A Bibliography of Publications of Pieter W. Hemker

Pieter W. Hemker
CWI

NL 1098 SJ Amsterdam
The Netherlands
Tel: ?n/a?
FAX: + 31 - 20 - 592 4199
E-mail: pieth@cwi.nl (Internet)

01 March 2017
Version 1.28

Abstract
This bibliography records publications of Pieter W. Hemker.

Title word cross-reference

2 [Hem82a, HM91]. 3 [Hem95a, Hem95b, Hem96b, HdZ97, Hem97, KH97]. D [KH92b]. ε [HSS97a, HSS99a, HSS00]. H [HHA09]. hp [HL08]. n [TH94].

-adaptive [HL08]. -component [TH94]. -D [Hem82a]. -Dimensional [HdZ97].
-transform [HHA09]. -Uniform [HSS97a, HSS99a, HSS00].

1-2 [Hem96b].

2D [MH90].

3-Dimensional [Hd93a, Hd93b]. 3D

[65 [HOS03].

8th [WHO08].

96c [Hem96b].

aan [Hem90a, Hem96c], aanvaarding [Hem90a]. Acceleration [DH9+91, HSS01b]. Accuracy [HSS97a, Hem87, HSS99b, HSS00, HSS02b, KSS04].
accurate [Hem82a, Hem82d, HSS01b, HSS02a, HSS02c, HSS03a, HSS03b, KH91c].

activity [HEH+67, HH09, HH13]. actuator [ELE+06]. acute [DH9+02]. adapted [HP93]. Adaptive [DH9+91, HS94b, HKL+97b, Hem00, VH95, Hem80d, Hvdm90, HM91, HS01, HL08, vdMHE90, NH00, SSH04, VKH06, vdmHMK93]. Adv. [Hem96b]. affinity [RTH+11]. ALGOL
Coarse [CHvS72, Hem71a, Hem73a, Hem77a, HW79, Hem81c]. algorithm [Hem80d].
Algorithms [Hem84c, DH90a, DH90b, Hem80b, Hem82f, Hem84b], ambt [Hem90a].
Amsterdam [Hem90a]. Analysis [DH90a, DH90b, DH95, HM79, Hem80a, HvR03b, HvR04, HHvR05]. antibody [RTH+11]. antigen [RTH+11]. Application [Hem90a]. Analysis [DH90a, DH95, HHvR03b, HvR04, MH90]. approaches [HJ87, NH97, NH98]. Approximate [TH91, TH94]. Approximation [HHH00, Hem00, NH00, vdMHKM93].
approximation [FHS95, FHS96a, FHS96b, FHS96c]. Arising [HSS97b]. Aspects [HHL65, HH68, HSd80, Hem83b]. assay [HHvR03b, MH90]. assay [HHv+71]. assessment [RTH+11]. autonomous [HWD84].
bounds [dH79]. Boundary [FHS95, FHS96a, Hem77b, HS94b, FHST95, FHS96b, FHS96c, HHvR03a, HHvR04, HHvR05].
boundary-value [dH79, HS94b]. C1 [DHH+02]. C1-inhibitor [DH+02]. calibration [HHA09]. cascades [HH90]. cases [HP93]. CFD [HHK97, KH97, KHE97]. chemical [HHH05]. circle [HH74b]. Class [HS94b, HST02, SHH04]. Clotting [HHL65, HH68, WHH06]. coagulation [HHH00, HsH06]. Coarsened [KHE97].
Coarsening [KHd97]. code [HWD84, vdMHE90]. codes [HSS97c]. Colloquium [BHPv76, BDHv75, DHv72]. Comparing [HSS97c]. comparison [Hem82f, RTH+11], competitive [HHH00]. component [TH91, TH94]. composed [HST02]. Compressible [HHH00, DHK93]. Comput. [Hem96b]. Computation [Hem86a, HHv+73, Hem96d, KH91b, KH92a]. computational [DHKL94]. Computations [KHd97, HvdME90, HSS91b, HHvR03b, KH91a, KH92b, KvdBH+03]. concentrated [SSH97]. concentrations [HAA09]. Condition [HsH92, HsH93, HsH94a].
conditions [HHH00, HsH02c, HHvR03a, HsH03a]. Conference [HHH00]. constants [RTH+11]. Continuation [PWBH81]. Contributions [HHH94a]. control [HHH05]. Convection [HSS97b, HsH82d, HSS99a, HSS01b, HsH01a, HsH02a, HsH02b, HST02, HsH03a, HsH03b, SHH04, VH05, Vrh05].
Convection-Diffusion [HSS97b, HSS99a, HsH01b, HsH02a, HsH02b, HST02, HsH03a, HsH03b, SHH04, Vkh06, Vrh05]. Convergence [DH95, HD93c, HH97, HH98, DH90a, DH90b]. converting [HEH+67]. corrected [HH90a, HHH13]. Correction [Hem82b, HSS84, DH90a, DH90b, DH95, EH05, ELH08a, ELH08b, Hem82c, Hem82d, Hem82e, HD83, Hem83c, Hem84a, Hem86b, HK88a, HK88b, HK88c, HD83c, HD94, HK95a, HK95b, HS95, HS97c, HS998, HS99a, HsH02a, HsH03b, HsH91c].
Corrigendum [Hem96a, Hem96b]. course [HH90a, HHH13]. Criteria [HH77a].
cubature [HsH7a]. curved [HsH3b].
Cubature [HsH3b]. curved [HsH3b].

