A Bibliography of Publications of Yousef Saad

Yousef Saad
Computer Science Dept., University of Minnesota
4-192 EE/CSci Building, 200 Union Street S.E.
Minneapolis, MN 55455
USA
Tel: +1 612 624 7804
FAX: +1 612 625 0572
E-mail: saad@cs.umn.edu (Internet)

12 January 2019
Version 2.64

Abstract

This bibliography records publications of Yousef Saad.

Title word cross-reference

3D [GHS10]. \text{exp}(−A)b [SSS10]. f(A)b [CAS11]. \text{ILU} [LSC03]. \text{ILUS} [CS97c]. k [CrFS09]. \text{LU} [CS97c, LSS03b, Saa94d]. \text{tr}(f(A)) [CS18, UCS17].

'02 [AGPS03].

1988 [BTS+89]. 1993 [BCEP94].

20th [Sv00].

5 [WS93].

Abaffy [Saa92h]. ABS [Saa92h]. Abstract [SS85c]. accelerated [LS13b]. accelerating

[KKPS18]. Acceleration [BRZS18, KS87, Saa84b, CS99, rFS09, KS92, ZSTC06a]. acceptors [SKBS88]. ADI [MS92, MS93]. advances [GGL94]. algebra [DS91a].

Algorithm [DS91b, LXV+16, Saa85a, SYEG00, ZS07, ESS86, GS87, GS88b, GS88a, GS89b, Saa74c, Saa80a, Saa82a, Saa86c, SSS04, SL86, SL88, SW93, Saa93a, SW96b, Saa91a]. algorithms [Saa74b]. Algorithms [AGPS03, ASSS11, BDG+10, CS92, CS85a, CS86, CTJ+95, CTZS07, CZC+09, SS85g, Saa92a, Saa92h, Saa94a, Saa94b, Saa95, BGSS14, BS94, CS93, CS96, FRSY96, GS94, KS87, Saa90b, Saa94e, VS14]. Alternating [JSS87, SS85c]. Analysis [BSS09, BSS10, Saa92b, Saa94b, Saa97, Saa16, BJ+99, Saa94e, Saa00b]. analytics [KMB+18]. Anderson [BRZS18]. angle [LS86, SL86, SL88]. Application [CS12, CTWS94]. Applications [AGPS03, ASSS11, BKS08, BDG+10, Saa90b, Saa94e, VS14].
Approximating [BS02b, BS02c, CS94, CS97d, CS98b, Saa03a, BS02a, CrFS09, CS97f].
Approximations [CAS11, Saa92b, GHS10].
Associations [DS91b].
Automated [KXS18].
Automatic [GS94, Saa80c, SSW98].
Augmented [Saa97, CS97b].
Automated [KXS18].
Basic [PSWF93, Saa90a].
Basis [CTS93, CTS94].
Benchmark [SW88b, SW90, Saa94a, SW88a, SW90, Saa94a, SW88b, Saa80b, Saa86b, Saa86c, SS89b].
Bilinear [SS85e, SS87].
Based [BS05b, HS06, KS07, SZ99b, SrFS08, JSS07, LXS16, MOKS12, SW93, SW96b].
Basic [PSWF93, Saa90a].
Basis [CTS93, CTS94].
BilUTM [SZ99b].
Biorthogonalization [Saa80a, Saa82a].
bisection [CrFS09].
Block [LS03, LSS03b, MS93, SS80, SZ99a, SZ99b, Saa03a, ZS08, CS97d, GS87, GS88b, GS88a, GS88b, Saa80b, Saa80c, SS91].
Block-ADI [MS93, MS92].
Block-partitioned [CS85b].
Boeing [SW89].
Book [Saa83c, Saa95].
bordered [CS85b].
Bounds [Saa94b, Saa94e].
Brownian [ACSS12].
Bulk [TZA+06].

