A Bibliography of Publications of Pieter W. Hemker

Pieter W. Hemker
CWI

NL 1098 SJ Amsterdam
The Netherlands
Tel: ?n/a?
FAX: + 31 - 20 - 592 4199
E-mail: pieth@cwi.nl (Internet)

27 October 2016
Version 1.27

Abstract

This bibliography records publications of Pieter W. Hemker.

Title word cross-reference

2 [Hem82a, HM91]. 3 [Hem95a, Hem95b, Hem96b, HdZ97, Hem97, KH97]. D [KH92b], e [HSS97a, HSS99a, HSS00]. H [HHA09]. hp [HL08]. n [TH94].

-adaptive [HL08]. -component [TH94]. -D [Hem82a]. -Dimensional [HdZ97].

-transform [HHA09]. -Uniform [HSS97a, HSS99a, HSS00].

1-2 [Hem96b].

2D [MH90].

3-Dimensional [Hd93a, Hd93b]. 3D

[Hem82a, Hem85b, Hem96b, Hem97, KH97]. 65 [HOS03].

8th [WHO08].

96c [Hem96b].

aan [Hem90a, Hem96c], aanvaarding [Hem90a]. Acceleration [DHH+91, HSS01a]. Accuracy [HSS97a, Hem87, HSS99b, HSS00, HSS02b, KSS04].

accurate [Hem82a, Hem82d, HSS01b, HSS01a, HSS02a, HSS02c, HSS03a, HSS03b, KH91c].

activity [HEH+67, HH09, HH13], actuator [ELE06], acute [DHH+02], adapted [HP93].

Adaptive [DHH+91, HS94b, HKL+97b, Hem00, VH95, Hem80d, HvME90, HM91, HS01, HL08, vdMHE90, NH00, SSH04, VKH06, vDMHKM93].

Adv. [Hem96b]. affinity [RTH+11]. ALGOL
Algorithm [Hem84c, DH90a, DH90b, Hem80b, Hem82f, Hem84b].

Amsterdam [Hem90a]. Analysis
[DH90a, DH90b, DH95, HM79, Hem80a, HHvR03b, HvR04, HHvR04, vRH05].

Application [DH90a, DH90b, DH95, HM79, Hem80a, HHvR03b, HvR04, HHvR04, vRH05].

approximate [RTH+11]. bias [Hem82a].

approximations [FHS95, FHS96a, FHS96b, FHS96c].

BASIS [HvdME90].

Biological [Hdd97]. Blood [HHL65, HH68, Hdd97].

blood [HHL65, HH68, Hdd97]. boundary-value [HHL65, HH68].

Boussinesq [Hd93a, Hdd93b, Hdd97].

Boussinesq, 1D [Hd93a, Hdd93b, Hdd97].

Boundary [FHS95, FHS96a, FHS96b, FHS96c].

C1 [DKH+02]. C1-inhibitor [DKH+02].

calibration [HH90a]. cascades [HH90a].

Cascades [Hd93a, Hdd93b, Hdd97].

Cases [HH90a]. CFD [DKH+02].

Chemical [HH90a]. Circle [HH74b].

Class [HH90a]. Clotting [HHL65, HH68, WHH06].

Coagulation [HHH00, Hem00, NH00, vdMHKM93].

Approximate [TH94, Hem82c].

approximations [FHS95, FHS96a, FHS96b, FHS96c].

autonomous [HWD84].

bases [HP93]. Basic [HHL65]. BASIS [HvdME90].

BASIS
[Hd93a, Hdd93b, Hdd97], begin [CHvS72].

begin- [CHvS72]. behaviour [Hd93c]. bias [Hem82a].

bibliography [Hem80a]. bij [Hem90a]. Bijzonder [Hem90a].

binding [RTH+11]. bioassay [RTH+11]. biological [Hd93b].

Blood [HHL65, HH68, Hdd97].

Bouds [Hd93b].

Boussinesq [Hd93a, Hdd93b, Hdd97].

Boussinesq, 1D [Hd93a, Hdd93b, Hdd97].

Boundary [FHS95, FHS96a, FHS96b, FHS96c].

C1 [DKH+02]. C1-inhibitor [DKH+02].

calibration [HH90a]. cascades [HH90a].

Cascades [Hd93a, Hdd93b, Hdd97].

Cases [HH90a]. CFD [DKH+02].

