Abstract
This bibliography records publications of Yousef Saad.

Title word cross-reference
3D [GHS10]. \(\exp(-\tau A)b\) [SSS10]. \(f(A)b\) [CAS11]. ILU [LSC03]. ILUS [CS97c]. \(k\) [CrFS09]. \(LU\) [CS97c, LSS03b, Saa94d]. \(\text{tr}(f(A))\) [UCS17].

'02 [AGPS03].
1988 [BTS+89]. 1993 [BCEP94].
20th [Sv00].
5 [WS93].

Abaffy [Saa92h]. ABS [Saa92h]. Abstract [SS85c]. accelerated [LS13b]. Acceleration [KS87, Saa84b, CS99, rFS09, KS92, ZSTC06a]. acceptors [SKBS88]. ADI [MS92, MS93]. advances [GGL94]. algebra [DS91a]. Algebraic [LS17, GHS10, LSS03a, SS02b, SST04, SSC04, XLS16]. Algorithm [DS91b, LXV+16, Saa85a, SYEG00, ZS07, ESS86, GS87, GS88b, GS88a, GS89b, Saa74c, Saa80a, Saa82a, Saa86c, SSS86, SL86, SL88, SW93, Saa93a, SW96b, Saa91a].
algorithms [Saa74b]. Algorithms [AGPS03, ASSS11, BKS08, BDG+10, Saa06, SrFS08, BJ+09, Saa94e, Saa00b]. Alternating [JSS87, SS85c]. Analysis [BSS09, BSS10, Saa92b, Saa94b, Saa97, Saa16, BJ+09, Saa94e, Saa00b]. angle [LSS86, SL86, SL88]. Application [CS12, CTWS94]. Applications [AGPS03, ASSS11, BK+08, BDG+10, Saa06, SrFS08, BJ+09, CSS02, CCS10, CS98a, CS85b, Saa83a, Saa90b, Saa90d, SAD+00].
SS11, SSC04]. approach [GS90a].
Approximate [BS02b, BS02c, CS94, CS97d, CS98b, Saa03a, BS02a, CrFS09, CS97f].
Approximating [LSY16, Approximation [CS09b, GS92a, BSS09, CS97a, CS08, GS00b, GS90a, GS92b, GSS03, ITS07, Saa84a, Saa86b, Saa86e, SS11]. Approximations [CAS11, Saa84a, Saa86b, Saa86e, SMSW00]. ARMS [SS02b, SST04]. Arnoldi [BSS10, DS91b, Saa80c, SSW98]. array [SSS85]. Assignment [DS91b, Saa88d]. Associated [DS91b]. Atom [TZA+06]. Augmented [Saa97, CS97b], automatic [CS94, Saa92a].
Banded [SS85e, SS87]. Based [BS05b, HS06, KS07, SZ99b, SrFS08, JSS07, LXS16, MOKS12, SW93, SW96b]. Basic [PSWF93, Saa90a]. basis [CTS93, CTS94]. Benchmark [SW88b, SW88a, SW90].
Beresford [Saa83c]. between [BS02c]. BILUM [SZ99a], BILUTM [SZ99b]. biorthogonalization [Saa80a, Saa82a].
biorthogonalization [CrFS09]. Block [LS03, LSS03b, MS93, SS80, SZ99a, SZ99b, Saa03a, ZS08, CS97d, GS87, GS88b, GS88a, GS89b, Saa80b, SZ01, MS92]. Block-ADI [MS93, MS92]. block-partitioned [CS97d].
Boeing [SW89], Book [Saa83c, Saa95]. bordered [CS85b]. Bounds [Saa94b, Saa94e]. Brownian [ACSS12].
Bulk [TZA+06].
calculation [ZSTC06b]. Calculations [ÖBC03, SCS10, AJT+07, CTS93, CTS94, JKSC99, SSC+96, ZSTC06a]. Carolina [BCEP94].
Centenary [BCEP94], century [Sv00]. CFD [CSW00, SST04]. Chain [PSS92, Saa91c]. chains [BGB+10, RGSB08]. charge [BSTC05].
charging [RGSB08]. Chebyshev [ESS6, Saa84b, ZSTC06a, ZSTC06b, ZS07, ZCS14]. Chebyshev-filtered [ZSTC06a, ZSTC06b, ZCS14]. classes [rFS09]. clusters [CTJ+95, JTD+94]. CM [PSWF93, WS93], CM-5 [WS93, PSWF93]. Coarse [MS07a]. Coarse-Grid [MS07a]. Coarsening [MS07b, OKLS15]. codes [GS83, JKSC99]. Communication [SS85a, Saa85a, SS85d, Saa86c, SS86b, SM95, SS89a, SS89b]. Community [CS12]. Compensation [MOKS12]. Complement [LS05b, Saa89a, GHS10, KLS16, LXS16, Saa07]. complement-based [LXS16].
Complements [BS05a]. Complex [PS85, PS87, Saa83a, Saa84a, Saa86b, Saa86e, Saa87c]. complexities [GS89d]. Complexity [ISS84, ISS86, Saa85a, Saa86c]. Component [JSS07]. Component-based [JSS07]. Computation [BS05a, BKS08, Saa74a, LLC02, dGGS+05].
Computational [SM95, Fit86].
Computations [BTS+89, FWPS92, PSWF93, SW88a, Saa94a, SW88b, SW90, Saa90a].
Computing [FWPS92, S02a, AS88, AS89].
Computers [FWPS92, S02a, AS88, AS89].
Corrections [BSTC05, CAS11, Saa92e, Saa95, SSS10, TS11, XS16, ACS12, PS07, Saa80c, TS12].
Concurrent [Saa95]. condition [Saa84a, Saa86b, Saa86e]. Conference [BCEP94, Fit86]. Confined [OBSC03].
