A Bibliography of Publications of David M. Young

David M. Young
University of Texas at Austin
Department of Mathematics
Austin, TX
USA

Tel: ?n/a?
FAX: ?n/a?

E-mail: young@math.utexas.edu (Internet)

11 February 2019
Version 3.28

Abstract

This bibliography records publications of David M. Young.

Title word cross-reference

-point [ALY88].

1983 [ES84, Gar83]. 1984 [Lak84, VS84].
1986 [D86]. 1987 [Cra87]. 1993
[BCEP94]. 1994 [BC95].

[KGRY81]. 2C
[GKRY82, KRYG82, KORY84]. 2D
[KOY89].

5th [FDKN04].

A. [You62a]. Abstractions [SDK+95].
Academic [You62a]. Accelerated
[GKRY82, KGY80, KGRY81, KRYG82,
You77, You74]. Accelerating [YJK84].
Acceleration
[HLY80, JY80, MY89, YM14, JY88].
accuracy [YM69]. Adapting
[KYO81, KOY82, KY83]. Adaptive
[GKMY78, GKRY82, KGY80, KGRY81,
KRYG82, MY89, JY88]. adjoint
[EGRS59a]. Advanced
[CKO84, BD92, You60b, D86]. algebraic
[Rhe72, You72c]. Algorithm
[GKRY82, Bro87]. Algorithms
[Car88, GKMY78, JY86, KGY79, KY81,
KY83, MY87, YJM86]. Alternating
[YW63, YW64, YK95, YK96].
alternating-type [YK95, YK96].
Alternative [YC94]. American [Cur56].
Analysis
[ALY88, BC95, Bec52, Lak84, Tod62, VWY01, You58, You61b, Cur56, You73b].

Angeles [Bec52]. Applications
[FDKN04, Gar83, VWY01, Whi76, ISV82, Bec52, RSY93, Car88]. Applied
[Cur56, HY81, HY04, You97]. arch
tecture
[SDK+95]. Architectures
[CKO+84, KCO+84]. Arising
[You76].

Arlington [Lak84]. August
[BC95, D+86, ES84, FDKN04, Gra73]. Automatic
[MY89]. Automonitor
[You61a].

Bethlehem [VS79, VS84]. Biconjugate
[YC94]. Birkhoff [You97]. Book
[You53, You62a, You93a]. Boston [D+86]. bound
[You71]. Boundary
[EGRS59a, You74]. brief [KY88]. Bulgaria
[BC95, VWY01]. Bureau [Bec52].

Calif [BS84]. California [Bec52]. Carolina
[BCEP94]. CBMS [Rhe72]. CDC [KY83]. Celebrating [Kin04]. Centenary
[BCEP94]. Center [Gar83]. Certain
[HLY80]. Chebyshev
[JY88, MY89, RSY93]. Class
[KY75, YK95, YK96]. Colloquium [BC95].
Colorado [SRS79, ISV82]. Combining
[CKO+84, KCO+84]. Computation
[EGRS59a, Ral65, YM69, ???85].

Computational [Ode75]. Computations
[KOY84, KOY86a]. Computer
[BHK79, CKO+84, KY75, KOY82, KCO+84, SW66, VS79, VS84, You61a, YF62, YF63].
Computers [YHOK85]. Computing
[Nas90, NN93, You93a, You93b].

Conditions [JY86]. Conference
[BCEP94, D+86, ES84, FDKN04, Lak84, Rhe72, SW86, VWY01, ???85, ???89, Wat74].

conformal [Bec52, You52]. Congress
[Mor70]. Conjugate
[JY80, JY83, JY86, JYM86]. Conjugate-
[JY83]. consistency [You72b]. consistent
[You72a]. Construction [Bec52]. Conte
[???89]. Control
[Gar83, D+86, YM69, You61a].

Convergence [You69, You70]. Cornelius
[BCEP94]. Corporation [Gar83]. Cray
[Cra87]. CYBER [Gar83, KY83].

D [???89]. Dallas [SW86]. Data
[Gar83, You61a]. David [AK10, Kin04].