D [Hem96b, Hem82a, NM91, Hem95a, Hem95b, HHH97, KH97]. D-problems [Hem96b, Hem95b, Hem97]. Damped [HH91a]. Data
decomposition [FHST95, Hem80b, KSS04].
Decoupled [DHH^+91].
Defect [BDHv75, DVH72].
Defect-correction [DH90a, DH90b, DH95, ELH08a, ELH08b, Hem82c, Hem82d, Hem82e, Hem83c, Hem84a, HK88c, HS95, HSS97c, HSS98, HSS99a, KH91c].
defect-dependent [KH91a].
Derivation [HHL65].
derivative [Hem83a, Hem84d].
design [ELE^+06]. development [HKWdZ83].
device [Hem88a, Hem88b, Hem90b].
devoted [WHO08].
dependent [KH91a].
Derivation [HHL65].
derivative [Hem83a, Hem84d].
design [ELE^+06]. development [HKWdZ83].
device [Hem88a, Hem88b, Hem90b].
devoted [WHO08].
dependent [KH91a].
Derivation [HHL65].
derivative [Hem83a, Hem84d].
design [ELE^+06]. development [HKWdZ83].
device [Hem88a, Hem88b, Hem90b].
devoted [WHO08].
dependent [KH91a].
Derivation [HHL65].
[DHKL94, KvBH+03]. fluorescent
HHA09]. Formation [HEH+67]. Formulas
HHL65]. Fourier
Hem80a, HHvR03b, HvR04, HHvR04]. Formulas
Hem80a, HHvR03b, HvR04, HHvR04]. Fluorescent
Hem80a]. Fredholm [HS81]. free
RTH+11]. Functions [HHv+73, HS01].

Galerkin [dH79, Hem75, HHvR03a,
HHvR03b, HvR04, HHvR04, vRH05]. Gas
HKL+95, HKL+97a, HKL+97b, Hem86a].
Gauss [Hem82f, KhH88]. General [HH69].
generation [HdH05, HHA09, HHH72].
Godunov [KH97]. Godunov-type [KH97].
Grid [DHHL+91, Hem96a, Hem00, HHH00,
Hem80b, Hem80c, Hem81b, HS81, Hem80b,
HS86, HKS86, Hem94, Hem95b, NH97,
NH98, NH00, Hem96b]. Gridfunctions
Hem80a]. Grids [Hd93a, H93b, H93d, H97,
HKN97, HK97, HP96, HP97, HKN98, HS01].

High [HSS97a, HSS01a, HSS02c, HSS02b,
HSS03a, KSS04, HSS99b, HS00, HSSO1b,
HSS02a, HSS03b, RTH+11]. High-affinity
RTH+11]. High-Order [HSS97a, HSS01a,
HSS02c, HSS02b, HSS03a, KSS04, HSS99b,
HS00, HSS01b, HSS02a, HSS03b]. Higher
Hem86b, HvR04]. highest
Hem83a, Hem84d]. homogeneous
HHH72]. hoogleraar [Hem90a].
hyperbolic [DH90a, DH90b, DH95, HD93c].
hypersonic [KH91a, KH91b, KH92a].

