A Bibliography of Publications of Yousef Saad

Yousef Saad
Computer Science Dept., University of Minnesota
4-192 EE/CSci Building, 200 Union Street S.E.
Minneapolis, MN 55455
USA
Tel: +1 612 624 7804
FAX: +1 612 625 0572
E-mail: saad@cs.umn.edu (Internet)

13 October 2017
Version 2.59

Abstract
This bibliography records publications of Yousef Saad.

Title word cross-reference

3D [GHS10]. exp(−τA)b [SSS10]. f(A)b [CAS11]. ILU [LSC03]. ILUS [CS97c]. k [CrFS09]. LU [CS97c, LSS03a, Saa94d].

'02 [AGPS03].

1988 [BTS+89]. 1993 [BCEP94].

20th [Sv00].

5 [WS93].

Abaffy [Saa92h]. ABS [Saa92h]. Abstract [SS85c]. accelerated [LS13b]. Acceleration [KS87, Saa84b, CS99, rFS09, KS92, ZSTC06a]. acceptors [SKBS88]. ADI [MS92, MS93]. advances [GGL94]. algebra [DS91a]. Algebraic [LS17, GHS10, LSS03a, S02b, SST04, S04, XLS16]. Algorithm [DS91b, LXV+16, Saa85a, SYEG00, ZS07, ESS86, GS87, GS88b, GS88a, GS89b, Saa74c, Saa80a, Saa82a, Saa86c, S86c, SL86, SL88, SW93, Saa93a, SW96b, Saa91a]. algorithms [Saa74b]. Algorithms [AGPS03, ASSS11, BDG+10, CS92, CS85a, CS86, CTJ+95, CTJS07, CZC+09, SS85g, Saa92a, Saa92h, Saa94a, Saa94b, Saa06, BGSS14, BS94, CS93, CS96, FRS96, GS94, KS87, Saa90b, Saa94e, VS14]. Alternating [JSS87, SS85c]. Analysis [BSS09, BSS10, Saa92b, Saa94b, Saa97, Saa16, BJR+09, Saa94e, Saa00b]. angle [LSS86, SL86, SL88]. Application [CS12, CTWS94]. Applications [AGPS03, ASSS11, BK508, BDG+10, Saa06, SrFS08, BJR+09, CSS02, CCS10, CS98a, CS85b, Saa83a, Saa90b, Saa90d, SAD+00, SS11, SSSC04]. approach [GS90a].
Approximate [BS02b, BS02c, CS94, CS97d, CS98b, Saa03a, BS02a, CrFS09, CS97f].
Approximating [LSY16]. Approximation [CS09b, GS92a, BS09, CS97a, CS08, GS90b, GS90a, GS92b, GS93, ITS07, Saa84a, Saa86b, Saa86e, SSW00]. ARMs [BS02b, SST04]. Arnoldi [BSS10, DS91b, Saa80c, SSW98]. array [SSS85]. Assignment [DS91b, Saa88d]. Associated [DS91b]. Atom [TAZ +06]. Augmented [Saa97, CS97b]. automatic [GS94, Saa92a]. Banded [SS85e, SS87]. Based [BS05b, HS06, KR07, SS99b, SrFS08, JSS07, LXS16, MOKS12, SW93, SW96b]. Basic [PSWF93, Saa90a]. basis [CTS93, CTS94]. Benchmark [SW88b, SW88a, SW90]. Beresford [Saa84a, Saa86b, Saa86e, SMSW00]. ARMS [SS02b, SST04]. BILUM [SZ99a]. BILUTM [SZ99b]. biorthogonalization [Saa80a, Saa82a]. bisection [CrFS09]. Block [LS03, LSS03b, MS93, SS80, Sz99a, Sz99b, Saa03a, ZS08, CS97d, GS87, GS88b, GS88a, GS89b, Saa80b, SZ01, MS92]. Block-ADI [MS93, MS92]. Block-partitioned [CS97d]. Boeing [SW89]. Book [Saa83c, Saa95]. bordered [CS85b]. Bounds [Saa94b, Saa94e]. Brownian [ACSS12]. Bulk [TAZ +06].
dans [Saa74b]. Data [SS85a, SS85d, SS86b,

Eigenfaces [SrFS08]. Eigenproblems [ZS07, KCS09, KCS11, SGSM15].

