A Bibliography of Publications of Henry Wolkowicz

Henry Wolkowicz
Dept of Comb and Opt
University of Waterloo
Waterloo, Ont.
Canada N2L 3G1
Tel: (519) 888-4567 ext. 15589
FAX: +1 519 725 5441
E-mail: hwolkowi@orion.uwaterloo.ca (Internet)

25 November 2016
Version 1.34

Abstract
This bibliography records publications of Henry Wolkowicz.

Title word cross-reference

(0, 1) [PW95a, PW95b, PRW95]. 2 [KW97, KW98].
quadratic [PW95b, PRW95].
1 [ADH+06]. 12th [BGKW07]. 19-5.5 [Wol98].
4th [BC95].
60th [BBB+13].
93-17 [Wol94d].
Abraham [PRBI+92]. abstract [BW79a, BW79b, BW81c, BW81b, BW82a, BW82b].
Accuracy [Kru01]. Advances [xY98].
advantage [WBi86a]. affine
[BW81a, Wol80c]. age [PRBI+92].
Algorithm [TWZ94, BIW92, DKW12, KW03a, KW03b, WBi86b]. Algorithms
[Kru01, PP00, WSV00, BBC+11, RVW95, RVWxxb]. all-inclusive [WZ95]. analytical
[BBB+13, BTW13]. Applications
[PP00, RW92, TWZ94, WSV00, KW12, PS00, RW94a, RW97, Wol81c]. Applied
[Kru96, PR02]. approach
[AHTW01, GLWW09]. Approaches [Had89, PW98a, PW02, PW03, Wol00b, Wol78b].
Approximate
[AHW05, AKW97, JK98, Wol78b, ZW78]. approximation [MW81, Wol75]. arising
[BJW85]. Assignment [Had89, HRW92b, Kar92, PRW94, PP00, Sch85, Wol00b, Zha96, ACW99, DW09, HRW88, HRW90, HRW92a, KR94, KRWZxx, PW94, RW92, SW85, ZKR97, ZKR98]. assumptions
[GLWW09].
ball [DVW15]. based [KW03a, KW03b].
Borwein [BBB+13]. bound [HRW92a]. Bounds [HRW90, Kum84, MSW83, WS80a, Wol81a, HRW88, JK85, MW85, WS80c, Wol85, Wol10]. Broadband [GWW01].
Change [DW93, Zha93, WZ95]. channel [LW12]. Characterization [BW81c].
Characterizations [BW79a, BW79b, BW82a, BW82b]. Charnes [PRBI+92]. Classes [RWW92a].
closest [AHTEW01]. Combinatorial [PW98a, PK90, BC95, Wol00a]. Combining [HRPW95]. Company [Thoxx].
comparison [BW81a, BW81d]. Cone [BW81a, BW81d]. Cone-convex [BW81a, BW81d]. cones [SW91c, SW91d, SW91b].
Conference [BC95, xY98, PS00, PK90, BGKW07].
Conformation [AW02a]. conformations [BCW14]. Conjugate [Wol01b, Wol04].
constancy [Wol78a]. Constrained [GJM83, Wol81b, Wol82, KW97, KW98, KW00b].
Constraint [GKRW98, BW79b, BW81a, BW82a, BW82b, BW86, JW92, Wol80h, WB186b]. Constraints [AW00c, Wol02c, AKG+13].
construction [LWP+15]. Constructive [Wol78b]. Contingent [ADH+06].
Continuous [Had89, HRW90].
Convergence [KW03a, KW03b]. Convex [Anj01, PW95a, PW95b, Wol80a, BW79a, BW79b, BW81a, BW81c, BW81d, BW81b, BW82a, BW82b, JW92, LW85, MW81, Wol78b, Wol80b, Wol80d, Wol83a, Wol83b].
Coordinate [DPW15]. Copenhagen [BC95]. correlation [AHTEW01]. Costa [Wol94a], costs [PTW08]. cream [SW91a].
Cubics [BW89].
Data [Fia83]. Decision [ADH+06].
decomposition [LW85]. definite [GJM84b, GJM86]. degeneracy [WBI86a]. degenerate [CSW13]. Demand [ADH+06]. Denmark [BC95].
Determining [AKG+13]. developments [PRW94].
DIMACS [PW94]. dimensional [BW81c, BW86, DW09, JW90].
Dimensionality [SW84]. Direction [RWW20, KMR+97, KMR+01, KW03a, KW03b].
Directions [TW03, TW05, Wol78a, Wol80c]. Discrete [AW02c, PW02, PW03, WA02].
Distance [AW00b, AW01a, AW02a, DPW15, AHW05, AKW97, AKW99, AW02b, AW07, AAPW11, AKG+13, DKW10, KW12]. dual [GLW09, KW03b, RVW95, RVWxxb].
Duality [Wol01a, Wol02c, AW02b, ACW99, JW90, RTW95, RTW97, TW12]. duals [Wol80a].
Dynamic [Ste85, SWZ88].