December [BCEP94]. dedicated
[AK10, RSY93]. definitive [You72c]. Degree
[KY91, YK90, YK92, YK72, You72d, YK93].

Denver [SRS79]. Derived [You75].

Determination [MY89, VW70]. determine
[You52]. Developed [KY81]. Development
[KY75]. Difference
[KY86, YE59, YW63, You63, YW64].

Differential
[CKO+84, KY75, KCO+84, KY84c, KOY86b, VS79, VS84, Wat74, You59, YF62, You63, YF63, YD65a, YD65b, You75, Gra73, You50, You62b, You93a, You93b].

Digital [Rai65]. Direction [YW63, YW64].

Dirichlet [You55]. Discrete
[YD65a, YD65b]. Discussion
[YK84, YM69]. distances [Bro87]. Dr.
[KVW10, ???89]. Dual [MY89]. Dundee
[Wat74].

Edinburgh [Mor70]. effectiveness [JY88].

Efficient [KY83]. Eigenvalues [EGRS59a].

Element [CKO+84, KCO+84, You76].

Elements [Whi76]. Elliptic
[RB85, Sch81, You59, YF62, YF63, You75, You50, You62b, You74, YXB95, BS84].

ELLPACK [RB85]. Encyclopedia
[BHK79]. Engineering [Ame64, Cra87].

ENUMATH [FDKN04]. Equation
[You61b]. Equations [CKO+84, KY75, KCO+84, KY84c, KOY86b, VS79, VS84, Wat74, You59, YF62, YF63, YW63, You63, YF63, YW64, You75, Gra73, JY88, Rhe72, You50, You62a, You62b, You72c, You73a, You93a, You93b, YXB95, You53, You62a].
Equivalence [HLY80]. Error [Ral65, You58]. European [FDKN04].
Exact [You61b]. exceeding [YM14].

Factor [WY70, You71]. Factors [YWD65, YM14]. False [You58]. February [SRS79]. fifth [VS84].
Fifty [Kin04]. Finite [CKO84, KGY80, KGRY81, KY83, KY87, KY90, You69, You70, You71, You75, You76, You79, You89a, You90, You93b, You93c, You93d, You94, You03, AK10, KVW10]. Jr. [AK10, KVW10]. July [Rhe72]. June [Bec52, Lak84, VS79, VS84, VY01].

Generalized [JY80, JY83, KY80, KY81, KRY82, KY83, KY84a, KY86b, KGY80b, KY91, You50, You59, You71, You75, You76, You89a, You89b, You90, You93b, You93c, You93d, You94, You03, CKY99, KY92, KY92a, KY93, YM14, You72b, You72d, YJK84, YR92, YX95, YK96, KY90].

ITPACK [GKMY78, GKY78, GKRY82, KGY80, KGRY81, KOY82, KRY82, KGY84a, KRY84b, KORY85b, KORY85a, KY88, YK81, YK84].

ITPACKV [KORY84, KOY89].

Kjeller [Gra73].

L [RSY93]. LAN [KYC00].
LAN/MGMRES [KYC00]. Lanczos [BCEP94, JY93]. Lanczos-type [JY93].
LANGMRES [YC94]. Lanham [Gar83].
Laplacian [LY88]. Large [GKRY82, KGY79, KGY80, KGY81, KRY82, KY83, KGY80, KCSY88a, KCSY88a, KGY80, KY81, MY87, You71, YK72, You77, YK81, You88, YK90, YC94, You72d, You72c, YM86, YR92, YK93, You03]. least [Bro87].

Lehigh [VSV79, VS84]. Level [You88, You89b]. life [KVV10]. Linear [BD92, D86, GKRY82, JY83, KGY79, KGY80, KGY81, KRY82, KY83, KGY84a, KGY86a, KY90, MY87, You60b, You71, YK72, You75, You76, You77, YK81, YHOK85, You88, You89b, YK90, YK93, YC94, JY88, JY93, KY90, You56, You72b, You72d, You72c, You73a, JYM86, YR92, You03, D86].

M [AK10, Kin04, KVW10, You62a, You93b]. mapping [You52]. maps [Bec52].
Gar83, Gra73, Lak84, SW86, VS79, VS84, ???89, BC95, BCEP94, ISV82, ???85.