Eigensolutions [Saa85b]. Eigenvalue [BSS10, rFS12, IS85, IS86b, LXV⁺16, PS89, Saa83c, Saa84b, Saa11b, Saa16, SF93, DPs16, KLS16, Saa82b, Saa83e, Saa89b, Saa92g, SSC⁺96, SF95, Saa98b, WSS98, ZS08]. Eigenvalues [BS05a, Saa74a].

Electronic [JKSC99, SCS10, AJT⁺07, CTS93, CTS94, CKV⁺03, CTSZ07, CZC⁺09, SSC⁺96]. element [KSS03, KSSG04]. Elimination [Saa85a, Saa86a, Saa86c, Saa86d, Saa86e]. Elliptic [CSS85, CSS87, GS87, GS88b, GS88a, GS89b, GS89d, KS92, Saa81, SSS85].

Enhanced [Saa88b, Saa88c]. Environments [Saa87b, Saa92e, CS99, Saa87a]. equation [KSS03, KSSG04, LSS86, SL86, SL88, ZCS14].

Equations [CSS85, GS89a, MS92, MS93, BS87, BS90, BS91, CSS87, ESS86, GS87, GS88b, GS88a, GS89b, GS89c, GS89a, GS90b, GS90a, GS92b, GS83, PS07, SSS85, Saa90c].

Eric [Saa85]. Error [Saa94b, Saa94e]. estimation [BSS10]. estimator [BKS07]. Études [Saa74b]. Evolution [TZA⁺06, CTSZ07]. Evolving [Saa16].

Exact [Saa03a]. excited [BGB⁺10, SKBS88]. Experimental [CS97e]. exploration [Fit86]. Exponential [Saa92b, C98a]. Extended [Saa85c].

Extraction [CS12]. Extreme [Saa84b].

F [Saa95]. Face [KS05a]. faces [KS05a].

Factored [BS02b, BS02c, BS02a].

Factorization [HS06, LS05a, Saa92d, Saa94d].

Factorizations [MOKS12, CCS10]. Fast [CrFS09, VS14, GS87, GS88b, GS88a, GS89b, GS89d]. February [GGL94].

feedback [Saa88d]. Fermi [Saa11]. few [Saa94b, Saa94e]. field [ZSTC06a, ZSTC06b]. Filtered
[BKS08, rFS12, Saa06, AKS17, ZSTC06a, ZSTC06b, ZCS14]. Filtering [LXV+16]. Filters [XS16]. Finding [Saa03a]. finite [CTS93, CTS94, CTWS94, JTD+94, KSS03, KSSG04]. finite-difference [CTWS94].

finite-difference-pseudopotential [JTD+94]. first [AJT+07]. first-principles [AJT+07]. flexible [Saa91a, Saa93a]. flows [LLCS02]. fMRI [SS14]. forces [CJWS96].

format [CS97c]. free [ZCS14]. Function [XS17, SS11]. Functional [BKS08, BSK+03, RGSB08, SS11, dlGGS+05]. Further [BSS10, Saa00b].

Gaussian [Saa86d, CS94, Saa89a]. General [CS92, CS94, LSC03, Saa94b, Saa96, SZ99a, SZ99b, SS99a, SS02a, CS93, CS96, Saa92a, Saa92c, Saa94c, Saa94e, SS98, SZ99c, SZ01, SS02b, Saa07].

generalized [SS85f]. Globally [BS91]. GMRES [Saa91a, SS86c, Saa93a]. GPU [AKS17, LS13b]. GPU-accelerated [LS13b]. Gradient [SS85g, SS85f, SS86a, SYEG00, Saa85c].

Gradient-like [SS85g]. Gram [Saa86c]. Graph [HS06, SrFS08, VSS14, CrFS09, GS94, OKLS15]. Graph-Based [SrFS08].

Greedy [MS07b, MS07a]. Grid [MS07a]. Guest [BGSS14].