E2847 [DFK+80]. E2849 [DAK+82]. E2852 [DFK+80]. E3231 [GDC+87]. E3234 [JWW87, JWWS89].
[BCW14, WZ95].
Eigenvalue [PSWW16, LW12, MW85, RW92, RVW95, RVWxxa, RVWxxb, SW94, SW95, Wol85, Wol10].
Eigenvalues [Kum84, GJM86, HW88, MSW83, WS80a, ...]

J [Wol94a]. Jonathan [BBB+13]. July [PS00].

Kantorovich [Wol75, Wol81a]. Kronecker [SW91d].

L. [BSW82]. Lack [Wol02c]. Lagrangian [AW00c, KRWZxx, Wol00a]. Large
[AW00b, PTW08, AdKT+07, RW94a, RW97]. Large-scale [AdKT+07]. Layout [Anj01]. Least [DW93, Zha93, WZ95]. Least-Change [DW93]. Letters [KKN+80]. Lifting [AW99, AW02e]. Linear [GLWW01, Kru01, Wol81b, AW00a, AW00b, AW00c, Wol82, AKW97, AKW99, AHTW01, AW02d, BJW85, DKQW10, DGW11, GJMW86, GJMW87, KW12, LW12].

Matrix [AW00a, AW00b, AW02c, AW00c, Wol81b, Wol82, AKW97, AKW99, AHTW01, AW02d, BJW85, DKQW10, DGW11, GJMW86, JKW85, LW15, Wol81c, WA02, Wol94a]. Max [AW99, AW01b, AW01c, RWV95, RVWxxb, AW01d, AW02d, RWVxxa, AW02e]. Max-Cut [AW99, AW01b, AW01c, AW01d, AW02d, AW02e]. Max-min [RWV95, RVWxxb, RVWxxa].

maximization [RW92], maximizing [GJMW86], Maximum [Anj01], May [BC95, PW94, PW98c, PK90]. Measures [Wol94b, Zha93], measuring [WW10]. Method [GLWW01, SW01, AKW97, HRVW96, JKW08, SW02, Wol83a]. Methods [DW93, PW98c, PRBI+92, Zha93, DLP+95, PS00, RVWxxa, Wol75, WZ95].

min [RVW95, RVWxxa, RVWxxb]. minimal [TW12], minimization [PSWW16, RVW94a, RVW97]. Model [AW00b]. Modelling [GWW01, PS00]. Molecular [AW02a]. Monotonicity [BW89]. Multi [ADH+06]. Multi-Stage

necessary [AW07], Network [KW10, AAPW11, DKQW10], Networking [ADH+06], Newton [KMR+97, KMR+01, KW03a, KW03b, RWxx, SW02], NGL02 [ADH+06], NGL02-1 [ADH+06], nodes [RW94b, RW95], NOESY [AKG+13]. Nonconvex [NY00], nondegeneracy [GLWW09], nondifferentiable [Wol93b].

Nonlinear [BISW94, Kru96, KW00a, PP00, AdKT+07, KW00b, SW86, Xy98]. Nonnegative [BW85], nonnegativity [SW91a], Nonsymmetric [HRW92b, SW94, SW95], norm [LW15]. Normal [GJMW87]. Note [RWS02, Wol02c, AKW96, GJMW86, SW91d], Novel [PW03]. Numerical [LW85].

