A Bibliography of Publications of Yousef Saad

Yousef Saad
Computer Science Dept., University of Minnesota
4-192 EE/CSci Building, 200 Union Street S.E.
Minneapolis, MN 55455
USA
Tel: +1 612 624 7804
FAX: +1 612 625 0572
E-mail: saad@cs.umn.edu (Internet)

12 October 2019
Version 2.66

Abstract
This bibliography records publications of Yousef Saad.

Title word cross-reference

3D [GHS10]. exp(−τA)b [SSS10]. f(A)b [CAS11]. ILU [LSC03]. ILUS [CS97c]. k [CrFS09]. LU [CS97c, LSS03b, Saa94d]. \(\text{tr}(f(A)) \) [CS18, UCS17].

'02 [AGPS03].

1988 [BTS+89]. 1993 [BCEP94].

20th [Sv00].

5 [WS93].

Abaffy [Saa92h]. ABS [Saa92h]. Abstract [SS85c]. accelerated [LS13b]. accelerating [KKPS18]. Acceleration [BRZS18, KS87, Saa84b, CS99, rFS09, KS92, ZSTC06a]. acceptors [SKBS88]. ADI [MS92, MS93]. advances [GGL94]. algebra [DS91a]. Algebraic [LS17, GHS10, LSS03a, SS02b, SST04, SSC04, XLS16]. Algorithm [DS91b, LXV+16, Saa85a, SYEG00, ZS07, ESS86, GS87, GS88b, GS88a, GS89b, Saa74c, Saa80a, Saa82a, Saa86c, SS86c, SL86, SL88, SW93, Saa93a, SW96b, Saa91a]. algorithms [Saa74b]. Algorithms [AGPS03, ASSS11, BDG+10, CS92, CS85a, CS86, CTJ+95, CTSZ07, CZC+09, LXES19, Saa84g, Saa92a, Saa94a, Saa94b, Saa94c, BGSS14, BS94, CS93, CS96, FRSY96, GS94, KS87, Saa90b, Saa94e, US19, VS14].

Alternating [JSS87, SS85c]. Analysis [BSS09, BSS10, Saa92b, Saa94b, Saa97, Saa16, BJR+09, Saa94e, Saa00b]. analytics [KMB+18]. Anderson [BRZS18]. angle [LSS86, SL86, SL88]. Application [CS12, CTWS94]. Applications [AGPS03, ASSS11, BKS08, BDG+10, Saa06, Saa93a, Saa94a, Saa94b, Saa94c, BGSS14, BS94, CS93, CS96, FRSY96, GS94, KS87, Saa90b, Saa94e, US19, VS14].
approach [GS90a].
Approximate [GS90a].
Approximation [CS97a, CS97f].
Approximations [CS97a, CS97f].
Architectures [IS86b, IS86a, SS86b].
arising [Saa86e, SMSW00].
ARMS [SS85e, SS87].
Arnoldi [BSS10, DS91b, Saa80c, SSW98].
array [SSS85].
Assignment [DS91b, Saa88d].
Associated [DS91b].
Atom [TZA+06].
Augmented [Saa97, CS97f].
Automated [KXS18].
Automatic [GS94, Saa92a].
Banded [SS85e, SS87].
Based [BS05b, HS06, KS07, SZ99b, SrFS08, JSS07, LXS16, MOKS12, SW93, SW96b].
Basic [PSWF93, Saa90a].
basis [CTS93, CT94].
Benchmark [SW88b, SW88a, SW90].
Beresford [Saa83c].
between [BS02c].
Beyond [KXS18].
BILUM [SZ99a].
BILUTM [SZ99b].
biorthogonalization [Saa80a, Saa82a].
bisection [CrFS09].
Block [LS03, LSS03b, MS93, SS80, SZ99a, SZ99b, Saa03a, ZS08, CS97d, GS87, GS88b, GS88a, GS99b, Saa86b, SZ01, MS92].
Block-ADI [MS93, MS92].
block-partitioned [CS97d].
Boeing [SW89].
Book [Saa83c, Saa95].
bordered [CS85b].
Bounds [Saa94b, Saa94e].
Brownian [ACSS12].
Bulk [TZA+06].
calculation [ZSTC06a]. Calculations [BCEP94, SSC10, AJT+07, CTS93, CTS94, JKSC99, SSC+96, ZSTC06a].
Carolina [BCEP94].
Centenary [BCEP94].
century [Sv00].
CFD [CSW00, Saa90a].
Chain [PSS92, Saa91c].
chains [BGB+10, RG90b].
charge [BSTC05].
charging [RG90b].
Chebyshev [ES886a, SS84b, ZSTC06a, ZSTC06b, ZS07, ZCS14].
Chebyshev-filtered [ZSTC06a, ZSTC06b, ZCS14].
classes [rFS09].
clusters [CTJ+95, JTD+94].
CM [PSWF93, WS93].
CM-5 [WS93, PSWF93].
Coarse [MS07a].
Coarse-Grid [MS07a].
Coarsening [MS07b, OKLS15, US19].
codes [GS83, JKSC99, US19].
Communication [SS85a, Saa85a, SS85d, SS86c, SS86b, SM95, Saa89a, SS89b].
Community [CS12].
Compensation [MOKS12].
Complement [DKXS18, LS05b, Saa89a, Saa89b].
complexities [GS89d].
Complex [PS85, PS87, Saa83a, Saa84a, Saa86b, Saa86c, Saa86e, Saa87c].
Component [JSS07].
Component-based [JSS07].
Computational [SM95, Fit86].
Computations [BTS+89, FWPS92, PSWF93, SW88a, Saa94a, SW88b, SW90, Saa90a].
Computers [FWPS92, SS02a, AS88, AS89].
Computing [BCEP94, BKS08, Saa74a, XLS18, LLC02, dGGS+05].
Conference [BCEP94, Fit86].
Confined [BCEP94].
Conjugate [SS85g, SS85f, SS86a, SYEG00, Saa06, Saa85c].
Conquer [LS13a].
consistent [ZSTC06a, ZSTC06b].
Constructed [BS05b].
construction [CrFS09].
continuation [SS85b].
contour [KKPS18].
control [DS91a, Saa90d].
Convergence [BS94, Saa80b].
convergent [BS89].
convex [BS90].
Cornelius [BCEP94].
correcting [UMS17].