Identification [HH93, HHS95]. II [HSS96c].
III [HSS96c]. ILU [Hem82f]. impacts
HH90, H13]. implementations [HdZ85].
imPLICIT [DH90a, DH90b]. improved
Hem87]. incomplete [Hem80b]. Index
Hem73a]. Industriële [Hem90a].
infarction [DHHL+91]. inhibition [HH68].
inhibitor [DHHL+91]. inhomogeneous
HH93, HHH72]. Initial
HS92, HS93, HS94a, vH75, FHST95, SSH97].
Integral [HS81]. Interaction
HHL65, HH68]. Interfaces [KvBH+03].

Interior [SSH04]. Introduction [Hem81a].
inverse [Hem82e]. ion [TH91, TH94].
ion-exchange [TH91, TH94]. issue
WHO08]. iteration
DH95, Hem82d, Hem84a]. iterative
DH90a, DH90b]. IV [HH68, HW94b].

John [HOS03].

Kernel [HL08]. kind [HS81]. Kinetic
HHL65, HH68]. Kinetics
HK93, HH69, HH68]. KWIC [Hem73a].

Label [RTH+11]. Label-free [RTH+11].
layers [SH84]. Layers
FHS95, FHS96a, FHS96b, FHS96c, Hem86a].
Lecture [Hem81b]. length [HHv+73]. level
HH80, HHvR03b, HvR04,
HHvR04, vRH05]. Libraries [Hem73a].
library [Hem73a]. limits [WHO08]. Line
KdH88, Hem82f]. Line-Gauss [Hem82f].
Lineaire [Hem71b]. linear
ELE+06, H93d, HHvR04]. Lobatto
Hem75]. local [FHST95]. LU [Hem80b].
LU-decomposition [Hem80b].

Maken [Hem90a]. Manifold
ELE+06, EH08, HE07b, HE07a].
Manifold-mapping [ELE+06, HE07a].
Manual [HHS95]. mapping
HH05, ELE+06, EH08, ELH08a, ELH08b,
HE07b, HE07a]. Math. [Hem96b].
Mathematical [HdH06, HKT93, HHA09].
measurement [HH90, HH13]. measuring
HHS95]. meerstapsmethoden [Hem71b].
Mesh [HS94b, PWBH81, SSH04].
Mesh-Parameter [PWBH81]. meshes
SSH97]. method [FHST95, Hem74a,
Hem75, Hem80b, Hem82a, HKS86, Hem88b,
HK89, Hem90b, HSS98, HSS99a, KSS04,
PWBH81, SSH97, vRH05, vdMHKM93].
Methods [SSH97b, dH79, Hem72a, Hem81a,
Hem81b, HS81, HKWdZ83, Hem83a,
Hem84d, HW94b, HST92, TH91, TH94].
Miller [HOS03]. Mixed [Hem82d, Hem84a]. mixtures [HHH72]. Model [Hem00, HHH00, Hem96d, NH00]. models [HdH06]. modules [HWD84]. moving [SSH04]. MR1338896 [Hem96b]. Multi [Hem80c, KH91c, KH92b, Hem80b, Hem80d, Hem86b, HKS86, HK91]. Multi- [KH92b]. Multi-dimensional [KH91c, HK91]. Multi-grid [Hem80c, Hem80b, HKS86]. multi-level [Hem80d]. Multigrid [DHH91, HKWDZ83, Hem83a, Hem84b, Hem84c, Hem84d, HS84, HS85a, HS85b, HJ87, Hem87, HK88c, HW94a, HW94b, HKL+95, Hem96a, HKN97, HKL+97a, HKL+97b, HK97, KHE97, VH95, WHO08, Hem81a, Hem82f, HWD84, HDZ85, HK88a, HK88b, Hem88a, Hem88b, HK89, HvdME90, Hem90b, Hem90c, HN91, Hem92, HK94, Hem94, HK95a, HK95b, Hem96b, Hem97, HKN98, HHR90b, KD88, KH89a, KH91a, KH91b, KH91c, KH92a, MH90, VHH96, vRH05, vdMK93]. multigridding [KH92b]. multilevel [HE07b]. Multiple [HS81, HS86, KHE97, Hem81b]. myocardial [DHH91].