Processing [Mor70, ISV82, NN93].

Processors [???85]. Project [KY84a, KY88]. Properties [You69, You70]. property [You72a]. Purdue [???89].

Refined [EGRS59a], Regional [Rhe72]. Related [KGY79, You69, You70, KYG79].

Relaxation [WY70, YWD65, YM14, You71]. Report [GKMY78]. Representations [YD65a, YD65b]. Reservoir [SRS79].

Review [You53, You62a, You90, You93a, KY88]. Revised [VWY01]. Rousse [VWY01]. Routines [KOY84].

S [???89]. scaling [Bro87]. scheduled [YM14]. Science [Cra87]. Sciences [BHK79]. Scientific

[Nas90, You93b, ???85, NN93, You93a]. Search [You88, You89b, YM90]. Second [KY91, VY001, YK72, You72d, YK90, KY92, YK93]. Second-Degree [KY91, YK90, YK72, You72d, KY92, YK93].

Self [EGRS59a]. Self-adjoint [EGRS59a]. Seminar [Gar83]. September [Cra87].

Several [YWD65, RSY93]. signals [D+86]. Simplification [JY83, JY86]. Simulation [SR97]. Single [You1b]. Sixth [Cur56].

Society [Cur56]. Söderkåping [ES84]. Software [ES84, KY84b, MY87, KY84, SDK+95, YM86, Mor70]. Solution [EGRS59a, KORY85b, KORY85a, KCSY88a, KCSY88b, MY87, WAT74, You59, You62a, You63, You71, YK72, You73a, You75, You76, You88, YK90, Gra73, RHE72, You53, You56, You62b, You72d, You72c, YK93, You03].

Solutions [You55]. Solvers [BS84, Sch81, You89b]. Solving [GKRY82, KY75, KGY79, KYG79, KGY80, KGR81, KRYG82, KY83, KCO+84, KY84c, YE59, You60b, YF62, YW63, YF63, YW64, You77, YHOK85, YC94, CKO+84, JY88, YJ93, KYC00, You50, You74, YJM86, YR92, YXB95, RB85]. Some [YE59]. SOR [ALY88]. Space [Gar83]. Sparse [GKMY78, GKRY82, KGY79, KGY79, KYG79, KYG80, KGR81, KROY82, KY83, KOY84, KOY86a, KCSY88a, KCSY88b, MY87, YK81, YHOK85, You88, You89b, YC94, You72c, YJM86, YR92]. Special [AK10]. sponsored [Gar83]. squared [Bro87]. squares [Bro87]. SSOR [GKRY82]. Standards [Bec52]. State [ISV82]. Stationary [KY91, KY92, YK72, YK90, You72b, YK93].

Storage [GKMY78, KGY79]. streamlines [You52]. Studies [YE59].

Study [Gra73]. Successful [KY71, Kin04, YW70, YWD65, You69, YK69, You70, YK71, YK72, You71].

Sufficient [JY86]. Supercomputers [KY84c, Cra87]. Supercomputing [Car88].

support [SDK+95]. surveillance [YM69]. Survey [KY79, Tod62, YF62, YF63, YG72, YG73, YG88a, YG88b, You73b]. Sweden [ES84]. Symmetric [GKMY78, KGY79, KY81, You69, You70]. symmetrizable [JY80]. Symposium

[Cur56, VS79, VS84, ISV82, Bec52, Cra87, SRS79]. System [You89b]. Systems [ES84, GKRY82, JY83, KGY79, KGY80, KY81, KGRY81, KROY82, KY83, KOY84, KOY86a, KCSY88a, KCSY88b, MY87, You61a, You71, YK72, You75, You76, You77, YK81, YHOK85, You88, YK90, YC94, D+86, JY88, JY93, KYC00, RHE72, You56, You62a, You72d, You72c, You73a, YJM86, YR92, YK93, You03, KH90].