dans [Saa74b]. Data [SS85a, SS85d, SS86b, SS89a, SS89b, Saa94a, SM95, CrFS09, KMB +18, SS14]. Davidson [SSW98, SS98b, ZS07]. December [BCEP94]. Decomposition [CS92, HS06, KXS18, LS17, Saa94a, TS11, CS93, CS96, KKPS18, LXS16, PS07, Saa92a, SSZ98, UMS17]. decoupling [KS87].

Definite [SS80, VSS14]. Deflated [CS97b, SYEG00]. deflation [Saa88d]. Dense [CS12, ISS84, ISS86, KMB +18]. Dense-Linear-System [ISS86]. Densities [XLS18, BSTC05, LSY16]. Density [BKS08, BSK +03, RGSB08, SS11, dlGGS +05].

density-functional [RGSB08]. dependent [BSK +03, RGSB08, dlGGS +05]. Design [Saa78b, SW95, SW96a, Saa87a, SMSW00]. Detection [CS12]. Diagonal [S299c, Saa05, TS11, BKS07, TS12]. diagonalization [JKSC99, ZCS14]. diatomic [CTWS94]. Dielectric [¨OBSC03]. difference [CTS93, CTS94, CTWS94, JTD +04, SSS85].

Differential [CSS85, CSS87, SS81]. Dimension [CSS9a, KC509, KS91, Saa83b].

dimensional [CrFS09, LSS86, SS14]. Dimensionality [KS07, NBS10, SrFS08]. Dirac [SS11]. Direct [SS85c, SS87, SW96b]. Direction [SS85c, JSS87].

disjoint [Saa83d]. Distributed [MS94, Saa92e, Saa94a, SM95, SS98a, SS99a, SS99c, Saa07].

Distributions [CS14]. Divide [LS13a]. Domain [CS92, KXS18, KKPS18, LS17, Saa94a, SSZ98, S299b, TS11, CS93, CS96, LXS16, PS07, Saa92a]. Domain-Based [S299b]. Domain-Decomposition-Type [TS11]. Dominance [Saa05]. d’origine [Saa74b]. DQGMRES [SW93, SW96b].

dual [Saa92d, Saa94d]. Dynamic [SSW98]. dynamics [ACSS12, CJWS96, JTD +94].

E. [Saa92h]. Editorial [Saa00a, BGSS14].

Effective [CS09a]. Efficient [AJT +07, PS016, GS90b, GS92b, GS92a, dlGGS +05, LSS86]. eigendecomposition [S298]. eigenelements [Saa80e].

Eigenfaces [SrFS08]. Eigenproblems [ZS07, KCS90, KCS11, SSM15].

Eigensolutions [Saa85b]. Eigenvalue [BSS10, rFS12, IS85, IS86b, LXV +16, PS89, Saa93c, Saa84b, Saa11b, Saa16, SSF93, XL816, DPKS16, KLS16, KKPS18, Saa82b, Saa83e, Saa89b, Saa92g, S3C +96, SSF95, SS98b, WSS98, ZS08].

Eigenvalues [BS05a, Saa74a, LXS19]. Electronic [JKSC99, SCS10, AJT +07, CTS93, CTS94, CKV +03, CTZ07, CZC +09, SSC +96]. element [KSS03, KSSG04]. Elimination [Saa85a, Saa86a, Saa96, Saa86c, Saa86d, Saa92c].

Elliptic [CSS85, CSS87, GS78, GS88b, GS88a, GS89b, GS89d, KSS92, SS81, SSM85].

Enhanced [Saa99b, ZS01]. Environments [Saa78b, Saa92e, CS99, Saa87a]. equation [KSS03, KSSG04, LSS86, SL86, SL88, ZCS14].

Equations [CSS85, GS92a, KS92, MS93, BS87, BS90, BS91, CSS87, ESS86, GS87, GS88b, GS88a, GS89b, GS98c, SSS89a, SSS89b, SSS90a, SSS90b, SSS90c, SSS90d, PS07, SS81, SSS85, Saa90c].

Eric [Saa95]. Error [Saa94b, CS18, Saa94e, SMS17]. estimate [CS818]. Estimation [UCS17, PS016]. estimator [KSS07]. Études [Saa74b].