Chemical [HH90a]. Circle [HH74b].

Class [HH90a]. Clotting [HHL65, HH68, WHH06].

Coagulation [HHH00, Hem00, NH00, vdMHKM93].

Approximate [TH94, Hem82c].

approximations [FHS95, FHS96a, FHS96b, FHS96c].

autonomous [HWD84].

bases [HP93]. Basic [HHL65]. BASIS [HvdME90].

BASIS
[Hd93a, Hdd93b, Hdd97], begin [CHvS72].

begin- [CHvS72]. behaviour [Hd93c]. bias [Hem82a].

bibliography [Hem80a]. bij [Hem90a]. Bijzonder [Hem90a].

binding [RTH+11]. bioassay [RTH+11]. biological [Hd93b].

Blood [HHL65, HH68, Hdd97].

Bouds [Hd93b].

Boussinesq [Hd93a, Hdd93b, Hdd97].

Boussinesq, 1D [Hd93a, Hdd93b, Hdd97].

Boundary [FHS95, FHS96a, FHS96b, FHS96c].

C1 [DKH+02]. C1-inhibitor [DKH+02].

calibration [HH90a]. cascades [HH90a].

Cascades [Hd93a, Hdd93b, Hdd97].

Cases [HH90a]. CFD [DKH+02].

Chemical [HH90a]. Circle [HH74b].

Class [HH90a]. Clotting [HHL65, HH68, WHH06].

Coagulation [HHH00, Hem00, NH00, vdMHKM93].
decomposition [FHST95, Hem80b, KSS04].
Decoupled [DHb91], deel [BDHv75, DHv72].
Defect [Hem82b, HD83, Hem86b, HK88a, HK88b, HK94, HK95a, HK95b, HSS02a, BHS84, DH90a, DH90b, DH95, EH05, ELH08a, ELH08b, Hem82c, Hem82d, Hem82e, Hem83c, Hem84a, HK88c, HD93c, HS95, HSS97c, HSS98, HSS99a, KH91c].
defect-correction [DH90a, DH90b, DH95, HSS99a], deficient [Hem82c], dependent [KH91a]. Derivation [HHL65], derivative [Hem83a, Hem84d].
design [ELE+06]. development [HKWdZ83]. device [Hem88a, Hem88b, Hem90b]. devoted [WHO08]. difference [HSS01b, HS01].
differences [Hem74a].

differentialvergelijkingen [BDHv75, DHv72], differential [Hem71a, Hem72a, Hem72b]. Diffusion [HSS97b, Hem82d, HSS99a, HSS01b, HSS02a, HSS02c, HST02, HSS03a, HSS03b, KSS04, SH04, VKH06, vH05]. differential [HDH05].

Dimensional [Hd93a, Hd93b, HdZ97, HvKME90, SSH97]. double-length [Hd93].
During [HDH05]. dyadic [HSS97].
dynamical [EHS95]. Dynamics [HKL95, HKL97a, HKL97b, DHKL94].
edition [WHO08]. Efficient [HK91, KH91b, KH92a, HS86, HSS86, KH91c].
elementary [Hd93]. elements [Hem73c, HHvR04]. ellipsometry [RTH+11]. elliptic [Hem73c, Hem82a, Hem95a, KSS04].
embedded [HHvR03a]. EMG [WHO08]. enzymatic [HH09, HH13]. enzyme [HH69, HH09, HH13]. Enzymes [HHL65, HH88]. equation [Hem73c, Hem82d, HL08, KSS04, vRH05].
equations [DH93, Hem71a, Hem72a, Hem72b, HS81, HS84, HS85a, HS85b, Hem86b, HS86, HSS86, HJ87, Hem87, HK88a, HK88b, HK88c, HK89, HM91, HK91, HD93c, HK94, HK95a, HK95b, HSS99b, HST02, MH90, vDHHKM93].

