Abstract

This bibliography records publications of Yousef Saad.

Title word cross-reference

3D [GHS10]. exp(−τA)b [SSS10]. f(A)b [CAS11]. ILU [LSC03]. ILUS [CS97c]. k [CrFS09]. LU [CS97c, LSS03b, Saa94d].

'02 [AGPS03].

1988 [BTS+89]. 1993 [BCEP94].

20th [Sv00].

5 [WS93].

Abaffy [Saa92h]. ABS [Saa92h]. Abstract [SS85c]. accelerated [LS13b]. Acceleration [KS87, Saa84b, CS99, rFS09, KS92, ZSTC06a]. acceptors [SKBS88]. ADI [MS92, MS93]. advances [GGL94]. algebra [DS91a]. Algebraic [LS17, GHS10, LSS03a, SS02b, SST04, SCC04, XLS16]. Algorithm [DS91b, LXV+16, Saa85a, SYEG00, ZS07, ESS86, GS87, GS88b, GS88a, GS89b, Saa74c, Saa80a, Saa82a, Saa86c, SSS10, SL86, SL88, SW93, Saa93a, SW96b, Saa91a]. algorithmes [Saa74b]. Algorithms [AGPS03, ASSS11, BDG+10, CS92, CS85a, CS86, CTJ+95, CTSS07, CZC+09, SS85g, Saa92a, Saa92b, Saa94a, Saa94b, Saa06, BGSS14, BS94, CS93, CS96, FRSY96, GS94, KS87, Saa90b, Saa94e, VS14]. Alternating [JSS87, Saa85c]. Analysis [BSS09, BSS10, Saa92b, Saa94b, Saa97, Saa16, BJ+09, Saa94e, Saa00b]. angle [LSS86, SL86, SL88]. Application [CS12, CTWS94]. Applications [AGPS03, ASSS11, BKS08, BDG+10, Saa06, SrFS08, BJ+09, CSS02, CCS10, CS98a, CS85b, Saa83a, Saa90b, Saa90d, SAD+00, SS11, SSC04]. approach [GS90a].
Approximate [BS02b, BS02c, CS94, CS97d, CS98b, Saa03a, BS02a, CrFS09, CS97f].

Approximated [LSY16]. Approximation [CS97b, GS92a, BS09, CS97a, CS08, GS90b, GS90a, GS92b, GS93, ITS07, Saa84a, Saa86b, Saa86e, SSMS00].

Architectures [IS85, IS86a, IS86b, SS86b, GS89d, SS89b].

arising [Saa84a, Saa86b, Saa86e, SMSW00]. ARMS [BS02b, SST04]. Arnoldi [BSS10, DS91b, Saa80c, SSW98].

array [SSS85]. Assignment [DS91b, Saa88d]. Associated [DS91b]. Atom [TZA +06].

Augmented [Saa97, CS97b]. automatic [CS94, Saa92a].

Banded [SS85e, SS87]. Based [BS05b, HS06, KS07, SZ99b, SrFS08, JSS07, LSX16, MOKS12, SW93, SW96b]. Basic [PSWF93, Saa90a]. basis [CTS93, CTS94].

Benchmark [SW88b, SW88a, SW90]. Beresford [Saa83c, Saa85a, SS85d, Saa86c, SS86b, SM95, SS89a, SS89b].

BILUM [SZ99a]. BILUTM [SZ99b].

biorthogonalization [Saa80a, Saa82a].

bisection [CrFS09].

Block [LS03, LSS03b, MS93, SS80, SZ99a, SZ99b, Saa03a, ZS97d, GS87, GS88b, GS88a, GS89b, Saa80b, SZ01, MS92]. Block-ADI [MS93, MS92].

Boeing [SW89]. Book [Saa83c, Saa95]. bordered [CS85b].

Bounds [Saa94b, Saa94e]. Brownian [ACSS12].

Bulk [TZA +06].

calculation [ZSTC06a, ZSTC06b, ZSTC06c, ZCS14]. classes [rFS09].

clusters [CTJ +95, JTD +94].

CM [PSWF93, WS93]. CM-5 [WS93, PSWF93].

Coarse [MS07a]. Coarse-Grid [MS07a]. Coarsening [MS07b, OKLS15].

codes [GS83, JKSC99]. Communication [SS85a, Saa85a, Saa86c, Saa86d, SS86b, SM95, Saa89a, SS89b].

Community [CS12].

Compensation [MOKS12]. Complement [LS05b, SS99a, GHS10, LXS16, LXS16, Saa07]. complement-based [LXS16].

Complements [BS05a]. Complex [PS85, PS87, Saa83a, Saa84a, Saa86b, Saa86e, Saa87c]. complexities [GS89d].

