, Kok08b, KHD05, OBG10].
Frictional
[Kra09].
frictionless
[DP09, Kok09].
fuel
[SXyWX09].
full
[CP99, LJ07a, TT99b].
full-wave
[LJ07a].
Fully
[HF88, YCC10, KW08, N'K91].
Function
[BLB00, MR92, MR94b, ARS95, BA04, HSS07, LL09, Ows90a, PR07, RSSV90, Tai94, TS03, Vas92, Wen06].
Functional
[RM88, Rep08].
Functions
[BGP89, Il'90, AE07, BP06, Boy05, BFF96, Dua06, GCMGRG09, IK95, LK04, MN88].
Nie09, Osw89b, Pas91, TGSS10, WL06, Yu95, ZHL03. **Further** [MT05]. **Fusion** [CK08]. **Future** [BV92]. **Fuzzy** [RM88].

Galerkin
[BBM92a, BPO95, BBM92b, DD92, DGS07, Dua06, GRW05, Krz05, LT03, LB94, MSY09, MS10, Sch74, Sch71, SM10, Tha95, VPDH08]. **GAMM** [AMM96]. **Gauss** [BH00b, TD07].

Gas
[BMS94b, BMS94a, CDL04, DDK06, Dub01]. **Gebietszerlegung** [HLM93, PS93]. **Gebietszerlegungsmethoden** [Ste96].

Gebietszerlegungsmethoden
[Ste96]. **General** [CH88, Ste01, Wid88c, CS96, HDY05, MSY09, MSW98, NC88, SSZ98, WME+95, BHHA73]. **Generalization** [SIR08]. **Generalizations** [GH03].

Generalized
[AL90a, BGOD05, Ulb07, CJSs08, CZ91, CH07, CG076, DW03, EB99, Gol03, yGjW09, He96, MvdV01, OD09, QV90, SS86, Wen04, Xu96].

Generation
[CP05, JG02, BFH+95, Glo95, IAK06, Lit97]. **Geometric** [SM07, LC08]. **Geometrically** [HC02]. **Geometrical** [HC02].

Geometric
[CH91, Hol03, Kha08]. **German** [Bab57, Mor56, PS93, Ste96]. **Germany** [AFL96, HWP95, PSB+94].

Gesammelte
[Sch90]. **Gibbs** [HKL06].

Give
[Yse86a]. **Global** [SS98]. **Globally** [Sch96, ZS01]. **Glowinski** [CH94a].

GMRES
[Dek01, JC09, SS86, SHJ89b, XC92].

Governed
[Ben96]. **Gradient** [DG00, GLC89b, Hes56, Man90d, Mey90, SW93, Yse86a, CGPT05, CH93, CG076, Ewi89b, jFZ06, GAF09, KNGK04, MJC99, Meu88b, PP88].

granichnykh
[ezK84]. **graph** [AL97].

graphs
[ST96]. **Green** [BA04, Yu95]. **Grid** [BGT97, Ewi89a, GVT03, Hac91a, KP06, Shi99, Boy05, BEPS88, CMX09, CS95, Cot91, DW94a, DNS00a, EA96, FC94, ILW07, Jun97, Kup99, Lacs98, Lacs96, McC84, MT86a, MC05b, NV04, NZ99, SL1Z94, Shi93, WA03].

Gröbner
[GTZ88]. **Gropp** [Xu97].

Groundwater
[JKKM01, BWA92]. **group** [SHJ89b, TD07]. groups [Zha87]. **growth** [AR04].

GSM
[BP08]. **GSVD** [Bet07].

Guide
[Ban90].

h
[ST98, FMT99]. **höteishiki** [An098a, An098b]. **Hamburg** [PSB+94]. **Hamilton** [FLS94]. **hand** [FC94].

Hardy
[Sob98]. **Harmonic** [RRG06, AV99, BA04, CDS02, CDS04, Des91, HL96, Kho96].

harmonique
[Des91]. **harmonization** [SJMP10]. **hatten** [An098a]. **Heat** [SL06, CH06, DDD91, LLL+06, LM06, MY07, WZC10].

held
[AFL96, DRV00, PB96]. **helically** [LP07].

Hellenic
[Lip94]. **Helmholtz** [BIA05, CW99a, CF99, Des90, EG94, FMT99, FML00, FDS99, GZ02, GM09, JY01, JC09, Kim94, Kim98b, KT83, KT87, Lar99, LB98, MRS04, Stub10, Tru55, TT01].

Hembibum
[An00]. **Hermite** [Bia93, MR99].

Heterogeneous
[AKCHW01, GK97, USDM06, ADP02, CTD05, EE97b, GNT03, GL97, HE98, KN03, LBB10, MGC09, NP05].

hiding
[MJC99]. **hierarchic** [Osw89b].

Hierarchical
[BDY88, Bor05, BIA05, Haa97a, Man90a, Ong89, Osw92a, Ova07, SW90, Yse85, Yse86a, Ain96a, B391, BFF96, GL88, Hac03, HKK05, HE98, IBA02, KI96, KJ99, Kor01, Osw89a, Osw92b]. **High** [ACM01, ABBB94, GHF01, IEE94a, IEE94b].
LCHS96, QFR03, SRB01, AH02, AAII96,
BP04, CJSS08, CQ90, FMT99, FLM00,
GHF00, KKYxx, KY89, MDTC08, ML91,
WR09, SSH08]. High-order
[SRB01, AAII96, GHF00, MDTC08].

High-performance
[ABB94, IEE94a, LCHS96, SSH08]. higher
[IK95, Tahh92, Zho97a].

Highly
[AIIV97, KR10, BFK+98, DTH09, GVT03,
ILW07, LMR94, WAW88]. Hill [Des91].

Hill
[Ano98a]. HJB [Fen07]. HLRZ
[HWP95]. holes [MW04]. homotopic
[CSX05]. hp [TV04, FGRS97].

hp-approximations [TV04]. HP-Convex
[FGRS97]. HPCN [LCHS96]. HPF
[GLP97]. Human [PB96, NHD+03]. Hut
[GKS98]. Hybrid [DW10, FL00, Man93,
AR03, Ago95, AT95, Ald90, Bla07, BFK+98,
BM93b, CDL04, DP08, DL01, ETY98,
HD05, LL90, pLL90, TK09, Tu07, LS98].

hybrid-Trefitz [HD05]. hybrides
[AT95, LS98]. hydrodynamic [RSN07].

hydrodynamics [Ago86]. Hyperbolic
[BGS98]. Hyperbolic [DH05]. hypercomputing
[CC97]. Hypercube [MR98, Roe93].

Hypersingular [ST98, SMT08].

Hypertasking [Bab90]. hypre [KAL07].

IBM [HXA96]. ICCS
[STD02a, STD02b, STD02c]. ICCSA
[KGT03]. ICIAM [AM96, BH00a].

ICIAM/GAMM [AM96]. ideals
[GT88]. ideas [HJ97a]. Identification
[Ko89, SD07]. IFIP [PSB94]. Igniting
[ACM03]. II

[AL96, AE98a, AvdH92, Ano91, Ano93, AP88,
AP96, BFG+03, BS84a, BL91, BPS87, Bre89,
FW01, HLM91b, Hac91a, HT91, Hes97,
IKM+99, JMM+94, KKYxx, Lio89, Liu92a,
Mat93b, MOP+93, Nat97, STD02b]. III

[BPS88, CGCH93, Eg000, HK02a, Hes98,
Lio90, Liu92b, STD02c]. ikh

[Kho88a, Kho88b]. ILU [CG93]. Image
[LYK07, BZ96, HG08, SJMP10, XTW10].

images [BBM00]. Imbalance [MR88].

Imbalanced [LYK07]. Imbedding [BW90].

immiscible [DPLPY93]. Impact [HF88].

implementable [DHK06].

Implementation
[BP08, BDV96, BS93b, BMS94b, CIA94,
FGRS97, GY09, Geo96, LP94b, Smi93, Suz97,
Van93, AIV95, ARIV97, BS92b, Geo99,
Gol03, GKH86, HW06, HBG87, KR06,
MT05, MNW08, MS90, PV08, Per92, YH03].

Implementational [NZ99].

implementations [LYK07, MKP+96].

Implicit
[DD94, GHF00, Mas87, SL06, YCC10, ZS02,
Bla92, CGKT94, DD92, FF05, IVA93b,
KL88, Lae93b, LG95a, LSSL90a, MP09,
N,K91, Nie09, R9d97, TL88, YZ90, ZYD10].

implicit-explicit [TL88]. Improve
[YSF03]. Improved
[SST05, ST05, TV01, Yan10]. impulsively
[Wu92]. inaccurately [BVW97]. Including
[BP91]. incompatible [MG93].

Incomplete
[II’92, II’91, KKYxx, MVdV01, M04].

incompressible
[BVW97, DMP83, DGPT88, DW10, Hua90,
Hua93, JG03, KLM02, KW08, LL95, LW06,
LC04, Lou95, LR00, Lu09, OS00,
PW02, Phi90, RHGT10, R09, S93].

Indefinite
[BP87, BLP91, CW92, ST98,
Xu92b, Yse86c, CW93, FL05, Heu99, LT09,
Sch74, SX02, ST00a, SMT08, XC92].

independent [VTB97]. index [HS07].

indifferent [HB10]. Indirect
[DHY03, HYD03]. Induced [Kla98].

Industrial
[BKK01, BMPV08, KP96, Lio00, SAD+00].

industry [M04, MM90]. Inequalities
[HLP34, Bad03, BDS08, DNS00b, DHS02,
DH05, KFK97, Lio99, LL89, LL91, T010].

Inequality [Bel44, Sob98, Zho97c, ZW05].

Inexact [KW00a, Mey90, ZC95b, vES04,
jumps [MB96, Nep92]. June [CLM89, DW94b, QPKW94].

Kaczmarz [KK97]. kaihō [Ano00]. KdV [Tah92]. keisan [Ano98b]. kenkyū [Ano98b]. kernels [CDG95, CDG96]. KFA [HWP95]. kind [MST96]. kinetic [Kla98, Cor90, CDL04, DDM07, DP08, TKH09].
komponent [BK86]. konechnykh [Lae93c, Zav82]. Kraevye [Kho88a, Kho88b].
Krylov [Key95, Tid01, GR03, vdES04, van09]. kuba [EZK84].