calculation [ZSTC06b].
Calculations [ÖBC03, SC10, AJT+07, CTS93, CTS94, JKSC99, SSC+96, ZSTC06a].
Centenary [BCEP94].
Chain [PSS92, Saa91c].
chains [GBB+10, RGSB08].
charge [BSC05].
charging [RGSB08].
Chebyshev [ESS86, Saa84b, ZSTC06a, ZSTC06b, ZS07, ZCS14].
Chebyshev-filtered [ZSTC06a, ZSTC06b, ZCS14].
classes [rFS09].
clusters [CTJ+95, JTD+94].
CM [PSWF93, WS93].
CM-5 [WS93, PSWF93].
Coarse [MS07a].
Coarse-Grid [MS07a].
Coarsening [MS07b, OKLS15].
codes [GS83, JKSC99, UMS17].
Communication [SS85a, Saa85a, SS85d, Saa86c, SS86b, SM95, SS89a, SS89b].
Community [CS12].
Compensation [MOKS12].
Complement [DKXS18, LS05b, Saa99a, GHS10, KLS16, LXS16, Saa07].
complement-based [LXS16].
Complements [BS05a].
Complex [PS85, PS87, Saa83a, Saa84a, Saa86b, Saa86c, Saa87c].
complexities [GS94d].
Complexity [ISS84, ISS86, Saa85a, Saa86c].
Component [JSS07].
Component-based [JSS07].
Computation [BS05a, BKS08, Saa74a, XLS18, LLCS02, dJGGS+05].
Computational [SM95, Fit86].
Computations [BTS+89, FWPS92, PSWF93, SW88a, Saa94a, SW88b, SW90, Saa90a].
Computing [BSTC05, CAS11, Saa92e, Saa95, SSS10, TS11, XS16, ACSS12, CS18, PS07, Saa80c, TS12].
Concurrent [Saa95].
condition [Saa84a, Saa86b, Saa86c].
Conference [BCEP94, Fit86].
Confinement [ÖBC03].
Conjugate [SS85g, SS85f, SS86a, SYEG00, Saa06, Saa85c].
Conquer [LS13a].
consistent [ZSTC06a, ZSTC06b].
Constructed [BS05b].
construction [CrFS09].
continuation [CS85b].
contour [KKPS18].
control [DS91a, Saa90d].
Convergence [BS94, Saa80b].
convergent [BS89].
convex [BS09].
Cornellius [BCEP94].
correcting [UMS17].
Correction [LS17, PS07].
corrections [LXS16, XLS16].
coupled
Factored [BS02b, BS02c, BS02a].

Factorization
[HS06, LS05a, Saa92d, Saa94d].

Factorizations [MOKS12, CCS10]. Fast
[CrFS09, UCS17, VS14, XLS18, GS87, GS88b, GS88a, GS89b, GS89d].
February [GGL94]. feedback [Saa88d]. Fermi [SS11].

few [Saa94b, Saa94e].

eld [ZSTC06a, ZSTC06b].

Filtered [BKS08, rFS12, Saa06, AKS17, ZSTC06a, ZSTC06b, ZCS14]. Filtering
[KXS18, LXV+16]. Filters [XS16]. Finding [Saa03a].

nite [CTS93, CTS94, CTWS94, JTD+94, KSS03, KSSG04].

finite-difference [CTWS94].

finite-difference-pseudopotential [JTD+94]. first [AJT+07]. first-principles
[AJT+07]. flexible [Saa91a, Saa93a]. flows [LLCS02]. fMRI [SS14]. forces [CJWS96].

format [CS97c]. free [ZCS14]. Function
[XS17, SS11]. Functional [BKS08, BSK+03, RGSB08, SS11, dGGS+05]. Further
[BSS10, Saa00b].

Gaussian
[Saa86d, CS14, Saa85a, Saa86c, Saa86a].

General [CS92, CS94, LSC03, Saa94b, Saa96, SZ99a, SZ99b, Saa99a, Saa02a, CS93, CS96, Saa92a, Saa92c, Saa94c, Saa94e, SSS08, ZZ99c, ZS01, SSS02b, Saa07].

Generalized [XLS18, SS86c]. Globally
[BS89]. GMRES [Saa91a, SS86c, Saa93a].

GPU [AKS17, LS13b]. GPU-accelerated
[LS13b]. Gradient
[SS85g, SS85f, SS86a, SYEG00, Saa85c]. Gradient-like [SS85g]. Gram [Saa86e].

Graph [HS06, SrFS08, VS14, CrFS09, GS94, OKLS15]. Graph-Based [SrFS08].

Greedy [MS07b, MS07a]. Grid [MS07a].

Guest [BGSS14].

Hand [Saa87d, KMB+18]. Harnessing
[BGB+10]. Harwell [SW89].

Harwell-Boeing [SW89]. held [GGL94].

Helmholtz [KSS03, KSSG04, OKS10].

Hermitian [SXV+16, Saa74a]. Heuristic
[GS94]. Hierarchical [DKXS18, HS06].

High [CSW00, CrFS09, SS14].

high-dimensional [SS14]. High-order
[CSW00]. Higher
[CTWS94, SKBS88, JTD+94].

Higher-order [CTWS94, JTD+94]. Highly
[Saa94c]. Houston [Fit86]. Hybrid
[BS87, BS90, ESS86, GHS10].

Hydrodynamic [ACS12]. Hypercube
[CS85a, CS85c, CS86, SS87]. Hypercubes
[CS85a, SS85d, SS85b, Saa86a, SS88, Saa86d, SS89a].