Evolution [TZA +06, CTZ07]. Evolving [Saa16]. EVSL [LXS19]. Exact [Saa03a].

excited [BGB +10, SKBS88]. Experimental [CS97e]. exploration [Fit86]. Exponential [Saa92b, CS98a].

Extended [SS85c]. Extraction [CS12]. Extreme [rFS12].
F [Saa95]. Face [KS05a]. faces [KS05a].
Factored [BS02b, BS02c, BS02a].
Factorization
[HS06, LS05a, Saa92d, Saa94d].
Factorizations [MOKS12, CCS10]. Fast
[CrFS09, UCS17, VS14, XLS18, GS87,
GS88b, GS88a, GS89b, GS89d, US19].
February [GGL94]. feedback [Saa88d].
Fermi [SS11]. few [Saa94b, Saa94e]. field
[ZSTC06a, ZSTC06b]. Filtered
[BKS08, rFS12, Saa06, AKS17, ZSTC06a,
ZSTC06b, ZCS14]. Filtering
[KXS18, LXV+16]. Filters [XS16]. Finding
[Saa03a], finite [CTS93, CTS94, CTWS94,
JTD+94, KSS03, KSSG04].
finite-difference [CTWS94].
finite-difference-pseudopotential
[JTD+94]. first [AJT+07]. first-principles
[AJT+07]. flexible [Saa91a, Saa93a]. flows
[LLCS02]. fMRI [SS14]. forces [CJWS96].
format [CS97c], free [ZCS14]. Function
[XS17, SS11]. Functional [BKS08, BSK+03,
RGSB08, SS11, dIGGS+05]. Further
[BSS10, Saa00b].

Gaussian
[Saa86d, CS14, Saa85a, Saa86c, Saa86a].
General [CS92, CS94, LSC03, Saa94b,
Saa96, SZ99a, SZ99b, Saa99, S02a, CS93,
CS96, Saa92a, Saa92e, Saa94c, Saa94e,
SSZ08, SZ90c, SZ91, SS02b, Saa07].
Generalized [XLS18, SS86c]. Globally
[BS89]. GMRES [Saa91a, SS86c, Saa93a].
GPU [AKS17, LS13b]. GPU-accelerated
[LS13b]. Gradient
[SS85g, SS85f, SS86a, SYEG00, Saa85c].
Gradient-like [SS85g]. Gram [Saa86e].
Graph [HS06, SrFS08, VS14, CrFS09,
GS94, OKLS15]. Graph-Based [SrFS08].
Greedy [MS07b, MS07a]. Grid [MS07a].
Guest [BGSS14].

Hand [Saa87d, KMB+18]. Harnessing
[BGB+10]. Harwell [SW89].

Harwell-Boeing [SW89]. held [GGL94].
Helmholtz [KSS03, KSSG04, OKS10].
Hermitian [LXV+16, Saa74a]. Heuristic
[Sa94]. Hierarchical [DKXS18, HS06].
High [CSW00, CrFS09, SS14].
high-dimensional [SS14]. High-order
[CSW00]. Higher
[CTWS94, SKBS88, JTD+94].
High-order [CTWS94, JTD+94]. Highly
[Saa94c]. Houston [Fit86]. Hybrid
[BS87, BS90, ES88, GHS10].
hydrodynamic [ACSS12]. Hypercube
[CS85a, CS85b, CS86, CS87]. Hypercubes
[SS85a, SS85d, SS85b, Saa86a, SS88, Saa86d,
Saa89a].

ILU [CSW00, CS97e, HS06, LS05a, MS94,
OKLS15, Saa92d, Saa92e, Saa96, SZ99a,
SZ99c, SZ91, Saa03a, Saa05]. ILUM
[Saa92c, Saa96]. ILUs [BS02c, BS05b].
ILUT [Saa92d, Saa94d, SZ99b]. IMA
[GGL94]. Impact [IS85, IS86b, IS86a].
Implementation
[LXES19, AKS17, BSK+03].
Implementations
[SS85f, SS86a, Saa91b, Saa93b]. Implicitly
[SSW98]. Incomplete
[LS06, MOKS12, CCS10, CS97c, Saa92d,
WS93, Saa94d, WS96b]. Incremental
[CCS10]. Indefinite [DKXS18, XS17, CS97e,
Saa83d, Saa84c, Saa88a, Saa88b, Saa88c].
Indexing [SrFS08, VS14]. industrial
[SAD+00]. Inexact [WS98]. Initio
[OBSC03, JTD+94]. inner [Saa91a, Saa93a].
inner-outer [Saa91a, Saa93a]. Institute
[BTS+89]. integration [KKPS18].
interactions [ACSS12]. Interior [rFS12].
International [BCEP94]. interval [DP16].
intervals [Saa83d]. Invariant
[BKS08, PS07]. Inverse
[BS02b, BS05b, CS94, CS98b, TS11, BS02a,
CS97d, CS97f, TS12]. Inverse-Based
[BS05b]. Inverses [BS02c]. Invert
[PS87, PS85]. Iron [TZA+06]. irregularly
[FRSY96]. Issue [ASSS11, BDG⁺10].
Iteration [Saa16, ZSTC06b, ZCS14].
Iterations [BK08, CS98b, Saa00b].
Iterative [BTS⁺89, CS85b, GS83, SS81, Saa83d, SM95, Sv00, Saa03b, CSS02, GGL94, JSS07, KMB⁺18, LS13b, SW94, SW95, SW96a, SKL⁺97, Saa01].