Olkin [PSWZ94], one [Wol94b], operator [Wol78b, WZ78]. Optimal [Lun88, Thoxx]. Optimality [Wol80a, Wol83c, BW79a, BW79b, BW81c, BW82a, BW82b, Wol80b, Wol81d, Wol83b].

Optimization [AW02c, FP01, GWW01, Had89, NY00, PW98a, PR02, PW02, PW03, PK90, ZS81, Wol81b, Wol82, BC95, HRW90, PTW08, PS00, TW12, Wol81c, Wol85, WA02, Wol10], ordinary [BW85]. Orthogonal [Wol02a].

P [KW97, KW98], parameterized [GW09], parametric [RW92], partial [GJMW84b]. Partitioning [Zha96, FRW94, FRWZxx, RW94b, RW95, RWxx, WZ96, WZ99]. path [KW03a], path-following [KW03a], permanent [GJMW86]. Perturbations [Fia83, SW94, SW95].

portfolio [PTW08]. Positive [GJM84b, GJM86, JK98, LW12].
Post [BW89]. Post-Processing [BW89].
Preconditioned [Wol01b, Wol04]. Preface [BTW13, BGKW07]. Preprocessing [CSW13]. Presolving [GKR98]. prices [Wol80d, Wol83c]. primal [GLWW09, KW03b, RVW95, RVWxx]. primal-dual [GLWW09, KW03b, RVW95, RVWxx]. Problem [AW02a, AW99, AW01b, AW01c, Had89, Kar92, PRW94, Sch85, Ste85, Wol81b, Wol82, Wol94d, Wol98, Wol00b, AHTW01, AW01d, AW02e, ACWY99, BW81d, DW09, FRWZxx, HRW88, HRW92a, KRW94, KRWZxx, PSW16, RW92, RWxx, SW85, SW88, WZ96, WZ99, ZKRW97, ZKRW98]. Problems [AW00a, AW00b, Anj01, AW02c, DFK+80, DAK+82, GDC+87, HRW92b, JWW87, JWWS89, PW98a, PP00, SW02, Wol02c, Zha96, AHW05, AKW99, BBC+11, HRW90, PW94, RVW95, RWVxx, RVWxxb, SW94, Wol94c, Wol00a, WA02]. Procedure [AW01b, AW01c]. Proceedings [PW98c, BC95, PK90, xY98, BGKW07]. Processing [BW89]. program [BW79a, BW79b, BW81c, BW81b, BW82a, BW82b, Wol80d, Wol83b]. Programming [AW00b, AW02c, BISW94, Fia83, FW02, FW03, GLWW01, Knu96, KW99, KW00a, NWY00, OW97, PW98b, PW98a, PK90, Ste85, TWZ94, TW03, WSV00, Wol00b, Wol01a, Wol02a, Wol02b, Zha96, AKW05, AKW99, AAPW11, AKG+13, AdKT+07, AHTW01, AW01d, BC95, BIW92, BW81a, BW81d, BW86, BCW14, DGW11, DKW12, FW04, GLWW09, HRVW96, JW90, KMR+97, KW97, KW98, KW00b, KMR+01, PW95a, PW95b, PRW95, PSW16, RTW95, RTW97, RW92, SW86, SWZ88, TW05, Wol78b, Wol83a, WBI86a, WBI86b, Wol94c, WZ96, WZ99, WA02, xY98, ZKRW97, ZKRW98]. Programs [GKR98, Knu01, Wol96, Wol01b, CSW13, HPRW95, JW92, WW10, Wol80a, Wol04]. Project [Thoxx]. Projection [DLP+15, HRW92a, RW94b, RW95]. protein [AKG+13, BCW14]. Pseudolinear [KRW99]. QAP [SW01]. Quadratic [AW00c, Had89, HRW92b, Kar92, KRWZxx, NWY00, PRW94, PW94, Ste85, Wol00b, Wol02c, ACWY99, BJW85, DW09, DGW11, HRW88, HRW90, HRW92a, KRW94, KW97, KW98, KW00b, PW95a, PW95b, PRW95, PSW16, RW92, SWZ88, ZKRW97, ZKRW98]. qualification [BW79b, BW82a, BW82b, BW86, JW92]. Qualifications [GKR98, Wol80b]. quantum [DLP+15]. Quasi [ZNW99, NWZ97, NWZ99, RWxx]. Quasi-Cauchy [ZNW99, NWZ97, NWZ99]. quasi-Newton [RWxx]. Rabinowitz [Wol94a]. range [BW81c]. ranges [GJM83]. rank [DVW15, Wol94b]. rank-one [Wol94b]. ranks [AW02d]. ratio [Wol81a]. ratios [MSW83]. realization [DKQW10]. recipe [PRW95]. recursive [BIW92]. reducing [BIW92, WBI86b]. reduction [BW81d, Wol83a]. Reductions [KW10]. Regina [BGKW07]. Region [For00, FW02, FW03, ACWY99, FW04, GW09, PW14, RW94a, RVW95, SW02, RVWxxb, SW94, SW95, Wol94c, WZ95]. Regions [Kar92, KRW94]. Regularization [GW90, MV81, CSW13]. Regularizing [BW81b]. related [PW94]. Relation [ZNW99, NWZ97, NWZ99]. Relaxation [AW99, AW00c, SW01, ACWY99, DW09, KRWZxx, PRW95]. Relaxations [Anj01, NWY00, Wol00a, AKW96, AW01d, AW02d, AW02e, DGW11, FRWZxx, HPRW95, PW95a, PW95b, PSW16, WZ96, WZ99, ZKRW97, ZKRW98]. Replacement [Lun88]. Representations
[KW10, TW12]. research [PRBI+92].