Hand [Saa87d]. Harnessing [BGB+10]. Harwell [SW89]. Harwell-Boeing [SW89]. held [GGL94]. Helmholtz [SST03, KSSG04, OKS10]. Hermitian [LXV+16, Saa74a]. Heuristic [GS94].

Hierarchical [HS06]. High [CSW00, CrFS09, SS14]. high-dimensional [SS14]. High-order [CSW00]. Higher [CTWS94, SKBS88, JTD+94].

Higher-order [CTWS94, JTD+94]. Highly [Saa94c]. Houston [Fit86]. Hybrid [BS87, BS90, ESS86, GHS10]. hydrodynamic [ACSS12]. Hypercube [CS85a, CSS85, CS86, CSS87]. Hypercubes [SS85a, SS85d, SS85b, Saa86a, Saa88, Saa86d, Saa89a].

ILU [CSW00, CS97e, HS06, LS05a, Saa94b, OKLS15, Saa92d, Saa92c, Saa96, SZ99a, SZ99c, SZ01, Saa03a, Saa05]. ILUM [Saa92c, Saa96]. ILUs [BS02c, BS05b].

ILUT [Saa92d, Saa94d, SZ99b]. IMA [GGL94]. Impact [IS85, IS86b, IS86a]. implementation [AKS17, BSK+03].

Implementations [SS85f, SS86a, Saa91b, Saa93b]. Implicitly [SSW98]. Incomplete [LS06, MOKS12, CCS10, CS97c, Saa92d, SW93, Saa94d, SW96b]. Incremental [CCS10]. Indefinite [XS17, CS97e, Saa83d, Saa84c, Saa88a, Saa88b, Saa88c]. Indexing [SrFS08, VS14].

Inexact [SSW98]. Initio [¨OBSC03, JTD+94]. inner [Saa91a, Saa93a]. inner-out [Saa91a, Saa93a]. Institute [BTS+89]. interactions [ACSS12]. Interior [rFS12]. International [BCEP94]. interval [DPS16]. intervals [Saa83d]. Invariant [BS90, P97]. Inverse [BS92b, BS95b, CS94, CS98b, TS11, BS02a, CS97d, CS97f, TS12]. Inverse-Based [BS05b]. Inverses [BS02c]. Invert [PS87, PS85]. Iron [TZA+06]. irregularly [FRSY96]. issue [ASS11, BDG+10].

Iteration [Saa16, ZSTC06b, ZCS14]. Iterations [BKS08, CS98b, Saa00b]. Iterative [BTS+89, CS85b, GS83, SS81, Saa83d, SM95, SV00, Saa03b, CSS02, GGL94, JSS07, LS13b, SW94, SW95, SW96a, SKL+97, Saa01].

J. [Saa92h]. Jacobi [SS98b]. January [Fit86].

Kernels [SM95]. kit [Saa90a]. Kohn [SCS12, ZCS14]. Krylov [Saa89a, Saa90b, ACSS12, BSS09, BS87].
SST04, SSC04, XLS16]. Multisecant [rFS09]. Multistage [HS06]. Multivariate [CS14].

N [Saa83c]. nanocrystals [CTSZ07, CZC09]. Neighborhood [KS07, KS05b]. Newton [BS94, WSS98]. NN [CrFS09]. Non [SS99c]. Non-standard [SS99c]. nonlinear [BS87, BS89, BS90, BS91, BS94, rFS09, KS92, SGSM15]. Nonsymmetric [LSS03b, MS92, MS93, MS07b, Saa84b, SS85g, Saa85b, ESS86, Saa83a, Saa84c, SS86c, Saa87c, Saa88a, Saa88b, Saa88c, Saa89b].

Normal [BS09]. North [BCEP94]. null [ITS07]. null-space [ITS07]. number [Saa86e]. numbers [Saa84a, Saa86b].

Numerical [Saa83b, Saa84a, Saa86b]. oblique [Saa80a, Saa82a]. Observer [DS91b]. October [BTS89]. ODE [GS83]. Operator [Saa92b, CS98a]. OPERA [KS05a]. OPERA-faces [KS05a]. Optimal [CS99b, CS08]. Optimization [NBS10, NBS12, BSS09, KC509, KCS11]. order [CSW00, CTWS94, JTD94]. origin [Saa74c]. Orthogonal [CS99b, KS05b, KS07, CS98d]. orthogonolization [SW93, SW96b]. other [Saa80a, Saa82a]. outer [Saa91a, Saa93a]. Overlapping [CS92, CS93, CS96, LS05b]. overview [Saa90d].