ILU [CSW00, CS97c, HS06, LS05a, Saa94c, OKLS15, Saa92d, Saa92c, Saa96, SZ99a, SZ99c, Saa03a, Saa05]. ILUM
[Saa92c, Saa96]. ILUs [BS02c, BS05b].

ILUT [Saa92c, Saa94c]. Inexact
[SWS98]. initio [OBSC03, JTD+94]. inner [Saa91a, Saa93a].

inner-outer [Saa91a, Saa93a]. Institute
[BTS+89]. integration [KKPS18].

interactions [ACS12]. Interior [rFS12].

International [BCEP94]. interval [DSP16].

intervals [Saa83d]. Invariant
[BKS08, PS07]. Inverse
[BS02b, BS05b, CS94, CS98b, TS11, BS02a, CS97d, CS97f, TS12]. Inverse-Based
[BS05b]. Inverses [BS02c]. Invert
[PS87, PS85]. Iron [TZA+06]. irregularly
[FRSY96]. issue [ASS11, BDG+10].

Iteration [Saa16, ZSTC06b, ZCS14].
Iterations [BKS08, CS98b, Saa00b].
Iterative [BTS+89, CS85b, GS83, SS81, Saa83d, SM95, Sv00, Saa03b, CS02, GGLV94, JSS07, KMB+18, LS13b, SW94, SW95, SW96a, SKL+97, Saa01].

J. [Saa92h]. Jacobi [SS98b]. January [Fit86].

Kernels [SM95]. Kohn [SCS12, ZCS14]. Krylov [Saa89a, Saa90b, ACSS12, BSS09, BS87, BS89, BS90, BS94, CS99, CCSY98, CS97b, CS14, ESS86, GS92b, GS92a, Saa81, Saa84c, Saa90d, Saa91b, Saa92b, Saa92e, Saa92f, Saa93b, Saa97, Saa98, Saa11b, ZS08].

Laguerre [SSS10]. Lanczos [BCEP94, AKS17, BGB+10, BSTC05, BK08, CrFS09, C18, rFS12, LXV+16, RGSB08, Saa80a, Saa80b, Saa82a, Saa87d, Saa94b, Saa94e, UCS17].

Lanczos-Type [Saa94b, Saa94e]. Large [BKS08, BKS13, IS66a, LS06, ÖBC03, P889, Saa82b, Saa85b, Saa11b, SSS93, ZS07, D91a, LSY16, Saa7a, Saa80a, Saa80c, Saa81, Saa82a, Saa83b, Saa83e, Saa89b, Saa90c, Saa92g, SSS+96, SAD+00, SSF05, UMS17, WSS98, ZS08].

Latent [SrFS08, VS14]. Least [CAS11, LS06, Saa83a, Saa87c, S16, Saa84a, Saa86b, Saa88e]. Least-Squares [LS06, ZS16]. level [SSZ98, SZ99c, SZ01].

Library [SW94, SW95, SW96a, SKL+97].

Like [DS91b, SS85g]. Linear [DKXS18, ITS07, ISS84, ISS86, MS92, MS93, MS94, SS85g, SS85e, SS87, SS88a, SZZ9a, SS90a, SS90c, S20a, X17, A88, DS91a, ESS86, G83, GS03, JSS07, KMB+18, L13b, OKS10, Saa81, Saa83d, Saa84c, SSS85, SSS86c, Saa87c, Saa88d, Saa88a, Saa88b, Saa88c, SZZ98, SZ99c, SS90b, Svo, S01, Saa01, S02b, Saa03b, Saa07, SSSW00].

liquid [LLCS02]. localized [CJWS96]. Low [CS09b, DKXS18, LS13a, LS17, UMS17, CS08, LXS16, XLS16]. Low-Rank [LS13a, LS17, LXS16, XLS16]. LR [Saa74b].