ERCIM [DHKL94]. Error [dH79]. errors [KvBH+03]. estimation [vH75, Hem72a, Hem72b]. EULER [vdMHE90, HS84, HS85a, HS85b, Hem86a, Hem86b, HS86, HSS86, HJ87, Hem87, HK88a, HK88b, HK89, HK91, HK94, HK95a, HK95b, KH91c, KH92b, KH94, vDHHKM93]. Euler-Flow [KHd97].
European [WHO08]. evaluation [Hd93]. exact [HL08]. exchange [TH91, TH94].
exponentially [dH79]. Extensions [Hem82c]. exterior [Hem74b]. external [HHA09].

fast [HKWdZ83]. Finite [Hem96a, Hem97, VH95, HSS86, Hem94, Hem95b, Hem96b, HS01]. Finite-Volume [Hem96a, VH95, Hem94, Hem95b, Hem96b].
fitted [dH79]. Fix [KvBH+03]. floating [SSH97]. Flow [KHd97, Hem86a, KhH88, KH91a, KH91c, KH92b, KvBH+03]. Flows [VH95, DHK93, KH91b, KH92a]. fluid
fluorescent

formation [HEH+67]. Formulas

Fourier

[FHKL94, KvBH+03]. Fluorescent

[HH68, HW94b], IV [HH68, HW94b].

John [HOS03].

kernel [HLS95, FHS96a, FHS96b, FHS96c, Hem86a].

Lecture [Hem81b]. length [HHv+73]. level

[EHO8, Hem90b].

Libraries [Hem73a]. limits [WHH06].

Math. [Hem96b].

Mathematical [HdH06, HKT93, HHS97b, dH79, Hem72a, Hem81a, Hem81b, HS81, HKWdZ83, Hem83a, Hem84d, HW94b, HST02, TH91, TH94].

Maken [Hem90a]. Manifold

[ELE+06, EH08, HE07b, HE07a].

Manifold-mapping [ELE+06, HE07a].

Manual [HLS95], mapping

[EHO5, ELE+06, EH08, ELH08a, ELH08b, HE07b, HE07a]. Math. [Hem96b].

Mathematical [HdH06, HKT93, HHS97b]. measurement

[HH09, HH13]. measuring

[HH09, HH13].

Mesh [HS94b, PWBH81, SSH04].

Mesh-Parameter [PWBH81]. meshes

[SSH97]. method

[FHST95, Hem74a, Hem75, Hem80b, Hem82a, Hem88b, HK89, Hem90b, HSS98, HSS99a, KSS04, PWBH81, SSH97, vRH05, vdMHKM93].

Methods [HSS97b, dH79, Hem72a, Hem81a, Hem81b, HS81, HKWdz83, Hem83a, Hem84d, HW94b, HST02, TH91, TH94].
Miller [HOS03]. Mixed [Hem82d, Hem84a].
mixtures [HHH72]. Model [Hem00, HHH00, Hem96d, NH00]. models [HdH06]. modules [HWD84]. moving [SSH04]. MR1338896 [Hem96b]. Multi [Hem80c, KH91c, KH92b, Hem80b, Hem80d, Hem86b, HKS86, HK91]. Multi- [KH92b].
Multi-dimensional [KH91c, HK91]. Multi-grid [Hem80c, Hem80b, HKS86]. multi-level [Hem80d]. Multigrid [DHH^91, HKWdZ83, Hem83a, Hem84b, Hem84c, Hem84d, HS84, HS85a, HS85b, HJ87, Hem87, HK88c, HW94a, HW94b, HKL^{+95}, Hem96a, HKN97, HKL^{+97a}, HKL^{+97b}, HK97, KHE97, VH95, WHO08, Hem81a, Hem82f, HWD84, HdlZ85, HK88a, HK88b, Hem88a, Hem88b, HK89, HvME90, Hem90b, Hem90c, HM91, Hem92, HK94, Hem94, HK95a, HK95b, Hem95b, Hem96b, Hem97, HKN98, HrvR03b, KdH88, KH91a, KH91b, KH91c, KH92a, MH90, VKH06, vRH05, vdMK93].
multigridding [KH92b]. multilevel [HE07b]. Multiple [HS81, HS86, KHE97, Hem81b]. myocardial [DHH^{+92}].
n [TH91]. n-component [TH91]. Navier [DHH^{+91}, DHHK03, HK88c]. near [KvBH^{+03}]. Necessary [HS94b]. nested [Hem73b]. Neumann [HSS99b]. nieuw [Hem92]. no. [Hem96b]. non [HK89].
on-linear [HK89]. Nonlinear [vH75]. Hem90b, Hem72b, Hem73c, HK88, HK88b, HK89b, HK94, HK95a, HK95b].
note [Hem82c]. notes [Hem81b]. Novel [HSS03b]. NUMAL [Hem73a, Hem81c].
Numerical [Hem72a, Hem77b, HM79, Hem81c, Hem83b, HSS97b, Hem73a, Hem74b, HW79, Hem82a, Hem96d, HSS99b, HST02, SSH97].