Conjugate [SS85g, SS85f, SS86a, SYEG00, Saa06, Saa85c]. Conquer [LS13a].
consistent [ZSTC06a, ZSTC06b].
counts [DPS16]. coupled [KS92]. coupling [dGGS+05]. Crout [LSC03, LS05a]. cubic [KBS88].
Cucheb [AKS17]. cyclic [GS87, GS88b, GS88a, GS89b].
dans [Saa74b]. Data [SS85a, SS85d, SS86b, SS89a, SS89b, Saa94a, SM95, CrFS09, SS14].
Davidson [SSW98, SS98b, ZS07].
December [BCEP94]. Decomposition [CS92, HS06, LS17, Saa94a, TS11, CS93, CS96, LXS16, PS07, Saa92a, SSZ98].
decoupling [KS87]. Definite [SS80, VSS14].
Deflated [CS97b, SYEG00]. deflation [Saa88d].
Definite [SS80, VSS14].
Deflated [CS97b, SYEG00]. deflation [Saa88d].
Dense [CS12, IS88, IS88]. Dense-Linear-System [ISS86].
densities [BSTC05, LSY16]. Density [BKS08, BS91, BS90, CSS87, ESS86, GS87, GS88b, GS88a, GS89b, GS89c, GS90a, GS92b, GS93, PS07, SS81, SSS85, Saa90c].
Density-functional [RGSB08].
Design [Saa87b, SW95, SW96a, Saa87a, SMSW00].
Detection [CS12]. Diagonal [SZ99c, Saa95, BKS07, TS12].
diagonalization [JKSC99, ZCS14]. diatomic [CTWS94]. Dielectric [¨OBSC03]. difference [CTS93, CTS94, CTWS94, JTJ+94, SS85].
Differential [CSS85, CSS87, SS81].
Dimension [CS99a, KCS09, KCS11, Saa83b].
dimensional [CrFS09, LS88, SS14].
Dimensionality [KS07, NBS10, SF08].
Dirac [SS11]. Direct [SS85e, SS87, SW96b].
Direction [SS85c, JSS87]. disjoint [Saa83d].
Distributed [MS94, Saa92e, Saa94a, SM95, SSS99b, SSS99c, Saa90b]. Distributions [CS14]. Divide [LS13a]. Domain [CS92, LS17, Saa94a, SSS98, SZ99b, BS02b, BS02c, BS02a].
Domain-Based [SZ99b].
Domain-Decomposition-Type [TS11]. Dominance [Saa05]. d’origine [Saa74b].
DQGMRES [SW93, SW96b]. dual [Saa92d, Saa94d]. Dynamic [SSW98].
dynamics [ACSS12, CJWS96, JTD+94].
E. [Saa92h]. Editorial [Saa00a, BGSS14]. Effective [CS99a]. Efficient [AJT+07, DPS16, GS90b, GS92b, GS92a, dGGS+05, LSS86].
eigendecomposition [SS14]. eigenelements [Saa80c].
Eigenfaces [SrFS08]. Eigenproblems [ZS07, KCS09, KCS11, SGSM15].
Eigensolutions [Saa85b]. Eigenvalue [BS10, rFS12, IS85, IS86b, LXV+16, PS89, Saa83c, Saa84b, Saa11b, Saa16, SSF93, DPS16, KLS16, Saa82b, Saa83e, Saa89b, Saa92g, SSC+96, SS95, SS98b, WSS98, ZS08]. Eigenvalues [BS05a, Saa74a].
Electronic [JKSC99, SCS10, AJT+07, CTS93, CTS94, CKV+03, CTZS07, CZC+09, SSC+96].
element [KSS03, KSSG04]. Elimination [Saa85a, Saa86a, Saa96, Saa86c, Saa86d, Saa92c]. Elliptic [CSS85, CSS87, GS87, GS88b, GS88a, GS89b, GS89d, KS92, SS81, SS85].
Enhanced [SS99b, ZS01]. Environments [Saa87b, Saa92e, CS99, SSS85]. equation [KSS03, KSSG04, LSS86, SL86, SL88, ZCS14].
Equations [CSS85, GS92a, MS92, MS93, BS87, BS90, BS91, CSS87, ESS86, GS87, GS88b, GS88a, GS89b, GS89c, GS90a, GS90b, GS90c, GS92b, GS93, PS07, SS81, SSS85, Saa90c].
Exact [Saa03a]. excited [BGB+10, SKBS88]. Experimental [CS97e].
exploration [Fit86]. Exponential [Saa92b, CS98a]. Extended [SS85c].
Extraction [CS12]. Extreme [rFS12].
F [Saa95]. Face [KS05a]. faces [KS05a].
Factored [BS02b, BS02c, BS02a].
Factorization [HS06, LS05a, Saa92d, Saa94d].
Factorizations [MOKS12, CCS10]. Fast [CrFS09, UCS17, VS14, GS87, GS88b, GS88a, GS89b, GS89d]. February [GGL94].
feedback [Saa88d]. Fermi [SS11]. few [Saa94b, Saa94e]. field
Filtered [BKSG05, rFS12, Saa96, AKS17, ZSTC06a, ZSTC06b, KSS03]. Finding [Saa03a]. finite [CTS93, CTS94, CTWS94, JTD+94, KSS03, KSSG04]. finite-difference [CTWS94]. finite-difference-pseudopotential [JTD+94]. first [AJT+07]. first-principles [AJT+07]. flexible [Saa91a, Saa93a]. flows [LLCS02]. FMRI [SS14]. functional [BKS08, BSK+03, RGSB08, Saa86a, Saa00b]. Further [BSS10, Saa00b].