n [TH91]. n-component [TH91]. Navier [DHH+91, DHK93, HK88c]. near [KvBH+03]. Necessary [HS94b]. nested [Hem73b]. Neumann [HSS99b]. nieuw [Hem92]. no. [Hem96b]. non [HK89]. non-linear [HK89]. Nonlinear [vH75, Hem90b, Hem72b, Hem73c, HK88c, HK88b, Hem95a, HK95b]. note [Hem82e]. notes [Hem81b]. Novel [HSS03b]. NUMAL [Hem73a, Hem81c]. Numerical [Hem72a, Hem77b, HM79, Hem81c, Hem83b, HSS97b, Hem73a, Hem74b, HW79, Hem82a, Hem96d, HSS99b, HST02, SSH97].

obtain [HHIA09]. ODE [Hem83c]. one [Hem74a, Hem88a, Hem88b, Hem90b]. one-dimensional [Hem88a, Hem88b, Hem90b]. one-sided [Hem74a]. operator [Hem73c]. operators [HW79, SO1]. Optim [HSS97a, Hem86b, Hem90c, HSS99b, HSS00, HSS01b, HSS01a, HSS02a, HSS02c, HSS02b, HSS03a, HSS03b, HSS04]. Ordered [HKN97, HP96, HP97, HK98]. Osher [HS86]. over-set [HHH00].

package [EHS95]. Parabolic [FHS95, FHS96a, HS92, HS93, HS94a, HSS97a, HSS98b, FSS96b, HSS97c, HSS98, HSS9979, HSS00, HSS01a, HSS02c, HSS02b, HSS03a, HSS03b]. parallel [HSS01b, HSS01a]. Parameter [Hem72b, HK93, HST02, PWB98, vH75, EHS95, Hem72a, Hem83a, Hem84d]. Parameter-uniform [HST02]. Partially [HKN97, HP96, HP97, HK98], patients [DHH91]. PDEs [HS92, HS93, HS94a]. PEIA [RTH+11]. PEIA-ellipsometry [RTH+11]. Perturbation [HSS97a, Hem00, HHH00, Hem74b, HM79, Hem82a, HD83, Hem83b, Hem84a, HSS97c, HSS98, HSS00, HSS02b, HSS03a, NH00]. Perturbed [FHS95, FHS96a, HS92, HS94b, HSS97a, HSS98, FST95, FSS96b, FSS96c, Hem83c, Hem96d, HSS99b, HSS01b, HSS01a, HSS02a, HSS02c, HST02, HSS03b, HSS04, SSH97, SSH04]. Pharmacokinetics [DHH91]. Pocklington [HL08]. Point [Hem77b, dH79, HSd80]. points [Hem74a, Hem75]. portable [HWD84]. posteriori [SSH04]. preliminaries [HTK93]. preliminary [HW79]. Principle [Hem82b, Hem82c]. Problem [Hem00, HHH00, Hem74b, Hem82a, HD83, Hem84a, Hem96d, HSS99b, HSS99a, NH00]. problemen [Hem92]. Problems [FHS95, FHS96a, Hem77b, HKL+95, HSS97b, HKL+97a, HKL+97b, HSS97a, DH90a, DH90b, DH95, vH75, FST95].
FHS96b, FHS96c, dH79, Hem74a, HM79, HSd80, Hem83a, Hem83b, Hem84d, HS94b, Hem95b, HS95, Hem96b, Hem97, HSS97c, HSS98, HSS00, HSS01b, HSS01a, HSS02a, HSS02c, HSS02b, HSS03a, HSS03b, SSH97, SSH04, VKH06]. procedure [Hem71a, HHA09]. Procedures [Hem81c, CHvS72, Hem73a, Hem90c]. processes [Hem82e]. project [HK93]. prolongations [Hem80a, Hem90c]. protein [DHH$_+$02]. prothrombin [HEH$_+$67, HHv$_+$71]. quasilinear [HST02]. randwaardeproblemen [CHvS72, HR76]. rank [Hem82e]. Reaction [HK93, HH09, HH13, KSS04]. reaction-diffusion [KSS04], rebuttal [HdH06]. rectangle [HSS98]. Rede [Hem90a]. refinement [Hem95a], region [HE07a], regular [HP96, HP97]. Rekenen [Hem96c]. relating [HH09, HH13]. relaxation [Hem80b, Hem82f, KdH88]. Remarks [Hem94, Hem96a], report [HW79]. representation [HS01]. Research [DHKL94], restrictions [Hem80a, Hem90c]. results [Hem90b, NH97, NH98]. Richardson [KSS04]. Robin [HSS02c, HSS03a]. rules [Hem73b]. Run [Hem84c, Hem84b].