LU [CCS10]. Lyapunov [Saa90c].
module [CS99, Saa84a, Saa86b]. Molecular [CJWS96, BGB+10, JTD+94]. molecular-dynamics [JTD+94]. molecules [CTWS94]. moment [Saa84a, Saa86b]. Multi [Saa96, Saa92c, SSZ98, SZ99c, SZ01]. Multi-Elimination [Saa96, Saa92c]. Multi-Elimination [Saa96, Saa92c]. Multi-level [SSZ98, SZ99c, SZ01]. multicolor [SS99b]. Multielimination [SZ99a]. Multigrid [CS85a, CS86]. Multilevel [BS05b, KXS18, LS06, SZ99a, SSZ98, SZ99c, SZ01]. Multilevel [BS05b, KXS18, LS06, SZ99a, SSZ98, SZ99c, SZ01]. Multiple [KMB+18]. Multiprocessor [CS85a, CS86, ISS84, ISS86, ISS87]. Multiprocessors [SS85c, Saa85a, JSS87, SS81, Saa86c]. multisecant [rFS09]. Multistage [HS06]. Multivariate [CS14]. N [Saa83c]. nanocrystals [CTSZ07, CZC+09]. Neighborhood [KS07, KS05b]. News [Saa95]. Newton [BS94, WS898]. NN [CrFS09]. Non [SS99c]. Non-standard [SS99c]. nonlinear [BS87, BS89, BS90, BS91, BS94, rFS09, KS92, SGSM15]. Nonsymmetric [LS0303b, MS92, MS93, MS07b, Saa84b, SS85g, Saa85b, ESS86, Saa83a, Saa84c, SS86c, Saa87c, Saa88a, Saa88b, Saa88c, Saa89b]. normal [BS09]. North [BCEP94]. null [ITS07]. null-space [ITS07]. number [Saa86e]. numbers [Saa84a, Saa86b]. Numerical [PSS92, Saa83b, Saa87a, Saa88d, Saa89b, Saa90c, Saa92c, Saa93a]. oblique [Saa80a, Saa82a]. Observer [DS91b]. October [ATS+89]. ODE [GS83]. Operator [Saa92b, CS98a]. OPRA [KS05a]. OPRA-faces [KS05a]. Optimal [CS99b, CS08]. Optimization [NBS10, NBS12, BSS09, KCS09, KCS11]. order [CSW00, CTWS94, JTD+94]. origin [Saa74c]. Orthogonal [CS09b, KS05b, KS07, CS08, Saa83d]. orthogonalization [SW93, SW96b]. outer [Saa80a, Saa82a]. Outer [Saa91a, Saa93a]. Overlapping [CS92, CS93, CS96, LS05b]. overview [Saa90d].

P_SPARSLIB [SW94, SW95, SW96a, SKL+97]. Package [SW88a, SSO2a, SW88b, SW90]. papers [GGL94]. Parabolic [GS92a, GS89c, GS89a, GS90b, GS90a, GS92b]. Parallel [BDG+10, BGSS14, BSK+03, CSS02, CS97f, FWPS92, FRSY96, GS90a, HS06, IS85, IS86b, IS86a, SS85e, SS85f, SS86b, SS86a, Saa87b, SS87, SW94, SS99c, Saa01, SS02a, SÖS+00, ZSTC06a, AS88, AS89, CS99, GS87, GS88b, GS88a, GS89b, GS89c, GS89a, GS89d, GHS10, LSS03a, LCCS02, SS08, SS87a, SS89b, Saa92c, Saa94c, SW95, SW96a, SKL+97, Saa99b, SSS04, AGPS03, ASSS11]. Parlett [Saa83c]. pARMS [LSS03a, SSO2a]. Partial [CSS5, DS91b, Saa85b, XS16, CSS87, Saa88d]. partially [BCEP94]. Particle [LLCS02]. partitioned [CS97d]. partitioning [GS94, LLCS02, Saa74a, VSS14]. Passing [Saa87b, Saa87a, WS93]. Performance [WS93]. periodic [AJT+07]. physical [CSS02, SSS04]. Pivoting [BS02b, BS02a, LS05a]. plane [JKSC99, Saa83a, Saa84a, Saa86b, Saa86c, Saa87c]. plane-wave [JKSC99]. PMAA [AGPS03]. PMAA"10 [ASSS11]. Point [LS03, LSS03b]. pole [Saa88d]. Polynomial [BKS08, CAS11, LXV+16, GS90b, Saa85c]. polynomials [Saa83d, Saa83a, Saa87c, SSS10]. portable [SKL+97]. Positive [Saa80, VSS14]. posteriori [CS18]. potential [CTS93, CTS94]. Practical [BTS+89, Saa84c, Saa85c, BTS+89]. Preconditioned [CCS98, CS14, SS85f,
SS86a, Saa91b, Saa93b, Saa98, LS13b, Saa91a, Saa92f, Saa93a. **Preconditioner** [BS02b, DKXS18, LS05b, LS06, Saa96, SZ99a, SZ99b, XLS16, BS17, BPS02a, CS97c, Saa92c, XLS16].

Preconditioners [BS05b, CS94, CS98b, LS13a, LS17, LSS03b, MS92, MS93, MS94, CS97a, SW00, CS97c, CS97f, GS03, LXS16, Saa94c, SZ99a, Saa07].

Preconditioning [CS98a, KSS03, KSSG04, OKS10, Saa88a, Saa88b, SAD+00, Saa03a, SMSSW00, SSF93, OKLS15, SS99b, SZ01, SSF95, VSS14, WSS98].