P_SPARSLIB [SW94, SW95, SW96a, SKL97]. Package [SW88a, SS02a, SW88b, SW90]. papers [GGL94]. Parabolic [GS92a, GS89c, GS89a, GS90b, GS90a, GS92b]. Parallel [BDG10, BGSS14, BSK10, CSS02, CS97f]. FWPS92, FRSY96, GS90a, HS06, IS85, IS86b, IS86a, SS85e, SS85f, SS86b, SS86a, Saa87b, SS87, SW94, SS99c. Saa01, Saa02a, SÖS100, ZSTC06a, AS88, AS89, CS99, GS87, GS88b, GS88a, GS89b, GS90c, GS91a, GS89d, GHS10, LSS03a, LLCS02, SS80, Saa87a, SS89b, Saa92c, Saa94c, SW95, SW96a, SKL97, SS99b, SSS04, AGPS03, ASS11].

Parallels [Saa83c]. pARMS [LS03a, SS02a]. Partial [CSS85, DS91b, Saa85b, SSS03, CSS87, Saa88d]. partially [BSS05]. Particle [LLCS02]. partitioned [CS97d]. partitioning [GS94, LLCS02, Saa74a, VSS14]. Passing [Saa87b, Saa87a, WS93]. Performance [WS93]. periodic [AJT97]. physical [CSS02, SSC04]. Pivoting [BS02b, BS02a, LS05a]. plane [JKSC99, Saa83a, Saa84a, Saa86b, Saa86c, Saa87c]. plane-wave [JKSC99]. PMAA [AGPS03]. PMAA'10 [ASS11]. Point [LS03, LSS03b]. pole [Saa88d]. Polynomial [BKS08, CAS11, LVS16, GS90b, Saa85c]. polynomials [Saa83d, Saa83a, Saa87c, SSS10]. portable [SKL97]. Positive [SS80, VSS14].

potential [CTS93, CTS94]. Practical [BTS89, Saa84c, Saa85c, BTS89]. Preconditioned [CCSY98, CS14, SS85f, SS86a, Saa91b, Saa93b, Saa98, LS13b, Saa91a, Saa92f, Saa93a].

Preconditioner [BS02b, BS05b, LS06, Saa96, SZ99a, SZ99b, XS17, BS02a, CS97c, Saa92c, XLS16].

Preconditioners [BS05b, CS94, CS98b, LS13a, LS17, LS03, LSS03b, MS92, MS93, MS94, CS97a, CS97b, CSW00, CS97e, CS97f, GSS03, LXS16, Saa94c, SZ99c, Saa07].

Preconditioning [CS98a, KS03, KSSG04, OKS10, Saa88a, Saa88b, Saa88c, SAD100, Saa03a, SMSW00, SSF93, OKLS15, SS99b, SZ01, SSF95, VSS14, WSS98].

preconditions [Saa85c]. Predicting [SÖS100, CTJ95]. Preserving [CCSY98, KS07, KS05b].

Prewhtening...
Restarted [SSW98]. Restarting
[SSW98, SS98b]. Restricted [LS05b].
Review [Saa83c, Saa92b]. Reviews [Saa95].
Right [Saa87d]. Right-Hand [Saa87d],
Ring [ISS84, ISS86]. Robust
[SSF93, SS95, SZ99c].