J. [Saa92h]. Jacobi [SS98b]. January [Fit86].

Kernels [SM95]. Kit [Saa90a]. Kohn [SCS12, ZCS14]. Krylov
[Saa89a, Saa90b, ACSS12, BSS09, BS87, BS89, BS90, BS94, CS99, CCSY98, CS97b, CS14, ESS86, GS92b, GS92a, Saa81, Saa84c, Saa90d, Saa91b, Saa92b, Saa92e, Saa92f, Saa93b, Saa97, Saa98, Saa11a, ZS08].

Laguerre [SSS10]. Lanczos
[BCEP94, AKS17, BGB⁺10, BSTC05, BK08, CrFS09, CS18, CS92, CS94, LSC03, LS13a,¨OBSC03, PS87, Saa85b, SW89, Saa96, SZ99b, Saa16, BSS09, CS93, CS96, CS97d, CS97e, LS05a, LS16, PS85, Saa74a, Saa80c, Saa86b, Saa86e, Saa92c, Saa94e, UMS17, XLS16].

Lanczos-Type [Saa94b, Saa94e]. Large
[BK08, BKS07, BGSS14, CS98a, Saa83a, Saa83b, SW88b, Saa90a, SW94, TS11, BJR⁺09, BK08, BGSS14, CS98a, Saa83a, Saa83b, SW88b, Saa90a, SW94, TS11, BS87, BS89, BS90, BS91, CSS02, CS85b, CS96, CS97d, CS97e, LS05a, LS16, PS85, Saa74a, Saa80c, Saa86b, Saa86e, Saa92c, Saa94e, UMS17, XLS16].

Latent
[SF85, VS14]. Least
[ACSS11, LS06, Saa83a, Saa87c, XS16, Saa84a, Saa86b, Saa86e]. Least-Squares
[LS06, XS16]. Level
[SSZ98, SZ99c, SZ01]. Library
[LXES19, SW94, SW95, SW96a, SKL⁺97]. Like
[DS91b, SS85g]. Linear
[DKXS18, ITS07, ISS84, ISS86, MS92, MS93, MS94, SS85g, SS85e, SS87, SS98a, SZ99a, SSS9c, SSS02a, X17, AS88, DS91a, ESS86, GS83, GSS03, Jss07, KMB⁺18, LS13b, OKS10, Saa81, Saa83d, Saa84c, SSS85, SSS6c, Saa87c, Saa88d, Saa88a, Saa88b, Saa88c, SSZ98, SZ99c, SS99b, Sv00, SZ01, Saa01, Saa02b, Saa03b, Saa07, SMSW00]. Liquid [LCS02]. Localized [CJWS06]. Low
[CS09b, DKSX18, LS13a, LS17, UMS17, CS08, LS16, XLS16]. Low-Rank
[LS13a, LS17, LS16, XLS16]. LR [Saa74b]. LU [CCS10]. Lyapunov [Saa90c].

Magnetism [TZA⁺06]. March [GGL94].
Markov [PSS92, Saa91c]. Massively
[FWS92]. Material [SÖS⁺00]. Materials
[SCS10]. Mathematical
[Fit86, Fit86].

Matrices
[CS92, CS94, LSC03, LS13a, ÖBS03, PS87, Saa85b, SW89, Saa96, SZ99b, Saa16, BSS09, CS93, CS96, CS97d, CS97e, LS05a, LS16, PS85, Saa74a, Saa80c, Saa86b, Saa86e, Saa92c, Saa94e, UMS17, XLS16].

Matrix
[AGPS03, ASSS11, AEKS90, BDG⁺10, FWS92, IS86a, OKLS15, PSWF93, SW88a, Saa92b, Saa94a, SW94, TS11, BJR⁺09, BK08, BGSS14, CS98a, Saa83a, Saa83b, SW88b, Saa90a, SW95, SW96a, SAD⁺00, TS12, US19, VS14, dlGGS⁺05]. Memory
[Saa87b, SM95, Saa87a]. Message
[Saa87b, Saa87a, WS93]. Method
[SS80, Saa87d, CTS93, CTS94, CTWS94, CS18, JTD⁺94, KSS03, KSSG04, LSS86, Saa80c, Saa85c, SCS12, TS12, ZS08, ZCS14].