L [CR88, ICS06]. L-shape [ICS06]. L-shaped [CR88]. lagging [DG07].
Lagrange [BK06, CH09, DDK06, HK01, HSY04, JG03, KW99, KW00a, Kok07, Kuz02, LW05, LLPJ08, Man03, RHG70, SHS09, Swa93, VMP10].
Lagrangian [LS95, lLH09]. Lagrangians [DH05].
Laguerre [yGjW09]. L’Algorithm [Soh36]. Languages [Fos96]. Laplace [BW89c, BW89b]. Laplacian [LCG+10, Pap89].
Laplaca [EZK84]. Large [BKK01, ERMD08, FR92, GL81, HE95, HF88, KK99, Kus97, QL94, AD09, EB99, Ewi89b, Ewi91, GAF09, KGE89, LJ06a, LJ07a, LJ07b, MB08, SAD+00, TRV91, WEN04, van09].
Large-Scale [FR92, HF88, ERMD08, AD09, Ewi89b, Ewi91, GAF09, LJ06a, LJ07a, LJ07b].
laser [ARZ00]. laser-tissue [ARZ00]. latency [MJC99]. Lattice [BMS94b, BMS94a, PS93, RJ07]. lattices [XGB10]. Law [TW07]. Laws [Qua90, BPO95, HSS07]. layer [Adz95, Ask95, Ask98, DRGM04, PP04, TV04, TT01].
Layers [Gar94, Bog00, BD01, BD03b, HS94a, Mi93, Rah01, TH01].
layout [Roz92]. Learning [KDBG95]. least [GP95, Nio96, Pav99, Ye98a, Ye98b].
least-square [Ye98a]. least-squares [Ye98b]. Lectures [KL07]. Legendre [Adz95, yGjW09, HKL06]. Less [DKW08].
Level [CGL01, MM89b, MM89a, MCL02, Sar93, Yse86b, Yse86c].
Levels [CHH04, GH03, Lui09, SIR08]. like [BGOD05]. limited [MST96]. limits [LP98a]. limits [BDP07, LP98a]. line [LP95]. Linear [CDG95, CDG96, CAL96, DV97, EES83].
Load [DMP98, HKD96, MR88, YHBM96, DRS04]. load-balanced [DSW04].
Local [CM01, DT91, DV01, ELV88, Ewi89a, GK92, Hac84, KG89, Pav93a, Yu01, AN95, BEPS88, CK08, DMP98, GP01, Kuh98, Mie88, Mis94, Roe89, SLLZ94, WVE97, ZZ99, Zho97a].
locality [LP98a]. locally [RP89]. Locally [ELP93, NW91, Wid89a, Ain96a, BFF96, DRSW04, EL94, KAL07].
locally-adapted [DRSW04]. Long [HKD96, CP96, GH90, LL88, PS92].
Long-Chained [HKD96]. Lossless [RM88].
Lösungsverfahren [Ste96]. low-frequency [AV99, IBA02, SR08]. low-frequency [AV99].
Low [HKD96, CP96, GH90, LL88, PS92]. Low-Chained [HKD96].
LU [GKB09, MvdV01]. Lubrication [LKY07].
Lugano [GT94]. Lyngby [DW94b].
machines [KNG+93]. Macro [BM93b, Ald09, Bre95]. macro-element [Bre95].
MAFELAP [Whi00b]. magnetic [HK96].
magneto [AKCHW01]. magneto-plasma [AKCHW01]. magneto-statistics [Kho88a, Kho88b].
magnetostatics [KMZ90, Kuz89a, Kuz89b, Kuz91a]. magnitostatiki [Kho88a, Kho88b].
Mainstream [Key03]. Management [DS99].
manual [BHHA73]. Many [DW87, FC94, ZH92]. Maple [Lop94, LP94b].
Markov [Kus97]. Matrix [PS10, AK04, AJR+00, BQO09, Bru91, CJSS08, CTD05, CES00, DL10, DKKV95, GLP+06, KFK97, Mur98, NV04, Tu07, Yot01].
Matematica [CGCH93, Ano91]. Matematiche [II’90, Kuz88a, Kuz92].
Matemática [CGCH93, Ano91]. matematichesko [II’90, Kuz88a, Kuz92].
matemáticas [II’90, Kuz88a, Kuz92].
mathematics [AB95, AvdH92, BV92, BMPV08, Bre89, BK92, BBCM03, CCCC91, FDKN04, KNS99, KM01, Lip94, Lop94, MR95, NTT00, Whi00b, WDPW04, dCGQS06, BGPW89, JMM+94, KNS99, MM090, ML02, SM98].
Mathématiques [CCCP91].
Mathematische [Sch90]. mathematischen [Bab57]. matrices [Bor05, BPS04, CS96, LVM88, Tar94, Wai88].
matrixis [KJS88]. Matrix [Dry81, GV98, Ha9a79b, Jia96, Prz63, Prz85, Var62, Dry82, Ha3c, HKK05, KB08, Lae98, Lt93, LVM88, MIl00, N’K91, Nat97, Ova07, Ove88, QL88a, SAD+00, SHJ89a].
Matrix-by-Vector [Ha9a79b]. Max [KST98, KST01]. maximum [Hu99, Ove88].
Maxwell [AV99, HL96, HZ03, PS10, RGG06, SZB+97].
May [CLM89, IEE94a]. means [GHS93].
measure [AR04]. mechanical [TV99].
Mechanics [HF88, BFG+93, Bat01, DKKV95, GR06, HMW06, IOD98, KCC89, KL07, Lum01, MR95, PB96, Rho99, TM97, Wir02]. Media [PS10, AK04, AJR+00, BQO09, Bru91, CJSS08, CTD05, CES00, DL10, DKKV95, GLP+06, KFK97, Mur98, NV04, Tu07, Yot01]. Medial [LC08].
Mehrgitteralgorithmus [PS93]. Memory [YHBM96, BG91, BZ96, DMP98, GL88, KNG+93, Mie88, SSO08, WME+95]. Mesh [CA02, FM99, Geo73, Gk92, JG02, KG89, LPL00, BFH+95, BPP07, GEVO08, LPP02, LM07, MN88, MN89]. Mesh-Based [CA02].
Meshed [Wi92b, Wi92a]. Meshes [Ai96b, Ca95, NW91, Wi89a, Ai96a, BC07b, CS97, CPS99, CH94, CS94, CZ95, CZ96, CS96, CGZ97, DL01, Glo95, KC88, ST96, VQ04, VMP10]. Meshing [BL04]. Meshless [Bla06, Bla07, PHR07]. meshless/spectral [Bla07]. meshless/spectral-element [Bla07].
Message [ABBB94]. Message-Passing [ABBB94]. Metallic [PS10].
meteorological [MSM98]. Method [Ast78, BGT97, BDY88, Bel04, Ben95, Ben96, BB06, BD03a, BW89a, BS93b].
micromagnetic [KM03]. microscopic [Koj91]. mildly [EB99]. MIMD [AIIV97, Dan91, Hei95, KNG+93, MB94, Pri95, WLH97]. Min [KST98, KST01]. Min-Max-Boundary [KST98, KST01]. Mindlin [BCLP10]. minimalist [MS07]. minimization [Car97, MD03]. minimizing [Ove88]. minimum [CP05, Gus03, SS86]. mirror [DDK06]. miscible [ADP02, Yan00]. Mississippi [GKL+09, IEE95]. MITC [BCLP10]. mittels [PS93, Rat00]. Mixed [BP87, CPR+03, CW91, CMW92, CMW93, Cow93, EW91, GW88, GKW90, JT06, Kuz05, Mat89, RT75, RW92, Ald09, BWA92, BM01, Bre88, CMX09, CEL96, CE97, CMW95, DDK06, DW94a, DW93a, D JW93, DH98, Fen98, FX04, GGM02, GY99, GGL04, GW87a, LH09, Mat93a, Mat93b, Mr089, Nep84, Par04, PY03, Per92, Rui96, SS98, Ste96, Yan00, Yan02]. Mixing [BCDM88]. MLD2P4 [DDF10]. mnogomernykh [Lae93c]. Mnogosetochnyi [KO89]. Mobility [FB96]. mode [Bor90]. Model [MM89a, Nor01, BLP03, CPS99, CMX09, CDL04, DDK06, EE97a, FNF+02, HDY05, Hie93, KLM02, KNP03, MSM98, SXYW90, WME+95]. modeled [KB08]. modeles [Tid92]. Modeling [ABB89, BFH+95, BW89c, MR94a, ACM08, BW89b, Dan91, LKY07, LSS+99b]. modelirovanie [Il90, Kuz88a, Kuz92]. Modellierung [Rat00]. Modelling [BBTD05, KDBG95, BQQ09, BS93a, CG94, FNF+02, KMM91, KM03, RSN07, SS98, SP03, WB91, Ano90, Ned95]. Models [ARZ01, AL93, AK04, ARZ00, DGPT88, LP94a, LBB10, MSW98, PF05, Tid92, WW89]. modern [Sch88]. modification [Bul88]. Modified [BIA05, Cha06, LY09, Sha94]. Modifitsirovanny [KS88]. Modular [WST09]. modules [Gai95, PS88, PS92]. Moduli [GH90]. Molecular [ES96b, NPY+97, KNG+93]. Molecules [HKD96]. moment [Tiw00]. monitors [Luc88]. mono [BM10]. mono-energetic [BM10]. monodomain [MP09]. Monotone [Ad98, Bog04, Bog06a, Bog06c, Bog07, Bog06b, BP07, Bog08, HB04, Kor97, MP08, Zen96]. monotonic [DH05]. Monte [ABL05, AGKL08, ARZ00, ARZ01, N’K91, NS00, WLH97]. Morley [Hua01, Mar07]. Mortar [GSP10, LWO5, Mar01, WPT08, AN95, AK97, AHP97, BF03, BP04, BDR02, DP03, DW03, DP05, ELL99, FHW04, GY99, HB10, Hu04, JT06, Kim07, LKY07, Mar07, MD08, PY03, PGW90, RX05, SXC02, SK99, TS03, Wid96, Wis97, GGM02]. mortar-based [LKY07]. mortar-type [SXC02]. Mortaring [HP05]. Moscow [AL90a, AL90b]. MOSFETs [AGKL08]. motile [IU98]. motion [JG03, PGJB03]. motivated [Scr91]. Motor [KDBG05]. moving [DDM07, HC98, WB91]. MP [Lai93]. MP/342 [MS90]. MRI [IEE96, MKP+96, Str96]. Multi [KST01]. Multi [ADC09, De 91, GKW90, Hac91a, Kuz90c, MM89a, RZ98, SJMP10, VIA94, Yse86b, Yse86c, CPS99, DG07, DDS89a, DDS89b, GMH08, Jun97, KR90, KPR08, Lay92, Leu98a, PS93, SSZ98, SHJ98b, SP03, SSLZ94, Yse90, ZH91, Zho97a, ZYD09, d’H93]. multi-color [SLZ94]. multi-dimensional [DG07, Lay92, ZYD09]. Multi-domain [VIA94, DDS89a, DDS89b, GMH08, SP03]. multi-element [KPR08, SHJ98b]. Multi-Grid [Hac91a, Jun97]. multi-lattice [PS93]. Multi-Level [MM89a, Yse86b, Yse86c, GKW90, Kuz90c, SSZ98, Yse90, ZH91]. multi-model [CP99]. Multi-parameter [RZ98, Zho97a]. Multi-Processeurs [De 91]. multi-processors [KR90]. Multi-scale [ADC09, SJMP10]. multi-structures [d’H93]. multiblock
multibody
[DKV+10, IP98, KHD05]. multicluster
[Fra90, FGM90]. multicontact [Ala07].
Multidimensional [AIIV00, Hes98, QL94,
HK97, LY07, LSL97, RSVV08].
Multidisciplinary [DG00]. Multidomain
[LP07, Tra96b, ARIV97, Gas93a, LV90,
Zam92]. Multifield [HMW06]. Multigrid
[BDY88, Beu02, CWW92, DRV00, FL00,
HT91, HS94b, Kra09, Kuz89d, KO90,
SXC02, Ta92, Vas86, Yse86a, ZH91, BWA92,
BM10, BD96, BD97, BPWX91a, CS94,
CN97, DL01, Dou92, FDS99, GZW+00,
HL91, Hei93b, JT06, KK97, Kon90, Kor97,
KK93, Kuz89e, Kwa03, Loy95, MC97, Mie88,
Sbo91, SW91, SP08, SX99, SR92, Tai03,
WC03, Yu97b, Hen90]. Multigrid/Domain
[FL00]. Multilayer [Lar99, GG08].
Multilevel [BY92, BPX90, BP91, CN97,
CSX05, DDF10, DW91, Go99, HM97,
IL05, Kuz89b, Kuz89c, Mcc89a,
McC99, Os91b, SP98, TB99, TCK91,
Xu89, Zha91, Zha92, Zha92e, AE07, AP96,
BBm00, C296, CE97, ETV94, Ggu94, GOS05,
JL91, LVM88, LSS+9b, Nex97, Os91c,
Os91e, Os92b, Os99, Tai05, The98].
Multimodel [TM97]. multiphase
[CES00, WPT08, Yot01]. multiphysics
[MP97]. Multiple [EA96, Tu208, GHP10,
GH94b, KPP99, SK09]. Multiple-grid
[EA96]. Multiplications [Haa97b].
Multiplicative [Bjo89, CW93, Bad03,
BPS04, FNS02, GO95, KPP07, NAB03].
multiplier
[BK06, JG03, Kok07, LLPJ08, SHS09].
multiplier-based [Kok07].
multiplier/fictitious [JG03]. Multipliers
[HSY04, Hu05, KW00a, CH09, HY10, HK01,
Hu04, KW99, Kuz02, LW05, PlL91,23,
Man03, RHGT10, Swa93, VMP10].
multipliers-free [HY10]. Multipole
[SBH93, CWD08]. multiprocessor [Ala07,
BG91, Bar89, BB91, SK90, WAW88, De91].
multiprocessor-computer [De91].
Multiprocessors
[AIIV97, HM87, GL88, IVA93a, Luc88].
Multiscale
[AH02, Kra09, Ala07, DP08, Eng90, GY90,
GLS07b, LL09, OBG10, SM07].
Multisplitting [Bru91, Cha97, EB99, Gu97].
Multisplittings [Whi87].
multistuctures [dH92]. MuPAD [HKM+97].
Mutual [BC96].
naleganiya [La92b]. nano [AGL08].
nano-MOSFETs [AGL08]. Nash
[SAM10]. National [CD08].
Nationale [GGMP88b]. Natural [DY02, Fen83,
Ast78]. Bes87, DNS00a, DNS00b, DZ04, IP98,
JY01, Lu09, Ste05b, Yu94, Yu95, hY98,
Yu99a]. naturally [DLPY93].
Nauk
[AL90a, AL90b]. Navier [ARIV97, Seq95,
AAH+00, AIIV97, AIIV98, AIIV00, BQQ09,
BVW97, BK06, CFS97, CMX09, Co91,
DQ98a, DV97, DGP80, DMPG83, FM05,
Fuj98, GQS00, GRW05, GPP94, GL00,
HG08, Hes97, Hes98, Hua90, Hua93, KT96,
KFK97, LW98, LL97, Li03, LC04, Los95,
LR00, LMM00, Lu99, Man06, Phi92, RV05,
SRR01, SR92, TM04, Tid95, Tou01, VIA94].
Navier-Stokes [Seq95]. nd
[HL91b, RT75]. nd-order [HL91b].
nearly [Fen98]. Nédélec [Hie03, Hie05].
nekotorye [Ago90b]. nekotorykh [La92b].
nelineinoi [Kho88a, Kho88b]. nepolno
[Kho88a, Kho88b]. nepolno-nelineinoi
[Kho88a, Kho88b]. Nested
[Geo73, MB94, Pin92]. network
[Don92, Par95]. networked [BMS94a].
Networking [ACM01, LCHS96]. Networks
[Leu99, Cha93, HWP95, Lag99a, Lag99b,
Leu98b, OD93, TAA03]. Netzwerken
[Rat00]. Neumann [DV96, PRZ06, Tal93,
BSS04, Bir99, Bir99b, DP09, DV96,
DW93b, GL00, GWS78b, HN05, HN06,
JMM06b, KM91a, KM92, PRZ06, Po96,
SD04, Sha94, Tal93, TMV98, TV04].
Neumann-Neumann [DV96, Tal93].
Neumann–Neumann-Schur [PRPZ06].
neural [HWP95], Neuron [KDBG95, LP94a]. neutron [Abr08]. News [Xu97]. Newton [AFK02, CKY02, FGGV08, GR03, Key95, KT05, Liu03, MB94, Tid01].
Newtonian [PGJB03]. Nitsche [Hei93, FHW04, HP05]. Nitsche-type [Hei03].
o [Ano98b, Ano00, CZ95, TV01].
Nodal [BB06, TCK91]. Node [GCMGRG09]. noisy [Nie09].
Non [BM93a, BB06, BLP91, CTD05, CC97, BS02, Gil01, GR06, Liu09, LMO00, MR88, MS05b, OL99, PHR07, RVY93, SST96, ZS01, AJT+99, AR04, AIV95, BRVC09, BV98, BDG+97, Car97, CGM01, CHH02, CHH04, CSZ96, CH09, DV01, DZ04, GHNN99, GG03, GMH08, GT03, Haa00, Jia06, Jun97, Kok07, Kor97, Kuz98, LS95, LLL+06, pLhH93, LCO04, LOM98, LMO00, LMM00, Liu09, MS02, PS00, RV04, RV05, RVY97, SFNW02, Ste05b, Sus97, Tsu96, VMP10, WPT08, ZS00, ZZ02]. Non-Algorithmic [MR88].
Non-conforming [BM93a, MS05b, CH09, pLhH93].
Non-iterative [ZS01].
non-matching [BDG+97, CHH04, CSZ96, Kuz98, LS95, LLL+06, SFNW02, Ste05b, VMP10, WPT08].
Non-Overlapping [LMO00, OL99, RVY93, BB06, CTD05, DS02, GR06, Liu09, PHR07, SST96, ZS01, BRVC09, BV98, CGM01, DV01, DZ04, GHNN99, GG03, GT03, Haa00, Jia06, Jun97, LLL+06, LOM00, LMM99, LMM00, Liu09, MS02, RV04, RV05, RVY97, SFNW02, Ste05b, Sus97, ZZ02].
Non-reflecting [Gil01]. non-self-adjoint [Tsu96]. non-selfconjugate [ZS00].
non-smooth [Car97, Kor97].
non-stationary [CS04, LMM00].
Non-symmetric [BLP91, AJT+99].
Non-uniform [CC97]. Nonconforming [FMW04, KW00b, LL89, pLL90, Sar93, ByS99, CE97, DS95a, DS96, GH97, HR09, Hua95, Hua96, KM03, MC97, Osw92b, Par04, SX97, SX99, SX02]. nonconvex [Shi99]. Nonhomogeneous [LM72].
nonisothermal [KLM02]. noniterative [Jun10, NP93]. Nonlinear [Bog06c, DY02, GK91, HE95, Hei95, HF88, Kus97, QL94, Roe93, Sch96, Tai05, ARRS09, ARRS10, Adz98, Bog04, BP06, Bog06a, Bog06b, CKY02, DW94a, DH97b, EB99, GM98, GDP83, GP85, GJS10, GR03, Gru01, HTJ88, HB04, He96, HK97, HK96, HJ97a, KMZ90, KT05, LP06, Lee00, LH09, MB94, Mej94, MP08, MP09, N’K91, Osw90b, PAJ10, Sas03, Seq95, SC92, Tai94, Tre96a, Yu97b].
nonlinearity [AR04, BDPO07, OD09]. Nonlinearly [Lui03].
nonlocal [Tat08]. Nonmatching [Bel04, Hu05, SFNW05, BC07b, Buf02, EHI+00, HK98a, KL05, Kuz05, MS05b, TR93, Tal93].
nonnontors [Ste05a].
Nonnested [Cai95]. Nonoscillatory [SK92]. nonoverlapped [Lai92].
Nonoverlapping [BD03a, CG88, CG92, Den97, Den03, DLN02, Dri99, DG00, Du01, GM98, GH97, Haa97b, HZ03, HSW10, MRS04, RGG06, Rui06, XZ98, ALW99, BS00, BH03, CH93, DG07, DY96, ETY98, GRW05, GH94a, Hua04, Lio90, NN97, QX06, SIRO8, Yan96, Yu96, ZY07].
nopenhaurativ [XT04]. nonrectangular [Sch94]. Nonreflecting [Gro01].
Nonselfadjoint [Cai89, Cai90, XU92b, GH95, Hua99, Kis90].
nonshared [Mie88]. Nonsmooth [Kros09, Gri85].
nonstationary [AK90, Age90a, Vab96, Zha95].
Nonsymmetric [CGK92a, CGK93, CGK94, DV97, EES83, KG90, Wid92, Yse85, CW93, KGE89, LMR94, NN87, SS86, SHJ89a, SHJ98b, SXC02, XC92]. nonviscous [AL93].
Norm [BY92, Cai93b, Osw91b, Sch05].
norm-equivalences [Sch05]. Normalized [Nie09]. Norms [MN88, Nep84]. NORSAM
[BHHA73]. Norway [Ano96a]. Note [Bel44, BW89a, Wan01]. Notes [XG95].
Notre [IEE96]. nouvelle [Ago98]. Novel [JN01b, DTH09, JN03]. November
[ACM01, ACM03, HWP95, IEE91, IEE93]. number [Bre99]. Numer [CZ95]. numeric
[Ste96]. Numerical [AGLV80, AE07, AB88, Ano90, BPMB00, Bj80, BS08, Bre89, Bre85,
BBM03, BT06, CMX09, CTU98, CES00, CH06, DRGM04, DY96, FDKN04, GP79,
GP87, GW96, GR07, GPS89, HT38, Hu05, Hua04, ILW07, Joh87, JG03, JM09, KO08,
Kim94, KD92, LL01, Man06, Mat93a, Meu91b, MT86b, NTT00, Pap89, PR95, PR83,
Sch88, SM89, Vah91, VVY01, ZG87, ZS02, dCGQS06, ADP02, BFH+95, BIM05,
BK06, CGO76, DDD91, DS92, DSV94, DGP80, DH05, DHO6, DPLPY93, GP85,
Hua90, IKM+99, KNS99, Kha08, Kva88, LNT84, MDTC08, MST96, NFW08a,
NFW08b, PS90, QL89, Qua91, RG03, Rod85, RKL89, Sc88, TD08, TP93, TAA03,
USDM06, Ano93, DDN95, KNS99, Mor90]. numerics [AFL96, BGS08, FW01].
Numerique [CD08]. numerische [Ste96].
O [LL93a]. Ob [Lae92b]. obemnykh [Kuz90a]. Object
[TY98, ZC95a, KKNR05, Lit97]. Object-Oriented
[TY98, ZC95a, KKNR05, Lit97]. oblasti
[Ago90b, BK86, Bul90, Lae92b, Lae92c, LL93a, Lap99, Nep90]. oblique [HR90].
observation [Sch74]. Obstacle
[Tai02, KK03, KNT94, Tar94, XS94, ZC95b]. Obtained
[Man90d]. OCamiP31
[CMV+06]. October [IEE95, KD92, SX94].
odd [Sme89]. ODDL.S [GEV08]. ODE
[AM06]. off [SZB+07]. Oil [CMW92]. One
[PRL10, Bou90, Fun88, GPP94, KL88,
Stu10, Hes97]. one-dimensional
[Bou90, Stu10, Hes97]. one-phase [KL88].
ones [Shi93]. onto [Pap89]. Operator
[BGTV89, BK06, Gus03, MPRW98, AN95,
GGM00, GK09, LL09, RMSS03, Shi95].
operator-decomposition [GGM00].
Operator-splitting [BK06]. operatora
[EZK84]. Operators [Ago88, Cai93b, CK89,
CH91, Kuz91b, AG07, GVT03, Haa97a,
HC92, Hu04, KMN93, Kho96, KNT94,
La96, Nat95, Nat97, Nep97, Nep99, Nie99,
Osw99, QV91, Tai05, Vas92, Yu95, Yu99a].
Optimal [Ben96, BC07b, Cai93a, Den03,
GH99, GP01, HN06, Leu99, MRS04, SD04,
Smi92a, Wi89c, Xu90, Zha93, AV99, Bou02,
C95, HN05, KALO7, Kor01, Lag99b,
LL04, Leu98b, Leu98a, MC97, SM07].
optimal-order [MC97]. Optimality
[DW89a, Roz92]. Optimisation [DFLR93].
Optimization
[DG00, Du01, GL00, Kom90, RMSS03,
BGH+07, BB91, DDD91, DSV02, ERMD08,
GH98, HLO0, HP02, Kok08a, Kor07, Lee00,
Lee06, LPP02, Roz92, TX99, Uib07, Ano96b].
Optimization-Based
[DG00, GL00, HLO0, Kok08a, Lee00, Lee06].
Optimized
[LCG+10, QX08, VG05, GG03, GSv03].
Order [CH88, Hei93a, Hem95, Ong99, RT75,
AAI96, Ast78, BM93a, BP04, Bra66, CQ90,
CES91, CEL96, CH94b, CM00, DHY03,
DPRW93, Fun88, Gra02, GFF00, GFF01,
HLM91b, HL09, KKYXX, KGE89, Kla06,
KY89, Kor02, Lag99a, Lay92, LB94, MC97,
MDTC08, Mar07, MD08, NPH09, Pap99,
PRL10, SRB01, SH93, SR08, Tor94, Yan02,
Ye98a, Zha93, ZS00, Zub10]. Ordering
[Wil92b, DM90, Wil92a]. orders [IK95].
Ordinary [BPM00]. Ordinaires [De 91].
Oregon [CLM89, IEE93]. Oriented
[TY98, GFF94, KKNR05, Lit97, ZC95a].
Orthogonal
[Bia93, BD03a, BM91, Shi95, Mor56].
orthogonalization [Man90a].
Orthogonalprojektion [Mor56].
oscillating [DTH09, ILW07]. oscillation
[CJS08]. oscillations [Bes77]. Oseen
[YL87]. Oseen-viscoelastic [JL08]. Otdel.
31