Complexity [ISS84, ISS86, Saa85a, Saa86c]. Component [JSS07]. Component-based [JSS07].

Computation [BS05a, BKSO8, Saa74a, LLCS02, dGGS +05].

Computational [SM95, Fit86].

Computations [BTS +89, FWPS92, PSWF93, SW88a, Saa94a, SW88b, SW90, Saa90a].

Computers [FWPS92, SS02a, AS88, AS98].

Computing [BSCS05, CAS11, Saa92a, Saa95, SSS10, TS11, TS16, ACSS12, PS07, Saa80c, TS12].

Concurrent [Saa95]. condition [Saa84a, Saa86b, Saa86e]. Conference [BCEP94, Fit86]. Confined [ÔBSC03].

Conjugate [SS85g, SS85f, SS86a, SYEG00, Saa20a, Saa86c]. Conquer [LS13a].

consistent [ZSTC06a, ZSTC06b, ZSTC06c].

Constructed [BS05b]. construction [CrFS09].

continued [CS85b]. control [DS91a, Saa80d].

Convergence [BS94, Saa80b]. convergent [BS95]. convex [BS09].

Cornelius [BCEP94]. Correction [LS17, PS07]. corrections [LXS16, LXS16].

coupled [FPS16]. coupled [KS02].

counts [DPS16]. coupled [dGGS +05].

Crout [LSC03, LS05a]. cubic [SKBS88].

Cucheb [AKS17].

cyclic [GS87, GS88b, GS88a, GS89b].

dans [Saa94b]. Data [SS85a, SS85d, SS86b, ZTCA06b, ZSTC06a, ZSTC06b, ZS07, ZCS14]. Chebyshev-filtered [ESS86, Saa84b, ZSTC06a, ZSTC06b, ZSTC06c, ZS07, ZS07, ZCS14].
SS89a, SS89b, Saa94a, SM95, CrFS09, SS14. Davidson [SSW98, SS98b, ZS07].
December [BCEP94]. Decomposition [CS92, HS06, LS17, Saa94a, TS11, CS93, CS96, LXS16, PS07, Saa92a, SSZ98].
decoupling [KS87]. Definite [SS80, VSS14]. Deflated [CS97b, SYEC06].
deflation [Saa88d]. Dense [CS12, IS88, ISS86]. Dense-Linear-System [ISS86].
densities [BSTC05, LSY16]. Density [BKS08, BSK+03, RGSB08, SS11, dGGS+05].
density-functional [RGSB08]. Definite [SS80, VSS14]. Deflated [CS97b, SYEC06].
deflation [Saa88d]. Dense [CS12, IS88, ISS86]. Dense-Linear-System [ISS86].
densities [BSTC05, LSY16]. Density [BKS08, BSK+03, RGSB08, SS11, dGGS+05].
density-functional [RGSB08].
Decomposition [CS92, HS06, LS17, Saa94a, TS11, CS93, CS96, LXS16, PS07, Saa92a, SSZ98].
decoupling [KS87]. Definite [SS80, VSS14]. Deflated [CS97b, SYEC06].
deflation [Saa88d]. Dense [CS12, IS88, ISS86]. Dense-Linear-System [ISS86].
densities [BSTC05, LSY16]. Density [BKS08, BSK+03, RGSB08, SS11, dGGS+05].
density-functional [RGSB08].

Detection [CS12]. Diagonal [SZ99c, Saa05, TS11, BKS07, TS12]. diagonalization [JKSC99, ZCS14].
diatomic [CTWS94]. Dielectric [¨OBSC03]. difference [CTS93, CTS94, CTWS94, JTD+94, SSS85].
Differential [CSS85, CSS87, SS81]. Dimension [CS09a, KCS09, KCS11, Saa83b].
dimensional [CrFS09, LSS86, SS14]. Dimensionality [KSS03, KSSG04].
Dirac [SS11]. Direct [SS85e, SS87, SW96b]. Direction [SS85c, JSS87]. disjoint [Saa83d].
Distributed [MS94, Saa92e, Aaa94a, SM95, SSS85, S99a, S99c, S99e, Saa07]. Distributions [CS14].
Divide [LS13a]. Domain [CS92, LS17, Saa94a, SSZ98, SZ99b, TS11, CS93, CS96, LXS16, PS07, Saa92a].
Domain-Based [S929b]. Domain-Decomposition-Type [TS11].
Dominance [Saa05]. d’origine [Saa74b].
DQGMRES [SW93, SW96b]. dual [Saa92d, Saa94d]. Dynamic [SS98].
dynamics [ACSS12, CJWS96, JTD+94].
E. [Saa92h]. Editorial [Saa00a, BGSS14]. Effective [CS09a]. Efficient
[AJT+07, DPS16, GS90b, GS92b, GS92a, dGGS+05, LSS86]. eigendecomposition [SS14]. eigenelements [Saa80c].