Results [AW01b, AW01c, SW91b]. Review [Wo94a]. robust [DKW12]. rotamers [BCW14]. Rounding [AW01b, AW01c].

Samuelson [WS79, WS80b, WS87]. scale [AdKT+07, PTW08, RW94a, RW97].

Scheduling [GWW01]. Science [PRBI+92, BBC+11]. Sciences [KJR87].

SDP [AW99, RSW02, SW01]. Search [TW03, TW05]. Secant [DW93, Zha93, WZ95]. Second [AW99, AW02e]. selection [BCW14]. semi [BIW92]. semi-infinite [BIW92].

Semidefinite [AW00b, AW02c, DPW15, FRWZxx, For00, FW02, FW03, GKRW98, KW10, Kru96, Kru01, NY00, OW97, PW98b, PW98a, PW98c, TWZ94, TW03, Wol96, WZ96, WZ99, WSV00, Wol00a, Wol00b, Wol01a, Wol01b, WA02, Wol02a, Wol02b, Zha96, ZKRW97, ZKRW98, AHW05, AKW96, AKW99, AAPW11, AKG+13, AdKT+07, AHTW01, AW01d, AW02d, AW02e, BCW14, CSW13, DW09, DGW11, DKW12, FW04, HPRW95, HRW96, JK98, KMR+97, KMR+01, LW12, PRW95, PSW16, RTW95, RTW97, RW94a, RW97, TW05, WW10, Wol94c, Wol04]. Semidefiniteness [Wo98]. Sensor [DKQW10, KW10, AAPW11]. Sequential [KW97, KW00b, KW98]. sesquilinear [GJMW83]. Shadow [Wo80d, Wo83c]. Shadows [DPW15]. short [KW03a, KW03b]. short-step [KW03a, KW03b]. Simple [GLWW91, SW01, BW86]. Simplified [RSPW02]. Sizing [DW93]. Slater [JW92].

Strong [ACWY99, RTW95, RTW97, TW12, Wol02c]. structures [AKG+13]. study [FRW94]. Subproblem [For00, FW02, FW03, FW04, GW09, PW14]. subproblems [RW94a, RV95, RW97, RVWxxb, SW95]. sufficient [AW07]. sum [Wo98]. Survey [For00, FW02, PRW94]. symmetric [Wo94b]. Symmetrization [HRW92b].