Prediction [S ¨OS +00, CTJ+95]. **Preserving** [CCSY98, KS07, KS05b]. **Prewhitening** [SS14]. **primitives** [WS93]. **principles** [AJT+07]. **probing** [TS12]. **Problem** [NBS10, NBS12, CKV+03, SCS12, Saa88a].

Problems [BSS10, DS91b, FRS12, GGL94, IS85, LS06, LXV+16, LS03, LSS03b, MS07b, PS89, Saa84b, Saa11b, Saa16, SSF93, XLS18, CSW00, DS91a, FRYS96, IS68b, KLS16, KKPS18, Saa82b, Saa83a, Saa83b, Saa83c, Saa98b, Saa90d, Saa92g, SSC+96, SAD+00, SST04, SSF95, WSS98, ZS08]. **Procedure** [rFS12, AKS17]. **Proceedings** [BTS+89, Fit86, BCP94]. **Process** [BS10].

Processors [SS85]. **Projection** [BS07, KS07, Saa82b, Saa83c, Saa88d, Saa91e, Saa92h, ITS07, Saa80a, Saa82a].

Projection-Based [KS07]. **Projections** [KS07, KS05b]. **Properties** [SS85b, SS88, S ¨OS+00, CTJ+95, CTS07, CZC+09].

pseudo [CT93, CT94]. **pseudo-potential** [CT93b, CT94]. **pseudopotential** [CTWS94, JTD+94]. **pseudopotentials** [CKV+03]. **PSPARSLIB** [SS98a]. **purpose** [Saa92a].

QR [LS06, Saa74b]. **Quadrature** [UCS17].

quantum [CJWS96]. **Quasi** [SW93, SW96b]. **Quasi-minimal** [SW93, SW96b].

Raleigh [BCEP94]. **Rank** [CS09b, DKXS18, LS13a, LS17, CS08, LX16, UMS17, XLS16].

rates [Saa80b]. **Ratio** [NBS10, NBS12].

Rational [GSS03, KXS18, SCS12, XS16, KS17, SS90a].

Real [PS87, CKV+03, PS85]. **recognition** [KS05a]. **recursive** [CrFS09, SS03a, SS02b, SSS07b, SSS08].

recycling [GSM15]. **Reduction** [CS09a, KS07, NBS10, Saa87, SS88b, GS88a, GS88b, KCS09, KC11].

Relations [BS02c]. **reordering** [OKLS15].

Reorderings [Saa05]. **reorthogonalized** [BSS05, reservoi] [Fit86]. **Residual** [Saa06, SS86c, SW93, SW96b, Saa00b].

Residual-type [Saa06]. **Restart** [LXS16].

Repeated [SSW98]. **Restarting** [SSW98, SS98b]. **Restriction** [LS05b].

Review [Saa83c, Saa92a]. **Reviews** [Saa95].

Right [Saa87d, KMB+18]. **Right-Hand** [Saa87d, KMB+18]. **Ring** [ISS84, ISS86].

Robust [SSF93, SSF95, ZS99a].

Saddle [LS03, LS03b]. **Sampling** [CS14].

Scalable [KMB+18]. **Scale** [BTS+89].

Schur [Saa07, BS05a, DKXS18, GHS10, KLS16, LS05b, LS06, Saa99a, SS08].

Schur-RAS [LS05b].

Scientific [Saa95].

Seismic [Fit86].

Selection [MS07].

Self [SZC06b, ZSCT06a]. **Self-consistent-field** [ZSCT06b, ZSCT06a].

Semantic [SrFS08, VS14]. **semiconductor** [KS87].

semiconductors [SKBS88].

Sequence [BRZS18]. **sets** [SS14]. **Several** [Saa87d].

Sham [SCS12, ZCS14].

Shanks [BRZS18].

Shared [Saa87b, Saa87a]. **Shift** [PS87, PS85].

Shifts [Saa74c]. **Si** [JTD+94].

Sides [Saa87d, KMB+18]. **Simulation** [KS87].

Simulations [ACCSS12, JT04].

Singular [CS09a].

skyline [CS97c].

slicing [SCS12].

Smallest [BS05a].

SNAP [RSC07].

Software [AEKS90, Saa92a].

Solid [LLCS02].

Solid-liquid [LLCS02].