Eigensolutions [Saa85b]. Eigenvalue [BSS10, rFS12, IS85, IS86b, LXV+16, PS89, Saa83c, Saa84b, Saa11b, Saa16, SSF93,
DPS16, KLS16, Saa82b, Saa83c, Saa89b, Saa92g, SSS85, S95, SS98b, WSS98, ZS08]. Eigenvalues [BS05a, Saa74a].
Electronic [JKSC99, SCS10, AJT+07, CTS93, CTS94, CKV+03, CTSZ07, CZC+09, SSS85].
element [KSS03, KSSG04]. Elimination
[Saa85a, Saa86a, Saa86c, Saa86d, Saa92e]. Elliptic
[CSS85, CSS87, GS87, GS88b, GS88a, GS89b, GS90d, KS92, SS81, SSS85].
Enhanced [S99b, ZS01]. Environments
[Saa87b, Saa92e, CS99, Saa87a]. equation
[KSS03, KSSG04, LSS86, SL86, SL88, ZCS14].
Equations
[CSS85, GS92a, MS92, MS93, BS87, BS90, BS91, CSS87, SSS85, Saa90c].
Eric [Saa95]. Error
[Saa84b, Saa94e]. estimation
[BS85]. estimator
[KSS03, KSSG04, LSS86, SL86, SL88, ZCS14].

Eigenfaces
[Saa05a]. faces
[SS14]. eigendecomposition
[SS14]. eigenelements
[Saa80c].

Eigensolutions [Saa85b]. Eigenvalue
[BSS10, rFS12, IS85, IS86b, LXV+16, PS89, Saa83c, Saa84b, Saa11b, Saa16, SSF93,
DPS16, KLS16, Saa82b, Saa83c, Saa89b, Saa92g, SSS85, S95, SS98b, WSS98, ZS08]. Eigenvalues [BS05a, Saa74a].
Electronic
[JKSC99, SCS10, AJT+07, CTS93, CTS94, CKV+03, CTSZ07, CZC+09, SSS85].
element [KSS03, KSSG04]. Elimination
[Saa85a, Saa86a, Saa86c, Saa86d, Saa92e]. Elliptic
[CSS85, CSS87, GS87, GS88b, GS88a, GS89b, GS90d, KS92, SS81, SSS85].
Enhanced [S99b, ZS01]. Environments
[Saa87b, Saa92e, CS99, Saa87a]. equation
[KSS03, KSSG04, LSS86, SL86, SL88, ZCS14].
Equations
[CSS85, GS92a, MS92, MS93, BS87, BS90, BS91, CSS87, SSS85, Saa90c].
Eric [Saa95]. Error
[Saa84b, Saa94e]. estimation
[BS85]. estimator
[KSS03, KSSG04, LSS86, SL86, SL88, ZCS14].

Eigenfaces
[Sa05a]. faces
[SS14]. eigendecomposition
[SS14]. eigenelements
[Saa80c].
Laguerre [SSS10]. Lanczos [BCEP94, AKS17, BGB+10, BSTC05, BKS08, CrFS09, CS90a, rFS12, LXV+16, RGSB08, Saa80a, Saa82a, Saa87d, Saa91b, Saa92e, Saa92f, Saa93b, Saa97, Saa98, Saa11a, ZS08].

Lanczos-Type [Saa94b, Saa94e]. Large [BKS08, BTS+89, DS91b, IS86a, LS06, ÖBS03, PS89, Saa82b, Saa85b, Saa11b, SSF93, ZS07, DS91a, LSY16, Saa74a, Saa80a, Saa80c, Saa81, Saa82a, Saa83b, Saa83e, Saa89b, Saa90c, Saa92g, SSC97, SSS98, ZS08].

Latent [SrFS08, VS14]. Least [CAS11, LS06, Saa83a, Saa87c, XS16, Saa84a, Saa86b, Saa86e]. Least-Squares [LS06, XS16]. level [SSZ98, SZ99c, SZ01].

Library [SW94, SW95, SW96a, SKL+97]. Like [DS91b, SS85g]. Linear [ITS07, ISS84, ISS86, MS92, MS93, MS94, SS85g, SS85e, SS87, SS88a, SZ99a, SS99a, SS99c, SS02a, XS17, AS88, DS91a, ESS86, GS83, GSS03, JTD+94, KSS03, KSSG04, LSY16, Saa80b, Saa81, Saa82a, Saa86b, Saa86e].

Low-Rank [Saa74b]. LU [CCS10]. Lyapunov [Saa90c].