System [PS00]. Systems [PRBI+92, SW84].

Taking [WBi86a]. TC7 [PS00]. Teaching [Sch85, SW85]. technique [RW94b, RW95]. test [Wo81d]. theorem [LW15]. Theorems [AW01a, AW02b, BJW85]. Theoretical [AW01c]. Theory [TWZ94, WSV00, PS00, Wol75, Wol81c]. Theta [SW02]. Topics [PW98c]. Toronto [PW98c]. trace [AW07]. traces [MSW83, WS80a, WS80c]. transaction [PTW08]. Transform [AW01a, AW02b].

Trust [For00, FW02, FW03, Kar92, KRW94, SW94, ACWY99, FW04, GW09, PW14, RW94a, RVW95, RW97, RVWxxb, SW95, Wol94c].

trust-region [ACWY99]. Two [AW01a, AW02b]. type [ACWY99].

UK [PS00]. Uniqueness [TW03, TW05]. University [PK90]. unstable [Wo80d]. updates [Wol94b, WZ95]. Updating [ZNW99, NWZ97, NWZ99]. use [BCW14].

Using [SW02, AHW05, GW09, HRW90,
REFERENCES

KW10, MSW83, MW85, WS80a, WS80c, Wol85, Wol01b, Wol04, Wol10.

V [BSW82], Vehicle [Lun88], via [AKW99, AW99, AW02d, AW02e, HRW92a]. VLSI [Anj01], volume [BIW92, WBW01].

Waterloo [PK90], weighted [AW98]. Wielandt [HRW92b], Within [FW02, For00]. Without [GKRW98, BW79b, BW82a, BW82b]. Workshop [PW94, PW98c].

Zero [JW90].

References

[AW00a] A. Alfakih and H. Wolkowicz. Matrix completion problems. In Wolkowicz et al. [WSV00], pages
REFERENCES

Alfakih:2000:NSP

Anstreicher:2000:LRQ

Alfakih:2001:TTE

Anjos:2001:NRPa

Alfakih:2002:EDM

Anjos:2001:NRPb

Alfakih:2002:TTE

REFERENCES

REFERENCES

Balas:1995:IPC

Burkowski:2014:EUS

Bhatia:2007:PIC

Ben-Israel:1994:NP

Ben-Israel:1992:RVR

Butler:1985:NSQ

Borwein:1982:SII
REFERENCES

REFERENCES

REFERENCES

Fiacco:1983:MPD

Fortin:2000:STR

Floudas:2001:EO

Falkner:1994:CSG

Falkner:19xx:SRG

Fortin:2002:STR

Fortin:2003:TRS

Fortin:2004:TRS

REFERENCES

Gonzalez-Lima:2009:SPD

Grodzevich:2009:RUP

Grodzevich:2001:BIM

Hadley:1989:IBQ

Hadley:1990:BQA

Hadley:1992:NLB

[HRW92a] S. W. Hadley, F. Rendl, and H. Wolkowicz. A new lower bound via projection for the

Helmb erg:1996:IPM

Helmberg:1995:CSP

REFERENCES

Hadley:1992:SNQ

Hadley:1988:HFE

Johnson:1985:LBS

Johnson:1998:IPM

Jeyakumar:1990:ZDG

Jeyakumar:1992:GSC

Johnson:1987:PSE

Johnson:1989:PSS

REFERENCES

Monthly, 96(4):362–363, April 1989. CODEN AMMYAE. ISSN 0002-9890 (print), 1930-0972 (electronic). See also [GDC+87].

[S. Karisch, F. Rendl, H. Wolkowicz, and Q. Zhao. Quadratic Lagrangian relaxation for the quadratic assignment problem. Research report, University of Waterloo, Waterloo, ON, Canada, 19xx.]

[S. Kruk and H. Wolkowicz. SQ^2P, sequential quadratic constrained quadratic programming. Research report, corr 97-01, University of Waterloo, Waterloo, ON, Canada, 1997. Accepted (subject to revision) for the Proceedings of Nonlinear Programming Conference in Beijing in honour of Professor M. J. D. Powell.]