Methods
[BTS⁺89, CCSY98, CS14, DS91b, GS92a, LS17, PS92, SS81, SS85c, SS85e, SS85f, SS86a, Saa87b, SS87, Saa91b, Saa92e, Saa93b, Saa97, SC10, Saa11a, Saa11b, SS98, SÖS⁺00, TS11, ACSS12, BSS09, BS87, BS89, BS90, BS91, CSS02, CS85b, rFS09, Fit86, GS90b, GS92b, GGL94, JSS87, JSS07, KS92, KCS09, KCS11, Saa80a, Saa80b, Saa81, Saa82a, Saa82b, Saa83d, Saa83b, Saa83e, Saa84c, Saa84d, Saa89a, Saa90b, Saa90d, Saa91c, Saa92g, Saa92f, Saa98, Saa01, Saa03b, Saa98b]. Minimal
[SS86c, SW93, SW96b]. Minimum
[Saa00b]. Minneapolis
[BTS⁺89, GGL94].
Minnesota [BTS+89, GGL94]. MIQR [LS06]. Modeling [PSS92, Fit86]. models [Saa91c]. modern [CSS02, SSC04].
Modification [MOKS12]. Modified [CS99, Saa84a, Saa86b]. module [SW94, SW95, SW96a]. Molecular [CJWS96, BGB+10, JTD+94].
molecular-dynamics [JTD+94]. molecules [CTWS94]. moment [Saa84a, Saa86b]. Multi [Saa96, Saa92c, SSZ98, SZ99c, SZ01].
Multi-Elimination [Saa96, Saa92c]. Multicolor [SS99b]. Multigrid [CSS85a, CSS86].
models [Saa91c]. modern [CSS02, SSC04]. Modiﬁcation [MOKS12]. Modiﬁed [CS99, Saa84a, Saa86b]. module [SW94, SW95, SW96a].
Molecular [CJWS96, BGB+10, JTD+94].
multi-level [SSZ98, SZ99c, SZ01]. Multicolored [SS99b]. Multigrid [CSS85a, CSS86].
models [Saa91c]. modern [CSS02, SSC04]. Multi-Elimination [Saa96, Saa92c]. Multicolor [SS99b].
Multigrid [CSS85a, CSS86].
Modern [CSS97a, CSS97b, Saa84b, SS85g, Saa88d].
N [Saa83c]. Nanocrystals [CTSZ07, CZC+09]. Neighborhood [KS07, KS05b].
Newton [Saa95]. News [Saa95]. Newton [Saa95]. Non [SS99c].
Non-standard [SS99c]. nonlinear [BS87, BS90, BS91, BS94, rFS09, KS92, Saa88d].
Non-symmetric [LS83b, MS92, MS93, MS07b, Saa84b, Saa85g, Saa85b, Saa86e, Saa83a, Saa84c, Saa86c, Saa87c, Saa88a, Saa88b, Saa88c, Saa89b].
Normal [BS90]. North [BCEP94]. null [ITS07]. null-space [ITS07]. number [Saa86e]. numbers [Saa84a, Saa86b].
Numerical [PSS92, Saa83b, Saa87b, Saa89b, Saa90c, Saa92g, SCS10, Saa11b, Saa87a, Saa91c].
Oblique [Saa80a, Saa82a]. Observer [DS91b]. October [BTS+89]. ODE [GS83].
Operator [Saa92b, CS98a]. OPRA [KS05a]. OPRA-faces [KS05a]. Optimal [CS09b, CS08]. Optimization [NBS10, NBS12, BS89, KC59, KCS10].
order [CSS02, CTWS94, JTD+94]. origin [Saa74c]. Orthogonal [BS99b, Saa74c]. Orthogonalization [SW93, SW96b]. other [Saa80a, Saa82a].
Outer [Saa91a, Saa93a]. Overlapping [CSS92, CSS93, CSS96, LS05b].
overview [Saa90d].
P_SPARSLIB [SW94, SW95, SW96a, SKL+97]. Package [SW88a, SS02a, SW88b, WS89]. papers [GGL94].
Parabolic [GS92a, GS89c, GS89a, GS90b, GS91a, GS92b]. Parallel [BDG+10, BS89, BSK+03, CSS02, CSS97, FSWS92, FSY96, GS90a, HS06, IS85, IS86b, IS86a, SS85e, SS85f, SS86b, SS86a, Saa87b, Saa87c, Saa87d, SS89b, Saa92c, Saa92e, Saa94c, SW95, SW96a, SKL+97, Saa99b, Saa01, Saa02a, Saa05a, ZSTC06a, AS88, AS89, CS99, GS97, GS88b, GS88b, GS89b, GS89c, GS89a, GS89d, GHS10, SS80a, Saa87a, Saa89b, Saa92c, Saa94c, SW95, SW96a, SKL+97, Saa99b, Saa10, AGPS03, ASSS11].
Parlett [Saa83c]. pARMS [LS80a, SS02a]. Partial [CSS85, BS91b, Saa85b, XS16, CSS87, Saa88d]. partially [BSTC05].
Particle [LLCS02]. partitioned [CS97d].
Partition [GS94, LLCS02, Saa74a, VSS14]. Passing [Saa87b, Saa87a, WS93]. Performance [WS93].
Periodic [AJT+07].
Physical [CSS02, SSC04]. Pivoting [BS02b, BS02a, LS05a]. Plane [JKSC99, Saa83a, Saa84a, Saa88a, Saa86b, Saa86c, Saa87c]. Plane-wave [JKSC99]. PMAA [AGPS03].
PMAA’10 [ASSS11]. Point [LS80a, LS80b]. Pole [Saa88d]. Polynomial [BS89, CAS11, LVS+97, GS90b, Saa85c]. Polynomials [BS89, CAS11, LVS+97, GS90b, Saa85c].
Portable [Saa83d, Saa83a, Saa87c, SSS10]. positive [Saa80a, Saa82a]. Positive [Saa80a, Saa82a].
posteriori [CS18]. potential [CTS93, CTS94]. Practical [BTS+89, Saa84c, Saa85c, BTS+89].