Matrices [CS92, CS94, LSC03, LS13a, ÖBS03, PS87, Saa85b, SW89, Saa96, SZ99b, Saa16, BSS09, CS93, CS96, CS97d, Saa97e, LSY15, PS85, Saa74a, Saa80c, Saa84a, Saa86b, Saa86e, Saa92c, Saa94c, XS16]. Matrix [AGPS03, ASSS11, AEKS90, BDG+10, FWPS92, IS86a, OKLS15, PSWF93, SW88a, Saa92b, Saa94a, SW94, TS11, BJR+09, BK07, BS91s, CS98a, Saa83a, Saa83b, SW88b, Saa90a, SW95, SW96a, SAD+00, TS12, VSS14, dGGS+05].

Methods [BTS+89, CCS98, CS14, DS91b, GS92a, LS17, PSS92, SS81, SS85c, SS85e, SS85f, SS86a, Saa87b, SS87, Saa91b, Saa92e, Saa93b, Saa97, SCS10, Saa11b, SSW98, SÖS+00, TS11, ACSS12, BSS09, BS87, BS89, BS90, BSS09, CS98a, Saa83a, Saa83b, Saa88d, Saa88a, Saa88b, Saa88c, SSZ98, SZZ9c, SZZ9b, SS99b, SV00, ZS01, Saa01, SS02b, Saa03b, Saa07, SSW89].

Minimized [SOS6c, SS93, SW96b].

Minimal [MM00b]. Minneapolis [BTS+89, GGL94].

Minnesota [BTS+89, GGL94]. MIQR [LS06]. Modeling [PS92, Fit86].

models [Saa91c]. modern [CSS02, SCS04].

Modification [MOKS12]. Modified [CS99, Saa84a, Saa86b]. module [SW94, SW95, SW96a].

Molecular [CJS986, BGB+10, JTD+94].

molecular-dynamics [JTD+94]. molecules [CTWS94].

moment [Saa84a, Saa86b].

Multi [Saa96, Saa92c, SSZ98, SZ99c, SZ01].

Multi-Elimination [Saa96, Saa92c].

multi-level [SZ98, SZ99c, SZ01].

multicolor [SS99b].

Multilevel [PS92, LS06, SZ99b, Saa05, Saa97b, Saa98, Saa98a, Saa98b, Saa98c, Saa99a].

Multi-color [SZ99b].

Multigrid [CS98a, CS98b].

Multilevel [BS05b, LS06, SZ99b, Saa96, Saa98, Saa98a, Saa98b, Saa98c, Saa99a, SS00a, Saa11a, ZS08, ZCS14].

multi-level [SZ99b].

Multilevel [BS05b, LS06, SZ99b, Saa96, Saa98, Saa98a, Saa98b, Saa98c, Saa99a, SS00a, Saa11a, ZS08, ZCS14].

Multilevel [BS05b, LS06, SZ99b, Saa96, Saa98, Saa98a, Saa98b, Saa98c, Saa99a, SS00a, Saa11a, ZS08, ZCS14].
SST04, SSC04, XLS16]. **Multiprocessor** [CS85a, CSS85, CS86, ISS84, ISS86, CSS87]. **Multiprocessors** [SS85c, Saa85a, JSS87, SS81, Saa86c]. **multisecant** [rFS09]. **Multistage** [HS06]. **Multivariate** [CS14].

N [Saa83c]. **nanocrystals** [CTSZ07, CZC +09]. **Neighborhood** [KS07, KS05b]. **Newton** [Saa95]. **NN** [CrFS09]. **Non** [SS99c]. **Non-standard** [SS99c]. **nonlinear** [BS87, BS89, BS90, BS91, BS94, rFS09, KS92, SGSM15]. **Nonsymmetric** [LSS03b, MS92, MS93, MS07b, Saa84b, SS85g, Saa85b, ESS86, Saa83a, Saa84c, SS86c, Saa87c, Saa88a, Saa88b, Saa88c, Saa89b]. **normal** [BSS09]. **North** [BCEP94]. **null** [ITS07]. **null-space** [ITS07]. **numbers** [Saa84a, Saa86b].

Numerical [PSS92, Saa83b, Saa87b, Saa89b, Saa90c, Saa92g, SCS10, Saa11b, Saa87a, Saa91c].

oblique [Saa80a, Saa82a]. **Observer** [DS91b]. **October** [BTS +89]. **ODE** [GS83]. **Operator** [Saa92b, CS98a]. **OPRA** [KS05a]. **OPRA-faces** [KS05a]. **Optimal** [CS99b, CS08]. **Optimization** [NBS10, NBS12, BSS09, KCS09, KCS11]. **order** [CSW00, CTWS94, JTD +94]. **origin** [Saa74c]. **Orthogonal** [CS99b, KS05b, KS07, CS08, Saa83d]. **orthogonalization** [SW93, SW96b]. **other** [Saa80a, Saa82a]. **outer** [Saa91a, Saa93a]. **Overlapping** [CS92, CS93, CS96, LS05b]. **overview** [Saa90d].