obtain [HHA09]. ODE [Hem83c]. one [Hem74a, Hem88a, Hem88b, Hem90b]. one-dimensional [Hem88a, Hem88b, Hem90b]. one-sided [Hem74a]. operator [Hem73c]. operators [HW79, HS01]. Oplossen [HR76].
optimization [ELE^{+06}, EH08, HE07b, HE07a]. Order [HSS97a, Hem80b, Hem90c, HSS99b, HSS00, HSS01b, HSS02a, HSS02c, HSS02b, HSS03a, HSS03b, KSS04].
Ordered [HK97, HP96, HP97, HK98]. Osher [HS86]. over-set [HHH00].

package [EHS95]. Parabolic [FHS95, FHS96a, HS92, HS93, HS94a, HSS97a, FHS96b, HSS96c, HS95, HSS97c, HSS98, HSS99b, HSS00, HSS01a, HSS02a, HSS02c, HSS03a, HSS03b].
parallel [HSS01b, HSS01a]. Parameter [Hem72b, HK93, HST02, PWBH81, vH75, EHS95, Hem72a, Hem83a, Hem84d].
Parameter-uniform [HST02]. Partially [HK97, HP96, HP97, HK98]. patients [DHH^{+02}]. PDEs [HS92, HS93, HS94a].
PEIA [RTH^{+11}]. PEIA-ellipsometry [RTH^{+11}]. Perturbation [HSS97a, Hem00, HSS00, HSM72b, HM79, Hem82a, HD83, Hem83b, Hem84a, HS95, HSS97c, HSS98, HSS00, HSS02b, HSS03a, NH00].
Perturbed [FHS95, FHS96a, HS92, HS94b, HS94a, HSS97b, FST95, FHS96b, FHS96c, Hem83c, Hem96d, HSS99b, HSS01b, HSS01a, HSS02a, HSS02c, HST02, HSS03b, KSS04, SSSH97, SSH04]. Pharmacokinetics [DHH^{+02}]. Pocklington [HL08]. Point [Hem77b, dH79, HSd80]. points [Hem74a, Hem75].
portable [HWD84]. posteriori [SSH04]. preliminaries [HKT93]. preliminary [HW79]. Principle [Hem82b, Hem82c]. Problem [Hem00, HHH00, Hem74b, Hem82a, HD83, Hem84a, Hem96d, HSS99b, HSS99a, NH00].
problemen [Hem92]. Problems [FHS95, FHS96a, Hem77b, HKL^{+95}, HSS97b, HKL^{+97a}, HKL^{+97b}, HSS97a, DH90a, DH90b, DH95, vH75, FHST95,
FHS96b, FHS96c, dH79, Hem74a, HM79, HSD80, Hem83a, Hem83b, Hem84d, HS94b, Hem95b, HS95, Hem96b, Hem97, HSS97c, HSS98, HSS00, HSS01b, HSS01a, HSS02a, HSS02b, HSS03a, HSS03b, SSH97, SSH04, VKH06]. procedure [Hem71a, HHA09]. Procedures [Hem81c, CHvS72, Hem73a, Hem90c]. processes [Hem82e]. project [HK93]. prolongations [Hem80a, Hem90c]. protein [DHH +02]. prothrombin [HEH +67, HHv +71]. quasilinear [HST02]. randwaardeproblemen [CHvS72, HR76]. rank [Hem82e]. Reaction [HK93, HH09, HH13, KSS04]. reaction-diffusion [KSS04]. rebuttal [HdH06]. rectangle [HSS98]. Rede [Hem90a]. refinement [Hem95a]. region [HE07a]. regular [HP96, HP97]. Rekenen [Hem96c]. relating [HH09, HH13]. relaxation [Hem80b, Hem82f, KdH88]. Remarks [Hem94, Hem96a]. report [HW79]. representation [HS01]. Research [DHKL94]. restrictions [Hem80a, Hem90c]. results [Hem90b, NH97, NH98]. Richardson [KSS04]. Robin [HSS02c, HSS03a]. rules [Hem73b]. Run [Hem84c, Hem84b].