Gaussian
[Saa86d, CS94, Saa86c, Saa86a]. General [CS92, CS94, LSC03, Saa94b, Saa96, SZZ9b, SZZ9a, SZZ02a, CS93, CS96, Saa92a, Saa92c, Saa94c, Saa94e, SSZ9, SZZ9c, SZZ01, SZZ02b, Saa07].
generalized [SZZ6c]. Globally [BS89]. GMRES [Saa91a, SZZ6c, Saa93a]. GPU [AKS17, LS13b]. GPU-accelerated [LS13b]. Gradient [SZZ5, SZZ5f, SZZ6a, SYEG00, Saa85c]. Gradient-like [SZZ5g]. Gram [Saa86e]. Graph [HS06, SrFS08, VSS14, CrFS09, GS94, OKLS15]. Graph-Based [SrFS08]. Greedy [MS07b, MS07a]. Grid [MS07a].

Hand [Saa87d]. Harnessing [BGG+10]. Harwell [SW89]. Harwell-Boeing [SW89]. held [GGL94]. Helmholtz [KSSG05, KSSG04, OKLS10]. Hermitian [LXV+16, Saa74a]. Heuristic [GS94]. Hierarchical [HS06]. High [CSW00, CrFS09, SZZ14]. high-dimensional [SS14]. High-order [CSW00]. Higher [CTWS94, SKBS88, JTD+94]. Higher-order [CTWS94, JTD+94]. Highly [Saa94c]. Houston [Fit86]. Hybrid [BS87, BS90, ESS86, GHS10]. hydrodynamic [ACSS12]. Hypercube [SZZ5a, SZZ5b, SZZ6a, SZZ6b, SZZ88, SZZ89, SZZ90].

ILU [CSW00, CS97e, HS06, LS05a, MS94, OKLS15, Saa92d, Saa92c, Saa96, SZ99a, SZ99c, SZ01, Saa03a, Saa05]. ILUM [Saa92c, Saa96]. ILUs [BS02c, BS05b]. ILUT [Saa92d, Saa94d, SZ99b]. IMA [GGL94]. Impact [SZZ5, SZZ6b, SZZ6a].

Implementation [AKS17, BS9+03]. Implementations [SZZ5f, SZZ6a, Saa91b, Saa93a]. Implicitly [SSW98]. Incomplete [LS06, MOKS12, CS10, CS97c, Saa92d, SW93, Saa94d, SW96b]. Incremental [CS10]. Indefinite [XS17, SZZ7e, SZZ83d, Saa84c, Saa88a, Saa88b, Saa88c]. Indexing [SrFS08, VSS14]. industrial [SZZ+00].

Inexact [SSW98]. Initio [ÖBSC03, JTD+94]. inner [Saa91a, Saa93a]. inner-outer [Saa91a, Saa93a]. Institute [BTS+08]. interactions [ACSS12]. Interior [FD12]. International [BCEP94]. interval [DPS16]. intervals [SZZ83d]. Invariant [BS98, PS07]. Inverse [BS02b, BS05b, CS94, CS98b, TS11, BS02a, CS97d, CS97f, TS12]. Inverse-Based [BS05b]. Inverses [BS02c]. Invert [PS87, PS85]. Iron [TZ+06]. irregularly [FRSY96]. issue [ASSS11, BDG+10].

Iteration [Saa16, ZSTC06b, ZCS14]. Iterations [AKS08, CS98b, Saa00b]. Iterative [BTS+08, CS98b, GS83, SZZ81, Saa83d, SM95, SZZ00, Saa03b, CS9202, GGL94, JS07, LS13b, SW94, SW95, SW96a, SKL+97, Saa01].

J. [Saa92h]. Jacobi [SZZ6b]. January [Fit86].

Kernels [SM95]. kit [Saa90a]. Kohn [CS12, ZCS14]. Krylov
[Saa89a, Saa90b, ACSS12, BSS09, BS87, BS89, BS90, BS94, CS99, CSHY98, CS97b, CS14, ES88, GS92b, GS92a, Saa81, Saa84c, Saa90d, Saa91b, Saa92b, Saa92e, Saa92f, Saa93b, Saa97, Saa98, Saa11a, ZS08].

Laguerre [SSS10]. Lanczos [BCEP94, AKS17, BGB+10, BSTC05, BKS08, CrFS09, CS09a, rFS12, LXV+16, RGSB08, Saa80a, Saa80b, Saa82a, Saa87d, Saa94b, Saa94e, UCS17].

