A Complete Bibliography of the Publications of
Jonathan Michael Borwein

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/
12 September 2016
Version 1.09

Abstract
This bibliography records publications of Jonathan Michael Borwein.

Title word cross-reference

#13553 [Bor81a].
(a, b) ← (√a+b, √a+b) [BB89b]. (G) [BBL99]. 1/π [BB87b, BB88b, BB93d].
24 [CKM+16, BB16k]. $25 [BB93g]. $27.95 [BB91d]. $30.00 [Coh15].
$44.95 [BC96]. $45 [Zei05]. $49 [Zei05]. $49.00 [Ban10]. $49.95 [Ber88]. 5
[Bor91m]. [BB93e]. [BB16k, Via16]. $99.00 [Bor09b]. [na + b] [Bor91m]. [na + γ] [BB93c]. *
[BFG03]. b [BBG04]. R [DL02]. C^1 [BKW02, BFL02]. DAD [BLN94]. \ell_0
[BL11]. \ell_1 [XWQ14]. \epsilon [LS00, YS00]. k [BBB96b, BBB97d]. L [BB15c, BB07].
L^1 [BZ97, Hon85]. lnfty [Hon85]. \nu [Bor98g]. L_1 [BB93b, BV97]. L_1(Ω, μ)
[BF93c]. L_{3/2} [WSL16]. L_\nu [BTT88, BBL10]. n [BB84c]. p [BLS+16]. π
[AW97, ABBS12, Bai88, BBC+11a, BBC+12b, BB83, BB84b, Bor85b, BB86b,
BB86c, BB89a, BG97b, BB11j, Bor14o, Bor16p, Gan14, GG07, Gui08, Nim15, TK97, Wei15. \(\pi^2 \) [BBMW11, BBMW13]. \(q \) [LL01, PP11, War03]. \(R^n \) [BBW96]. \(\sqrt{5} \log \phi \) [Ade14b]. \(\theta(z, q) \) [HGB93]. \(\times \) [BFG03]. \(\varepsilon \) [Bor82c]. \(W \) [Bor16n, Bor16o, BL16]. Weak* [BF95b]. \(x_n := M(x_{n-1}, x_{n-2}, \ldots, x_{n-k}) \) [Bor94a]. \(x + yz + zx \) [BC00]. \(\zeta(2n + 2) \) [BBB05, BB06a]. \(\zeta(4) \) [BB95d]. \(\zeta(4n + 3) \) [AG99, BB97c, Bor97u, Bor97v, BB05f].

0 [BC96, Bor06o]. 0-12-558630-2 [BC96]. 0-19-850763-1 [Bor06o]. 0-691-14247-5 [BO11b].

1 [Bor06o]. 100-Digit [Bor05-40]. 125th [ABB12]. 14th [IEE08]. 17th [IEE08]. 1880-2 [Bor09b]. 1983 [SBW84]. 19th [Hd12].

2 [BC96]. 2000 [Tod03]. 2000j [BZ02a]. 2001 [BB12p]. 2002 [KG04]. 2012 [BB96a]. 2013 [BS14a]. 2014 [BBM13]. 20th [IEE08]. 21st [BB12r, BBM+13, BM+13, BL03-27, Bor03-28, Bor03-33, Bor04-27, Bor04w, Bor04x, Bor04y, Bor04z, Bor09r, Bor10a, HF05, Hoa05, R+05, Zel05, BB04b].

38 [BZ02a, BZ02b].

4 [Bor81a]. 4N [Bor97p]. 4th [HY14].

51 [Bor81a]. 5th [BF06b].

60th [BBB+13]. 6430-6435 [BSZ83].

7th [KG04].

8 [Zal86]. 80th [Ano15]. 85h [Zal86].