[AL90a, AL90b]. other [BPP07]. otsenke [Lae92b]. outer [Rod85]. Outflow [NR94]. overdetermined [ST94]. overhead [IBA02]. Overlap [BW89a, DW92b, DW94c, WGZ+95, BDV97, CDS02, CDS04, Hua95, Hua96, Pav00, Vab90]. overlapped [Che05]. Overlapping [Abd93, BJN02, BN07, BPS04, Cai93a, CS96, CW99a, CG88, CG92, CSZ96, DKW08, GS92a, GS92b, GH94b, HK01, KK99, Kuz91b, KN92, Kuz98, LMO00, OL99, PR95, QL94, RY93, TMS87, TY07, ZHL03, BB06, BRVC09, BPV98, CTD05, CGM01, DS02, DV01, DZ04, FMW04, GHN99, GG03, Geo96, GVT03, GR06, GH95, Haa00, HC03, JY01, Jia06, Jun97, KPP09, Kur93, Lae92a, LT03, LS05, LL+06, Liu09, LOM98, LMO99, LMM00, Liu09, MGLS91, MT86b, MY07, MLB99, MS02, MP08, NN97, PR90, Rac95, RV04, RV05, RY97, STH96, SV96b, Suz97, TT99b, TP08, Vab08, VG05, ZZ02, ZD04, ZS01]. overlaps [HK97]. overrelaxation [Gus03]. oxymoron [Kny98b].

p
[Man89a, Man90a, Man90b, Man90c, Man92c, Pav91, Pav92, PW93, Pav93a, Pav93b, ST98]. p-Version [Man92c, Man89a, Man90a, Man90b, Man90c, Pav91, Pav92, PW93, Pav93a, Pav93b]. P. [Xu97]. P1 [Osw91a, Osw92b]. Package [Ban90, DDF10, YHBM96]. Padé [HKL06].

Palazzo [GT94]. PARA [DW94b].

Parabolic [Cai89, Cai91, DD91, DD94, Dry91, ELPV93, MPRW98, Men91b, Yu01, ZS01, ZS02, Abr00, ARRS09, ARRS10, AAI96, AIV95, Bla92, Bog99, BD01, BD03b, Bog04, Bog06a, Bog06b, Cha04, Ch05, Cha06, Che95, ICjZ93, CPZ00, DG07, DD92, DW94a, DT07, DMW01, EL94, GGM00, GMG02, GK02, GGL04, IVA93a, IVA93b, JM06b, JM06c, JM06d, Jun90, Lae92a, Lae93a, Lae93b, LG95a, Lae98, Lae96, Lee06, Li06, LY07, LSS09a, LH09, LM07, LOM98, LMO99, MSY09, MS10, MG91, Men91a, MP98, PAJ10, QQ08, Rui93, SV95, SV99b, Scr88, SLC04, SV96b, TV91, VG05, WR09, WS04, Yan10, Yu97b, Yu99b, ZW05].

parabolicheskikh [Lae92b, Lae92c, LL93a, Lae93c]. paraboliques [GGM00]. Paradigm [BL04, MvdV01, Pri95]. Parallel [AR03, ARZ01, AIV95, AIV97, ARIV97, BBG95, BL04, BCT99, BDV96, BMOV96, BMS90, BMS91, BM91, BS92a, BCG94, BL00, BS93b, BPX90, BMS94b, CGKT94, CAL96, CS95, Chi81, Cia94, CRQT86, CRQR89, CW91, CWW92, DDF10, Den03, DKM+92, DW94b, ES96b, Eng09, EJL92, EA96, FR92, FRSY96, FGRS97, Fos96, FL00, jFZ06, GV87, Ge99, GH98, GKS9, GKI91, Gr92, Hac91b, HB04, HKD96, HK96, HJ97a, HZ93, HXA96, IEE95, IU98, JNO10, JNO2, JN03, JCL07, KN9+93, Kan87, KK99, KG90, KDBG95, KKKR05, LR97, LNT84, Li099, LLS89, LSS91, MS90, MC05a, Men91b, Mey90, MPS86, MY07, NRWF08b, NN92, NF97, OPA97, OPF97, PAF+97, PR95, PFO5, Pop02, QFR03, QLS88a, RBS94, Rhe99, RHT10, SW91, Sch96, SL06, SV96b, SHHG93, Sm93, SBGP98]. Parallel [Ste95, Str96, SM10, Syd94, The98, WLH97, WDPW04, Yan10, YH03, ZH92, ZS01, ARRS10, AGLK08, ARZO0, AAI96, AIV98, AI100, Bab90, BJ01, BPO95, Bl04, BB09, BS92b, BFK98, BA99, BS90, BS91, BDM89, BT06, CKL98, CD99, CDG96, Cha97, Che05, CWD08, DG07, DRSW04, DMP98, DP09, DDGM89, DLPY93, DPRW93, DMW01, ERCM08, FC94, Fra90, GRRN99, Glo95, Goy99, GKS98, GK88, GH94c, Gu97, GZW+00, Haa00, Hei95, HJ97b, IAI06, Kat94, KG87, KRO6, KR10, Kuh96, Kuh98, Lai94a, LPS94, LKY07, LL97, LSL97, LSS9+09, LP98b, Lou95, MT05, MvdV01, MJC99, MB94, Meu89, Mil00, MSW98, MMC06, NFP93, OBG10, PdOG99, PB94, PS93, Per92, Pm92, Pri95, QX06.
Qua91, RSVV08, Rui98, Sbo91, Sch88, SB89, Suz97, Tah92, TD07, TY07, VIA94, WAW88. Parallel
[WY97, Wan01, Wan06, Whi87, XS09, XZ99, Yan96, Yan02, Zha92b, Zho97a, mM04, CC95, Koe01, LP98a, MKP+96, Gol03]. parallel [LP98b, parareal [PS93]. paralleler [LP98a]. Parallelisation [HLM93]. Parallel [RSN07]. Parallelisierung [HLM93]. Parallelism [HKM+97, Sko92, GHP10]. parallelizable [SS98]. Parallelization [BIP01, CP97, DDK06, ETV94, Hvi90, MSM98, Mie88, TY98, DM09, GEF05, Jun97, Kuh98, KKS90]. Parallelized [GOD+07]. Parallelizing [GLC89b, IVA93b]. parameter [Ago90a, CLYZ99, HK08, Pra93, RZ98, Tru85, Zho97a]. parameters [AL90a, Nep99, SD07]. parareal [Bal05, FHM05, MT05, SR05, Ulb07]. Paris [GGMP88b]. Partial [Hac91a, Ano93, BHHA73, Bre89, HLM91a, HLM91b, KGTL03, Mat93a, Mat93b, MIL02, MOP+93, STDH02a, STDH02b, STDH02c]. Partial [Bab58, Ban90, BJNN02, Ben96, BEPP90, BEPP92, Cai89, CGPW90, CKM+92, CW91, Dub01, GGMP88a, GGMP88b, GKM+91, GN08, HMS7, Joh87, Mc89a, Meu88a, N900, Smi90, SBGP98, ARRS10, Bab57, BFI+95, Bal05, Bjo11, BL00, BT06, CQ90, CE97, DS92, DPRW93, DY96, DTH09, FMP+98, GW87b, GK88, GGr07, GHL00, Hac91b, KG87, Kla06, Kva88, LL04, LNT84, Lay92, LB93, Li92a, Lü92b, Li92c, Ma96, Man90a, Meu89, PV08, Qua91, Qv99, RVY93, Scr88, Tem88, TV91, Xu09, ZZYY08, ZG87]. partially [DD07]. Particle [Cot91, ES96a, QFR03, WLM97, BM10, GOS05, TKH09]. Particle-grid [Cot91]. Particle-In-Cell [QFR03, WLM97]. particle-particle [TKH09]. particle-partition [GOS05, particular CP96]. particulate [DGKL02]. particelle [Bab57]. Partition [Sar03, GOS05, Hol03, IP98]. Partitioned [Dek01, Wid84, BW84, BW86, BPS86b, Dry84, Kis90]. Partitioned-GMRES [Dek01]. Partitioning [Dag93, Wai88, CGZ99, Che95, KPW95, KPW96, ST96, VAs86]. Passing [ABB94]. past [HMZ94]. patch [GHMR07]. patched [TB97]. patching [Hei93b]. Patrick [Murt97]. patterns [IU98]. PCG [PB94]. PDE [AM06, BGH+07, CGO76, DK06, GH03, HK08, MR94a, Ulb07]. PDE-based [HK08]. PDE-constrained [Ulb07, BGH+07]. PDE/ODE [AM06]. PDEs [AAI96, Bla92, Dar04, GLS07b, Hem95, IVA93a, JN01b, JN03, Kr90, KS99, LP94b, RVY93, Sch94, VG05]. Peaceman [LR95]. Penalties [BZ06]. Penalty [Hes98, AAh06, Bla92, Hess7, Lae93a, LTV01, LMat95]. pendula [JG03]. Penetrating [Tse00]. Pennsylvania [KK95, KX94]. pereobuslavicatelei [Kho88b]. perfectly [Rah01, TT01]. Performance [ACM01, ABBB94, IEE94a, IEE94b, LSS°98b, LL04, M96, M96, WME+95, mM04, GHP10, LCS96, MC05a, MSM98, PS90, Ste5a, SSH08]. periodic [SZB+07]. Perturbation [BS93b, LW07]. perturbations [OS04]. Perturbed [Bog02b, GKH97, HP05, Kuz91b, BS92b, Bog99, Bog00, BD01, Bog04, KL95, KPP09, MS02, Scr91, SC96, Shi93, Shi99, TS01]. PETSc [KAL07]. phase [Bla00, DK06, KL88, LY08, SXyWX09]. Phoenix [ACM03]. photonic [LJ07a]. photoreceptor [Kha08]. physically [Scr91]. Physics [Ano89a, Bab58, GT94, Ste01, AL95, AL96, Abr96, AE98a, AE98b, AEZ00, Ago89, Ago91, Bab57, Ego00, Hol03, KR03, Vab08, Zha95]. Physik [Bab57]. Piecewise [TG05, Shi99]. piecewise-smooth [Shi99]. pipe [TAA03]. planar [Bet07, ST96]. Planck [yGjW09]. Plane [Wid88b, K90]. plasma [AKCHW01]. plasticity [Car97, EG09].
Plate
[Mar01, TMV98, ADC09, BCLP10, Bre95, ByS99, Hua04, SD07, SX97, SR08, d’H93].
plate [TMV94], platforms [SK09, PLS [CAL96], PLTMG [Ban90], plus [Haa97a].
PML [GM09, KO08], podoblastei [Lae92b], podprostranstve [KS88].
pogreshnosti [Lae92b]. Poincaré [AN95, Ago88, Hu04, Nat95, Nat97, QV91, Yu95].
Point [HSY04, Bad06, BO07, KR03, Lai94b, MDTC08, PW02, RW93].
point-collocation [MDTC08]. points [Boy05, HR09]. Pointwise [Cai95, SHS09].
Poisson [Alb95, BM01, Bia93, CR85a, lCS06, Kar94, MT86b, RV04, LG87].
pokomponentnym [LL93a]. Polar [Ben95].
polyhedra [Wil92b, Wil92a]. polymer [SXyWX09].
polymer [SXyWX09]. Polynomials [Adz95].
polytechnic [Lop94].
poroelastic [BQQ09]. porous [AK94, AJ+00, Bru91, CTD05, CES00, DL10, KFK97, Muv98, NV04, Tu07, Yot01].
Portland [CLM89, IEE93]. Positive [GL81, CDS04, Tai05]. postanovke [Kho88a, Kho88b].
Posteriori [OL99, BRVC09, HE98, Rep08]. Postroenie [Kho88b]. potential [CPS99, KFK97, Kh096, KK03, LP06].
potentials [RTE06]. pour [AD96, BGT88, Des91, GGM00, LSV98, LP98a].
powerlookhnosti [EZK84]. practical [JL91]. practice [II’92, Key99, MR94a]. Prague [Ano96c].
Preconditioned [CG93, CG94, Eva94, Ewi89b, GLC89b, HW09, Kny98b, Mey90, Tsu96, BS08, Brv95, CKY02, CH93, DM89, Gra02, JC09, KM91a, KM92, KAL07, Lui03, PP88, SHJ98b, XC92, GAF09].
Preconditioner [An96b, BJNN02, Beu05, DRT1, JKKM01, JN01b, Os91a, QSV06, Smi92b, TCK91, Ain96a, AV99, Bre95, CDS02, CDS04, CH92, Dor91, GTN03, HJ97b, HC91, Hua01, JN03, KKP07, Kim07, LT03, LSS+99b, Ma96, MMRT02, MR99, Rac95, RXH05, Ro89, Os93]. Preconditioners [AN95, BPX90, CGL01, CR87, Cha87, DDF10, DV97, HN06, HF88, Mu95, Ong89, Os91b, Os91d, Pas88b, ST05, SR08, TGS10, WD07, AAH06, BCLP10, Ber04, BN07, Bla04, BO07, BPS6a, BPS87, BPS88, BPS89, BS00, Cao92, CGM01, CR85b, CR88, CES91, CE97, DP03, GS10, GCP91, HL91, HLM92, Haa97a, Hie03, Hie05, HC92, ILW07, KW93, KRP08, KYYx, Kri05, Meu88b, Os91c, Os99, Pas88a, PW02, QL88b, RW93, Sal04, SP08, Sco94, SX97, SW97, The98, TV04, Yot01, Yse90, ZS00, Zhu08].
Preconditioning [BCT99, BP04, BP87, CK89, Dar04, GM84, Hu04, JN99, KI96, LAc96, LK04, Man96b, Man98a, Mis94, MR92, MR94b, Nep09, NP05, SAD+00, SPBV05, Zha92a, AP88, AFAK02, BCM91, BK00, BEPS88, DDS89b, DDS89b, DD07, Dos90, GKB09, Gus03, IK95, KI99, KW01, KNP02, LVM88, Man90a, Man90c, ML91, Mil00, Nep97, Sch05, Wai88, Zha93].
[BGP89, Bel04, Beu02, BS93b, Bog02b, Fen90, GP79, LMO00, MG05, Sch98, Wid84, Zha91, Zha92c, Zha92e, AQ04, AF85, BDOP07, BSS04, Bes87, BS84a, Bog99, BD01, Bog02a, BD03b, Bog04, BP06, Bog08, Bou02, Bra66, Bre95, BLP03, CZ91, Car97, CH97, DG97, De 91, Des90, Des91, DV96, Dry82, Dub01, FX04, FGM90, FDS99, GGL04, GP87, GJS10, Grue01, He96, Hie03, Hua04, JK01, JT06, KN02, KO88, Kim94, Kim98b, KL05, KM91a, KM92, Kok07, Kok08b, Kok09, KP99, KL88, KO90, KN92, KN03, LPL00, LPS02, LLP03, LV90, LLPJ08, Lee00, Li97, MR04, Mar07, MD08, MG91, MS02, Osw91c, Pie04, PLL05, Po96, QV90, Sas03, Sh95, Sob98, ST90, Tro96a, Tu08, TP93, WL06, Yan02, Ye98a, Zam92, ZD90, d’H93].