P_SPARSLIB [SW94, SW95, SW96a, SKL +97]. **Package** [SW88a, SS02a, AW88b, SW90]. **papers** [GGL94]. **Parabolic** [GS92a, GS89c, GS89a, GS90b, GS90a, GS92b]. **Parallel** [BDG +10, BGSS14, BSK +03, CSS02, CS97f, FWPS92, FRSY96, GS90a, HS06, IS85, IS86b, IS86a, SS85e, SS85f, SS86b, LS86a, Saa87b, SS87, SW94, SS99c, Saa01, SS02a, SÖS +00, ZSTC06a, AS88, AS89, CS99, CS87, GS88b, GS88a, GS89b, GS89c, GS89a, GS89d, GHS10, LS03a, LLCS02, SS80, Saa87a, SS88b, Saa92c, Saa94c, SW95, SW96a, SKL +97, SS99b, SAA04, AGPS03, ASSS11]. **Parlett** [Saa83c]. **pARMS** [LS03a, Saa02a]. **Partial** [CSS85, DS91b, Saa85b, BS16, CSS87, Saa88d]. **partially** [BTS05]. **Particle** [LLCS02]. **partitioned** [CS97d].

partitioning [GS94, LLCS02, Saa74a, VSS14]. **Passing** [Saa87b, Saa87a, WS93]. **Performance** [WS93]. **periodic** [AJT +07]. **physical** [CSS02, SSC04]. **Pivoting** [BS02b, BS02a, LS05a]. **plane** [JKSC99, Saa83a, Saa84a, Saa86b, Saa86c, Saa87c]. **plane-wave** [JKSC99]. **PMAA** [AGPS03]. **PMAA’10** [ASSS11]. **Point** [LS03, LSS03b]. **pole** [Saa88d]. **Polynomial** [BKS08, CAS11, LXV +16, GS90b, Saa85c].

polynomials [Saa83d, Saa83a, Saa87c, SSS10]. **portable** [SKL +97]. **Positive** [SS80, VSS14].

potential [CTS93, CTS94]. **Practical** [BTS +89, Saa84c, Saa85c, BTS +89]. **Preconditioned** [CCSY98, CS14, SS85f, SS86a, Saa91b, Saa93b, Saa98, LS13b, Saa91a, Saa92f, Saa93a]. **Preconditioner** [BS02b, BS05b, LS04, Saa96, SZ99a, SZ99b, XS17, BS02a, Saa97c, Saa92e, SLS16]. **Preconditioners** [BS05b, CS94, CS98b, LS13a, LS17, LS03, LS03b, MS92, MS93, MS94, CS97a, CS97b, CS97e, CS97f, GS03, LX16, Saa94c, SZ99c, Saa07]. **Preconditioning** [CS98a, KS03, KS94, OKS10, Saa88a, Saa88b, Saa88c, SAD +00, Saa03a, SMSW00, SSF93, OKLS15, SS99b, SZZ01, SSF95, VSS14, WSS98]. **preconditionings** [Saa85c]. **Predicting** [SÖS +00, CTJ +95]. **Preserving** [CSSY98, KS07, KS05b]. **Prewhitening**
primitives [WS93]. principles [AJT+07]. probing [TS12]. Problem [NBS10, NBS12, CKV+03, SCS12, Saa83c].

Problems [BSS10, DS91b, rFS12, GGL94, IS85, LS06, LXV+16, LS03, LSS03b, MS07b, PS89, Saa84b, Saa11b, Saa16, SSF93, CSW00, DS91a, FRSY96, IS86b, KLS16, Saa82b, Saa83a, Saa83b, Saa83c, Saa89b, Saa90d, Saa92g, SSC+96, SAD+00, SSS05, SSF95, WSS98, ZS08]. Procedure [rFS12, AKS17]. Proceedings [BTS+89, Fit86, BCEP94]. Process [BSS10]. processors [SSS85]. Projection [BS91, KS07, Saa82b, Saa83c, Saa88d, Saa91c, Saa92h, ITS07, Saa80a, Saa82a]. Projection-Based [KS07]. Projections [KS07, KS05b]. Properties [SS85b, LS03, SÖ+00, CTJ+95, CTS07, CZC+99]. pseudo [CT93, CT94]. pseudo-potential [CT93, CT94]. pseudopotential [CT93, CT94]. pseudopotentials [CKV+03]. PSPARSLIB [SS98a]. purpose [Saa92a].