Solution [DS91a, GS92a, ISS84, ISS85, ISS86, IS86b].
Solving [AS88, AS89, CSS85, CSS87, MS92, MS93, PS89, SS80, Saa84b, SS85g, SS85e, SS85, Saa87d, SS87, Saa02a, BS91, CSS85b, ESS86, LSS86, Saa80a, Saa81, Saa82a, Saa82b, Saa83a, Saa83e, Saa84c, Saa86c, SL86, Saa87c, SL88, ZCS14]. Some [GS89d, SW89, Saa92b, BSS09, Saa84c, Saa86e]. SOR [MS94]. space [CKV03, ITS07]. SPARK [SW90]. Sparse [AEKS90, CS92, CS94, CS98b, FWPS92, GHS10, GGL94, IS86a, LSC03, LS06, MS92, MS93, MS94, PSWF93, PS98, SW88a, SW89, Saa94a, SW94, SM95, Saa96, Saa98a, Saa99a, Saa99c, Saa99d, Saa99e, Saa99f, Saa02a, XS17, AS88, AS89, CS93, CS96, CS97c, GSS03, JSS07, LS05a, Saa82b, Saa83a, Saa83e, SW88b, SW90, Saa90a, Saa92c, Saa94c, SW95, SW96a, SKL+97, SZZ98, SZZ99, SZZ00, SZ01, Saa01, SS02b, Saa03b, Saa07, SSF95, XLS16, ZCS14]. Sparse-Sparse [CS98b]. SPARSKIT [Saa90a]. Special [ASSS11, BJ+09, BDG+10]. Spectra [XS16, CJWS96]. Spectral [BS05a, KLS16, SGM15, XLS18, LSY16]. Spectrum [DS91b, SCS12]. Specidcato [Saa92h]. Squares [CAS11, LS06, XS16, Saa83a, Saa84a, Saa86b, Saa86e, Saa87c]. standard [SS99c]. Standards [AEKS90]. state [Saa88d]. states [BG+B+10, SKBSS88]. Statistics [SW89]. Stiefel [SS80]. Stochastic [UCS17]. Strategies [MS07b, MOKS12, PS87, SS99c, LLCS02, PS85, SZ01, SGSM15, SMSW00]. Strategy [MS07a]. structural [CTJ+95]. Structure [SCS10, AJT+07, CT93, CTS94, CKV+03, JKSC99, SSC+96]. Structured [GGL94, FRSY96]. Structures [Saa94a, SM95, Saa03a]. study [CS97e]. Subgraph [CS12]. Subspace [CCS98, CS14, Saa91b, Saa92b, Saa92c, Saa93b, Saa97, Saa11a, Saa16, ACS12, BSS09, BS89, CS97b, ESS86, Saa81, Saa84c, Saa89a, Saa90b, Saa90d, Saa92f, CJ98, ZSTC06a, ZSTC06b, ZCS14]. Subspaces [BKSO8, PS07]. Substructuring [KXS18]. sum [CS97a]. Supercomputer [BTS+89, Saa91b, Saa93b]. Supercomputers [PS89, Saa89a]. SVD [CS08, CS09b]. Sylvester [DS91b]. Sylvester-Like [DS91b]. Symmetric [LS13a, LS03b, Saa83c, Saa87d, SSF93, ZS07, KLS16, KKPS18, LS05a, Saa83d, SSF95, SS98b, VSS14, WSS98, XLS16, ZS08]. Symmetry [CCS98]. System [ISS84, ISS6, BS87, ITS07, KMB+18]. Systems [DKXS18, MS92, MS93, MS94, OBSC03, SS80, SS85g, SS85e, Saa87d, SS87, SS89a, SS99a, SS99b, Saa90a, Saa92a, Saa94c, SW89, Saa94a, SW95, SW96a, SKL+97, SZZ98, SZZ99, SZZ00, SZ01, Saa01, SS02b, Saa03b, Saa07, SSF95, XLS16, ZCS14]. Technique [KS07]. Techniques [IS86a, Saa84b, Saa99a, CS97d, KS16, KS03, KSSG04, KS87, Saa74a, Saa88a, Saa88b, Ssa88c, SSZ98, SZ99c, SS99b, SAD+00, SS98b, VSS98]. Tensor [CS97a, CS09b, CS08]. Tensors [CS09b, CS08]. Texas [Fit86]. their [GS89d, Saa87c]. Theoretical [Saa94b, Saa94e]. Theory [BKSO8, BSS09, BS94, BSK+03, RGSB08, Saa90b, SS11, dGGS+05]. thermoacoustics [SGSM15]. Thick [LXV+16, SW98]. Thick-Restart [LXV+16]. three [LS86].
three-dimensional [LSS86]. Threshold [MOKS12, Saa92d, Saa94d, SZ99c]. Threshold-based [MOKS12]. time [BSK+03, RGSB08, dGGS+05].
time-dependent [BSK+03, RGSB08, dGGS+05]. tire [SMSW06]. tool [Saa90a]. Tools [SOS+00, Saa92a]. Topological
[SS85b, SS88]. Trace [KCS09, KCS11, NBS10, NBS12]. Transformations [BRZS18], translations [Saa74b]. trends [Saa92f]. triangular
[AS88, AS89]. Turbo [RGSB08]. Two [rFS09, Saa83d]. Type [Saa94b, TS11, Saa94e, SSZ98, Saa06].