scheme [HS86]. Schemes [DHH +91, HSS97a, KH97, Hem86b, HK88c, HSS00, HSS01b, HSS01a, HSS02a, HSS02b, HSS03a, HSS03b, KH91c]. second [HS81]. Seidel [Hem82f, KdH88]. Semi [KHE97, KHd97, Hem95a]. Semi-Coarsened [KHE97]. Semi-Coarsening [KHd97]. semi-refinement [Hem95a]. semiconductor [Hem88a, Hem88b, Hem90b, HM91, MH90].

set [HHH00]. Sets [HK97, HP96, HP97, HK98]. shifts [HDH05]. sided [Hem74a]. simulation [Hem72a, Hem88a, Hem88b, Hem90b, WHH06]. Single [HHv +73]. Single [HHv +73]. Singular [HSS97a, Hem00, HH00, Hem74b, HM79, Hem82a, HD83, Hem83b, Hem84a, HS95, HSS97c, HSS98, HSS00, HSS02b, HSS03a, NH00]. Singularly [FHS95, FHS96a, HS92, HS94b, HS94a, HSS97b, FHT95, FHS96b, FHS96c, Hem83c, Hem96d, HSS99b, HSS01b, HSS01a, HSS02a, HSS02c, HST02, HSS03b, HSS04, SSH97, SSH04]. small [Hem83a, Hem84d].

software [EH95]. solve [TH91, TH94].

Solution [DHH +91, Hem95a, HSS97b, HKL +97b, DHH93, Hem71a, Hem73c, Hem74b, HS81, Hem82a, Hem82d, HD83, Hem83c, Hem84a, HSS85a, HSS85b, HSS86, HKS86, HM91, HS95, HSS97c, HSS99b, HL08, KvBH +03, MH90, vdMHKM93].

solving [HSS01b]. Some [HdZ85, HSd80].

soort [Hem92]. Space [EH05, ELH08a, ELH08b, HSS03b]. Sparse [Hd93a, Hd93b, Hem95b, Hem96a, Dd97, Hem00, KH97, Hem94, NH97, NH98, NH00, Hem96b]. Sparse-Grid [Hem96a, Hem00, Hem95b, Hem94, NH00, Hem96b]. Special [WHO08]. spIds [EH95]. SPR [RTH +11].

stable [HHH72]. stage [HHv +71].

Standard [HK97]. staplengte [Hem71b]. states [HHH72]. Steady [HKL +95, HKL +97a, HKL +97b, HS84, HSS85a, HS85b, Hem86b, HS86, HSS86, HS88a, HS88b, HK88c, HK89, HK91, HK94, HK95a, HK95b, KgH88, Kh91b, Kh92a, Kh92b].

Stiff [Hem77b, dH79, Hem71a, Hem74a]. stimulated [DHHK94].

Stokes [DHH +91, DHHK93, HK88c].

strategy [HE07a, HL08, VKH06].
Structure
[Hd93a, Hd93b, HdZ97, Hem80d, HvME90].

Structured [VH95]. Study [Hem77b].
substrate [HH09, HH13], substrates [HHA09]. Supercomputers
[Hem84c, Hem84b]. system
[Hem72a, HdZ85, WHH06]. systems
[EHS95, Hem95a].

Technique [HS94b, Hem00, EH08, HHH06, HAA09, HH09, HH13]. Techniques [HK97].
tests [HH68]. theory [HHH72]. Three
[KHd97]. thrombin [HDH05, HHA09].
Time [HSS97a, HH09, HH13, HSS99b, HSS00, HSS01b, HSS01a, HSS02c, HSS02b, HSS03a, HSS03b]. Time-Accuracy
[HSS97a, HSS00, HSS02b]. time-accurate
[HSS01b, HSS01a, HSS02c, HSS03a]. Time-course [HH09, HH13]. transform
[HHA09]. transport [TH91, TH94]. transportable [Hem77a], trends [DHK93].
trust [HE07a], trust-region [HE07a]. turning [Hem74a]. two-points [HR76].
Two [Hem77b, HHvR03b, vRH05, EH08, dH79, HHv+71, HSS80, HvR04, HHvR04, KdH88, KvBH+03]. two-dimensional
[KdH88]. two-fluid [KvBH+03]. Two-level
[HHvR03b, vRH05, EH08, HvR04, HHvR04].
two-point [dH79, HSS80]. two-stage
[HHv+71]. type [KH97].

uitgesproken [Hem90a]. Uniform
[HSS97a, HSS99a, HSS00, HSS02].
Universiteit [Hem90a, Hem96c]. Upwind
[DHM+91, HK88c, KH91c]. upwinding
[HK91, KH92b]. use
[Hem83c, HS95, HSS97c].