Lanczos-Type [Saa94b, Saa94e].

Large [BKS08, BTH+89, DS91b, IS86a, LS06, ÖBSCO3, PS89, Saa85b, Saa85c, SSS93, ZS07, DS91a, LSY16, RGSB08, Saa80a, Saa80b, Saa82a, Saa83b, Saa83e, Saa89b, Saa90c, Saa92g, SSS+96, SSS98, ZS08].

Latent [SrFS08, VS14].

Least [CAS11, LS06, Saa83a, Saa87c, XS16, Saa84a, Saa86b, Saa86e].

Least-Squares [LS06, XS16].

level [SSZ98, SZ99c, SZ01].

Library [SW94, SW95, SW96a, SKL+97].

Like [DS91b, SSS95].

Linear [ITS07, ISS84, ISS86, MS92, MS93, MS94, SS85g, SS85e, SS87, SS98a, S299a, SS99a, SS99c, SS02a, XS17, AS88, DS91a, ES86, GS83, GSS03, JSS07, LS13b, OKS10, Saa81, Saa83d, Saa84c, SS85, SS86c, Saa87c, Saa88d, Saa88a, Saa88b, Saa88c, SS98, SS99c, SS99b, SV00, SO1, S01, SS02b, Saa03b, Saa07, SSSW00].

liQUID [LLCS02].

liquid [LLCS02].

localized [CJWS96].

Low [CS99b, LS13a, LS17, CS08, LXS16, XS16].

Low-Rank [LS13a, LS17, LXS16, XS16].

LR [Saa74b].

LU [CCS10].

Lyapunov [Saa90c].

Magnetism [TZA+06]. March [GGL94].

Markov [PSS92, Saa91c].

Massively [FWPS92].

Material [SOS+00].

Materials [SCS10].

mathematical [Fit86, Fit86].

Matrices [CS92, CS94, LSC03, LS13a, ÖBSCO3, PS87, Saa85b, SW89, Saa96, SZ99b, Saa16, BSS09, CS93, CS96, CS97d, CS97e, LS05a, LSY16, PS85, Saa7a4, Saa80c, Saa84a, Saa86b, Saa86e, Saa92c, Saa94c, XLS16].

Matrix [AGPS03, ASSS11, AEKS90, BDG+10, FWPS92, IS86a, OKLS15, PSWF93, SW88a, Saa92b, Saa94a, SW94, TS11, BJ+99, BKS07, BGSS14, CS98a, Saa83a, Saa83b, SW88b, Saa90a, SW95, SW96a, SAD+00, TS12, VSS14, dGGS+05].

Memory [Saa87b, SM95, Saa87a].

Message [Saa87b, Saa87a, WS93].

Method [SS80, Saa87d, CTS93, CTS94, CTWS94, JTD+94, KSS03, KSSG04, LS86, Saa80c, Saa85c, SCS12, TS12, ZS08, ZCS14].

Methods [BTS+89, CSHY98, CS14, DS91b, GS92a, LS17, PSS92, SS81, SSS5c, SS85e, SS85f, SS86a, Saa87b, SS87, Saa91b, Saa92e, Saa93b, Saa97, SCS10, Saa11a, Saa11b, SSSW98, SSO+00, TS11, ACSS12, BSS09, BS87, S89, BS90, BS91, CSS02, S85b, S8F09, S89b, GS92b, GGL94, JSS87, SSS07, KS92, KCS09, KCS11, Saa80a, Saa80b, Saa81, Saa82a, Saa82b, Saa83d, Saa83b, Saa83e, Saa84c, Saa87a, Saa88a, Saa90b, Saa90d, Saa91c, Saa92g, Saa92f, Saa98, Saa01, SB03b, S89b].

minimal [SS86c, SW93, SW96b].

minimum [Saa00b].

Minneapolis [BTS+89, GGL94].

Minnesota [BTS+89, GGL94].

MIQR [LS06].

Modeling [PSS92, Fit86].

models [Saa91c].

modern [CS02, SSC04].

Modification [MOKS12].

Modified [CS99, Saa84a, Saa86b].

module [SW94, SW95, SW96a].

Molecular [CJSW96, BGG+10, JTD+94].

molecular-dynamics [JTD+94].

molecules [CTWS94].

moment [Saa84a, Saa86b].

Multi [Saa96, Saa92c, SSS98, SZZ99c, SZZ01].

Multi-Elimination [Saa96, Saa92c].

multi-level [SSZ98, SSZ99c, SSZ01].

multicolor [SZZ99b].

Multielimination [SSZ99a].

Multigrid [CS85a, CS86].
Multilevel [BS05b, LS06, SZ99a, SZ99b, Saa05, SrFS08, LSS03a, OKLS15, S02b, SST04, SSC04, XLS16]. Multiprocessor [CS85a, CSS85, SS86, ISS84, ISS86, CSS87]. Multiprocessors [SS85c, Saa85a, JSS87, SS81, Saa86c]. multiseant [rFS09]. Multistage [HS06]. Multivariate [CS14].