Preconditioned [CCSY98, CS14, SS85f, SS86a, Saa91b, Saa93b, Saa98, LS13b, Saa91a, Saa92f, Saa93a]. Preconditioner [BS02b, DKS18, LS05b, LS06, Saa96, SZ99a, SZ99b, XS17, BS02a, CS97c, Saa92c, XLS16].

Preconditioners [BS05b, CS94, CS98b, LS13a, LS17, LS03, LS03b, MS92, MS93, MS94, CS97a, CS97c, CS97f, GSS03, LS16, Saa94c, SZ99c, Saa07].

Preconditionings [Saa85c]. Predicting [S¨OS+00, CTJ+95]. Preserving [CCSY98, KS07, KS05b]. Prewhitening [SS14]. primitives [WS93]. principles [AJT+07], probing [TS12]. Problem [NBS10, NBS12, CKV+03, SCS12, Saa83c].

Problems [BSS10, DS91b, rFS12, GGL94, IS85, LS06, LXV+16, LS03, LS03b, MS07b, PS89, Saa84b, Saa11b, Saa16, SS93, XLS18, CS900, DS91a, FRSY96, IS86b, KLS16, KKP18, Saa92c, Saa83a, Saa83b, Saa92b, Saa90d, Saa92c, Saa93a, Saa93b, Saa94f, SS99c, Saa97f, Saa74c, Saa98]. Procedure [rFS12, AKS17]. Proceedings [BTS+89, Fit86, BCP94]. Process [BSS10].

processors [SS85]. Projection [BS91, KS07, Saa82b, Saa83e, Saa88d, Saa91c, Saa92h, ITS07, Saa80a, Saa82a].

Projection-Based [KS07]. Projections [KS07, KS05b]. Properties [SS85, SS88, SOS+00, CTJ+95, CTS207, CZC+09].

pseudo [CTS93, CTS94]. pseudo-potential [CTS93, CTS94]. pseudopotential [CTWS94, JTD+94]. pseudopotentials [CKV+03]. PSPARSLIB [SS98a]. purpose [Saa92a].

QR [LS06, Saa74b]. Quadrature [UCS17]. quantum [CJWS96]. Quasi [SW93, SW96b]. Quasi-minimal [SW93, SW96b].

Raleigh [BCEP94]. Rank [BS09b, DKS18, LS13a, LS17, CS08, LX16, UMS17, XLS16].

rates [Saa80b]. Ratio [NBS10, NBS12].

Rational [GSS03, KXS18, SS11, XS16, XS17, GSS90a]. Real [PS87, CKV+03, PS85]. recognition [KS05b]. recursive [CrFS09, LSS03a, SS02b, SST04, SSC04].

recycling [SGS15]. Reduction [CS90a, KS07, BS10, Saa80a, GSS78, GSS88b, GSS88a, GSS89b, KCS09, KCS11]. Relations [BS02c]. reordering [OKLS15].

Reorderings [Saa05]. reorthogonalized [BCT05]. reservoir [Fit86]. Residual [Saa06, SS86c, SW93, SW96b, Saa00b].

Residual-type [Saa06]. Restart [LS16]. Restarted [SSW98]. Restarting [SSW98, SSS98b]. Restricted [LS05b].

Review [Saa83c, Saa92h]. Reviews [Saa95].

Right [Saa87d, KMB+18]. Right-Hand [Saa87d, KMB+18]. Ring [ISS84, ISS86].

Robust [SS93, SSF95, SZ99c].

Saddle [LS03, LS03b]. Sampling [CS14, US19]. scalable [KMB+18]. Scale [BTS+89]. Schur [Saa07, BS05a, DKS18, GHS10, KLS16, LS05b, LX16, Saa90a, ZS08].

SchurRAS [LS05b]. Scientific [Saa95]. seismic [Fit86]. Selection [MS07a]. Self [ZSTC06b, ZSTC06a]. Self-consistent-field [ZSTC06b, ZSTC06a].

Semantic [SrFS08, VS14]. semiconductor [KS87].

semiconductors [SKBS88]. Sequence [BRZ18]. sets [SS14]. Several [Saa78d].

Sham [SCS12, ZCS14]. Shanks [BRZ18].

Shared [Saa87b, Saa87a]. Shift [PS87, PS85]. Shifts [Saa74c]. Si [CTJ+94].

Sides [Saa87d, KMB+18]. simulation [KS87]. simulations [ACS12, TJD+94].