A. [BS14b]. AARMS [Bor05d, Bor05e, Bor07a]. Abel [Bor03p]. Absence [BS11b, Bor10i, Bor10j, Bor10k, Bor10l, Bor11q, Bor11r]. Absolute [BY84]. abstract [BW79, BW81c, BW81b, BW82a, BW82b]. abundant [BB12e]. Academic [BC96]. Access [Bor04e, Bor04i, BB05e, Bor07d]. accuracy [Bor05-40]. Accurate [BB14e]. ACE [Bor05-27]. ACEnet [IEE08]. Action [BCC+07b, Bor07m, Odl11, Lor09]. Activated [BBB+96a]. Active [BL99]. Actually [Bor11g, BB12g, BBWY11c, BBWY12c]. Acyclic [BW06].
adaptive [FN15, QYX14, ZH06]. add [BB11f]. Addenda [BC15b].
Addendum [BZ02a]. Addition [BG95]. Adjoint [Bor83a, BMWY11, Zäl86].
admit [BV96a, BV96b]. Adrian [Tod03]. Advanced
[Bai91, BL87, Ber88, BSZ+83, BB85, Bor85a, BN86, Bor03b, Bor03c, Bor03a, Bor04f, Bor04g, Bor04h, Bor04e, Bor04d, Bor04a, Bor04c, Bor04i, Bor06d, Bor06h, Bor06c, IEE08, Sch85, SB87, SH87, SBW84, Bor06-28].
Advances [BBC10]. Advancing [Ken15]. Adventures
[BB96a, Bor99x, Bor09p, Bor10c, Bor10d, Bor10t, BBC03, BBC+11b, BB84b, BB86c, Bor89s, BL00b, Bor09-29, Bor04-30, Bor04-29, BCF04, BC04a, Ask88, Cas99]. Aided
[BB92b]. Alexandria [SV14]. Alf [BSZ13]. Algebra
[BB12r, Bor91d, Bor91e, Bor91f, Bor91i, Bor91j, Bor91h, Bor91k, Bor91l, Bor92f, Bor92g, Bor98k, Bor98l, Bor98m, BS99a, Bor99u, BL06, Bor07a, BTZ97, Bor98k, Bor98l, Bor98m, BS99a, Bor99u, BL06, Bor06-30, BZ06, BM07d, Bor09l, Bor10r, Bor13-30, Bor13-33, Bor13-34, BG15a, Bor15f, BLT15, BG15c, Bor16j, BLT16, BL00b, Bor09-28, Bor11i, Gui08, TK97]. Alliance [BB13r].
along [BB13t]. Also [BB16l]. Alternating
[BB86a, Bor10c, Bor10d, HNP10, Bor93a, Bor94a]. Alternative
[Bor85c, BB95b]. am [Bor11m, Bor11n]. America
[Coh15, Bor12u, Bor12v]. American
[BC15a, BC16]. among [BF95a]. amongst [Bor94b]. AMS [Jac09]. Anal. [BZ02b]. Anal.
[BB96a, analague
[PP11]. Analouges [BBC93, HGB93]. Analysis
[Ano15, ABMMY13, BBKL16, Bor72, BBS89, BB92b, Bor96a, Bor99a, BMS99b, Bor99v, BL00a, Bor00v, BZ05, BM07b, Bor08i, Bor08j, Bor09y, BLY13, BLY14, BG16a, Bor16d, Bor16e, Bor16f, Bor16g, Bor16h, Bor16i, Bor16j, Bor16k, Bor16l, Bor16m, Bor16n, BL16, BG16d, Bor16-28, Tod03, ABMMY14, Bor81b, BS86, BS87, Bor87k, Bor93p, Bor94j, Bor94k, Bor94l, BL94a, BL94b, BL94c, BL94d, BS97a, BTZ97, Bor98k, Bor98l, Bor98m, BS99a, Bor99u, BL06, Bor06-30, BZ06, BM07d, Bor09l, Bor10r, Bor13-30, Bor13-33, Bor13-34, BG15a, Bor15f, BLT15, BG15c, Bor16j, BLT16, DLL05, MTB99, Bor92c]. analyst [Bor93b]. Analytic
[BB88, BB87d, Wim88, Bor91d, Bor91e, Bor91f, Bor91i, Bor91j, Bor91h, Bor91k, Bor91l, Bor92f, Bor92g, Bor98k, BB98a, BZ99a]. analytical
[BBB+13]. Ancient [BB12s, BB16e, SV14]. Andrea [BB16g]. anniversary
[AAB12, IEEO98]. Anthony [BS14a]. antiderivative [BBB+07]. antiproximal
[Bor81a]. Antiproximinal
[Bor81a, BJS12]. Anxiety
[BB12k]. any [Ade11]. anyone [BB10c]. Apéry
[Bor05f, AG99, BB005, BB85a, BB86b, BB97c, BB97c, BB97f, BB05f, BB05c]. Apéry-like
[AG99, BB005, BB85a, BB86b, BB97c, BB05f, BB05c]. Apéry-type
[Bor05f]. APICS [Bor89a]. APICS/FRASER [Bor89a]. appeal [Bor11u]. Appel [BB13c]. Application
[BB10, BT14a, HYG09, Li15]. Applications
[ABMMY13, ABMMY14, Bor96a, BL00b, Bor04-31, Bor07n, Bor09-27, Bor09-30, Bor12-31, Bor16w, Bor16x, Bor16y, Bor16z, Bor16-27, Geo05].
BBBG08, BB15c, BB16b, Bor79e, Bor86a, BP87, Bor87l, Bor88m, Bor88n, Bor89d, Bor90y, Bor90z, Bor90-27, Bor90-28, Bor94n, Bor95p, Bor95q, Bor95w, BZ96, BZ97, BTZ99, BZ99b, BZ02a, BZ02b, BCFR04, Bor14d, BT14b, RZ15, BS87. Applied [BB15h, HDG + 15, BLY + 15, BLY13, BLY14].