N [Saa83c]. nanocrystals [CTSZ07, CZC +09]. Neighborhood [KS07, KS05b]. News [Saa95]. Newton [BS94, WSS98]. NN [CrFS09]. Non [SS99c]. Non-standard [SS99c]. nonlinear [BS87, BS89, BS90, BS91, BS94, rFS09, KS92, Saa87b, Saa91c, Saa84e, Saa86b, Saa90c].

Nonsymmetric [LSS03b, MS92, MS93, MS07b, Saa84b, SS85g, Saa85b, Saa86f, SS85e, Saa86f, S02a, Saa87b, Saa87c, Saa86f, Saa86d, Saa89b, Saa91a, Saa93a, Saa94c]. normal [BSS09]. normal-space [ITS07]. number [Saa86e], numbers [Saa84a, Saa86b].

Numerical [PSS92, Saa83b, Saa87b, Saa89b, Saa90c, Saa92g, SCS10, Saa11b, Saa87a, Saa91c].

oblique [Saa80a, Saa82a]. Observer [DS91b]. October [BTS +89]. ODE [GS83]. Operator [Saa92b, CS98a]. OPA [KS05a]. OPRA [KS05a]. OPRA-faces [KS05a]. Optimal [CS99b, CS08]. Optimization [NBS10, NBS12, BSS09, KCS09, KCS11]. order [CSW00, CTWS94, JTD +94]. origin [Saa74c]. Orthogonal [CS99b, KSO5b, KSO7, CS08, Saa83d]. orthogonalization [SW93, SW96b]. other [Saa80a, Saa82a]. outer [Saa91a, Saa93a]. Overlapping [CS92, CS93, CS06, LS05b]. overview [Saa90d].

P_SPARSLIB [SW94, SW95, SW96a, SKL +97]. Package [SW88a, S02a, SW88b, SW90]. papers [GGL94]. Parabolic [GS92a, GS89c, GS90a, GS92b]. Parallel [BGD +10, BGS14, BSK +03, CS02, CS97f, FWPS92, FRSY96, GS90a, HS06, IS85, IS86b, IS86a, SS85e, SS85f, SS86b, SS86a, Saa87b, Saa87c, SS86f, SS86a, Saa87b, SS86f, SS86a, Saa87b, Saa87c, SS86f, SS86a, Saa87b, SS86f, SS86a].

Performance [WS93]. periodic [AJT +07]. physical [CSS02, SSC04]. Pivoting [BS02b, BS02a, LS05a]. plane [JKSC99, Saa83a, Saa84a, Saa86b, Saa86c, Saa87c]. plane-wave [JKSC99]. PMAA [AGPS03]. PMAA’10 [ASSS11]. Point [LS03, LSS03b]. pole [Saa88d]. Polynomial [BKS08, CAS11, LXV +16, GS90b, Saa85c]. polynomials [Saa83d, Saa83a, Saa86b, SSS10]. portable [SKL +97]. Positive [SS80, VSS14]. potential [CTS93, CTS94]. Practical [BTS +89, Saa84c, Saa85c, BPS +99].

Preconditioned [CCSY98, CS14, SS85f, SS86a, Saa91b, Saa93b, Saa98, LS13b, Saa91a, Saa92f, Saa93a]. Preconditioner [BS02b, LS05b, LS06, Saa96, S02a, Saa87b, S02a, S02a, Saa92c, XLS16]. Preconditioners [BS05b, CS94, CS98b, LS13a, LS17, LS03, LS03b, MS92, MS93, MS94, CS97a, CS98b, CS97e, CS97f, S03b, LXS16, Saa94c, S02a, Saa07].

Preconditioning [CS98a, KSO3, KSSG04, OKLS10, Saa88a, Saa88b, Saa88c, SAD +00, Saa03a, SMSW00, SSF93, OKLS15, SS99b, S01, SSF95, VSS14, WSS98]. preconditionings [Saa85c]. Predicting
Preserving [CCSY98, KS07, KS05b]. Prewhitening [SS14]. primitives [WS93]. principles [AJT+07], probing [TS12]. Problem [NBS10, NBS12, CKV+03, SCS12, Saa83c]. Problems [BSS10, DS91b, rFS12, GGL94, IS85, LS06, LXV+16, LS03, LS03b, MS07b, PS89, Saa84b, Saa11b, Saa16, SSF93, CSW00, DS91a, FRSY96, IS86b, KLS16, Saa2h, Saa83a, Saa83b, Saa83e, Saa89b, Saa90d, Saa92g, SCC+96, SAD+00, SST04, SS99a, SS99c, SST04, SS99a, ZS08]. Procedure [rFS12, AKS17]. Proceedings [BTS+89, Fit86, BCEP94]. Process [BSS10]. processors [SSS85]. Projection [BS91, KS07, Saa82b, Saa83e, Saa88d, Saa91c, Saa92h, ITS07, Saa80a, Saa82a]. Projection-Based [KS07]. Projections [KS07, KS05b]. Properties [SS85b, SS88, SÖS+00, CTJ+95, CTSZ07, CZC+09]. pseudo [CTS93, CTS94]. pseudo-potential [CTS93, CTS94]. pseudopotential [CTWS94, JTD+94]. pseudopotentials [CKV+03]. PSPARSLIB [SS98a]. purpose [Saa92a].

QR [LS06, Saa74b]. Quadrature [UCS17]. quantum [CJWS96]. Quasi [SW93, SW96b]. Quasi-minimal [SW93, SW96b].