Singular [CS90a]. skyline [CS97c]. Slicing [Saa87d].
[LXES19, SCS12]. Smallest [BS05a].
SNAP [ITS07]. Software
[AEKS90, LXES19, Saa92a]. solid [LLCS02], solid-liquid [LLCS02]. Solution
[DS91a, GS92a, ISS84, IS85, IS86, IS86b, SSC+96, SS98a, SS99c, GS87, GS88b, GS88a, GS89b, GS89c, GS89a, GS90b, GS90a, GS92b, GS83, ITS07, KSS03, KSSG04, SS81, Saa83d, Saa83b, Saa90c, Saa91c, SW95, SW96a, Sv00, SST04, SGSM15].
solver [KMB+18, LSS03a, SS02b, SSC04].
Solvers [SM95, GS89d, GHS10, KKPS18, LS13b, SW94, SKL+97, SST04]. Solving
[AS88, AS89, CSS85, CSS87, MS92, MS93, PS93, SS93, Saa84b, SS85g, SS85e, SS85s, Saa87d, SS87, SS92a, BS91, SS92b, ESS86, LSS86, Saa80a, Saa81, Saa82a, Saa82b, Saa83a, Saa83e, Saa84c, SS86c, SL86, Saa87e, SL86, ZCS14]. Some [GS89d, SW89, Saa92b, SS02b, Saa94c, Saa86c].
SOR [MS94]. space [CKV+03, ITS07]. SPARK [SW90].
Sparse [AEKS90, CS92, CS94, CS98b, FWPS92, GHS10, GGL94, IS86a, LSC03, LS06, MS92, MS93, MS94, PSWF93, PS93, SW88a, SW89, Saa94a, SW94, SM95, Saa96, SS98a, SZ99a, SZ99b, SS99a, SS99c, SS92a, XS17, AS88, AS93, CS93, CS96, CS97c, GSS03, JSS07, LS05a, Saa82b, Saa83a, Saa83e, SW88b, SW90, Saa90a, Saa92c, Saa94c, SW95, SW96a, SKL+97, SS90, SZ90c, SAD+00, SZ01, Saa01, Saa02b, Saa03b, SSF95, XLS16, ZCS14].
Sparse-Sparse [CS98b]. SPARSKIT [Saa90a]. Special
[ASS81, BJ+09, BDG+10]. Spectra [XS16, CJWS96]. Spectral
[BS05a, KLS16, GGLM15, XLS18, LSY16]. Spectrum [DS91b, SCS12]. Specticato [Saa92b].
Squares [CAS11, LS06, XS16, Saa83a, Saa84a, Saa86b, Saa86c, Saa87c].
standard [SS99c]. Standards [AEKS90]. state [Saa88d]. states [GBG+10, SKBS88].
Statistics [SW89]. Stiefel [SS80]. Stochastic [UCS17]. Strategies
[MS07b, MOKS12, PS87, SS99c, LLCS02, PS85, SZ01, GGLM15, SMSW00]. Strategy
[MS07a]. structural [CTJ+95]. Structure
[SCS10, AJT+07, CTS93, CTS94, CKV+03, JKSC99, SSC+96]. Structured
[GGL94, FRSY96]. Structures [Saa94a, SM95, Saa03a]. study [CS97e].
Subgraph [CS12]. Subspace
[CCSY98, CS14, Saa91b, Saa92b, Saa92e, Saa93b, Saa94a, Saa97, Saa11a, Saa16, ACS912, SBS09, BS91, BS97b, ESS86, Saa81, Saa84c, Saa89a, Saa90b, Saa90d, Saa92f, Saa98, ZSTC06a, ZSTC06b, ZCS14]. Subspaces [BKS08, PS07]. Substructuring [KKS18].
sum [CS97a]. Supercomputer
[BTS+89, Saa91b, Saa93b].
Supercomputers [PS89, Saa89a]. SVD [CS08, CS09b]. Sylvester [DS91b].
Sylvester-Like [DS91b]. Symmetric
[LS13a, LSS03b, Saa83c, Saa87d, SBS09, BS91, BS97b, ESS86, Saa81, Saa83d, SSF95, SS98b, VSS14, WSS98, XLS16, ZS08]. Symmetry [CCSY98]. System
[ISS84, ISS86, BS87, IT807, KMB+18].
Systems [DKXS18, MS92, MS93, MS94, ÖBSC03, SS80, SS85g, SS85e, Saa87d, SS87, SS98a, SS99a, SS99c, SS92a, XS17, AJT+07, AS88, AS93, BS90, BS91, CS85b, CJWS96, ESS86, GSS03, JSS07, KS92, OKS10, Saa80a, Saa81, Saa82a, Saa83d, Saa84c, SS86c, Saa87c, Saa88a, Saa88b, Saa88c, SSZ98, SZ99a, SS99b, SV00, ZS01, Saa01, Saa02b, Saa03b, Saa07, SSF95, XLS16, ZCS14].
Technique [KS07]. Techniques
[IS86a, Saa84b, SS99a, CS97b, CS97d, KLS16, KSS03, KSSG04, KS87, Saa74a, Saa88a, Saa88b, Saa88c, SSZ98, SZ99a, SS99b, SAD+00, SS98b, WSS98]. Tensor
[CS97a, CS09b, CS08]. Tensors
[CS09b, CS08]. Texas [Fit86]. their
[GS89d, Saa87c]. Theoretical
[Saa94b, Saa94e]. Theory
References

Ando:2012:KSM

Ashby:1990:SSM

Arbenz:2003:PMA

Alemany:2007:EFPM
REFERENCES

Aurenzt:2017:CGI

Anderson:1988:SST

Anderson:1989:SST

Arbenz:2011:SIP

Brown:1994:PCL

Bekas:2010:SIP

Baroni:2010:HME

Stefano Baroni, Ralph Gebauer, O. Baris Malkioglu, Yousef Saad, Paolo Umari, and Jiawei Xian. Harnessing molecular excited states with Lanczos chains. Journal of Physics: Condensed Matter, 22(7):074204, February 24, 2010. CODEN JCOMEL. ISSN 1361-648X.
{