[BGT88, Des91, GGM00, LS98, LP98a].

Problems [ABLS05, BIP01, Beu05, BD03a, BH88, BW99, BKK01, BP87, BEPP90, BLP91, BEPP92, BZ06, CGK92a, CW92, CGK93, Ca93a, CGK94, CH88, CH91, CIA78, CMW92, DD94, DPW86, Dry88, Dry89, DW98b, DW90, DW01, Dry91, DW92a, DS93, DW93b, DY02, ELVP93, FL00, GK97, GW88, HS96, HO91, HP95, He93a, HSY04, HF88, JN02, Kra09, Kus97, Kuz91b, LL00, Leu99, LMT2, Mar01, Mat89, Mat93a, Mat93b, Meu91b, MPS86, Nep86, Nep91, Ong89, Pas88b, RT75, SM91, Sni92a, Sni92b, Sni93, Ste01, Tai02, TMV98, Wid84, Wid88a, Wid88b, Wid89a, Wid89d, Wid92, Xu92b, Yse85, Yse86c, Yn01, ZS01, AH02, Abr08, AL95, AL96, Abr96, AE98a, AE98b, AEZ00, ARS09, AJT+99, Adz98, Ag086, Ag087, Ag089, Ag090a, Ag091, Ala07, AJR+00, AAH06].

Problems [AMS09, AIV95, Bad06, BCLP10, BM93a, BGS08, Bet07, BN07, BW84, BW86, BDR00, BDR02, BS92b, Bog00, BFK+98, Bor05, BO07, BD96, BB02, BT88, BW97, BSP96a, BPS86b, BPS87, BPS88, BPS89, BP90, BGG+97, CW93, CTU98, CQ95, CES91, CZ94, CS94, CZ95, CS95, CEL96, CE97, CGPT05, CSX05, CCJ99, CH92, ICJZ93, CPZ00, CM00, Cor90, DS96, DD92, Dev90, DGP84, DP09, Dos95, DFS98, DNS00a, DGS01, DKV+10, Dry84, DP03, DW93, DP05, DG97, DT97, DMW01, Eg00, EG09, ET98, ELV88, Ew91, EL94, FMT99, FLM00, FL05, FGGV08, FRSY96, For07, FW01, GM00, GEOOO8, Gas93b, GM98, GS98, GM91, Geo96, Geo99, GAF09, GK02, GTN03, GVT03, GR05, GP01, GDP83, GP85, GW87a, Gri85, GH94a, GH94b].
recycling [JM06d, JM09, MS10, Osw91d]. Reduced [Dor91, LP07, MR04, SR92]. Reduction [DY02, Fen83, BPP07, BDM89, DZ04, Fra90, Hos07, JY01, Liu09, Yu94]. Reference [RP89]. Refined [ELPV93, NW91, Wid89a, Ain96a, EL94].

Refinement [BMS90, BEPP90, BEPP92, DW89a, Ewi89a, FM99, GK92, MM89b, MM89a, Mat89, Pavg93a, Wid89a, Wid89c, Wid89d, BMS91, BEPS88, DV01, ELV88, KG89, LPP02, Mat93a, Mat93b, Mis94, SLLZ94, WVE97].

reﬁnements [Mie88]. reflecting [Gil01]. Reflection [Ago87]. regime [Des91, Des91].

Region [Il'69, Dry82]. Regions [CR87, GM84, Wid84, BW84, BW86, BPS86b, CR88, Dry84, Kis90, LG87, RS01, Yu99b].

regridding [TV91]. Regular [DKW08, Geo73]. regularity [BPWX91a].

Reinforcement [KB08].

Reinforcement-matrix [KB08].

Regression [JH91, Des91].

Relational [RM88]. Relationship [CG92, Yu95]. relatives [HM00].

Relaxation [Wan06, EB99, FQZ88, GH99, GG08, Kok08b, Kok09, KKS90, MQ98, Mar05, Tar04]. Relèvement [BM90].

remarks [Lio00, Osw91e]. Rendering [LG95b].

Reisselaa [Lop94].

representations [Osw89b]. reprojection [BBM00]. Research [HWP95, Lip94].

Reservoir [BMMOV96, CMW92, PR95, DS95b, EE97b, GEF05]. reservoirs [DPLPY93, HE98]. resheniya [EZK84].

resheniya [Il'93, Kho93a, Kho88b, KS88, Lae92b, Lae92c, LL93a, Lae93c]. residual [Gus03, SS86]. Resolution [Hu05, De 91, De 91]. resonator [Bes87]. resources [EB92]. restoration [BZ96, XTW10]. restricted [CDS02, OT94, FNS02]. Resulting [BP87].

Results [CHL91, DW93c, Mat93a, BM89, KRW05, Kup99, MST96, NH90]. reuse [GR03]. Review [Mur97]. Reviews [Xu97]. rezonatorov [BK86]. rezultaty [Ago90b]. RF [BK87]. Richardson [MP08]. Riemann [Dub01]. right [FC94]. right-hand [FC94].

ring [GH90]. Ritz [Sch71, Sch74]. Roach [Mur97]. Robin [LS05, Bla00, DQV07, DH97a, DH98, GTN03, HC03, LMO99, QX06, QX08, SFNW02, ZY07].

Robin-Robin [GTN03, LMO99].

Robin-type [QX06]. Robust [BCLP10, LMR94, OX99, GOS05, KPP09, RJ07]. Robustness [CK08]. rods [Kha08].

Rosseland [N9K91]. row [BS90, BS91].

s [LL93a, Nep90, DL10, Lai93]. S-MP [Lai93]. s`uchi [Ano00, Ano98b]. Saddle [HSY04, BO07, PW02, RW93].

Saddle-Point [HSY04]. Samarski [Tut08].

Samarskii [JK01]. San [BGG95, EEE94b].

SAS [Che88]. SC2001 [ACM01]. SC2003 [ACM03]. Scalabilities [DHSV02].

Scalable [AIIV97, DKL9+10, GKS98, IEE99a, IEE99b, NF97, BDS08, DH05, FMT99, FLP00, Key99, KR10]. Scalar [Don91, TW07, Kim98a]. Scale [BKK01, FR92, HE95, HF88, QL94, AD09, ERD08, Ewi89b, Ewi91, GAF09, LJ06a, LJ07a, LJ07b, OS04, SJMP10, XT04].

Scaling [PS09]. SCAN [AF99].

SCAN-95 [AF99]. Scattered [LS09, BG91, IL05, Nie09]. scattering [BP08, BB02, DG97, CJSS08, HL96, HK98a, HW99, Man03, NZZ99, SIB90].

scenario [HND06]. Scheduling [YSF03, BC96]. Scheme [Dry81, MCL02, Yu01, BIM05, BA09, CHH02, DP09, ET98, FFF97, HR09, Hua90, IP98, KT05, KL88, PP88, PFR07, RT96, XS90].

Schemes [Bog06c, BLP91, Hes98, Kar97, AEZ00, Ald90, Bog06a, Bog06b, Dar04, DRGM04, Gra02, Gus03, Hes97, Li06, LY07, McC89b, MY07, SV95, Vab96]. Schmidt [Bel44].

Schr"odinger [He96].
Schrödinger-type [He96]. Schur
[Bre99, CGL01, CG88, CG89, DS95b, HKK05, HK08, Man89b, Man90d, NPH09, PRPZ06].
Schwartz [AL90a]. Schwarz
[CG88, DS95b, DS96, HKK05, HK08, Bre95, BPS04, Cai90, Cai91, CW93, CFS97, CKY02, CDS04, CJS08, CS98, CW99a, CG88, CZ94, CZ96, CSZ96, Cha97, Cow93, DW93b, Dry99, DW92a, FNS02, GHN99, GG03, Gan08, GSv03, GO95, GS92a, Gh91a, HS96, HK97, HK08, Hie93, Hua96, Key95, Key99, Key07, Key09, KNT94, LW00, LS05, Lio78, Lio88, Lio89, Lio90, Lui99, Mar07, MS05a, MS05b, MS07, Mat93a, Mat93b, MN85, MLB97, MP08, MP09, Nab03, NMB10, Pav91, Pav93a, Pav93b, PR95, QX08, RXH05, Rod85, RKL89, Ryu93, Ry97, Sar93, SP08, sNh09, Sko92, Sb93, ST94, Tid01, VG05, Wd99b, Wd92, pY93].
Schwarz
[CG88, DS95b, DS96, HKK05, HK08, Bre95, BPS04, Cai90, Cai91, CW93, CFS97, CKY02, CDS04, CJS08, CS98, CW99a, CG88, CZ94, CZ96, CSZ96, Cha97, Cow93, DW93b, Dry99, DW92a, FNS02, GHN99, GG03, Gan08, GSv03, GO95, GS92a, Gh91a, HS96, HK97, HK08, Hie93, Hua96, Key95, Key99, Key07, Key09, KNT94, LW00, LS05, Lio78, Lio88, Lio89, Lio90, Lui99, Mar07, MS05a, Mar05, Mat93a, Mat93b, MN85, MLB97, MP08, MP09, Nab03, NMB10, Pav91, Pav93a, Pav93b, PR95, QX08, RXH05, Rod85, RKL89, Ryu93, Ry97, Sar93, SP08, sNh09, Sko92, Sb93, ST94, Tid01, VG05, Wd99b, Wd92, pY93].
AF04, CWD08, GKS98, KNG+93, RSVV08, RHGT10, WK01, GKL+09. simulator [AGLK08]. Sinc [LB96, LB94, MLB97, MLB99]. sinc-Galerkin [LB94]. Singular [BDOP07, BS93b, Kuz91b, TS03, Che97, Heu99, LXZ03, LW07, MS05a, OS04, ST00a]. singularities [Hei03]. singularity [LB96, LB94, MLB97, MLB99]. Singularly [BDOP07, BS93b, Kuz91b, TS03, Che97, Heu99, LXZ03, LW07, MS05a, OS04, ST00a]. simulator [AGLK08]. Sinc [LB96, LB94, MLB97, MLB99]. sinc-Galerkin [LB94]. Singularly [BDOP07, BS93b, Kuz91b, TS03, Che97, Heu99, LXZ03, LW07, MS05a, OS04, ST00a]. singularities [Hei03]. singularity [LB96, LB94, MLB97, MLB99]. Singularly [BDOP07, BS93b, Kuz91b, TS03, Che97, Heu99, LXZ03, LW07, MS05a, OS04, ST00a]. simulator [AGLK08].
TT99a, VTBK97, WVE97, Xu92a, Yu99b, zZzhS02. Space-Time [Yu01, GK02, WVE97]. Spaces [Ago88, Wid87, Yse85, Yse86b, Yse86c, BH00b, BDV97, Cha93, DW93a, Oswe90b, Ow90a, Sar03, Yse90]. Sparse [GL81, KK99, Kup99, CS96, EB99, Gus03, KGE89, KYxx, NZ99, SSZ98, SAD00]. Sparsity [NN88, For07]. Spatial [NPY97, WA03]. Spatio [AD96]. Spatio-temporal [AD96]. SPD [KK99]. special [HT91]. Spectra [BM01, CF88, CQ90, GQS00, Hei93b, HC92, Kar97, KPR08, KR07, MG05, Phi90, Qua90, ST96, TV93, Adz94, Adz98, AIIV00, BP08, BM93a, BM89, Boy05, CS96, Kop99, CR90, Kup99, LV90, LP07, LR00, Nat95, Nat97, Pas91, PRFZ06, Pav00, PW00, Qa87, QL88b, SR01, SP03, SK92, Tse00, TMNF01, Wid96, Wid97, WK01, XG95, Zam89, Zam92, Zam87]. spectral-element [Bla07]. spectral/ [SP03]. Spectrally [KW93]. spectrum [GCP91]. Speed [Yse86a]. spectrallykh [KS88]. Sphere [ES96a, YCC10, Bla07, BFF96, TGSS10]. Spherical [LCG10]. spheroidal [Boy05]. Spline [Bia93, BD03a, LS90, BZ96, LW98, Oswe90a, Oswe90b, SR08]. spli [LL08]. Splitting [DS02, LSL97, Yse86b, Yse86c, BK06, Che95, Che97, CPZ00, DG07, FLS94, GGM02, GK09, HL09, PAJ10, SLL94, TJDE97, Yse90]. Splittings [MPRW98, LVM88, Whii0a]. spots [IU98]. spots-and-stripes [IU98]. SQP [IU07]. square [Ye98a]. squares [GP85, Nie09, Pav93, Ye98b]. SSOR [KKYxx, KY89]. SSSR [AL90a, AL90b]. stabilised [Bu02]. Stability [RG03, Ru97, SL06, SR05, Abr00, Bal05, Zhu10]. Stabilization [BBM92a, BBM92b, BK00]. Stabilized [Bel04, ZS02, Ber03, LSS09b, LMM00, RL04]. Stable [Hes98, JN01b, ZS01, BA09, Hes97, Jun10]. stage [EB99]. staging [GW89]. started [Wu92]. State [GKL09, IEE95, KX95, KX94, ALW99, Cha93, LRH97]. state-spaces [Cha93]. states [Cor90]. static [KR03, LC08, TV91]. static-regridding [TV91]. stationary [AE98b, AZ00, LCO94, LMM00]. status [Tem88]. Steady [RV05, KT96, LRH97, Man06, Ron99]. Stefan [KL88]. Stefana [Lap89]. Steklov [AN95, Ago88, Hua04, Nat95, Nat97, QV91, Yu95]. stepping [RY97]. steps [MG09, Yu99b]. Steuerung [Rat00]. stiffened [d'H93]. Stochastic [JCL07, CLYZ99, Eng09, GAF09, JC09, KD92, Lio78, PT03, ZZY08]. stochastique [Lio78]. Stokes [AAH00, AF89, AIIV97, ARIV97, AIIV98, AIIV00, BQQ09, Bel04, BVW97, BP90, BK06, CF97, CMX90, CZ91, CH94a, CH97, Cot91, DS96, DSS90, DV97, DGP80, DMP83, DQ03, Dis05, DQV07, DN09, FHM05, Fu98, GS10, GQS00, GRW05, GP79, GPP94, Gol03, GL00, HGU8, Hes97, Hes98, Hua90, Hua93, JT06, KT96, KFK97, KL05, Krz05, LW98, LW90, LL97, Li03, LW96, LCO04, Lon95, LR00, LMM00, Lui99, Man06, Pas91, PW02, Ph02, Qua90, QV90, QLV91, RV04, RV05, Ron99, Sec95, SRB01, Sob98, SR92, ST00b, TM94, Tid95, Tou91, VIA94, Ye98b]. Stokes-Mortar-Darcy [GS10]. Stokes/Darcy [CMX90, Dis05]. Stokes/Navier [Li03]. Strategy [CA02, BPO95, MPS05, MC05b, PGW09, SK09, TAA03]. stratified [TMNF01]. stream [LL08]. streamline [Gas92, Par04]. Strings [Len99]. Strip [QSV06, MC05b, Mr07]. strip-based [MC05b]. stripes [IU98]. strips [Nep92]. Strömungserechnung [PS93]. strong [Hua95, LBB10]. strongly [GTN03, Hu99]. Structural [BH88, Hvi90, Prz85, ADC09].
structure [AMS09, BC07a, BBCH08, CP96, FGGV08, Jun97, Kok08a, KW08, MNW08, Per92],
structured [FRSY96, GG08, LM07].
structures [BS93a, KM03, Leu98a, ÖD93, SZB07, d’H92, d’H93]. Studies [Zha91].
 Study [GLPE97, RV04, RV05, CP96, ILW07, Tid01].
 sub [PHR07, TP08]. sub-domain [PHR07].
 sub-domains [TP08]. Subdomain [Mey90, MPS86, MGLS91, BDV97, BCDM88, BVW97, CP05, Dek01, HLM92, HC03].
 Subdomains [DKW08, Man93, QL94, Abr08, Bör89a, Bör89b, GH94b, HK97, HC98, HC03, Jia06, KPR08, Kor01, Lae92a, Lio90, MG09, NN97, QL98, SV96b, Sme89, Vab08, ZH92].
 subgrids [TB97]. subproblems [Vas90].
 Subregions [DW87, Wid89b, Dry84].
 Subspace [Nep86, TX99, Hu97, Kat94, LXZ02, MN85, Ox99, Vas86, Xu92a, vdES04]. subspaces [CK08, GR03, Kuz86b, PS07].
 substationarity [TP93]. Substructure [KMY98a, RW93, SX97]. Substructured [BH88]. Substructures [Sid84, BW84, BW86, BPS86b, GH94a, Kis90, Mrö97, Prz63]. Substructuring [Ber04, Dry91, DSW93, PW93, Smi92a, Smi93, Wid88c, Wid88b, BP04, BPS86a, BPS87, BPS88, BPS89, ERMD08, GHMR07, KW93, KLM02, Man90b, Man03, MR99, PW00, RL02, Rho09]. Substrukturtechnik [LAN92]. Successful [LXZ03, Gus03]. Suitables [FM99, GMC05]. Suiited [Cia94]. summation [Sco94]. Summer [Lop94]. Sums [BM91]. Super [ZC95a]. supercomputer [Bab90, NN88].
 Supercomputing [HPP88, IEE91, IEE93, HWP95].
Superconducting [GLS07a]. superlarge [KCC89]. supported [BDS08, BFF96]. surface