Raleigh [BCEP94]. Rank [CS09b, LS13a, LS17, CS08, LXS16, XLS16]. rates [Saa80b]. Ratio [NBS10, NBS12].

Rational [GS03, SS11, XS16, XS17, GS90a]. Real [PS77, CKV+03, PS85]. recognition [KS05a]. recursive [CrFS09, LSS03a, SS02b, SST04, SSC04]. recycling [SGM15]. Reduction [CS09a, KS07, NBS10, SrFS08, GS87, GS88b, GS88a, GS89b, KCS09, KCS11]. Relations [BS02c], reordering [OKLS15]. Reorderings [Saa05]. reorthogonalized [BSTC05]. reservoir [Fit86]. Residual [Saa06, SS86c, SW93, SW96b, Saa00b]. Residual-type [Saa06]. Restart [LXV+16]. Restarted [SSW98]. Restarting [SSW98, SS98b]. Restricted [LS05b]. Review [Saa83c, Saa92h]. Reviews [Saa95]. Right [Saa87d]. Right-Hand [Saa87d].

Ring [ISS84, ISS86]. Robust [SSF93, SS95, ZS99c].

Saddle [LS03, LS03b]. Sampling [CS14]. Scale [BTS+89, Schur [Saa07, BS05a, GHS10, KLS16, LS05b, SS89a, ZS08]. SchurRAS [LS05b]. Scientific [Saa95]. seismic [Fit86]. Selection [MS07a]. Self [ZT06b, ZT06a]. Self-consistent-field [ZT06b, ZT06a]. Semantic [SrFS08, VS14]. semiconductor [KS87]. semiconductors [Saa07]. sets [SS89a]. Several [Saa87d]. Sham [Saa12, ZCS14]. Shared [Saa87b, Saa87a]. Shift [PS87, PS85]. Shifts [Saa74c]. Si [JTD+94]. Sides [Saa87d]. simulation [KS87]. simulations [ACSS12, JTD+94]. Singular [CS09a]. skyline [CS97c]. slicing [Saa72]. Smallest [BS05a]. SNAP [ITS07]. Software [AEKS90, Saa92a]. solid [LLCS02]. solid-liquid [LLCS02]. Solution [DS91a, GS92a, ISS84, IS85, IS86, IS86b, SCC+96, SS98a, Saa00b, GS87, GS88b, GS88a, GS89b, GS89c, GS90a, GS90b, GS90c, GS92b, GS83, ITS07, KSS03, KSSG04, SS81, Saa83d, Saa83b, Saa90b, Saa91c, Saa91d, SW95, SW96a, SV00, SST04, GS89b].

solver [LS03a, SS02b, SSC04]. Solvers [SM95, GS89d, GHS10, LS13b, SW94, SKL+97, SST04]. Solving [AS88, AS89, CSS85, CSS87, MS92, MS93, PS89, SS80, Saa84b, SS85g, SS85e, Saa87d, SS87, SS02a, BS91, CS85b, ESS6, LSS86, Saa80a, Saa81, Saa82a, Saa82b, Saa83a, Saa83c, Saa84c, SS86e, SL86, Saa87c, SL88, ZCS14]. Some [GS89d, SW99, Saa92b, BS09, Saa84c, Saa86e]. SOR [MS94]. space
[CKV +03, ITS07]. **SPARK** [SW90]. Sparse
[AEKS90, CS92, CS94, CS98b, FWPS92, GHS10, GGL94, IS86a, LSC03, LS06, MS92, MS93, MS94, PSWF93, PS89, SW88a, SW89, Saa94a, SW94, SM95, Saa96, SS98a, SZ99a, SZ99b, Saa99a, Saa99c, Saa02a, XS17, AS88, AS89, CS93, CS96, CS97c, GSS03, JSS07, LS05a, Saa82b, Saa83a, Saa83e, SW88b, SW90, Saa90a, Saa92c, Saa94c, SW95, SW96a, SKL +97, SZ98, SZ99c, SAD +00, SZ01, Saa01, S02b, Saa03b, Saa07, SS95, XL16, ZCS14]. Sparse-Sparse [CS98b].
SPARSKIT [Saa90a].
Special [ASSS11, BJR +09, BDG +10]. **Spectra** [XS16, CJWS96].
Spectral [BS05a, KLS16, SGSM15, LSY16].
Spectrum [DS91b, SCS12]. Specidicato [Saa92h].
Standard [SS99c]. Standards [AEKS90].
State [Saa88d]. states [BGB +10, SKBS88].
Statistics [SW89]. Stiefel [SS90].
Stochastic [UCS17]. Strategies [MS07b, MOKS12, PS87, SS99c, LLCS02, PS85, SZ01, SGSM15, SMSW00]. Strategy [MS07a]. structural [CTJ +95]. Structure [SCS10, AJT +07, CTS93, CTS94, CKV +03, JKSC99, SSC +96]. Structured [GGL94, FRSY96]. Structures [Saa94a, SM95, Saa03a]. study [CS97e].
Subgraph [CS12]. Subspace [CCSY98, CS14, Saa91b, Saa92b, Saa92e, Saa93b, Saa97, Saa11a, Saa16, ACSS12, BSS09, BS89, CS97b, ESS86, Saa81, Saa84c, Saa99a, Saa90b, Saa90d, Saa91f, Saa98, ZSTC06a, ZSTC06b, ZCS14]. Subspaces [BKSO8, PS07]. sum [CS97a].
Supercomputer [BTS +89, Saa91b, Saa93b].
Supercomputers [PS89, Saa89a]. SVD [CS08, CS09b]. Sylvester [DS91b].
Sylvester-Like [DS91b]. Symmetric
[LS13a, LS03b, Saa83c, Saa87d, SS93, ZS07, KLS16, LS05a, Saa83d, SS95, SS98b, VSS14, WSS98, XL16, ZS08]. Symmetry [CCSY98]. System
[ISS84, ISS86, BS87, ITS07]. Systems
[MS92, MS93, MS94, ÖBSC03, SS80, SS85g, SS85e, Saa87d, SS87, Saa98a, SZ99a, SS99a, SS99c, S02a, XS17, AJT +07, AS88, AS89, BS90, BS91, CS85b, CJWS96, ESS86, GSS03, JSS07, KS92, OKS10, Saa80a, Saa81, Saa82a, Saa83d, SS86c, Saa87c, Saa88a, Saa88b, Saa88c, SS98, SZ99c, SS99b, S00, SZ01, Saa01, S02b, Saa03b, Saa07, SMSW00, VSS14].