Unstructured [MS94]. unsymmetric [Saa80a, Saa80c, Saa81, Saa82a]. updating [VS14]. use [Saa84c, Saa85c, Saa87c]. Using
[BKS08, CKV+03, SS98a, SSC04, BS05a, CS18, JTD+94, K505a, OKLS15, Saa83d, UMS17, VSS14, ZSTC06b].

values [VSS14]. Variations [Saa80c, SST04]. Vectors [CS09a]. Velde [Saa95]. Version [LS05b, SYEG00, LSS03a]. Versions [LSC03, SZ99a, LS50a]. versus
[CS09a]. via [BS09, CrFS09, CAS11, CS98b, UCS17, ZSTC06a]. Vibrational [CJWS96, CZC+09]. volume [BJR+09].

[BTS+89, GGL94].

References

[ACSS12] Tadashi Ando, Edmond Chow, Yousef Saad, and Jeffrey Skolnick. Krylov subspace methods for computing

REPRESENTATIVE

Arbenz:2011:SIP

Bekas:2010:SIP

Baroni:2010:HME

Stefano Baroni, Ralph Gebauer, O. Baris Malcioglu, Yousef Saad, Paolo Umari, and Jiawei Xian. Harnessing molecular excited states with Lanczos chains. Journal of Physics: Condensed Matter, 22(7):074204, February 24, 2010. CODEN JCOMEL. ISSN 1361-648X.

Bekas:2014:PMA

Costas Bekas, Ananth Grama, Yousef Saad, and Olaf Schenk. Parallel matrix algorithms [Guest editorial]. Parallel Computing, 40(7):159–160, July 2014. CODEN PACOEJ. ISSN 0167-
REFERENCES

Beckermann:2008:SVM

Bekas:2007:EDM

Bekas:2008:CLI

Brezinski:2018:SST

Brown:1987:HKM

Brown:1989:GCN

Brown:1990:HKM

Brown:1991:PMS

Brown:1994:CTN

Bollhofer:2001:FAI

Bollhofer:2002:FAI

Bollhofer:2002:RBI

Bekas:2005:CSE

Bollhofer:2005:MPC

Burdick:2003:PIT

Bellalij:2008:ASK

Bellalij:2010:FAA

Bekas:2005:CCD

Boley:1989:PIM

Chen:2011:CLS

Calgaro:2010:IIL

REFERENCES

REFERENCES

[CS97e] Edmond Chow and Yousef Saad. Experimental study of ILU preconditioners for indefinite ma-

Chow:1997:PAI

Castillo:1998:PME

Chow:1998:AIP

Calvez:1999:MKA

Chen:2008:TSO

Chen:2009:LVV

Chen:2009:TSO

REFERENCES

ISSN 0895-4798 (print), 1095-7162 (electronic).

Chelikowsky:1995:APS

Chelikowsky:1993:FDP

Chelikowsky:1994:FDP

Chelikowsky:2007:AEE

Chelikowsky:1994:HOF

Chelikowsky:2009:AEV

Dillon:2018:HLR

[DKXS18] Geoffrey Dillon, Vassilis Kalantzis, Yuanzhe Xi, and Yousef Saad. A hierarchical low rank Schur complement preconditioner for indefinite linear systems. SIAM Jour-
REFERENCES

REFERENCES

Gallopoulos:1989:PSPb

Gallopoulos:1989:PBC

Gallopoulos:1989:PSPa

Gallopoulos:1989:SFE

Gallopoulos:1990:PSP

Gallopoulos:1990:ESP

Gallopoulos:1992:ESPb

Gallopoulos:1992:ESP

REFERENCES

for accelerating contour integration eigenvalue solvers for symmetric eigenvalue problems. *Numerical Linear Algebra with Applications*, 25(5):??, October 2018. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Kokiopoulou:2007:ONP

Kechroud:2003:PTS

Kechroud:2004:PTS

Kalantzis:2018:BAM

Little:2002:PPS

Little:2003:BPSa

Li:2005:CVI

[Na Li and Yousef Saad. Crout versions of ILU factorization

[LS03] Na Li and Yousef Saad. Crout versions of ILU factorization

[LS05a] Na Li and Yousef Saad. Crout versions of ILU factorization

Ma:1993:BAP

Ma:1994:DIS

MacLachlan:2007:GSC

MacLachlan:2007:GCS

Ngo:2010:TR

Ngo:2012:TRO

Ogut:2003:ICL

Osei-Kuffuor:2015:MRU
REFERENCES

Osei-Kuffuor:2010:PHL

Parlett:1985:CSI

Parlett:1987:CSI

Philippe:2007:CED

Philippe:1989:SLS

Petiton:1993:BSM

Fang:2009:TCM

Fang:2012:FLP

REFERENCES

DEN SJOCE3. ISSN 1064-8275 (print), 1095-7197 (electronic).