TC [ES84]. Techniques [You76]. Technology [BHK79]. Texas [Lak84, SW86]. their [RSY93]. them [SDK+95]. Theory [Lak84]. Third
[BC95, Cra87, VS79]. times [KVW10].
tools [SDK+95]. Topics [RSY93]. Trends
[Lak84, Lak84]. Tutorial [KY86]. type
[JY93, You50, YK95, YK96].

University [Bec52, Lak84, Rhe72, VS79,
VS84, ISV82, ???89]. Unsymmetric
[You69, You70]. USA [VS79, VS84]. Use
[KGY79, KYG79, KOY82, KY83, KY84c,
YWD65, YHOK85, You52, YR92]. User
[GKY78, KORY84, KOY89]. Using
[GKMY78, KGMY79, RB85, You61b, YM14].

V [VS84]. Value [EGRS59a, You74],
variables [RSY93]. Variations [KYC03].
Vector
[KOY82, KOY84, KOY86a, KCSY88a,
KCSY88b, YHOK85, ISV82, ???85].
Vectorized [KOY86b]. Vth [Lak84]. Vol
[Mor70]. volume [RSY93].

W. [You53]. Wiley [You53]. Working
[ES84].

Years [Kin04]. Yokohama [NN93]. York
[You53, You62a], Young [AK10, EGRS59b,
KVW10, Bro87, Kin04].

References

Axelsson:2010:PSI
Owe Axelsson and David R. Kincaid. Preface [special issue: dedicated to the memory of David M. Young, Jr.]. Numerical linear algebra with applications, 17 (5):741–742, October 2010. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Adams:1988:ASI

Ames:1964:NPE

Bainov:1995:PTI
REFERENCES

[Car88] Graham F. Carey, David R. Kin-

Chen:1999:GMG

Cray:1987:SEC

Curtiss:1956:NAP

Datta:1986:LAS

Engeli:1959:RIM

Engeli:1959:YO

Engquist:1984:PSM

REFERENCES

277-0413-9. LCCN QA374.N37

[HLY80] Louis A. Hageman, Franklin T. Luk, and David M. Young. On
the equivalence of certain iterative acceleration methods. *SIAM Journal on Numerical Analysis*,

Computer Science and Applied Mathematics, Editor: Werner Rheinboldt. Academic

of the 1981 original.

[HY83] Kang C. Je a and David M. Young. On the simplification
of generalized conjugate gradient methods for nonsymmetrizable linear systems. *Linear Algebra and Its Applications*, 52/53:
399–417, 1983.

[JY86] Wayne D. Joubert and David M. Young. Necessary and sufficient
conditions for the simplification of generalized conjugate gradient
algorithms. *Linear Algebra and Its Applications*, 86/87:449–485,
1986.

[JY88] Kang C. Je a and David M. Young. On the effectiveness
of adaptive Chebyshev acceleration for solving systems of linear
equations. *Journal of Computational and Applied Mathematics*,

[JY93] Kang C. Je a and David M. Young. Lanczos-type methods for solving nonsymmetric linear
systems. In Natori and Nodera [NN93], pages 14–24. LCCN ????
REFERENCES

[KCSY88a] David R. Kincaid, Graham F. Carey, Kamy Sepehrnoori, and David M. Young. Vector and parallel iterative solution of large sparse systems for PDEs. Report CNA-222, Center for Numerical Analysis, University of Texas at Austin, Austin, TX, USA, August 1988.

[KGY81] David R. Kincaid, Roger G. Grimes, John R. Respess, and David M. Young. ITPACK 2B: A Fortran package for solving large sparse linear systems by adaptive accelerated iterative methods. Report CNA-173, Center for Numerical Analysis, University of Texas at Austin, Austin, TX, USA, September 1981. (Also, Report CCSN–44, Computation Center, University of Texas at Austin.).

REFERENCES

Analysis, University of Texas at Austin, Austin, TX, USA, October 1980.

[KORY82] David R. Kincaid, Thomas C. Oppe, and David M. Young. Adapting ITPACK routines for use on a vector computer. In ISVPA’82 [ISV82], page ?? LCCN ???.