Technique [KS07]. Techniques
[SS86a, Saa84b, SS99a, CS97b, CS97d, KLS16, KSS03, KSSG04, KS87, Saa74a, Saa88a, Saa88b, Saa88c, SS98, SZ99c, SS99a, SAD +00, SS98b, WSS98]. Tensor [CS97a, CS97b, CS08].
Tensors [CS97b, CS08]. Texas [Fit86]. their [GS99d, Saa87c]. Theoretical
[Saa94b, Saa94e].
Theory
[BKSO8, BSS09, BS94, BSK +03, RGSB08, Saa90b, SS11, dGGS +05].

Thermoacoustics [SGSM15]. Thick
[LVX +16, SSW98]. Thick-Restart
[LVX +16]. three [SLS86].
Three-dimensional [SLS86]. Threshold
[MOKS12, Saa92d, Saa94d, SZ99c].
Threshold-based [MOKS12]. time
[BSK +03, RGSB08, dGGS +05].
time-dependent
[BSK +03, RGSB08, dGGS +05]. tire
[SMSW00]. tool [Saa90a]. Tools
[SOS +00, Saa92a].
Topological
[SS85b, SS88]. Trace
[KCS09, KCS11, NBS10, NBS12].
translations [Saa74b]. trends [Saa92f].
triangular [AS88, A89]. Turbo [RGSB08].
Two [rFS09, Saa3d]. Type
[Saa94b, TS11, Saa94e, SS98, Saa06].

Unstructured [MS94]. unsymmetric
[Saa80a, Saa80c, Saa81, Saa82a]. updating
[VS14]. use [Saa4c, Saa85c, Saa87c]. Using
REFERENCES

[BKS08, CKV+03, SS98a, SSC04, BS05a, JTD+94, KS05a, OKLS15, Saa83d, VSS14, ZSTC06b].

values [VSS14]. Variations
[Saa80c, SST04]. Vectors [CS09a]. Velde
[Saa95]. Version [LS05b, SYEG00, LSS03a].
Versions [LSC03, SZ99a, LS05a]. versus
[CS09a]. via [BSS09, CrFS09, CAS11, CS98b, UCS17, ZSTC06a]. Vibrational
[CJWS96, CZC+09]. volume [BJR+09].

wave [JKSC99, LSS86, SL86, SL88]. wide
[LSS86, SL86, SL88]. without
[CTS93, CTS94, JKSC99, SS14]. Workshop
[BTS+89, GGL94].

References

Ando:2012:KSM

Ashby:1990:SSM

Arbenz:2003:PMA

Alemany:2007:EFP

Aurentz:2017:CGI

Anderson:1988:SST

[AS88] Edward Charles Anderson and Youcef Saad. Solving sparse triangular linear systems on parallel computers. Technical Report CSRD 794, University of Illinois at Urbana-Champaign, Center for Supercomputing Research and Development, Urbana, IL
REFERENCES

REFERENCES

Bekas:2008:CLI

Brown:1987:HKM

Brown:1989:GCN

Brown:1990:HKM

Brown:1991:PMS

Brown:1994:CTN

Bollhofer:2001:FAI

Bollhofer:2002:FAI

[BS02b] Matthias Bollhöfer and Yousef Saad. A factored approximate inverse preconditioner with pivoting. SIAM Journal on Matrix Analysis and Applications,
REFERENCES

12

Constantine Bekas, Yousef Saad, Murilo L. Tiago, and James R.
REFERENCES

Boley:1989:PIM

Calgaro:2010:IIL

Chan:1998:PSP

Chelikowsky:2003:URS

James R. Chelikowsky, Leeor Kronik, Igor Vasiliev, Manish Jain, and Yousef Saad. Using real space pseudopotentials for the electronic structure problem. In...