}{

}{

}{

}{

}{

}{

}{

}{

}{

}{

}{

}{

}{

}{

}{

}{

}{

}{

}{

}
REFERENCES

REFERENCES

Bellalij:2008:ASK

Bellalij:2010:FAA

Bekas:2005:CCD

Boley:1989:PIM

Chen:2011:CLS

Calgaro:2010:IIL

Caterina Calgaro, Jean-Paul Chehab, and Yousef Saad. Incremental incomplete LU factorizations with applications. *Numerical Linear Algebra with Applications*, 17(5):811–837, Octo-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Chapman:2000:HOI

Chelikowsky:1995:APS

Chelikowsky:1999:HOF

Chelikowsky:2000:APS

Chelikowsky:2009:AEV

REFERENCES

REFERENCES

REFERENCES

Gallopoulos:1988:PBC

Gallopoulos:1989:PSPb

Gallopoulos:1989:PBb

Gallopoulos:1989:SFe

Gallopoulos:1990:PSP

Gallopoulos:1990:ESP

Gallopoulos:1992:ESPb

REFERENCES

Gallopoulos:1992:ESP

Goehring:1994:HAA

Guillaume:2003:RAP

Henon:2006:PMI

Ipsen:1985:IPA

Ipsen:1986:IPAb

Ipsen:1986:IPAA

Ipsen:1984:CDL

REFERENCES

Ipsen:1986:CDL

Ilic:2007:LSS

Jay:1999:ESC

Johnsson:1987:ADM

Jones:2007:CBI

Jing:1994:IMD

Kokiopoulou:2009:TOE

Kokiopoulou:2011:TOE

E. Kokiopoulou, J. Chen, and Y. Saad. Trace optimization and

Kalantzis:2018:DDA

Kalantzis:2016:SSC

Kokipoulou:2005:FRU

Kokipoulou:2005:ONP

-[KS05b] Effrosyni Kokipoulou and Yousef Saad. Orthogonal neighbor-

REFERENCES

REFERENCES

Ma:1992:BAP

Ma:1993:BAP

Ma:1994:DIS

MacLachlan:2007:GSC

MacLachlan:2007:GCS

Ngo:2010:TR

Ngo:2012:TRO

Ögüt:2003:ICL

Osei-Kuffour:2015:MRU

Osei-Kuffour:2010:PHL

Parlett:1987:CSI

Philippe:1989:SLS

Philippe:2007:CED

Philippe:1992:NMM

Petiton:1993:BSM

Fang:2009:TCM

Fang:2012:FLP

Rocca:2008:TCT

Saad:1974:CEL

Saad:1974:ETO

Saad:1980:LBA
Y. Saad. The Lanczos biorthogonalization algorithm and other oblique projection methods for solving large unsymmetric systems. Report 1036, Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA, 1980. 44 pp.

Saad:1980:RCL
REFERENCES

Saad:1986:GEHb

Saad:1986:CNS

Saad:1987:DPNa

Saad:1987:DPNb

Saad:1987:LSP

Saad:1987:LMS

Saad:1988:PTI

Saad:1988:PTNa

Y. Saad. Preconditioning techniques for nonsymmetric and indefinite linear systems. Technical Report CSRD 792, University of Illinois at Urbana-Champaign, Center for Supercomputing Research and Development, Ur-
REFERENCES

REFERENCES

[Saa92e] Y. Saad. Krylov subspace methods in distributed computing

Saad:1994:IDT

Saad:1994:TEBb

Saad:1995:BNR

Saad:1996:IME

Saad:1997:AAK

Saad:1998:PKS

Saad:2000:E

Saad:2000:FAM

REFERENCES

wiley.com/cgi-bin/fulltext?ID=71008526&PLACEBO=IE.pdf.

REFERENCES

Saad:1986:NAS

Saad:1988:NAS

Saad:1995:DSC

Sosonkina:2000:PSL

Stathopoulos:2000:PMT

Sakellaridi:2008:GBM

Sophia Sakellaridi, Haw ren Fang, and Yousef Saad. Graph-based multilevel dimensionality reduction with applications to eigenfaces and latent semantic indexing. In *ICMLA ’08: Seventh International Conference on Machine Learning*
REFERENCES

[SS85g] Youcef Saad and Martin H. Schultz. Conjugate gradient-like

Saad:1999:DSC

Saad:1999:EPM

Saad:2002:PPS

Saad:2002:AAR

CODEN NUALEG. ISSN 1017-1398 (print), 1572-9265 (electronic).
URL http://www.springerlink.com/openurl.asp?
Seghouane:2014:PHD

Saad:1996:SLE

Sosonkina:2004:UPA

Stathopoulos:1995:RPL

Saad:1985:SED

Sheehan:2010:CET

REFERENCES

[SW90] Yousef Saad and Harry A. G. Wijsjoff. SPARK: a bench-

[TZ+06] Murilo L. Tiago, Yunkai Zhou, M. M. G. Alemany, Yousef Saad,

REFERENCES

Xi:2016:AMP

Zhou:2014:CFS

Xi:2018:FCS

Xi:2016:CPS

Xi:2017:RFP

Zhou:2007:CDA

Zhou:2008:BKS