Saddle [LS03, LSS03b]. Sampling [CS14].
Scale [BTS+89]. Schur
[Saa07, BS05a, GHS10, KLS16, LS05b, LXS16, SS99a, ZS08].
SchurRAS [LS05b]. Scientific [Saa95].
seismic [Fit86]. Selection [MS07a]. Self
[ZSTC06b, ZSTC06a]. Self-consistent-field
[ZSTC06b, ZSTC06a]. Semantic
[SrFS08, VS14]. semiconductor [KS87].
semiconductors [SKBS88]. sets [SS14].
Several [Saa87d]. Sham [SCS12, ZCS14].
Shared [Saa87b, Saa87a]. Shift
[PS85, PS87]. Shifts [Saa74c]. Si [JTD+94].
Sides [Saa87d]. simulation [KS87].
simulations [ACSS12, JTD+94]. Singular
[CS09a]. skyline [CS97c], slicing [SCS12].
Smallest [BS05a]. SNAP [IT07].
Software [AEKS90, Saa92a]. solid
[LLCS02]. solid-liquid [LLCS02]. Solution
[DS91a, GS92a, ISS84, IS85, ISS86, IS86b, SSC+96, S98a, SS99c, GS87, GS88b, GS88a, GS89b, GS89c, GS90a, GS90a, GS92b, GS83, ITS07, KSS03, KSSG04, SS81, Saa83d, Saa83b, Saa89b, Saa90c, Saa91c, SW95, SW96a, Sw00, S04, SGSM15].
solver [LS03a, SS02b, SSC04]. Solvers
[SM95, GS89d, GHS10, LS13a, SW94, SKL+97, S04]. Solving
[AS88, AS89, CSS85, CSS87, MS92, MS93, PS89, S80, Saa84b, S85g, SS85e, S885, Saa87d, S887, S82a, BS91, S85b, ESS86, LSS86, Saa80a, Saa81, Saa82a, Saa82b, Saa83a, Saa83e, Saa84c, S886c, SL86, Saa87c, SL88, ZCS14].
Some [GS89d, SW89, Saa92b, BSS09, Saa84c, Saa86e]. SOR [MS94]. space
[CTWS94, JTD+94]. SPARK [SW90]. Sparse
[AEKS90, CS92, CS94, CS98b, FWP92, GHS10, GGL94, IS86a, LSC03, LS06, MS92,
MS93, MS94, PSWF93, PS89, SW88a, SW89,
Saa94a, SW94, SM95, Saa96, SS98a, SZ99a,
SZ99b, SS99a, SS99c, SS02a, XS17, AS88,
AS98, CS93, CS96, CS97c, GSS03, JSS07,
LS05a, Saa82h, Saa83a, Saa83e, SW88b,
SW90, Saa90a, Saa92c, SW95,
Swa96a, SKL +97, SS98, SZ99c, SAD +00,
S01, Saa01, S02b, Saa03b, Saa07, SSF95,
XS17, AS88, AS89, CS93, CS96, CS97c, GSS03, JSS07,
LS05a, Saa82h, Saa83a, Saa83e, SW88b,
SW90, Saa90a, Saa92c, SW95,
Swa96a, SKL +97, SS98, SZ99c, SAD +00,
S01, Saa01, S02b, Saa03b, Saa07, SSF95,
XS17, ZCS14]. Sparse-Sparse [CS98b].
SPARSKIT [Saa90a]. Special [ASSS11, BJR +09, BDG +10]. Spectra
[XS16, CJWS96]. Spectral [BS05a, KLS16, SGSM15, LSY16].
Spectrum [DS91b, SCS12]. Specidato [Saa92h].
Squares [CAS11, LS06, XS16,
Saa83a, Saa84a, Saa86b, Saa86e, Saa87c]. standard [SS99c]. Standards [AEKS90].
state [Saa88d]. states [GBG +10, SKBS88].
Statistics [SW89]. Stiefel [S88o].
Strategies [MS07b, OKLS12, BS90, BS91, CS85b, CJWS96, ESS86,
GSS03, JSS07, KS92, OKS10, Saa80a, Saa81,
Saa82a, Saa83d, Saa84c, Saa86c, Saa87c,
Saa88a, Saa88b, Saa88c, SS98, SZ99c,
Saa99b, Sv00, ZS01, Saa01, SS02b, Saa03b,
Saa07, SMSW00, VSS14].
Technique [KS07]. Techniques
[IS86a, Saa84b, SS99a, CS97b, CS97d,
KL16, KS03, KSSG04, KS87, Saa74a,
Saa88a, Saa88b, Saa88c, SS98, SZ99c,
Saa99b, SAD +00, SS98b, WSS98]. Tensor
[CS97a, CS99b, CS08]. Tensors
[CS99b, CS08]. Texas [Fit86]. their
[GS89d, Saa87c]. Theoretical
[Saa94b, Saa94d]. Theory
[BSK08, BSS09, BS94, BS91, CS97b, CS97d,
RGSB08, Saa90b, SS11, dGGS +05].
thermocoustics [SGSM15]. Thick
[LVX +16, SSW98]. Thick- Restart
[LVX +16]. three [LS86].
three-dimensional [LSS86]. Threshold
[MOKS12, Saa92d, Saa94d, SS99c].
Threshold-based [MOKS12]. time
[BSK +03, RGSB08, dGGS +05].
time-dependent
[BSK +03, RGSB08, dGGS +05]. tool
[SMSW00]. tool [Saa90a]. Tools
[SOS +00, Saa92a]. Topological
[SS85b, SS99c]. Trace
[KCS09, KCS11, NBS10, NBS12]. translations
[Saa74b]. trends [Saa92f].
triangular [AS88, AS89]. Turbo [RGSB08].
Two [rFS09, Saa83d]. Two
[Saa94b, TS11, Saa94e, SS98, Saa06].
Unstructured [MS94]. unsymmetric
[Saa80a, Saa80c, Saa81, Saa82a]. updating
[VS14]. use [Saa84c, Saa85c, Saa87c]. Using
[BKS08, CKV +03, SS98a, SSS04, BS05a,
JTD +94, KS05a, OKLS15, Saa83d, VSS14,
ZSTC06b].
REFERENCES