Chelikowsky:1996:MDQ

Chen:2011:CLS

CAS11

REFERENCES

Chen:2009:FAG

Chan:1985:MAH

Chan:1985:IMS

Chan:1986:MAH

Cai:1992:ODD

Cai:1993:ODD

Chow:1994:AIP

Cai:1996:ODD

REFERENCES

REFERENCES

[ESS86] Howard C. Elman, Youcef Saad, and Paul E. Saylor. A hybrid

Fitzgibbon:1986:MCM

Ferreira:1996:PAI

Ferng:1992:SMC

Golub:1994:RAI

Giraud:2010:SAS

Gear:1983:ISL

REFERENCES

Gallopoulos:1987:PBC

Gallopoulos:1988:PBCb

Gallopoulos:1988:PBCa

Gallopoulos:1989:PSPb

Gallopoulos:1989:PBC

Gallopoulos:1989:SFE

Gallopoulos:1990:PSP

Gallopoulos:1990:ESP

Gallopoulos:1992:ESP

Gallopoulos:1992:ESPa

Goehring:1994:HAA

Guillaume:2003:RAP

Henon:2006:PMI

Ipsen:1985:IPA

Ipsen:1986:IPa

REFERENCES

Ipsen:1986:IPAA

Ipsen:1984:CDL

Ipsen:1986:CDL

Illec:2007:LSS

Jay:1999:ESC

Johnsson:1987:ADM

Jones:2007:CBI

Jing:1994:IMD

Xiaodun Jing, N. Troullier, David Dean, N. Binggeli, James R. Chelikowsky, K. Wu, and Y. Saad. Ab initio molecular-dynamics simulations of Si clusters using the higher-order finite-difference-pseudopotential

Kokiopoulou:2009:TOE

Kokiopoulou:2011:TOE

Kalantzis:2016:SSC

Kerkhoven:1987:ATD

Kerkhoven:1992:AMC

Kokiopoulou:2005:FRU

Kokiopoulou:2005:ONP

Effrosyni Kokiopoulou and Yousef Saad. Orthogonal neighborhood preserving projections. In *Fifth IEEE International Conference on Data Mining*, page ?? IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD
REFERENCES

[LS03a] Zhongze Li, Yousef Saad, and Masha Sosonkina. pARMS: a parallel version of the algebraic recursive multilevel solver.

Ma:1994:DIS

MacLachlan:2007:GSC

MacLachlan:2007:GCS

Ngo:2010:TRO

Ngo:2012:TRO

Osei-Kuffuor:2010:PHL

Osei-Kuffuor:2015:MRU

REFERENCES

Parlett:1985:CSI

Parlett:1987:CSI

Philippe:1989:SLS

Philippe:2007:CED

Philippe:1992:NMM

Petiton:1993:BSM

Fang:2009:TCM

Fang:2012:FLP

RoCCA:2008:TCT

Saad:1974:CEL

Saad:1974:ETO

Saad:1974:SOA

Saad:1980:LBA

Saad:1980:RCL

Saad:1980:VAM

Saad:1981:KSM

Saad:1982:LBA

REFERENCES

[Saad:1985:CCG]

[Saad:1985:PEL]

[Saad:1985:PUP]

[Saad:1986:GEHb]

[Saad:1986:CNS]

[Saad:1986:GEHa]

[Saad:1986:CCG]

[Saad:1986:GEHb]

[Saad:1986:CNS]

[Saa89a] Youcef Saad. Krylov subspace methods on supercomput-

Practical iterative methods for large scale computations (Minneapolis, MN, 1988).

Y. Saad. Supercomputer implementations of preconditioned

Youcef Saad. ILUM: A multi-elimination ILU preconditioner
REFERENCES

Saad:1997:AAK

Saad:1998:PKS

Saad:2000:E

Saad:2000:FAM

Saad:2001:PIM

Saad:2003:FEA

Saad:2003:IMS

REFERENCES

REFERENCES

Saad:2010:NME

Schofield:2012:SSM

Salas:2015:SRS

Said:1988:HES

Saad:1997:PPL

Saad:1986:NAS

Saad:1988:NAS

Saad:1995:DSC

Y. Saad and A. V. Malevsky. Data structures, computational, and communication kernels for distributed memory sparse iterative solvers. *Lecture Notes*
REFERENCES

YALEU/DCS/RR-428, Department of Computer Science, Yale University, New Haven, CT, USA, October 1985.

Saad:1987:PDM

Saad:1988:TPH

Saad:1989:DCH

Saad:1989:DCP

Saad:1998:SDS

Stathopoulos:1998:RTJ

Saad:1999:EPM

Saad:1999:NSP

Yousef Saad and Maria Sosonkina. Non-standard parallel solution strategies for distributed

Saad:2002:PPS [SS02a]

Saad:2002:AAR [SS02b]

Sidje:2011:RAF [SS11]

Seghouane:2014:PHD

Saad:1996:SLE

Sosonkina:2004:UPA
M. Sosonkina, Y. Saad, and X. Cai. Using the parallel algebraic recursive multilevel solver in modern physical ap-

Yousef Saad, Maria Sosonkina, and Jun Zhang. Domain decomposition and multi-level type techniques for general sparse linear systems. In *Domain de-

Wu:1993:PCM

Wu:1998:INP

Xi:2016:AMP

Xi:2016:CPS

Xi:2017:RFP

Zhou:2014:CFS

Zhou:2007:CD

MAEL. ISSN 0895-4798 (print), 1095-7162 (electronic).