[BR91, DM09, GEVO08, LL08, MPS05].
Survey [Ten88, Bre88, Bru95, CR85b].
Switzerland [GT94]. Symm [Dri99].
Symmetric [HE95, Wid92, AJT99, BLP91, CDS04, CKL98, Ove88, PHR07, Sha90, Ste95].
symmetrization [Sha90]. Symposium [AFL96, CGPW90, CKM91, Gee98, GGMP88b, GKM91, GPS89, IEE94b, Lop94, Ano93, Ned95]. synchronous [LSL89]. synthesis [Bon90, Scr88]. System [ABBB94, Man90d, RGG06, TMS87, BHHA73, Cha06, CF99, DLN02, GLC98, Kha08, LXZ03, Mej94, MGC09, Pav99, SP08, SD04, SC96]. systèmes [LP98b].
Systems [Ben96, BP87, DV97, Don91, EES83, FR92, FGRS97, FGN91, GL81, GK91, HE95, He56, KK99, KG90, QL94, Qua90, RMI88, Sch96, YHBM96, BZ96, Bog07, CDS04, Cha05, CLYZ99, EB99, FC94, GS10, GKR02, Gas92, He96, KKYxx, KGE89, KY89, KL90, Lag99a, Lag99b, Lay92, LT99, LP98b, MS05a, MN90, Nie88, MPM09, NN87, PW00, Pop02, Prá93, Roz92, SS86, SSZ98, SV96a, SHJ98b, Zha92b, vdes04, van09].
tau [Zam89]. tearing [LP06, Ljo06a, OSW06, Poh06]. Technique [BP87, CM91, CM92, ADC09, AF04, BZ96, BS92b, BEPS88, BP90, DKD06, Glo95, GM09, Hac03, Lai92, LCP97, IW98, LR00, Li92a, Li92b, Li92c, MT86b, WW89].
Techniques [BMOV96, CP97, Ewi89a, ELVP93, FGRS97, KG90, NPY97, Sch08, Tra00, AM06, ACM08, BRVC09, Bru91, DP08, DGP80, ELV88, Ewi91, FMW04, FSS06, FH04, GH99, GHS99, GK88, Hac84, HKK05, Hei93b, Hop03, Hu94, KP90, KG7, KGE89, KW93, Kim94, KW00b, MSW98, Np97, Ova07, Phi90, Phi92, PPS07, PS00, Qua87, RS01].
SSZ98, SAD+00, SPBV05, Sco94, VIT05. \textit{teknologiya} [II'93], \textit{telegraph} [BA09].\textit{temporal} [AD96], \textit{temporelle} [AD96].\textit{tendencies} [BV92], \textit{Tennessee} [IEE94a].\textit{Tenth} [Koe01], \textit{teorii} [Ago90b, KO89].\textit{terms} [KGE89].\textit{Test} [DT91].\textit{tetrahedral} [Glo95, IAK06].\textit{Texture} [LC95b].\textit{TFETI} [DKV+10].\textit{TH} [HDY05].\textit{TH-domain} [HDY05].\textit{Their} [Du01, CDG+10, Ga95, Gu97, HM00, KG87, LP98a, NN87, SW97].\textit{Theorem} [Wid87, BH00b, Des91, Zha87].\textit{theoreme} [Des91].\textit{Theorems} [NW91].\textit{theoretical} [KM01].\textit{Theoretically} [BDS08].\textit{Théorie} [Sob36, Ne67].\textit{Theory} [BY92, DW90, MB92, OR82, Praz95, QV91, Wid88b, Xu89, Ab80, Aco87, AR95, BG08, CZ96, CGZ97, CS98, FW01, FNS02, GG94, GO95, HXG01, Hi00, Il92, Kup99, KO90, MR94a, Ne67, Os90a, PHW00, RSSV90, SSt96, Sme89, SOb36, Tar94, Mat93b, Sam98].\textit{there} [Nov99].\textit{Thermal} [DDS89b, AMS09, DDS89a, Koj91].\textit{thermoelasticity} [GOD+07].\textit{thermoelastic} [KGE89].\textit{thick} [GH90].\textit{thin} [CP96, CH06, Nep92, OX99, SD07, SR08, The98].\textit{Third} [CGPW90, IEE94b, SM98, MMO90].\textit{Three} [AIIV97, Bel04, BA04, Cai93a, CPR+03, Dry98, DW92a, DSW93, DW93b, GS92a, GS92b, HZ03, HF88, JN01b, Man98a, MB92, Man92c, MPS86, Ong89, Pass8b, PW93, Sm91, Sm92a, Sm93, TMS87, WLH97, Wid87, Ald09, Ber03, Ber04, Bes87, BH03, EE97a, Gri01, HB10, He05, JN03, Jun09, Kim07, KW02, KRO6, Kuz89a, LIO7a, Man90c, MSO5b, MGC05, MMC06, Pas88a, PW00, RL04, SMT08, TRV91, Tso04, TV04, TV01, Zha92a].\textit{Three-Dimensional} [AIIV97, Dry98, DW93b, HF88, JN01b, MPS86, TMS87, WLH97, BA04, Bes87, BH03, Gri01, HB10, JN03, Jun09, KRO6, Kuz89a, LIO7a, TV01, Zha92a].\textit{three-field} [Ald09, RL04].\textit{three-fields} [Ber03].\textit{Time} [DG07, DY02, PS10, Yu01, AV99, BGH+07, Bla92, Eng09, EL94, FHM05, Gan08, GEF05, GK02, HL96, IVA93b, KD92, LJO6b, MT05, MGC09, NZZ94, OS04, PHW00, RJ07, RY97, SC96, Sn94, Ubl07, Vab08, VG05, WVE97, Yu99b, ZYD09].\textit{time-delay} [VG05].\textit{Time-Dependent} [DY02, IVA93b, SC96, Ubl07, Vab08].\textit{time-domain} [LJO6b, NZZ94, Ubl07].\textit{time-harmonic} [AV99, HL96].\textit{time-varying} [PHW00].\textit{Timely} [Den97].\textit{Timoshenko} [Leu99].\textit{tissue} [ARZ00].\textit{tomographic} [BBM00].\textit{tomography} [Gri01, HW95, Koj91, WZ9+10].\textit{tool} [HG08].\textit{Topics} [KM01, BFG+03, HT91, Wir02].\textit{topography} [BA04].\textit{topology} [ERMD98].\textit{Total} [DHHK06].\textit{Trace} [BGT989, WL03].\textit{Traces} [BM90, MN88].\textit{traffic} [SAM10].\textit{transfer} [CH06, GVT03, N'K91].\textit{transformation} [KR06].\textit{Transient} [HB10, NPH09, OBG10].\textit{Transition} [Gar94].\textit{translation} [AL90a, AL90b].\textit{Transmission} [Ben96, LL00, MRS04, AJ+00, DH97a, DH98, LS05, PRL10, QX08, Sth10, ZY07].\textit{transonic} [PC97].\textit{Transparent} [LG95b].\textit{Transport} [ARZ01, BC94, Ab80, Aco87, ARZ00, Gas93a, GG94, MB94, Sme89, SXW90, TAA03, WPT08].\textit{treatment} [CES00, GR07, TV01].\textit{treatments} [Kim94].\textit{Treecode} [Pri95].\textit{trees} [ARRS09].\textit{Treffitz} [HDY05].\textit{trekhmernovi} [KO89].\textit{Trends} [MR95].\textit{Tresca} [Kok08b].\textit{triangular} [DL01, LM07].\textit{trigonometry} [Gus03].\textit{Troy} [Lop94].\textit{tupleware} [Dou91].\textit{turbomachinery} [LL08].\textit{turbulence} [KLM02, Str96, TMF01].\textit{Twelfth} [Mor90].\textit{Two} [AIIV97, AIV98, Bue05, Cai93a, CGL01, DW94a, DKW08, Dry98, GP97, Kra09, MM89a, Man90c, MB92, OS04, OX91e, Pass8b, Sar93, TK01, VTK97, Wid99b, Yse90, Yu01, AARRS09, BCP91, BRVC09, Bre95, BS00, BK06, Bu06, CMO09, CMM01, DDG06, DRG04, EB99].
FML00, GVT03, GH94a, Hie05, ILW07, KL05, Kok08b, Kok09, KT05, Lai94b, LY08, LSS09a, LM06, MC05a, MC05b, Mur98, Pas88a, PR90, PP88, Poh06, Pra93, RS01, RL02, Sa04, Su94, SB89, SXYWX90, TV91, WZ10, x96, XT04, XT10].

Two- [AIIV97, Dry89]. Two-Body [Kra09, Kok08b, Kok09]. Two-Dimensional [GP79, Yu01, AIIV98, Beu05, ARRS09, KL05, LSS09a, LM06, PR90, RS01, Su94, SB89, TV91, WZ10, x96].

two-dimensions [MC05b]. Two-grid [DW94a, CMX09, ILW07, MC05b].

two-layer [DRGM04]. Two-Level [CGLO1, MM98b, Sar93, Cai93a, Man90c, VTBK97, Bre95, CGM01, FML00, GVT03, KT05, MC05a, PP88, Sa04, XTW10].

two-phase [DDK06, LY08, SXYWX90].

two-point [Lai94b]. two-scale [XT04].

two-stage [EB99]. Two-time-scale [OS04].

Type [BS92a, DW93b, DW93c, ELPV93, HP05, Kus97, Yse86a, Ad295, BGP89, Bog06a, Cha05, DV96, GC89a, Hei03, Hua04, LM099, Pr909, SS98, SX02, Tos04, TV04, Yan10, Yot01, He96, Man06, QX06]. types [Tid92].

UAB [GKL+09]. ULWC [Hua90].

Unbounded [Gee98, DZ04, GZ02, Yu94, Yu96, Yu96a].

uncertainty [XT04]. Unconditional [SL06, Zhu10]. unconditionally [BA90].

Unconventional [AK04, FR92, HM00].

underground [BBTD05]. undirected [Per92]. uniaxial [KM03]. Unified [DW90, Her98].

Uniform [Ain96b, Bog02a, CC97, MS02]. unilateral [LS98, LS98]. unilateral-contact [LS98].

Unit [Hu05]. unity [GOS05, Hol03, Sar03].

University [IEE95, KX95, KX94]. Unix [RBS94]. unsteady [ALW99, CFS97, Kuz90b, NP01, Ren92].

Unstructured

v [AS89, AS90, Il’89, Kho88a, Kho88b, KS88, Zav82, BP91, Lop94]. V-cycle [BP91]. validated [AFL96]. Value [ABLS05, BF01, BLP91, GK97, LM72, Nep86, Yse85, Yse86c, AQ04, AEZ00, Bra66, Gas93b, GM98, Geo99, GGL04, HTJ88, JK01, Lai94b, LW00, LB93, LOM98, MR089, Nep84, JV91, Røn92, Shah4, Shi99, Ste96, Tut08, Vab90, Vab91, Yan02, YD04].

Valued [Ben95, KK03]. Vanka [Man06].

Vanka-type [Man06]. Variable [Cow93, JN99, AL90a, AIIV98, GVT03, Osv91c, SC04]. Variables [Il’69].

Variance [YSF03]. Variant [DW87, DHK06, Lio90]. Variants [CMS92, CMS94]. Variational [AL90b, BGTV89, Dry81, EES83, Hsi00, KFK97,
Variational-Difference [Dry81].

variationnelle [BGT88].

varying [PHW00].

vascular [SP03].

Vector [Ben95, DDGM89, Haa97b, SV95, Des91, KK03, LLL91, Tai03, Tro96a, Zho97c, ZW05, BGT88].

Vector-Valued [Ben95, KK03].

vectorielle [Des91].

Vectorized [HF88].

vectors [CK08, LL88].

Verfahren [Mor56, HLM93].

Version [Man92c, BCMP91, BPO95, HDY05, KI96, KJ99, Kor01, Man89a, Man90a, Man90b, Man90c, ML91, Pav91, Pav92, PW93, Pav93a, Pav93b]. Versions [ST98, AK88, Sar03, ST00a]. versus [CG88, KPW96].

VI [BPM90, DRV00, GOS05].

via [ABL90, Bla92, BS93a, Che05, DGP09, HSW00, Kho96, LBD94, N9K1, Pas91, PS93, QLV91, Scr98, Tai94].

vibration [KN02]. VII [GL6]. virtual [GZW+00]. viscoelastic [BS08, JL08].

viscous [AL93, BFK+98, CW99b, DMPG83, DGP09, DL01, GHS93, Hua01, Sha94].

very [CP96].

Vertex [CM91, CMS92, CMS94, Hua01, Sha94].

versions [ST98, AK88, Sar03, ST00a]. versus [CG88, KPW96].

VI [BPM90, DRV00, GOS05].

via [ABL90, Bla92, BS93a, Che05, DGP09, HSW00, Kho96, LBD94, N9K1, Pas91, PS93, QLV91, Scr98, Tai94].

vibration [KN02]. VII [GL6]. virtual [GZW+00]. viscoelastic [BS08, JL08].

viscous [AL93, BFK+98, CW99b, DMPG83, DGP09, DL01, GHS93, Hua01, Sha94].

very [CP96].

Vertex [CM91, CMS92, CMS94, Hua01, Sha94].

versions [ST98, AK88, Sar03, ST00a]. versus [CG88, KPW96].