values [VSS14]. Variations [Saa80c, SST04]. Vectors [CS09a]. Velde [Saa95]. Version [LS05b, SYEG00, LSS03a]. Versions [LSC03, SZ99a, LS05a], versus [CS09a]. via [BSS09, CrFS09, CAS11, CS98b, ZSTC06a]. Vibrational [CJWS96, CZC+09], volume [LS05b, SYEG00, LSS03a].

References

REFERENCES

Anderson:1989:SST

Arbenz:2011:SIP

Brown:1994:PCL

Bekas:2010:SIP

Baroni:2010:HME
Stefano Baroni, Ralph Gebauer, O. Baris Malcioglu, Yousef Saad, Paolo Umari, and Jiawei Xian. Harnessing molecular excited states with Lanczos chains. *Journal of Physics: Condensed Matter*, 22(7):074204, February 24, 2010. CODEN JCOMEL. ISSN 1361-648X.

Bekas:2014:PMA

Beckermann:2008:SVM

Bekas:2007:EDM

REFERENCES

REFERENCES

REFERENCES

Boley:1989:PIM

Chen:2011:CLS

Calgaro:2010:IIL

Chan:1998:PSP

Chelikowsky:1996:MDQ

Chelikowsky:2003:URS

REFERENCES

REFERENCES

Calvez:1999:MKA

Chen:2008:TSO

Chen:2009:LVV

Chen:2009:TSO

Chen:2012:DSE

Chow:2014:PKS

Chan:1985:SEP

REFERENCES

17

REFERENCES

[DSS86] Howard C. Elman, Youcef Saad, and Paul E. Saylor. A hybrid

REFERENCES

Gallopoulos:1987:PBC

Gallopoulos:1988:PBCb

Gallopoulos:1988:PBCa

Gallopoulos:1989:PSPb

Gallopoulos:1989:PBC

Gallopoulos:1989:PSPa

Gallopoulos:1989:SFE

Gallopoulos:1990:PSP

REFERENCES

REFERENCES

Ipsen:1986:IPAA

Ipsen:1984:CDL

Ipsen:1986:CDL

Ilic:2007:LSS

Jay:1999:ESC

Johnsson:1987:ADM

Jones:2007:CBI

Jing:1994:IMD

Xiaodun Jing, N. Troullier, David Dean, N. Binggeli, James R. Chelikowsky, K. Wu, and Y. Saad. Ab initio molecular-dynamics simulations of Si clusters using the higher-order finite-difference-pseudopotential