Value [FHS95, FHS96a, Hem77b, HS94b, vH75, FHST95, FHS96b, FHS96c, dH79, Hem74a, HSS80]. variabele [Hem71b].
vector [HWD84]. vector-code [HWD84].
Verbeteren [Hem90a]. Volume [Hem96a, VH95, Hem94, Hem95b, Hem96b, Hem97]
voor [CHvS72, Hem92].

Wavelet [HP93]. Wavelets [HKT93].
weighted [Hem74a]. which [HS94b]. wire
[HL08]. Wiskunde [Hem90a]. without
[Hem82a, HHA09].

References

Beentjes:1975:CSD
[BDHv75] P. A. Beentjes, K. Dekker, P. W. Hemker, and M. van Veldhuizen. Colloquium stijve differentiaalvergelijkingen, deel

Bakker:1976:CD

Boehmer:1984:DCAa
REFERENCES

Desideri:1994:RCF

Dekker:1972:CSD

Echeverría:2005:SMDb

Echeverría:2008:MMD

Echeverría:2008:MMO

Echeverría:2006:MMO

Everaars:1995:MSS

REFERENCES

[HD83] P. W. Hemker and P. M. De Zeeuw. Defect correction

REFERENCES

REFERENCES

Hemker:1980:Sam

Hemker:1981:IMMa

Hemker:1981:LNS

Hemker:1981:NNP

Hemker:1982:AMD

Hemker:1982:DCP

Hemker:1982:EDCa

Hemker:1982:MDC

REFERENCES

P. W. Hemker. Fouten Maken en Verbeteren. Rede uitgesproken bij de aanvaarding van het
ambt van Bijzonder hoogleraar in de Industriële Wiskunde aan de Universiteit van Amsterdam, Juni 12, 1990.

REFERENCES

[Hv+73] P. W. Hemker, W. Hoffmann,

P. W. Hemker and B. Koren. Multigrid, defect correction and upwind schemes for the steady Navier–Stokes equations. In K. W. Morton and

REFERENCES

Hemker:1995:MSG

Hemker:1997:MSG

Hemker:1997:MPO

Hemker:1998:MPO

Hemker:1986:NMGa

Hemker:1998:MPO

Hemker:1997:SAM

REFERENCES

Hemker:1993:WMP

Hemker:1983:MMDa

Hemker:2008:ASS

Hemker:1979:NAS

Hemker:1996:APo

P. W. Hemker and C. Pflaum. Approximation on partially or-

Hemker:1993:WBA

Hemker:1991:AMAa

Hemker:2003:JM

Hemker:1991:AMMa

Hemker:1997:APO

Hemker:1976:OVT

Hemker:1981:MGMa

Hemker:1984:MSSa

Hemker:1985:MSSa

Hemker:1985:MSSb

Hemker:1986:MGO

P. W. Hemker, G. I. Shishkin, and L. P. Shishkina. e-uniform schemes with high-order time-accuracy for parabolic singular

P. W. Hemker, G. I. Shishkin, and L. P. Shishkina. High-order time-accurate schemes for parabolic singular perturbation convection-diffusion prob-

REFERENCES

References

Vieweg und Sohn, Braunschweig, Germany, 1992.

Koren:1997:GTS

Koren:1997:SCT

Koren:1997:MSC

Khemker:2004:HOA

Koren:2003:FSE

Molenaar:1990:MASa

Noordmans:1997:CRS

Noordmans:1998:CRS

Noordmans:2000:AAS

Polak:1981:MPC

Rispens:2011:LFA

Shishkin:1997:NMF

Shishkin:2004:CSP

Thoolen:1991:AMC

Thoolen:1994:AMC

P. M. C. Thoolen and P. W. Hemker. Approximate methods for n-component solute transport and ion-exchange.
REFERENCES

Maarel:1990:EAE

vanderMaarel:1993:ASA

Domselaar:1975:NPE

VanderMaarel:1995:SAF

Vasileva:2006:AMS

vanRaalte:2005:TLM

Wagenvoord:2006:LSC

Wesseling:2008:ESI

Pieter Wesseling, Pieter Hemker, and Cornelis Oosterlee. Editorial [Special issue devoted