VI [BPM90, DRV00, GOS05].

via [ABL90, Bla92, BS93a, Che05, DGP09, HSW00, Kho96, LBD94, N9K1, Pas91, PS93, QLV91, Scr98, Tai94].

vibration [KN02]. VII [GL6]. virtual [GZW+00]. viscoelastic [BS08, JL08].

viscous [AL93, BFK+98, CW99b, DMPG83, DGP09, DL01, GHS93, Hua01, Sha94].

very [CP96].

Vertex [CM91, CMS92, CMS94, Hua01, Sha94].

versions [ST98, AK88, Sar03, ST00a]. versus [CG88, KPW96].

VI [BPM90, DRV00, GOS05].

via [ABL90, Bla92, BS93a, Che05, DGP09, HSW00, Kho96, LBD94, N9K1, Pas91, PS93, QLV91, Scr98, Tai94].
References

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Year</th>
<th>Volume/Issue/Section</th>
<th>Pages</th>
<th>Publisher</th>
<th>DOI</th>
</tr>
</thead>
</table>
Verlag, Berlin, Germany / Heidelberg, Germany / London, UK / etc., 2008.

[Alefeld:1996:SCV] Götz Alefeld, Andreas Frommer, and Bruno Lang, edi-

Anderson:1991:VDV

Aldegunde:2008:DPF

Absi:1980:NME

Agoshkov:1986:DDM

Agoshkov:1987:ROD

Agoshkov:1988:PSO

Averbuch:1998:TDP

Averbuch:2000:MPS

Ainsworth:1996:HDD

Ainsworth:1996:PBD

Averbuch:1995:PIN

Alboin:2000:DDS

Achdou:1997:AME

Akhmetzyanov:2004:UMM

Auweter-Kurtz:2001:HDD

REFERENCES

REFERENCES

NY, USA and Vienna, Austria, 2007.

Anonymous:1989:CUS

Anonymous:1989:MS

Anonymous:1990: SJN

Anonymous:1991: ADX

Anonymous:1993:PII

Anonymous:1996:PICb

Anonymous:1996:PICa

Anonymous:1996:PPM

Anonymous:1998:HHH

Anonymous:1998:SKA

Anonymous:2000:HHN

Axelsson:1988:BPD

Axelsson:1996:AMI

Owe Axelsson and Ben Polman, editors. *Algebraic multilevel iteration methods with applications*. Vol. I, II. Katholieke Universiteit Nijmegen, Department of Mathematics, Nijmegen, 1996.

A:2004:DDM

Adamidis:2003:PCT

Alaa:2004:DDM

Nour Eddine Alaa and Jean Rodolphe Roche. Domain decomposition method for a class of nonlinear elliptic equation with

Averbuch:1997:PIM

Acebron:2009:DDS

Acebron:2010:EPS

Ali:1995:CMF

Alme:2000:DDM

Alme:2001:DDM

REFERENCES

Agoshkov:1988:SUA

Agoshkov:1989:SUA

Agoshkov:1990:SUV

Astrakhatsev:1978:MFD

Agouzal:1995:MEF

Alonso:1999:ODD

Ames:1992:CAM

[AvdH92] W. F. Ames and P. J. van der Houwen, editors. Computational and applied mathematics. II. North-Holland Pub-

Bal:2005:CSP

Bank:1990:PSP

Bathe:2001:CFS

Bendali:2006:NOD

Blatt:2009:CCD

Benceteux:2008:DDE

Guy Bencteux, Maxime Barrault, Eric Cancès, and
REFERENCES

Brezzi:2003:NMA

Bailey:1995:PSS

Baiocchi:1992:SGM

Brezzi:1992:SGM

Boag:2000:MDD

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
</table>
REFERENCES

Beirao-daVeiga:2010:RBP

Babuska:1991:EPV

Barth:1999:PDD

Bornemann:1996:CMM

Bornemann:1997:CMM

Boglaev:2001:DDS

Bialecki:2003:NDD
Boglaev:2003:DDA

Bristeau:1997:ECD

Brezzi:1989:PDR

Bjorstad:2000:ASA

Bjorstad:2002:ESM

Bouchala:2008:TSS

Bjoerstad:1996:PIS

Bjorstad:1997:ASM

Bank:1988:HBM

Bellman:1944:NIS

Belgacem:2004:SDD

Benamou:1995:DDM

Benamou:1996:DDM

Bramble:1990:DDM

Bramble:1992:DDM

Bramble:1988:PTE

Berry:1989:ADC

Bertoluzza:2004:SPT

Bespalo:1987:FEM

REFERENCES

REFERENCES

REFERENCES

[BHHA73] K. Bell, B. Hatlestad, O. E. Hansteen, and Per O. Araldsen. *NORSAM, a programming system for the finite element method*. Users man-

[Bell:1973:NPS]
many / London, UK / etc., 2005.

[Bj89] Petter E. Bjørstad. Multiplicative and additive Schwarz methods: Convergence in the 2 domain case. In Tony Chan,

[BK86]

[BK87]

[BK92]

[BK00]

[BK06]

[BKK01]
REFERENCES

Belgacem:1993:NCS

Brezzi:1993:MHE

Bernardi:2001:SED

Borgers:2010:AMM

Bjoerstad:1996:PRS

Bonilla:2008:PIM

Bjorstad:1990:PDD

Bjorstad:1991:PDD

Bubak:1994:FLG

Bubak:1994:IPL

Beuchler:2007:OAS

Borne:2007:JDD

Boglaev:1999:FDD

Boglaev:2000:DDB

REFERENCES

Boglaev:2008:SSE

Bollhofer:1996:ADD

Boergers:1989:NDD

Borne:2005:HMC

Bourquin:1990:ACS

Bounaim:2002:UIS

Boyd:2005:ACG

REFERENCES

Bramble:1987:PTI

Bramble:1990:DDT

Bramble:1991:NEM

Bertoluzza:2004:PMM

Boglaev:2006:IDD

Boglaev:2007:BMD

Barka:2008:ISB

REFERENCES

REFERENCES

0025-5718 (paper), 1088-6842 (electronic).

[BQQ09] Santiago Badia, Annalisa Quaini, and Alfio Quarteroni. Coupling Biot and Navier–Stokes equations for modelling fluid-poroelastic media interaction. *Journal of computa-

[BQQ09] Santiago Badia, Annalisa Quaini, and Alfio Quarteroni. Coupling Biot and Navier–Stokes equations for modelling fluid-poroelastic media interaction. *Journal of computa-

REFERENCES

Bramble:1966:SOF

Brezzi:1985:NMF

Brezzi:1988:SMF

Brezinski:1989:NAM

Brenner:1995:TLA

Brenner:1999:CNS

Bruch:1991:MDD

J. C. Bruch, Jr. Multi-splitting and domain decomposition techniques applied to free surface flow through porous media. In *Computational modelling of free and
REFERENCES

moving boundary problems,
Vol. 1 (Southampton, 1991),

[Bru95] Are Magnus Bruaset. A survey of preconditioned iterative methods,
volume 328 of Pitman Research Notes in Mathematics Series.
27654-3. xii + 162 pp.

[BS92a] Petter E. Bjørstad and Morten Skogen. Domain decomposition algorithms of Schwarz type, designed for massively parallel computers. In Tony F. Chan, David E. Keyes, Gérard A. Meurant, Jeffrey S. Scroggs, and Robert G. Voigt, editors, Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equa-

G. Bayada, J. Sabil, and

Bruaset:2006:NSP

Bufa:2002:EES

Bufa:2006:CDT

Buleev:1988:MMD

Buleev:1990:PRA

Bensousson:1992:FTC

Brakkee:1997:DDI

E. Brakkee, C. Vuik, and P. Wesseling. Domain decomposition for the incompressible

REFERENCES

[Baronio:1996:DDT]

[Bornemann:1992:BNE]

[Brenner:1999:BDD]

[Buch:2006:DDM]
Cai:1989:SDD

Cai:1990:ASA

Cai:1991:ASA

Cai:1993:OTL

Cai:1993:NEP

Cai:1995:UPI

Cela:1996:PPL

Cao:1992:FAP

Carstensen:1997:DDN

Carsten Carstensen. Domain decomposition for a non-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Cai:1993:CSD

Cai:1994:CSD

Cai:1994:PIM

Carvalho:2001:LPT

Carvalho:2001:ATL

Concus:1976:GCG

Chen:2005:DEC

Chan:1989:DDM

Chan:1990:TIS

Chakrabarti:2001:AQP

Chan:1997:MDD

Chan:1999:MSP

Chan:1988:DDI

REFERENCES

REFERENCES

Chan:1988:DDA

Chan:1989:DDA

Chan:1993:IMQ

Chang:1997:CPS

Chang:2004:DDP

Chang:2005:DDM

Chang:2006:DDM

Chen:1988:SDD
Hsin-Chu Chen. The SAS domain decomposition method for structural analysis. Technical Report CSRD 754; UILU-ENG-88-8003, University of
REFERENCES

Illinois at Urbana-Champaign, Center for Supercomputing Research and Development, Urbana, IL 61801, USA, 1988. vi + 112 pp.

[CHH02] René Caustrès, Raphaëlle Herbin, and Florence Hubert. Finite volume scheme on non matching grids. Applications to domain decomposition methods.

[Chin:1981:PCD]
REFERENCES

DEN SJNAAM. ISSN 0036-1429 (print), 1095-7170 (electronic).

Ciarlet:1978:FEM

Ciarlet:1994:IDD

Ciccoli:1996:ADD

Cai:2008:SGE

Chan:1989:IPD

Casazza:2008:RFF

Carstensen:1998:FPS
REFERENCES

REFERENCES

REFERENCES

Coron:1990:ECA

Coron:1994:CBF

Cottet:1991:PGD

Cowsar:1993:DVS

Charpentier:1996:DDM

Charmpis:2005:GBS

Cai:2003:DDM

REFERENCES

Carlenzoli:1995:ADD

Cai:1999:EMM

Chan:1985:DDF

Chan:1985:SPD

Chan:1987:ADD

REFERENCES

Chan:1988:ADD

Cosnard:1989:PDA

Cosnard:1986:PAA

Chen:1989:DDM

Chan:1994:DDM

Chan:1995:PCD

Cai:1996:ODD

REFERENCES

Chui:1998:ATI

Chen:2005:MHA

Chenuto:1998:NSE

Cowsar:1991:PDDb

Calugaru:2005:NOD
REFERENCES

REFERENCES

[Chan:1994:ASD]

[Chan:1995:EAS]

[Chan:1996:CTM]

[Dagum:1993:APU]

[Dannevik:1991:CMM]

[Danek:2002:DD]

[Darvishi:2004:PDD]
M. T. Darvishi. Preconditioning and domain decomposition schemes to solve PDEs.
REFERENCES

REFERENCES

NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

[Dawson:1991:FDD]

[DDM07]

[DDG89]

[DDS89a]

REFERENCES

Despres:1991:MDD

Deville:1990:CCS

Desideri:1993:OC

Dostal:1998:FDD

Du:2000:GMA

Daoud:2007:TLE
REFERENCES

0096-3003 (print), 1873-5649 (electronic).

Dashevski:2002:FDB

Dinh:1980:ADD

Dihn:1984:SEP

Dinh:1988:CVI

Dostal:2001:FDD

Dryja:2007:BMD

dHennezel:1992:MDD

Frédéric d’Hennezel. Méthodes de décomposition de domaine dans les structures et les multifiligranes. (French) [Domain-decomposition methods in structures and multifiligranes]. Institut National de Recherche en Informatique

Dostal:2002:SFV

Diaz:2003:IMC

Discacciati:2005:IMS

Duc:1995:AMC

Dongarra:1992:PPS

Dostal:2010:STA

Dohrmann:2008:DDL

Dolean:2001:HDD

Victorita Dolean and Stéphane Lanteri. A hybrid domain decomposition and multigrid

REFERENCES

REFERENCES

REFERENCES

Dryja:2005:FDM

Dimarco:2008:DDT

Diyak:2009:CNP

Douglas:1993:MPI

Dryja:1986:MDD

Discacciati:2003:ADD

M. Discacciati and A. Quarteroni. Analysis of a domain decomposition method for the coupling of Stokes and Darcy equations. In *Numerical mathematics and advanced appli-
Discacciati:2007:RRD

Diaz:2004:NST

Driscoll:1999:NDD

Dedner:2004:PLB

Dick:2000:MMV

Dryja:1981:ACM

Dryja:1982:CMM

Maksymilian Dryja. A capacitance matrix method for Dirichlet problem on polygon
REFERENCES

Dryja:1984:FEC

Dryja:1984:MDD

Dryja:1989:ASA

Dryja:1991:SMP

DeValerio:1992:DDM

Dai:1995:DDM

Dai:1995:DDS

Dai:1996:NDD

Peiliang Dai and Shu Min
REFERENCES

Dahmen:1999:WMC

Daoud:2002:FSA

Dimov:1994:ANM

Dryja:1993:SAIa

DeRoeck:1991:ATL

Dryja:2007:DDD

REFERENCES

Report 339, also Ultracomputer Note 131, Department of Computer Science, Courant Institute, 1987.

Maksymilian Dryja and Olof B. Widlund. Domain decomposition algorithms with small overlap. Technical Report 606, Department of Computer Science, Courant Institute, May
REFERENCES

Douglas:1993:NFM

Dryja:1993:SMN

Dryja:1993:SRR

Dawson:1994:TGM

Dongarra:1994:PSC

Dryja:1994:DDA

Dryja:2003:GFD
REFERENCES

Dohrmann:2010:HDD

Douglas:1996:NEN

Du:2002:DDM

Du:2004:NOD

Everaars:1996:CDP

Evans:1999:CGA

Eikemo:1997:DDM
Merete S. Eikemo and Magne S. Espedal. Domain decomposition methods for a three dimensional extrusion model. In

Ersland:1997:DDM

Eisenstat:1983:VIM

Ernst:1994:DDA

Elleithy:2009:ADD

Egorov:2000:IDD

Engelmann:2000:AFE

Evans:1992:PC

REFERENCES

Ewing:1994:APP

Ewing:1999:DDC

Ewing:1993:DDT

Ewing:1988:LRT

Engblom:2009:PTS

Evgrafov:2008:LSP

Egeciouglu:1996:DDP

REFERENCES

REFERENCES

Ewing:1991:ADD

Engquist:1998:ABCa

Engquist:1998:ABCb

Egorov:1984:CRG

Falletta:2003:AWM

Farhat:1994:TDD

Feistauer:2004:NMA

M. Feistauer, V. Dolejší, P. Knobloch, and K. Najzar, editors. *Numerical mathematics and advanced applications*. Springer-Verlag, Berlin,
REFERENCES

Friese:1999:MMC

Feng:1983:FEM

Feng:1998:ADD

Feng:2000:AFE

Feng:2007:SDH

Faille:2002:NFM

Fujita:1998:RC1

Hiroshi Fujita, Makoto Fukuhara, and Norikazu Saito. On the rate of convergence of iterations in the domain decomposition method. In *Proceedings of Third China–Japan
REFERENCES

REFERENCES

Farhat:1992:UDD

Frank:1990:ECM
George N. Frank. Experiments on the Cedar multicluster with parallel block cyclic reduction and an application to domain decomposition methods. Thesis (m.s.), University of Illinois at Urbana-Champaign, Center for Supercomputing Research and Development, Urbana, IL 61801, USA, November 1990. vii + 69 pp.

Floros:1995:CED

Fujima:1998:DDU

Funaro:1988:DDM
Daniele Funaro. Domain decomposition methods for pseudospectral approximations. I. Second order equations in one
REFERENCES

Freistuhler:2001:HPT

Feng:2004:PEE

Ghosh:2009:FPC

Gaier:1995:CMT

Gander:2008:SMC

Garbey:1994:DDS

Gastaldi:1992:DDM

REFERENCES

George:1973:NDR

Georgiev:1996:IAO

Georgiev:1999:PDD

Garcia-Espinosa:2008:OUNU

Gastaldi:1994:DDT

Gander:2003:NOO

Gerardo-Giorda:2008:BWR

Girault:2004:DDM

1989. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (electronic).

REFERENCES

138

Guo:2003:GAL

Gustafsson:2000:IHO

Gunzburger:2000:SEP

Gander:2007:APS

Gander:1999:OCO

[GHN99] M. J. Gander, L. Halpern, and...