Kokiopoulou:2009:TOE

Kokiopoulou:2011:TOE

Kokantzis:2016:SSC

Kerkhoven:1987:ATD

Kerkhoven:1992:AMC

Kokiopoulou:2005:FRU

Kokiopoulou:2005:ONP
Effrosyni Kokiopoulou and Yousef Saad. Orthogonal neighborhood preserving projections. In *Fifth IEEE International Conference on Data Mining*, page ?? IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD.
Kokiopoulou:2007:ONP

Kecroud:2003:PTS

Kecroud:2004:PTS

Li:2005:CVI

Zhongze Li, Yousef Saad, and Masha Sosonkina. pARMS: a parallel version of the algebraic recursive multilevel solver.
REFERENCES

Little:2003:BPSb

Lin:2016:ASD

Li:2016:SCB

MacLachlan:2012:MCS

Ma:1992:BAP

Ma:1993:BAP

Sangback Ma and Youcef Saad. Block-ADI preconditioners for solving sparse nonsymmetric linear systems of equations. In

Ma:1994:DIS

MacLachlan:2007:GSC

MacLachlan:2007:GCS

Ngo:2010:TRO

Ogut:2003:ICL

Osei-Kuffour:2015:MRU

Osei-Kuffour:2010:PHL

Daniel Osei-Kuffour and Yousef Saad. Preconditioning Helmholtz

Parlett:1985:CSI

Parlett:1987:CSI

Philipp:1989:SLS

Philipp:2007:CED

Philipp:1992:NMM

Petiton:1993:BSM

Fang:2009:TCM

Fang:2012:FLP

Rocca:2008:TCT

Saad:1974:CEL

Saad:1974:ETO

Saad:1974:SOA

Saad:1980:LBA

Saad:1980:RCL

Saad:1980:VAM

Saad:1981:KSM

Saad:1982:LBA

<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
</table>

Yale University, New Haven, CT, USA, 1986.
REFERENCES

599X (print), 0945-3245 (electronic).

[Saa89a] Youcef Saad. Krylov subspace methods on supercomput-
Sparse matrix algorithms on supercomputers.

Saad:1989:NSL

Practical iterative methods for large scale computations (Minneapolis, MN, 1988).

Saad:1990:SBT

Saad:1990:KSM

Saad:1990:NSL

Saad:1990:OKS

Saad:1991:FIO

Saad:1991:SIP

Y. Saad. Supercomputer implementations of preconditioned

March 1, 1992. CODEN LAA-PAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

REFERENCES

[Y. Saad and A. V. Malevsky. Data structures, computational, and communication kernels for distributed memory sparse iterative solvers. *Lecture Notes*]
REFERENCES

[Saad85e] Y. Saad and M. Schultz. Data communication in hypercubes. Technical Report...
REFERENCES

YALEU/DCS/RR-428, Department of Computer Science, Yale University, New Haven, CT, USA, October 1985.

Saad:1985:TPH

Saad:1985:ADM

Saad:1985:DCH

Saad:1985:DPM

Saad:1985:PIP

Saad:1985:CGL

Saad:1986:GGM

Saad:1986:DCP

Saad:1986:GGM

REFERENCES

Saad:1987:PDM

Saad:1988:TPH

Saad:1989:DCH

Saad:1989:DCP

Saad:1998:SDS

Stathopoulos:1998:RTJ

Saad:1999:DSC

Saad:1999:EPM

Saad:1999:NSP
[SS99c] Yousef Saad and Maria Sosonkina. Non-standard parallel solution strategies for distributed

M. Sosonkina, Y. Saad, and X. Cai. Using the parallel algebraic recursive multilevel solver in modern physical ap-
REFERENCES

Yousef Saad, Maria Sosonkina, and Jun Zhang. Domain decomposition and multi-level type techniques for general sparse linear systems. In Domain de-

REFERENCES

REFERENCES

Wu:1998:INP

Xi:2016:AMP

Xi:2016:CPS

Xi:2017:RFP

Zhou:2014:CFS

Zhou:2007:CDA

Zhou:2008:BKS

REFERENCES

Zhou:2006:PSC

Zhou:2006:SCF