QR [LS06, Saa74b]. quantum [CJWS96]. Quasi [SW93, SW96b]. Quasi-minimal [SW93, SW96b].

Raleigh [BCEP94]. Rank [CS99b, LS13a, LS17, CS08, LS16, XLS16]. rates [Saa80b]. Ratio [NBS10, NBS12].

Rational [GS93, SS11, XS16, XS17, GS90a]. Real [PS87, CKV+03, PS85]. recognition [KS05a]. recursive [CrFS09, LS03a, SS02b, SSS04].

reduction [SGSM15]. Reduction [CS99a, KS07, NBS10, SrFS08, GS87, GS88b, GS88a, GS89b, KC90, KS09, KS11].

recycling [SGSM15]. Recycling [CS99a, KS07, NBS10, SrFS08, GS87, GS88b, GS88a, GS89b, KC90, KS09, KS11]. Relations [BS02c]. reordering [OKLS15]. Reorderings [Saa05]. reorthogonalized [BSTC05]. reservoir [Fit86]. Residual [Saa06, SS86c, WS93, SW96b, Saa00b].

Residual-type [Saa06]. Restart [LXV+16]. Restarted [SSW98]. Restarting [SSW98, Saa98b]. Restricted [LS05b]. Review [Saa83c, Saa92b]. Reviews [Saa95]. Right [Saa87d]. Right-Hand [Saa87d]. Ring [ISS84, ISS86]. Robust [SS93, SS95, ZS99c].

Saddle [LS03, LSS03b]. Sampling [CS14]. Scale [BTS+89]. Schur [Saa07, BS05a, GHS10, KLS16, LS05b, LS16, SS99a, ZS08].

Smallest [BS05a]. SNAP [ITS07].

Software [AEKS90, Saa92a]. solid [LLCS02]. solid-liquid [LLCS02]. Solution [DS91a, GS92a, IS84, IS85, ISS86, IS86b, SSC+96, SS98a, SS99c, GS87, GS88b, GS88a, GS89b, GS89c, GS90b, GS90a, GS92b, GS83, ITS07, KSS03, KSSG04, SS81, Saa83d, Saa83b, Saa89b, Saa90c, Saa91c, SW95, SW96a, Sva00, SSS04, SGSM15].

solves [LSS03a, SS02b, SSSC04]. Solvers [SM95, GS98d, GHS10, LS13b, SW94, SKL+97, SSS04]. Solving [AS88, AS89, CSS85, CSS87, MS92, MS93, PS89, SS80, Saa84b, SS85g, SS85e, SS85, Saa87d, Saa87, Saa82a, BS91, Saa85b, SSS6, LS86, Saa80a, Saa81, Saa82a, Saa82b, Saa83a, Saa83c, Saa84c, SS86c, SL86, Saa87c, SL88, ZCS14].