William D. Gropp and David E. Keyes. Parallel domain decomposition and the solution

REFERENCES

Glowinski:1991:FIS

Garbey:2002:FSS

Grama:1998:SPF

Glowinski:1990:ADD

George:1981:CSL

Glowinski:1986:CMA

Gallopoulos:1988:BID

E. J. (Efstratios J.) Gallopoulos and Daeshik Lee. Boundary integral domain decomposition on hierarchical memory multiprocessors. Technical Report CSRD 752, University of Illinois at Urbana-Champaign, Center for Super-

[GLC89b] Anne Greenbaum, Congming Li, and Han Zheng Chao. Parallelizing preconditioned conjugate gradient algorithms.

Galanin:2007:FFS

Graham:2007:DDM

Glowinski:1989:PEI

Georgiev:1991:DDM

Gatica:1998:NDD

Guo:2009:SDD
REFERENCES

Gates:2008:AMD

Glowinski:2008:PDE

Garcia-Nocetti:2003:DAD

Griebel:1995:ATA

Goldfeld:2003:BNN

Griebel:2005:PPU

REFERENCES

Goyon:1999:MPC

Glowinski:1979:NMF

Glowinski:1985:FEL

Glowinski:1986:DMS

Glowinski:1987:NMN

Givoli:2001:OLA

Glowinski:1994:OSD
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Gonzalez:1987:DDE

Glowinski:1988:DDMb

Gazdag:1989:CCS

Griffiths:1996:NA

Ganis:2009:IMM

Gmati:2002:DDM

Guo:2000:VBC

Haase:1997:HEO

[Haa97a] G. Haase. Hierarchical extension operators plus smoothing in domain decomposition

REFERENCES

CODEN AJNOA2. ISSN 1446-1811 (print), 1446-8735 (electronic).

REFERENCES

Germany / Heidelberg, Germany / London, UK / etc., 2005.

Heinrichs:2003:NTF [Hei03] B. Heinrich. Nitsche-type finite element method for elliptic problems with singular-
REFERENCES

Hemmingsson:1995:DDM

Hengst:1990:FMS

Herrera:1998:UAD

Hestenes:1956:CGM

Hesthaven:1997:SPM

Hesthaven:1998:SPM

Heuer:1999:DDI

REFERENCES

Hodgson:1997:DDP D. C. Hodgson and P. K. Ji-
REFERENCES

[HK98b] He:1997:SDD

[HK02a] Herbin:2002:FVC

Herrera:2002:DDM

He:2008:PBP

Hegarty:1996:DDD

Hackbusch:2005:DSC

Hesthaven:2006:PLI

Heckler:1997:PM

Haase:1991:UMP

[HL91] G. Haase and U. Langer. On the use of multigrid preconditioners in the domain decomp-

REFERENCES

REFERENCES

Hernandez-Ramos:2009:NDD

He:1994:ASL

Holst:1994:MDD

Hahne:1996:SIE

Hsiao:2000:VMB

Herty:2007:DDM

Hahne:1995:FSC

Hsiao:2000:DDM

[HSW00] G. C. Hsiao, O. Steinbach, and W. L. Wendland. Domain decomposition methods...

Hu:2010:NDD

Hu:2004:ESS

Hackbusch:1991:MMS

Hagstrom:1988:NED

Hu:1999:SDM

Hu:2004:PPS

Qiya Hu. Preconditioning Poincaré–Steklov operators arising from domain decompo-

References

[Hvidsten:1990:PFE]

[Hackbusch:1995:FSF]

[Hwang:1996:BEI]
Hagstrom:2001:TEA

Yu:1998:DDM

Herrera:2010:MFD

Herrera:2003:IAD

Hoffmann:1993:PED

Hu:2003:NDD

Ivanov:2006:DDA

Israeli:2002:HDD
M. Israeli, E. Braverman, and A. Averbuch. A hi-

IEEE:1991:PSA

IEEE:1993:PSP

IEEE:1994:PSH

IEEE:1994:PTI

IEEE:1995:PSP

IEEE:1996:PSM

IEEE, editor. Proceedings. Second MPI Developer’s Con-
REFERENCES

167

Ivanov:1995:CCF

Iliev:1999:RAN

Ilin:1989:PSM

Ilin:1990:CMM

Ilin:1991:AIF

Ilin:1992:IFM

Ilin:1993:VMT

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
</table>

Jin:2009:PRG

Jin:2007:PDD

Fu:2006:PCF

Jia96

Jia:2006:CAF

Jiang:2003:NSM

Jia:2006:CAF

Jenkins:2001:ABD

Jung:1991:AMM

Jenkins:2008:DDM

Jun:2006:DDM

Jun:2006:IDD

Jun:2006:RDD

Jun:2009:NAR

Younbae Jun and Tsun-Zee Mai. Numerical analysis of the

Jimack:2003:P

Johnson:1987:NSP

Jiang:2006:MME

Jun:2009:EDD

Jun:2010:SNP

Jia:2001:ODD

<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
</table>
REFERENCES

Klaassen:1995:PNM

Klaassen:1995:PNM

Keyes:1995:AAN

Keyes:1995:AAN

Keyes:1987:CDD

Keyes:1999:HSD

Keyes:2003:DDM

Kawarada:1997:VIN

Keyes:1999:HSD

[Key03] D. E. Keyes. Domain decomposition in the mainstream

[KG90] Keyes:1990:DDT

[KHD05] Kucera:2005:FBD

REFERENCES

Kahou:2007:EFM

Kuznetsov:1990:DDMa

Kaporin:19xx:BSP

Kuznetsov:1988:DDM

Korshiya:1990:DMS

Kapurkin:1995:DDM

Kim:2005:FDF

Kraus:2007:LAC

Klar:1998:AID

Klawonn:2006:FDD

Knopp:2002:ISM

Kiss:1991:PDD

Klodziej:1991:DDB

REFERENCES

Kako:2002:DDM

Kalia:1993:PAM

Krizek:2004:CGA

Kwak:2003:DDM

Kawarada:1999:ANM

Kuznetsov:1994:SMO

KNS99

KNT94

AMS, Providence, RI, USA, 1994.

Kitagawa:1998:CBS

Knyazev:1998:PEO

Kuznetsov:1989:MMD

Kuznetsov:1990:MMP

Kako:2008:NMW

Koelbel:2001:TSC

Kojima:1991:IMF

Koko:2007:LMB

Koko:2008:CAO

Koko:2008:UBR

Koko:2009:UBR

Konshin:1990:OMD

Kopriva:1989:DDB

Kornhuber:1997:AMM

Korneev:2001:AOM

Korneev:2002:FDD
V. Korneev. Fast domain decomposition solvers for hp-discretizations of 2nd order el...
REFERENCES

REFERENCES

Klawonn:2006:PID

Korneev:2007:SDD

Korneev:2008:FDD

Klawonn:2010:HSP

Krautle:2005:DDM

Krause:2009:NMM

REFERENCES

1064-8275 (print), 1095-7197 (electronic).

Kamenetskii:1991:BEP

[D. S. Kamenetskii, V. S. Ryaben’kii, and S. V. Tsynkov]

Kamenetskii:1991:DAB

[D. S. Kamenetskii, V. S. Ryaben’kii, and S. V. Tsynkov]

Klawonn:2005:SCR

[Axel Klawonn, Oliver Rheinbach, and Olof B. Widlund]

Krzyzanowski:2005:DDD

[Piotr Krzyżanowski]

Knyazev:1988:MIM

[A. V. Knyazev and A. L. Skorokhodov]

Komornik:1999:RA

[Vilmos Komornik and Jan Sokołowski, editors]

Krause:2005:FSC

[Rolf Krause and Oliver Sander]
REFERENCES

Kiwi:1998:MMB

Kiwi:2001:MMB

Kuznetsov:1983:IMU

Kuznetsov:1987:DDM

Karageorghis:1996:SDD

Kulkarni:2005:DDB

Kuhn:1996:DDB

REFERENCES

Kuhn:1998:EPF

Kupka:1999:SGS

Kurbatov:1993:SEC

Kushner:1997:DDM

Kuznetsov:1985:MVP

Kuznetsov:1986:FCD

Kuznetsov:1986:IMS

Kuznetsov:1988:CAM

Functional Equations held in Moscow, June 1987.

REFERENCES

REFERENCES

Khoromskij:1993:SEP

Klawonn:1999:DDM

Klawonn:2000:DDM

Krause:2000:NDD

Krautle:2001:CMV

Klawonn:2002:FDM

Kuttler:2008:DDD

[Ulrich Kütter and Wolfgang A. Wall. The dilemma of domain decomposition approaches in fluid-structure interactions with fully enclosed incompressible fluids. In *Domain decomposition methods*]

Kwak:2003:CMC

Keys:1994:DDM

Keys:1995:DDM

Kolotilina:1989:BSP

Kolotilina:19xx:FSA

Laevskii:1992:DDA

REFERENCES

1755, 1992. CODEN ZVM-FAN. ISSN 0044-4669.

Laevskii:1992:OOP

Laevskii:1992:PMD

Laevskii:1993:DDP

Laevskii:1993:EID

Laevsky:1996:POG

Laevsky:1998:MSG

Lagnese:1999:DDE

Lagnese:1999:DDE

REFERENCES

Lagnese:1999:DDO

Lai:1992:ATN

Lai:1993:DDM

Lai:1994:DDD

Lai:1994:DDS

Langer:1992:SSM

Lapin:1989:MDO

Larsson:1999:DDM

REFERENCES

//epubs.siam.org/sam-bin/dbq/article/32532.

REFERENCES

Lee:2006:OBD

Leugering:1998:DDD

Leugering:1999:DDD

Lee:1987:FPS

Laevsikii:1995:EID

Lippert:1995:FWB

[LG95b] L. Lippert and M. H. Gross. Fast wavelet based volume...

REFERENCES

REFERENCES

Li:2007:NDP

Liu:1998:FEM

Ling:2004:PRB

Laursen:2007:REM

Lai:1988:FEU

Liang:1989:NDD

Laevskii:1993:MDO

Li:1993:DDM

REFERENCES

Li:1995:DDA

Li:1997:CAP

Lagnese:2000:DDD

Lagunese:2004:DDM

Li:2008:SSM

Lunati:2009:OFM

Lapin:2001:NMC

Lagunese:2000:DDD
REFERENCES

Laitinen:2001:ADD

Laitinen:2003:ADD

Lapin:2008:LMB

Lu:1989:PA

Lu:1991:PA

Lions:1972:NBV

Lu:2006:FDD
REFERENCES

diffusion equations. In Progress in partial differential equations: elliptic and parabolic problems (Pont-à-

REFERENCES

REFERENCES

REFERENCES

Lai:2009:DDM

Lu:1989:SDD

Liem:1997:SEM

Liao:2009:CEI

Lin:2009:PPA

Lai:1993:SSD

Lasser:2003:ODD

Li:2009:CAB

Lazaro:2001:IPD

Lu:1999:SAM

Lu:1992:DDMb

Lu:1992:DDMc

Lucier:1988:PEM

Lui:1992:DDMa

Ming-Jun Lai and Paul Wensston. On Schwarz’s domain decomposition methods for elliptic boundary value prob-
Lamichhane:2005:MFE

[LW06] Shu Ting Liu and Xiong Hua Wu. Differential quadrature domain decomposition method for 2-D singular perturbation problems. *Journal on Nu-

Li:2006:BAI

Lee:2003:SSC

Lukshin:1998:DDM

Li:2007:DDU

REFERENCES

Li:2008:DDC

Li:2009:MUD

Lerner:2007:CSI

Li:2000:BEM

Ma:1996:PPC

Mandel:1989:EDD

Mandel:1989:BDS

Mandel:1990:HPP

REFERENCES

Mandel:1990:ISS

Mandel:1990:TLD

Mansfield:1990:CGS

Mandel:1992:AIS

Mandel:1992:BDDa

Mandel:1992:ISP

Mandel:1993:HDD

Mandel:2003:ISL
Manservisi:2006:NAV

Marchuk:1989:DDM

Marchuk:1989:MVM

Marchuk:1991:VPS

Marcinkowski:2001:DDM

Martin:2005:SWR

Marcinkowski:2007:ASM

Mastin:1987:IFD

ISSN 0377-0427 (print), 1879-1778 (electronic).

Mathew:1989:DDI

Mathew:1993:SAIa

Mathew:1993:SAIb

Mandel:1996:BDD

Ma:1997:CMO

Mehrabi:1994:FEN

Marcinkowski:2005:PPS

Mihai:2005:TGA

McCormick:1989:MAS

Marsden:2002:DDU

McCormick:1989:MAM

Mandel:2003:CBD

Marcinkowski:2008:FDM

Mai-Duy:2008:EHO

Mejzlik:1994:BMF

Meurant:1988:DDM

Meurant:1988:DDP

Meurant:1989:DDM

Meurant:1991:DDM

REFERENCES

REFERENCES

Mierendorff:1988:PMM

Miller:1993:AAC

Milyukova:2000:PIM

Mikhailov:2002:ICC

Mishev:1994:PCC

McManus:1999:CLH

Marchuk:1986:FDD

Markus:1996:PEM
MPI implementations and
MPI based Parallel ELLPACK
solvers. In IEEE [IEEE96],
pages 162–169. ISBN 0-8186-
7533-0. LCCN QA76.642 .M67
1996.

Mandel:1991:DDP

[ML91]
Jan Mandel and G. Scott
Lett. Domain decomposition
preconditioning for p-version
finite elements with high as-
pect ratios. Applied Numerical
Mathematics: Transactions of
CODEN ANMAEL. ISSN
0168-9274 (print), 1873-5460
(electronic).

Mandel:1989:ISEb

[MM89a]
Jan Mandel and Steve Mc-
Cormick. Iterative solution of
elliptic equations with refine-
ment: The model multi-level
case. In Tony Chan, Roland
Glowinski, Jacques Périaux,
and Olof Widlund, editors,
Domain Decomposition
Methods. SIAM, Philadelphia, PA,
USA, 1989.

Mandel:1989:ISEa

[MM89b]
Jan Mandel and Steve Mc-
Cormick. Iterative solution of
elliptic equations with refine-
ment: The two-level case. In
Tony Chan, Roland Glowin-
ski, Jacques Périaux, and Olof
Widlund, editors, Domain De-
composition Methods. SIAM,

Morlet:1997:SAS

[MLB97]
Anne C. Morlet, Nancy J. Ly-
beck, and Kenneth L. Bow-
ners. The Schwarz alternating
sinc domain decomposition
method. Applied Numerical
Mathematics: Transactions of
IMACS, 25(4):461–
CODEN ANMAEL. ISSN 0168-
9274 (print), 1873-5460
elsevier.com/cgi-bin/cas/
tree/store/apnum/cas_sub/
browse/browse.cgi?year=
1997&volume=25&issue=4&
айд=824.

Morlet:1999:CSO

[MLB99]
Anne C. Morlet, Nancy J. Ly-
beck, and Kenneth L. Bow-
ners. Convergence of the sinc
overlapping domain decompo-
sition method. Applied Math-
ematics and Computation, 98
(2–3):209–227, February 1,
1999. CODEN AMHCBQ.
ISSN 0096-3003 (print), 1873-
5649 (electronic). URL http:
//www.elsevier.com/cas/
tree/store/amc/sub/1999/
98/2-3/6169.pdf; http:
//www.elsevier.com/cgi-
bin/cas/tree/store/amc/
cas_sub/browse/browse.cgi?
year=1999&volume=98&issue=
2-3&айд=6169.

mongaMade:2004:PPI

[mM04]
M. Magolu monga Made. Per-
formance of parallel incom-
plete LDL factorizations for
solving acoustic wave propa-
gation problems from indus-
try. Numerical Linear Alge-
REFERENCES

Mokhtarzadeh:2006:BCE

Manley:1990:PTE

Martikainen:2002:PLE

Matsokin:1988:NST

Matsokin:1989:UBM

Matsokin:1988:UBM

Mehl:2008:CEI
REFERENCES

Miglio:2005:MSF

Marini:1988:IPD

Marini:1989:RPD

Marinescu:1988:NAL

Mu:1992:PDD

Mu:1994:MCP

Mu:1994:PDD

[MR94b] Mo Mu and John R. Rice. Preconditioning for domain decomposition through function approximation. SIAM Journal on Scientific Comput-

REFERENCES

Mullen:2002:UDN

Marek:2005:AAS

McGee:2005:NCF

Mandel:2007:BFD

Ma:2010:GDD

Marrocu:1998:PPM

Maischak:1996:DDM

Matthias Maischak, Ernst P. Stephan, and Thanh Tran. Domain decomposition methods for boundary integral equations of the first kind:

Mirin:1998:EFT

Ma:2009:PGD

McCormick:1986:FAC

Miki:1986:NSP

Maday:2005:PT1

Mu:1995:NFP

Murio:1997:BRE

Diego A. Murio. Book review: *Elliptic Marching Meth-

Murea:1998:DDM

Made:2001:GDD

Mair:2004:DDM

Minev:2001:SCA

Min:2007:PFD

Nabben:2003:CBM

Natarajan:1995:DDU

Natarajan:1997:DDU

Nicolaides:1988:IME

Necas:1967:MDT

Nedoma:1995:ISM

Nepomnyashchikh:1984:AMB

Nepomnyashchikh:1986:DDS

Nepomnyashchikh:1990:MRO
Nepomnyaschikh:1991:ADD

Nepomnyaschikh:1992:DDM

Nepomnyaschikh:1997:DDM

Nepomnyaschikh:1999:POE

Nepomnyaschikh:2007:DDM

Nedoma:2003:SRR

Nielson:2009:NIE

NKaoua:1991:SNR

[N’K91] T. N’Kaoua. Solution of the nonlinear radiative trans-

Neittaanmäki:2001:FEM

Nourtier-Mazauric:2010:TEI

Natori:1987:IMN

Natori:1988:SS

Natori:1992:PPS

Nataf:1997:CRS

REFERENCES

[Lars Nyland, Jan Prins, Ru Huai Yun, Jan Herrmans, Hye-Chung Kum, and Lei Wang. Achieving scalable parallel molecular dynamics using dynamic spatial

IEEE catalog no. 94TH0667-6.