scheme [HS86]. Schemes [DHH$_+$91, HSS97a, KH97, Hem86b, HK88c, HSS00, HSS01b, HSS01a, HSS02a, HSS02c, HSS02b, HSS03a, HSS03b, KH91c]. second [HS81]. Seidel [Hem82f, KdH88]. Semi [KHE97, KhdH97, Hem95a].

Semi-Coarsened [KHE97]. Semi-Coarsening [KhdH97].

semi-refinement [Hem95a].

semiconductor [Hem88a, Hem88b, Hem90b, HM91, MH90].

set [HHH00]. Sets [HKN97, HP96, HP97, HKN98]. shifts [HDH05]. sided [Hem74a]. simulation [Hem72a, Hem88a, Hem88b, Hem90b, WHH06]. Single [HHv$_+$73]. Single-[HHv$_+$73]. Singular [HSS97a, Hem00, HH00, Hem74b, HM79, Hem82a, HD83, Hem83b, Hem84a, HS95, HS97c, HS98, HSS00, HSS02b, HSS03a, NH00]. Singularly [FHS95, FHS96a, HS92, HS94b, HS94a, HS97b, FHST95, FHS96b, FHS96c, Hem83c, Hem96d, HSS99b, HSS01b, HSS01a, HSS02a, HSS02c, HST02, HSS03b, KSS04, SSH97, SSH04]. small [Hem83a, Hem84d].

software [EH95]. solve [TH91, TH94].

Solution [DHH$_+$91, Hem95a, HSS97b, HKL$_+$97b, DHH93, Hem71a, Hem73c, Hem74b, HS81, Hem82a, Hem82d, HD83, Hem83c, Hem84a, HS85a, HS85b, Hem86b, HS86, HSS86, HM91, HS95, HSS97c, HS99b, HL08, KvBH$_+$03, MH90, vdMHKM93].

Solution-Adaptive [HKL$_+$97b, vdMHKM93], solutions [HS84]. Solvers [DHH$_+$91, HKWdZ83, HddZ85]. solving [HSS01b]. Some [HdZ85, HSd80].

soort [HH09].

Space [EH05, ELH08a, ELH08b, HSS03b]. Sparse [Hd93a, Hdd93b, Hem95b, Hem96a, HD97, Hem00, KH97, Hem94, NH97, NH98, NH00, Hem96b]. Sparse-Grid [Hem96a, Hem00, Hem95b, Hem94, NH00, Hem96b]. Special [WHO08]. spIds [EHS95]. SPR [RTH$_+$11].

stable [HHH72], stage [HHv$_+$71].

Standard [HK97], staplengte [He71b].

states [HHH72]. Steady [HKL$_+$95, HKL$_+$97a, HKL$_+$97b, HS84, HS85a, HS85b, Hem86b, HS86, HS986, HK88a, HK88b, HK88c, HK89, HK91, HK94, HK95a, HK95b, KdH88, HK91b, HK92a, HK92b]. Stiff [Hem77b, dH79, Hem71a, Hem74a]. stimulated [DHH94]. Stokes [DHH$_+$91, DHH93, HKL88c].

strategy [HE07a, HL08, VKH06].
Structure
[Hd93a, Hd93b, HdZ97, Hem80d, HvdME90].
Structured [VH95].
substrate [HH09, HH13], substrates [HHA09].
Supercomputers
[Hem84c, Hem84b], system
[Hem72a, HdZ85, WHH06], systems
[EHS95, Hem95a].

Technique
[HS94b, Hem00, EH08, HHH06],
substrate [HH09, HH13],
substrates [HHA09],
Supercomputers
[Hem84c, Hem84b],
system [Hem72a, HdZ85, WHH06],
systems [EHS95, Hem95a].