[KOY86b] David R. Kincaid, Thomas C. Oppe, and David M. Young. Vectorized iterative methods for par-
REFERENCES

Kincaid:1989:IUG

[KOY89] David R. Kincaid, Thomas C. Oppe, and David M. Young. ITPACKV 2D user’s guide. Report CNA-232, Center for Numerical Analysis, University of Texas at Austin, Austin, TX, USA, May 1989.

Kincaid:1982:IFP

Kincaid:2010:LTD

Kincaid:1971:NSO

[KY71] David R. Kincaid and David M. Young. Norms of the successive overrelaxation method. Report CNA-26, Center for Numerical Analysis, University of Texas at Austin, Austin, TX, USA, July 1971.

Kincaid:1972:MSO

Kincaid:1975:DCP

Kincaid:1979:SIM

Kincaid:1981:AIA

REFERENCES

[KY92] David R. Kincaid and David M. Young. Stationary second-degree iterative methods and recurrences. In Beauwens and De Groen [BD92], pages 27–
REFERENCES

Shaw:1995:ASA Mary Shaw, Robert DeLine, Daniel V. Klein, Theodore L. Ross, David M. Young, and Gregory Zelesnik. Abstractions for software architecture and tools to support them.

REFERENCES

[VY89] Bi Roubolo Vona and David M. Young. Parallel multilevel methods. In ??? [??89], page ?? ISBN ?? LCCN ???

[WY70] Charles H. Warlick and David M. Young. A priori methods for the determination of the optimum relaxation factor for the successive overrelaxation method. Report TNN-105, Computation Center, University of Texas at Austin, Austin, TX, USA, May 1970.

[YB60] David M. Young and Carl Bailey. Notes on Muller’s method. Report TNN-2, Computation Center, University of Texas at Austin, Austin, TX, USA, October 1960.

[YE59] David M. Young and Louis Ehrlich. Some numerical studies of iterative methods for solv-
REFERENCES

19

ing elliptic difference equations. Report TNN-5, Computation Center, University of Texas at Austin, Austin, TX, USA, April 1959.

Young:1962:SCM

Young:1963:SCM

Young:1972:SNM

Young:1973:SNM

Young:1988:SNMa

Young:1988:SNMb

Young:1985:UVC

Young:1984:ANI

[YJK84] David M. Young, Kang C. Jea, and David R. Kincaid. Accelerating nonsymmetrizable iterative methods. In Birkhoff and Schoenstadt [BS84], pages
REFERENCES

Young:1986:PCG

Young:1969:NSO

David M. Young and David R. Kincaid. Norms of the successive overrelaxation methods. Report TNN-94, Computation Center, University of Texas at Austin, Austin, TX, USA, September 1969.

Young:1971:MSO

David M. Young and David R. Kincaid. The modified successive overrelaxation method with fixed parameters. Report CNA-33, Center for Numerical Analysis, University of Texas at Austin, Austin, TX, USA, October 1971.

Young:1972:LSS

David M. Young and David R. Kincaid. Linear stationary second-degree methods for the solution of large linear systems. Report CNA-52, Center for Numerical Analysis, University of Texas at Austin, Austin, TX, USA, October 1972.

Young:1981:IPL

Young:1984:ISP

Young:1990:LSS

David M. Young and David R. Kincaid. Linear stationary second-degree methods for solution of large linear systems. Report CNA-244, Center for Numerical Analysis, University of Texas at Austin, Austin, TX, USA, July 1990.

Young:1993:LSS

Young:1995:PIC

David M. Young and David R. Kincaid. Parallel implementa-
REFERENCES

[YM53] Young:1952:UCM

REFERENCES

COAH. ISSN 0004-5411 (print), 1557-735X (electronic).

[Young:1963:NSP] David M. Young. On the numerical solution of partial differential equations by finite differ-
References. Report TNN-21, Computation Center, University of Texas at Austin, Austin, TX, USA, January 1963.

[You71] Young:1971:ISL

[You72a] Young:1972:GPC

[You72b] Young:1972:CLS

[You72c] Young:1972:SLS

[You72d] Young:1972:SIM

[You73a] Young:1973:SLS

[You73b] Young:1973:SMN
REFERENCES

REFERENCES