[OL99] F.-C. Otto and G. Lube. A posteriori estimates for a
link/service/journals/00607/bibs/9062001/90620027.htm;

Oualibouch:1997:PDD

[OM97] Said Oualibouch and Nouredine El Mansouri. Proxi-
mal domain decomposition algorithms and application to el-
liptic problems. In Domain decomposition methods in sci-
ences and engineering (Beijing, 1995), pages 91–98. John

[Ong89] M. E. G. Ong. Hierarchical basis preconditioners for sec-
ond order elliptic problems in three dimensions. Technical
Report 89–3, Dept. of Applied Math. University of Wash-

Oden:1997:PDD

domain decomposition solver for adaptive hp finite ele-
ment methods. SIAM Journal on Numerical Analysis, 34(6):

Oden:1997:PDD

CODEN SJNAAM. ISSN
0036-1429 (print), 1095-7170
(electronic). URL http://
epubs.siam.org/sam-bin/
dbq/article/27888.

Oleg:1997:IMT

[OR82] J. T. Oden and J. N. Reddy. An Introduction to the Math-
ematical Theory of Finite Elements. John Wiley and Sons,

Oloomi:2004:TTS

H. Oloomi and B. Shafai. Two-
time-scale distributions and
singular perturbations. Inter-
national Journal of Control,
77(11):1040–1049, 2004. CO-
DEN IJCOAZ. ISSN 0020-
7179.

Ould-Salihi:2000:BFD

M. L. Ould-Salihi, G.-H. Cot-
tet, and M. El Hamraoui.
Blending finite-difference and
vortex methods for incom-
pressible flow computations.
SIAM Journal on Scientific
Computing, 22(5):1655–1674
(electronic), 2000. CODEN
SJOCES3. ISSN 1064-8275
(print), 1095-7197 (electronic).

Oswald:1989:IHS

Peter Oswald. On C1 in-
terpolating hierarchical spline
bases. Technical Report N/89/16, Friedrich Schiller
Universit\text{"a}t, Jena, Germany, 1989.

REFERENCES

ISSN 0010-485X (print), 1436-5057 (electronic).

Oswald:1994:CRS

ISSN 0010-485X (print), 1436-5057 (electronic).

Oswald:1999:IPM

Of:2006:BET

Ovall:2007:HMT

Overton:1988:MME

Ovtchinnikov:1993:CWC

Ovtchinnikov:1999:RSC

Paglieri:1997:PCS

REFERENCES

Portero:2010:CDD

Papamichael:1989:NCM

Park:1995:DDM

Park:2004:PMD

Pasciak:1988:DDPb

Pasciak:1988:DDPa

REFERENCES

Papadrakakis:1994:DDP

Papadrakakis:1996:ACM

Parks:2008:CAC

Periaux:1997:DDM

Pain:1999:SAT

Perkins:1992:MDU
A. Louise Perkins. A mixed directed-undirected data structure for a parallel implementation of a domain decomposition algorithm. *BIT (Nordisk tidskrift for informationsbehan-

REFERENCES

Pavaro:2005:PSC

Pan:2003:DSM

Popp:2009:FDM

CODEN IJNMBH. ISSN 0029-5981.

Phillips:1990:SDD

Phillips:1992:PDD

Power:2007:NOD
Prado:2000:BTV

Pieska:2004:DDM

Pino:1992:DDN

Liang:1993:NCD

Liang:1990:NDD

Pieska:2005:PCM

Pohoata:2006:BET

Poincare:1896:MNP

Popoviciu:2002:PMS

Gavin J. Pringle. Embedding a ‘treecode’ on a MIMD parallel computer using a domain decomposition paradigm. Future
REFERENCES

Peng:2010:O

Pasquetti:2006:NNS

Przemieniecki:1963:MSA

Przemieniecki:1985:TMS

Papamichael:1988:DDM

Papamichael:1990:NPD

Papamichael:1992:DDM

Peric:1993:PMS

Perić, M.; Schreck, E. Ein parallel implementierter Mehrgitteralgorithm-

REFERENCES

Peirano:2003:DDS

Panasenko:2008:FVI

Pavarino:1993:ISM

Pavarino:2000:ISM

Pavarino:2002:BP1

Papadopoulos:1991:DDF

Yang:1993:SDD

Pencheva:2003:BDD

[PY03] Gergina Pencheva and Ivan Yotov. Balancing domain de-

Affio Quarteroni, J. Periaux, Y. Kutsnetsov, and O. Wid-

Shang:2009:FAS

Quarteroni:2006:ISD

Quarteroni:1987:DDT

Quarteroni:1989:DD

Quarteroni:1990:DDM

Quarteroni:1991:DDP

Quarteroni:1987:DDT

REFERENCES

[Rat00] Wigand Rathmann. Modellierung, Simulation und
REFERENCES

Reale:1994:PCU

Russell:1992:CMW

Repin:2008:AFF

Rivera-Gallego:2003:SAN

Rodriguez:2006:NND

Rheinbach:2009:PIS

Rivera:2010:PFE

[Christian A. Rivera, Mourad Heniche, Roland Glowinski, and Philippe A. Tanguy. Parallel finite element simulations of incompressible viscous fluid flow by domain decomposition with Lagrange multiplier...]

[Ruda:1997:SIE] Ulrich Rüde. Stability of implicit extrapolation meth-

REFERENCES

0377-0427 (print), 1879-1778 (electronic).

Rusten:1992:MFE

[RW92]

Rusten:1993:SPE

[RW93]

Rahman:2005:ASP

[RXH05]

Rui:1997:SDD

[RY97]

Rude:1998:MPE

[RZ98]

Saad:2000:PTL

[SAD+00]

Sala:2004:ATL
Marzio Sala. Analysis of two-level domain decomposition

[Sal04]

Samarskii:1998:SIC

Shrimali:2010:CIT

Sarkis:1993:TLS

Sarkis:2003:PUC

Sassi:2003:DDA

Satofuka:2001:CFD

Succi:1989:FCP

Szabo:1991:FEA

Barna Szabó and Ivo Babuška. *Finite Element Analysis*. John
REFERENCES

Schatz:1974:OCR

Schultz:1988:NAM

Schwandt:1996:GCI

Schöberl:1998:SSP

Scherer:2005:WNE

Scott:1994:EPU

L. Saas, I. Faille, F. Nataf, and F. Willien. Finite volume methods for domain decomposition on nonmatch-
ing grids with arbitrary inter-
face conditions. SIAM
Journal on Numerical Analy-
CODEN SJNAAM. ISSN
0036-1429 (print), 1095-7170
(electronic). URL http://
epubs.siam.org/sam-bin/
dbq/article/43405.

Shao:1990:SDD

[Sha90] Jian Ping Shao. A sym-
metric domain decomposition
method based on the sym-
metrization principle. Math.
Appl. (Wuhan), 3(2):6–11,
1990. ISSN 1001-9847.

Shao:1994:MVS

[Sha94] Jian Ping Shao. The modi-
ﬁed vertex space domain de-
composition method for Neu-
mann boundary value prob-
lems. In Domain decomposi-
tion methods in scientiﬁc and
ing engineering computing (Uni-
versity Park, PA, 1993), vol-
ume 180 of Contemp. Math.,
pages 325–336. AMS, Provi-
dence, RI, USA, 1994.

Singh:1993:PAF

[SHHG93] Jaswinder P. Singh, Chris
Holt, John L. Hennessy, and
Anoop Gupta. A parallel
adaptive fast multipole
method. In IEEE [IEE93],
pages 54–67. ISBN 0-8186-
4340-4 (paperback), 0-8186-
4341-2 (microfiche), 0-8186-
4342-0 (hardcover), 0-8186-
4346-3 (CD-ROM). ISSN
1063-9535. LCCN QA76.5.
S96 1993.

Shishkin:1993:IGM

G. I. Shishkin. Iterative
grid methods for singularly
perturbed elliptic equations
degenerating into zero-order
ones. Russian journal of nu-
merical analysis and mathem-
atical modelling, 8(4):341–
369, 1993. CODEN RINMEH.
ISSN 0927-6467.

Shi:1995:OPD

PeiHu Shi. Orthogonal projec-
tion of the domain boundary
operator for elliptic problem
by domain decomposition. J.
Southeast Univ. (English Ed.),
11(1):83–90, 1995. ISSN 1003-
7985.

Shishkin:1999:GAS

G. I. Shishkin. Grid approxi-
mation of singularly perturbed
boundary value problems in a
nonconvex domain with a piecewise-smooth boundary.
Mat. Model., 11(11):75–90,
1999. ISSN 0234-0879.

Shakib:1989:EEA

Farzin Shakib, Thomas J. R.
Hughes, and Zdeněk Jo-
han. Element-by-element algo-
rithms for nonsymmetric ma-
trix problems arising in ﬂui-
ds. In Solution of super-
large problems in computa-
tional mechanics (Mystic, CT,
1988), pages 1–33. Plenum,

[SK09] Fahad Saeed and Ashfaq Khokhar. A domain decomposition strategy for alignment of multiple biological

Skogen:1992:SMP

Shi:2006:USC

Sheng:2004:DDA

Shih:1994:MCS

Shi:1998:PTC

Saleri:2007:GMA

Sun:2010:PGD

[SR08] Linda Stals and Stephen Roberts. Preconditioners for low order thin plate spline approximations. In Domain decomposition methods in science and engineering XVII,
REFERENCES

Serre:2001:HOA

Saad:1986:GGM

Strikwerda:1993:DDM

Santos:1998:GPD

Sala:2008:PHP

Schnack:1996:NOD

Sala:2005:ICB

lated topics (Japanese) (Kyoto, 1999).

Sloot:2002:CSIa

Sloot:2002:CSIb

Sloot:2002:CSIc

Steklov:1901:GMS

Steinbach:1994:BED

Steinbach:1995:PIS

Steinbach:1996:GRE

Olaf Steinbach. Gebietszerlegungsmethoden mit Randintegralgleichungen und effiziente numerische Lösungsverfahren für gemischte Randwertprobleme. (German) [Area decomposition methods with boundary integral equations and efficient numeric solution procedures for mixed boundary value problems]. Universität

Suzuki:1997:INO

Samarskii:1995:VAS

Samarskii:1996:ICA

Shishkin:1996:PDD

Samarskii:1999:ASD

Samarskii:1999:DDM

Smith:1990:DD

Sbosny:1991:PMU

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
REFERENCES

Sun:2009:DDMb

Sydow:1994:PSA

Schadle:2007:DDM

Tzatchkov:2003:DDS

Taha:1992:PAI

Tai:1994:DDL

Tai:2002:DDM

REFERENCES

REFERENCES

REFERENCES

Tiwari:2009:PPH

Tezduyar:1988:EEI

Tallec:1994:CBN

Tallec:1997:AMD

Tse:2001:SDD

Takagi:1987:NAE

Tallec:1994:BDD

[TMV94] Patrick Le Tallec, Jan Mandel, and Marina Vidrascu. Balancing domain decomposition for...

Tallec:1998:NND

Torre:1994:DDM

Toselli:2004:DDM

Tourette:2001:ABC

Tzaferopoulos:1993:DCS

Tu:2008:BED

Tallec:1993:DDM

P. Le Tallec and J. A. Sousa Rodrigues. Domain decomposition method with nonmatching grids applied to fluid dynamics. In *Finite elements in fluids, Part I, II (Barcelona,
REFERENCES

Xuemin Tu and Marcus Sarkis. Singular function enhanced

REFERENCES

Trompert:1991:SRM

Timmermans:1993:SMA

Tallec:1999:ESM

Tsychko:2001:ITE

Toselli:2004:DDP

Tang:2007:CDD

Huazhong Tang and Gerald Warnecke. On convergence

REFERENCES

References

Vidal:2008:BQI

Vanek:1997:TLM

Vulkov:2001:NAA

Wang:2003:QAD

Wait:1988:PPF

Wang:2001:NCP

Wang:2006:RFP

Wait:1988:FEA

REFERENCES

Wrobel:1991:CMF

Wan:2003:WPA

Wyrzykowski:2004:PPA

Wendland:2006:CAR

Wang:2010:ODD

White:1987:MPI

REFERENCES

[White:2000:DDS]

Whiteman:2000:MFE

Widlund:1984:IME

Widlund:1988:CSD

Widlund:1988:ISMb

Widlund:1988:ISMa
Olof B. Widlund. Iterative substructuring methods: The general elliptic case. In Computational Processes and
Widlund:1989:ISE

Widlund:1989:RCC

Widlund:1989:OIR

Widlund:1989:SDD

Widlund:1992:SSM

Widlund:1996:DDM
REFERENCES

Widlund:1997:PSM

Williams:1992:VOMa

Williams:1992:VOMb

Wirgin:2002:AMR

Wilkelm:2001:DDM

Wu:2003:DDA

Wong:2006:DDR

Wang:1997:TDE

J. Wang, P. Liewer, and E. Huang. Three-dimensional electromagnetic particle-in-cell with Monte Carlo collision simulations on three MIMD

[WPT08]

[WR09]

[WST09]

[Woh01]

[WST09]

[Wicke:2009:MBF]

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Yang:1996:PIN

Yang:2000:DD

Yang:2002:PDD

Yang:2010:PDD

Yang:2010:FID

Yang:2004:SAA

Ye:1998:DDLa

Ye:1998:DDLb

Guo:2009:CGL

Yates:2003:PIC

Yuan:1996:LBP

Yotov:2001:ISP

REFERENCES

Yserentant:1985:HBF

Yserentant:1986:HBG

Yserentant:1986:MLSa

Yserentant:1986:MLSb

Yserentant:1990:TPB

Yang:2003:CSU

Yu:1994:DDM

Yu:1995:RBS

Yu:1996:DND

REFERENCES

[Yu99b] Hongyi Yu. Solving parabolic problems with different time steps in different regions in space based on domain decomposition methods. Applied Numerical Mathematics:

REFERENCES

Zanolli:1987:DDA

Zavadskii:1982:MKR

Zhou:1995:OSS

Zhu:1987:NMP

Zhang:1991:MML

Zhang:1992:PID

Zhao:1987:MTF

He Sheng Zhao. The Marcinkiewicz theorem for Fourier series on compact Lie

Zhang:1991:SDD

Zhang:1992:PDD

Zhang:1992:PIA

Zhang:1992:DDA

Zhang:1992:MSMa

Zhang:1992:MSMb

Zhang:1993:OPD

Zhadaeva:1995:DDM

Zhadaeva:2006:DDA

REFERENCES

ISSN 0045-7825, 0374-2830.

ISSN 0168-9274 (print), 1873-5460 (electronic).

ISSN 1070-5325 (print), 1099-1506 (electronic).

ISSN 0096-3003 (print), 1873-5649 (electronic).

[Tie Zhang and Bao Kuan Li. Iterative domain decomposition algorithms for solving finite element equations. J.

[Zhang:1996:IDD]