Some [GS89d, WS98, Saa92b, BSS09, Saa84c, Saa86e]. SOR [MS94]. space [CKV+03, ITS07]. SPARK [SW90]. Sparse [AEKS90, CS92, CS94, CS98b, FWPS92, GHS10, GGL94, IS86a, LSC03, LS06, MS92,
MS93, MS94, PSWF93, PS89, SW88a, SW89, Saa94a, SW94, SM95, Saa96, SS98a, SZ99a, SZ99b, SS99a, SS99c, SS02a, SX17, AS88, AS89, CS93, CS96, CS97c, GSS03, JSS07, LS05a, Saa82b, Saa83a, Saa83e, SW88b, SW90, Saa90a, Saa94c, SW95, SW96a, SKL+97, SS98, SZ99c, SAD+00, S01, Saa01, Saa02b, Saa03b, Saa07, SSF95, XLS16, ZCS14]. Sparse-Sparse [CS98b]. SPARSKIT [Saa90a]. Special [ASSS11, BJR+09, BDG+10]. Spectra [SX16, CJWS96]. Spectral [BS05a, KLS16, SGSM15, LSY16]. Spectrum [DS91b, SCS12]. Specidato [Saa92h]. Squares [CAS11, LS06, XS16, Saa83a, Saa84a, Saa86b, Saa86e, Saa87c]. standard [SS99c]. Standards [AEKS90]. state [Saa88d]. states [GGL94, FRSY96]. Structures [SCS10, AJT+07, CTS93, CTS94, CKV+03, JKSC99, SSC+96]. Structured [GGL94, FRSY96]. Structures [Saa94a, SM95, Saa03a]. study [CS97e]. Subgraph [CS12]. Subspace [CCSY98, CS14, Saa91b, Saa92b, Saa92e, Saa93b, Saa97, Saa11a, Saa16, ACS12, BSS09, BS89, CS97b, ESS86, Saa81, Saa84c, Saa89a, Saa90b, Saa90d, Saa92f, Saa98, ZSTC06a, ZSTC06b, ZCS14]. Subspaces [BK0800, PS07]. sum [CS97a]. Supercomputer [BTS+89, Saa91b, Saa93b]. Supercomputers [PS89, Saa89a]. SVD [CS08, CS09b]. Sylvester [DS91b]. Sylvester-Like [DS91b]. Symmetric [LS13a, LSS03b, Saa83c, Saa87d, SS93, ZS07, KLS16, LS05a, Saa83d, SSF95, SS98b, VSS14, WSS98, XLS16, ZS08]. Symmetry [CCSY98]. System [ISS84, ISS86, BS87, ITS07]. Systems [MS92, MS93, MS94, ÖBSC03, SS80, SS85g, SS85e, Saa87d, SS87, SS98a, SZ99a, SS99c, SS02a, XS17, AJT+07, AS88, AS89, BS90, BS91, CS85b, CJWS96, ESS86, GSS03, JSS07, KS92, OKS10, Saa80a, Saa81, Saa82a, Saa83d, Saa84c, Saa86c, Saa87c, Saa88a, Saa88b, Saa88c, SSM98, SZ99c, SS99b, S00, Z01, Saa01, S02b, Saa03b, Saa07, SMSW00, VSS14]. Technique [KS07]. Techniques [IS86a, Saa84b, Saa99a, Saa97b, Saa97d, KLS16, KSS03, KSSG04, KS87, Saa74a, Saa88a, Saa88b, Saa88c, SSM98, SZ99c, SS99b, SAD+00, SS98b, WSS98]. Tensor [CS97a, CS09b, CS908]. Tensors [CS09b, CS08]. Texas [Fit86]. their [GS89d, Saa87c]. Theoretical [Saa94b, Saa94e]. Theory [BKS08, BS94, BSK+03, RGS08b, Saa90b, S11, dGGS+05]. thermoacoustics [SGSM15]. Thick [LXV+16, SSW98]. Thick-Restart [LXV+16]. three [LS96]. three-dimensional [LSS86]. Threshold [MOKS12, Saa92d, Saa94d, S99c]. Threshold-based [MOKS12]. time [BSK+03, RGS08b, dGGS+05]. time-dependent [BSK+03, RGS08b, dGGS+05]. tire [SS98b]. tool [Saa90a]. Tools [S08+00, Saa92a]. Topological [SS85b, SS88]. Trace [KCS09, KCS11, NBS10, NBS12]. translations [Saa74b]. Trends [Saa92f]. triangular [AS88, AS89]. Turbo [RGS08]. Two [rFS09, Saa83d]. Type [Saa94b, TS11, Saa94e, SS98, Saa06]. Unstructured [MS94]. unsymmetric [Saa80a, Saa80c, Saa81, Saa82a]. updating [VS14]. use [Saa84c, Saa85c, Saa87c]. Using [BKS08, CV+03, SS98a, SSC04, BS05a, JTD+94, KS05a, OKLS15, Saa83d, VSS14, ZSTC06b].
REFERENCES

values [VSS14]. Variations [Saa80c, SST04]. Vectors [CS09a]. Velde [Saa95]. Version [LS05b, SYEG00, LSS03a]. Versions [LSC03, SZ99a, LS05a]. versus [CS09a]. via [BSS09, CrFS09, CAS11, CS98b, ZSTC06a]. Vibrational [CJWS96, CZC+09]; volume [BSS09, CrFS09, CAS11, CS98b, ZSTC06a].

References

Ando:2012:KSM

Ashby:1990:SSM

Arbenz:2003:PMA

Alemany:2007:EFP

Aurentz:2017:CGI

Anderson:1988:SST

REFERENCES

REFERENCES

11

REFERENCES

REFERENCES

Boley:1989:PIM

Chen:2011:CLS

Calgaro:2010:IIL

Chan:1998:PSP

Chelikowsky:1996:MDQ

REFERENCES

REFERENCES

Calvez:1999:MKA

Chen:2008:TSO

Chen:2009:TSO

Chen:2009:LVV

Chen:2012:DSE

Chow:2014:PKS

Chan:1985:SEP
REFERENCES

17

[ESS86] Howard C. Elman, Youcef Saad, and Paul E. Saylor. A hybrid

Gallopoulos:1987:PBC

Gallopoulos:1988:PBC

Gallopoulos:1988:PBCa

Gallopoulos:1989:PSP

Gallopoulos:1989:SFE

Gallopoulos:1990:PSP

REFERENCES

Ipsen:1986:IPAa

Ipsen:1984:CDL

Ipsen:1986:CDL

Ilic:2007:LSS

Jay:1999:ESC

Johnsson:1987:ADM

Jones:2007:CBI

Jing:1994:IMD

Xiaodun Jing, N. Troullier, David Dean, N. Binggeli, James R. Chelikowsky, K. Wu, and Y. Saad. Ab initio molecular-dynamics simulations of Si clusters using the higher-order finite-difference-pseudopotential