Wavelet [HP93].
Wavelets [HKT93].

References

References

Coolen:1972:APV

Groen:1979:EBE

Desideri:1990:A

Desideri:1990:ACIa

Desideri:1990:ACIb

Deconinck:1991:SAN

Diris:2002:PCI

Deconinck:1993:NTS

REFERENCES

Desideri:1994:RCF

Dekker:1972:CSD

Echeverría:2005:SMDb

Echeverría:2008:MMD

Everaars:1995:MSS

Echeverría:2006:MMO

Echeverría:2008:SMD

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ELH08b]</td>
<td>Echeverría, Domenico Lahaye, and Piet W. Hemker. Space mapping and defect correction.</td>
</tr>
</tbody>
</table>
| [HD83] | Hemker and P. M. De Zeeuw. Defect correction

REFERENCES

REFERENCES

Hemker:1980:SAM

Hemker:1981:IMMa

Hemker:1981:LNS

Hemker:1981:NNP

Hemker:1982:AMD

Hemker:1982:DCP

Hemker:1982:EDCa

Hemker:1982:MDC

REFERENCES

Hemker:1982:NDCa

Hemker:1982:CLGa

Hemker:1983:MMPa

Hemker:1983:NAS

Hemker:1982:NDCon

[167x634] Hemker:1982:NDCa

Hemker:1982:CLGaf

Hemker:1983:MMPa

Hemker:1983:NAS

Hemker:1983:UDCa

Hemker:1984:MDCa

Hemker:1984:MARa

Hemker:1984:MARb

P. W. Hemker. Multigrid algorithms run on supercomput-
Hemker:1984:MMP

Hemker:1986:CLE

Hemker:1986:DCH

Hemker:1987:MIAa

Hemker:1988:MAOa

Hemker:1988:NMMa

Hemker:1990:FMV

P. W. Hemker. Fouten Maken en Verbeteren. Rede uitgesproken bij de aanvaarding van het
ambt van Bijzonder hoogleraar in de Industriële Wiskunde aan de Universiteit van Amsterdam, Juni 12, 1990.

Hemker:1996:RAU

Hemker:1996:SPM

Hemker:1997:FVM

Hemker:2000:AAS

Hemker:1968:KAI

Hemker:1969:GKE

Hemker:2009:TCM
WO2009098313 A1, filed 7 February 2008. [HHH00]

Hemker:2013:TCM

Hemker:2009:TMT

Hermens:1972:TGS

Havik:2000:ASG

Hemker:1965:KAI

Hemker:1971:ETS

Hemker:1973:SDL

P. W. Hemker, W. Hoffmann,

P. W. Hemker and B. Koren. Multigrid, defect correction and upwind schemes for the steady Navier–Stokes equations. In K. W. Morton and

REFERENCES

REFERENCES

[HP96] P. W. Hemker and C. Pflaum. Approximation on partially or-
References

[Hemker:1997:APO]

[Hemker:1976:OVT]

[HS81]

[HS84]

[Hemker:1985:MSSa]

[Hemker:1985:MSSb]

[HS86]
REFERENCES

[HSS97a] P. W. Hemker, G. I. Shishkin, and L. P. Shishkina. ϵ-uniform schemes with high-order time-accuracy for parabolic singular

P. W. Hemker, G. I. Shishkin, and L. P. Shishkina. High-order time-accurate schemes for parabolic singular perturbation convection-diffusion prob-

REFERENCES

Hemker:1984:PVCa

Koren:1988:LGS

Koren:1991:DDDa

Koren:1991:EMC

Koren:1992:MDUa

Koren:1992:EMC

Koren:1992:MUM

References

Vieweg und Sohn, Braunschweig, Germany, 1992.

REFERENCES

REFERENCES

Maarel:1990:EAE

Maarel:1993:ASA

Domselaar:1975:NPE

Domeselaar:1995:SAF

Vasileva:2006:AMS

vanRaalte:2005:TLM

Wagenvoord:2006:LSC

Wesseling:2008:ESI

Pieter Wesseling, Pieter Hemker, and Cornelis Oosterlee. Editorial [Special issue devoted