Kruk:2003:CSS

Krislock:2010:ESN

Krislock:2012:EDM

Lamoreaux:1985:NDC

Lin:2012:EMI

Lin:2015:HTM

Merikoski:1983:BRE

Lund:1988:OVR

Lamoreaux:1985:NDC

Lin:2012:EMI
REFERENCES

[PTW08] Marina Potapchik, Levent Tunçel, and Henry Wolkowicz. Large scale portfolio optimization with piecewise linear transaction costs. *Optimization Meth-

Pardalos:1994:QAR

Poljak:1993:CRQ

Poljak:1995:CRQ

Poljak:1995:CRQ

Pardalos:1998:SIS

Pardalos:1998:TSI

REFERENCES

[RW92] F. Rendl and H. Wolkowicz. Applications of parametric pro-

Rendl:1994:SFT

Rendl:1994:PTP

Rendl:1995:PTP

Applied mathematical programming and modeling, II (APMOD 93) (Budapest, 1993).

Rendl:1997:SFT

Rendl:19xx:QNF

Schoettle:1985:TAPa

Stephan:1985:ESQ

Smith:1984:DBS

Schoettle:1985:TAP

Smith:1986:NEL

Stern:1991:ENI

Stern:1991:RIC

Stern:1991:IEC

Stern:1991:NGI

Stern:1994:TRP

Stern:1995:ITR

Sotirov:2001:SMS

R. Sotirov and H. Wolkowicz. The simple method for the SDP relaxation of the QAP. Technical Report in progress, Univer-
REFERENCES

University of Waterloo, Waterloo, ON, Canada, 2001.

Sotirov:2002:SLT

Sutherland:1988:ELS

Schaible:1981:CCP

Thomas:19xx:OPP

Tuncel:2003:SEU

Tuncel:2005:SEU

Tuncel:2012:SDM

Tuncel:1994:SPT

H. Wolkowicz. Bounds for the Kantorovich ratio. Research re-
port, The University of Alberta, Edmonton, AB, Canada, 1981.

Wolkowicz:1981:CMO

Wolkowicz:1981:SAO

Wolkowicz:1981:STO

Wolkowicz:1982:CMO

Wolkowicz:1983:MRC

Wolkowicz:1983:OCN

Wolkowicz:1983:OCS

Wolkowicz:1985:GEB

Wolkowicz:1994:BRB

Wolkowicz:1994:MSR

REFERENCES

Wolkowicz:2004:SSP

Henry Wolkowicz.
Solving semidefinite programs using preconditioned conjugate gradients.
ISSN 1055-6788.

Wolkowicz:2010:GEB

Henry Wolkowicz.
Generating eigenvalue bounds using optimization.
In Nonlinear analysis and variational problems, volume 35 of Springer Optim. Appl.,

Wolkowicz:1979:ESI

H. Wolkowicz and G. P. H. Styan.
Extensions of Samuelson’s inequality.
CODEN ASTAAJ. ISSN 0003-1305 (print), 1537-2731 (electronic).

Wolkowicz:1980:BEU

H. Wolkowicz and G. P. H. Styan.
Bounds for eigenvalues using traces.
CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Wolkowicz:1980:HSI

H. Wolkowicz and G. P. H. Styan.
A history of Samuelson’s inequality.
CODEN ASTAAJ. ISSN 0003-1305 (print), 1537-2731 (electronic).

Wolkowicz:1980:MBE

H. Wolkowicz and G. P. H. Styan.
More bounds for eigenvalues using traces.
CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Wolkowicz:1987:SI

H. Wolkowicz and G. P. H. Styan.
Samuelson’s inequality.
In Kotz et al. [KJR87], page ?? ISBN 0-471-05546-8 (vol. 1).

Wolkowicz:2000:HSP

Henry Wolkowicz, Romesh Saigal, and Lieven Vandenberghe, editors.
Handbook of Semidefinite Programming: Theory, Algorithms, and Applications,
volume 27 of International series in operations research & management science.

Wei:2010:GMI

Hua Wei and Henry Wolkowicz.
Generating and measur-