Kokiopoulou:2009:TOE

Kokiopoulou:2011:TOE

Kalantzis:2016:SSC

Kerkhoven:1987:ATD

Kerkhoven:1992:AMC

Kokiopoulou:2005:FRU

Kokiopoulou:2005:ONP

Kokiopoulou, E. and Saad, Y. Orthogonal neighborhood preserving projections. In Fifth IEEE International Conference on Data Mining, page ?? IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2005.

Little:2003:BPSb

Lin:2016:ASD

Li:2016:SCB

Li:2016:TRL

Ma:1992:BAP

Ma:1993:BAP

Ma:1994:DIS

Ma:1994:DIS

MacLachlan:2007:GSC

MacLachlan:2007:GCS

MacLachlan:2007:GCS

MacLachlan:2007:GCS

Ngo:2010:TRO

Ngo:2010:TRO

Ogut:2003:ICL

Ogut:2003:ICL

Osei-Kuffuor:2015:MRU

Osei-Kuffuor:2015:MRU

Osei-Kuffuor:2010:PHL

Osei-Kuffuor:2010:PHL

Daniel Osei-Kuffuor and Yousef Saad. Preconditioning Helmholtz

Parlett:1985:CSI

Parlett:1987:CSI

Philipp:1989:SLS

Philipp:2007:CED

Philippe:1992:NMM

Petiton:1993:BSM

Fang:2009:TCM

Fang:2012:FLP

REFERENCES

Saad:1982:PMS

Saad:1983:LSP

Saad:1983:NMS

Saad:1983:BRB

Saad:1983:ISI

Saad:1983:PM

Saad:1984:CNM

Saad:1984:CAT

<table>
<thead>
<tr>
<th>Reference Code</th>
<th>Reference Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saa89a</td>
<td>Youcef Saad. Krylov subspace methods on supercomput-</td>
</tr>
</tbody>
</table>
Sparse matrix algorithms on supercomputers.

Saad:1989:NSL

Practical iterative methods for large scale computations (Minneapolis, MN, 1988).

Saad:1990:SBT

Saad:1990:KSM

Saad:1990:NSL

Saad:1990:OKS

Saad:1991:FIO

Saad:1991:SIP

[Saa91b] Y. Saad. Supercomputer implementations of preconditioned

Saad:1993:FIO

Saad:1993:SIP

Saad:1994:DSA

Saad:1994:TEBa

Saad:1994:TEBb

Saad:1995:BNR

Saad:1996:IME
Y. Saad. ILUM: A multi-elimination ILU preconditioner

REFERENCES

Sosonkina:2000:PSL

Stathopoulos:2000:PMT

Saad:1980:PBS

Saad:1981:IMS

Saad85e

Sakellaridi:2008:GBM

REFERENCES

YALEU/DCS/RR-428, Department of Computer Science, Yale University, New Haven, CT, USA, October 1985.

REFERENCES

[SS99c] Yousef Saad and Maria Sosonkina. Non-standard parallel solution strategies for distributed

[SSC04] M. Sosonkina, Y. Saad, and X. Cai. Using the parallel algebraic recursive multilevel solver in modern physical app-

Special issue on iterative methods (Copper Mountain, CO, 1996).

Yousef Saad, Maria Sosonkina, and Jun Zhang. Domain decomposition and multi-level type techniques for general sparse linear systems. In Domain de-

[102x681]REFERENCES

[199x207]Saad:1988:BPSa

[199x207]Saad:1989:SSH

[199x207]Saad:1990:SBP

[199x207]Saad:1993:DQM

[199x207]Saad:1994:PSM

[199x207]Saad:1995:DIS

REFERENCES

Saad:1996:DIS

Saad:1996:DDQ

Saad:2000:DVC

Saad:1999:BBV

Saad:1999:BDB

Saad:2001:EML

Tang:2011:DDT

[TS12]

Vecharynski:2014:FUA

[VS14]

Vecharynski:2014:GPU

Wu:1993:PCM
REFERENCES

Wu:1998:INP

Xi:2016:AMP

Xi:2016:CPS

Xi:2017:RFP

Zhou:2014:CFS

Zhou:2007:CDA

Zhou:2008:BKS

REFERENCES

Zhou:2006:PSC

Zhou:2006:SCF