Rocca:2008:TCT

Saad:1974:CEL

Saad:1974:ETO

Saad:1974:SOA

Saad:1980:LBA

Y. Saad. The Lanczos biorthogonalization algorithm and other oblique projection methods for solving large unsymmetric systems. Report 1036, Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA, 1980. 44 pp.

Saad:1980:RCL

Saad:1980:VAM

Saad:1981:KSM

Saad:1982:LBA

[Saad:1984:PUS]

[Saad:1985:CCG]

[Saad:1985:PEL]

[Saad:1985:PUP]

[Saad:1986:CNM]

[Saad:1986:GEHa]

[Saad:1986:CCG]

[Saad:1986:GEHb]

Saad:1987:DPNa

Saad:1987:DPNb

Saad:1987:LSP

Saad:1987:LMS

Saad:1988:PTI

Saad:1988:PTNa

Saad:1988:PTNb

Saad:1988:PDM

Saad:1989:KSM

Yousef Saad. Krylov subspace methods on supercomput-

[Saa91b] Y. Saad. Supercomputer implementations of preconditioned

March 1, 1992. CODEN LAA-PAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

[Saa96] Y. Saad. ILUM: A multielimination ILU preconditioner
Saad:1997:AAK

[Saa97]

Saad:1998:PKS

[Saa98]

Saad:2000:E

[Saa00a]

Saad:2000:FAM

[Saa00b]

Saad:2003:FEA

[Saa03a]

Saad:2003:IMS

[Saa03b]
REFERENCES

Saad:2010:NME

Schofield:2012:SSM

Salas:2015:SRS

Said:1988:HES

Saad:1997:PPL

Saad:1986:NAS

Saad:1988:NAS

Saad:1995:DSC

REFERENCES

[SMSW00] Preconditioning techniques for large sparse matrix problems in industrial applications (Minneapolis, MN, 1999).

REFERENCES

YALEU/DCS/RR-428, Department of Computer Science, Yale University, New Haven, CT, USA, October 1985.

Saad:1987:PDM

Saad:1988:TPH

Saad:1989:DCH

Saad:1989:DCP

Saad:1998:SDS

Stathopoulos:1998:RTJ

Saad:1999:DSC

Saad:1999:EPM

Saad:1999:NSP
Yousef Saad and Maria Sosonkina. Non-standard parallel solution strategies for distributed
REFERENCES

sparse linear systems. Lecture Notes in Computer Science, 1557:13–27, 1999. CO-
DEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic). URL http://link.springer-
ny.com/link/service/series/0558/bibs/1557/15570013.htm; http://link.springer-ny.com/
link/service/series/0558/papers/1557/15570013.pdf.

general sparse linear systems on parallel computers. Lecture Notes in Computer Science,
URL http://link.springer-ny.com/link/service/series/0558/bibs/2328/23280446.htm;

multilevel solver for general sparse linear systems. Numerical Linear Algebra with Applica-
tions, 9(5):359–378, July/August 2002. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (elec-
tronic).

Fermi–Dirac function with appli-
DEN NULJHM. ISSN 1017-1398 (print), 1572-9265 (elec-
volume=56&issue=3&page=455.

Sehouane:2014:PHD Abd-Krim Sehouane and Yousef Saad. Prewhitening high-
ISSN 0899-7667 (print), 1530-888x (electronic).

Saad:1996:SLE [SSC+96] Y. Saad, A. Stathopoulos, J. Chelikowsky, K. Wu, and
S. Ögiü. Solution of large eigenvalue problems in electronic structure calculations. BIT Nu-
erical Mathematics, 36(3):563–578, September 1996. CODEN BITTEL, NBITAB. ISSN 0006-

algebraic recursive multilevel solver in modern physical ap-

Stathopoulos:1993:RPL

Stathopoulos:1995:RPL

Saad:1985:SED

Sheehan:2010:CET

Saad:2004:VAR

Stathopoulos:1998:DTR

Saad:1998:DDM

Yousef Saad, Maria Sosonkina, and Jun Zhang. Domain decomposition and multi-level type techniques for general sparse linear systems. In *Domain de-

[Vecharynski:2014:FUA] Eugene Vecharynski and Yousef Saad. Fast updating algorithms for latent semantic index-

REFERENCES