Approach [BBC + 11a, BBC + 12b, Bor10h, Bor11o, Ade12, BTBT88, Bor77a, Bor79b, Bor93b, BMW99, BMN00, BMW01, BZ16]. Approaches [Bor90-27, Bor90-37, Bor90-38, Bor90-27, Bor90-28, Bor90a, Bor90z, BaO12, Bor90c, Bor90f].

Approximate [BBW96]. Approximating [BB89a, BG97a, Bor85b].

Approximation [BM07b, Bor79b, Bor91g, Bor92e, Bor93d, Bor13e, Kom00, Kom02, Kom04, SBW84]. Approximations [BG97b, BBB97c, BBB00b, BBB04b, BBB16, BBB97a, BB84c, BS85, BB87a, Bor87f, BB89].

Arabic [BS14b, BS14a].

arbitrary [Ade11, BBB96b, BBB97d, Bor14s, Bor15o, Bor15p, Bor15q]. arc [BBC08a].

Arithmetic [BB13h, BB84a, BB97b, BLM97, B000, BB04a, Bor10-31, Bor11-32, Bor12b, BB15j, Bor87d, Bor88a, Bor88b, Bor88c, Bor88d, Bor88e, Bor88f, Bor89e, BBG93, Bor10e, BNSW11, BB16n, Zah06]. Art [BB12p].

articles [BC15a, BC16].

art [BBC98].

ary [BBG04].

aspects [BBBL98a, BBBL98b, Bor12b].

Asplund [Bor93a, BW07, Bor07b].

Assessment [MTCB98]. assets [BCM03]. assisted [BB05a, BB08c, Bor93c, Bor93d, Bor06h, Bor07g, Bor08d, Bor08e, Bor08f, Bor08g, Bor09a, Bor09e, Bor09f, Bor09g, Bor09h, Bor12a]. Associated [Bor16, BCLM16, Liu01]. Association [Coh15, KG04]. Astronomy [Fer91].

Asymptotes [BB93f]. Asymptotic [BB97d, BB000, BB004, BB16b]. Asymptotics [BL92a, Bor07i, Bor07j, BBC07c, BBC08b]. Atlantic [Bor04j, Bor04k].

attractors [BR16]. Aubin [Bor92c]. August [BF06b, HY14, SBW84, BS16a].

Australia [Bea13, BB13f, BB13q, Bor10-32, Bor13a]. Australian [BB12m].

Automated [BBK14]. Automatic [Bor87a]. Autour [Dev9x]. average [Zah06]. averaged [BLT15, BLT16]. avoid [BBL + 16b]. Avoiding [Bor04-32]. Avriel [Bor90b]. away [BB11d, BG16b].

baffle [Bor15a]. Baghdad [SV14].

Bailey [Ho05, Odl11, Zei05, BJCW13, BCJW13, PP11]. Baire [BS84a, BMW99, BMW01]. Balkanica [Bor81a]. ball [BKW02, BS10, 10]. Banach [Bor81a, BB95a, BBC01, BBWY11a, BBWY11b, BBWY12a, BBWY12b, Bor78a, Bor82e, BS83, BS84b, BS86, Bor87m, BS87, BG87, BF89b, Bor92a, Bor92h, Bor92i, BG03a, Bor93f, Bor93g, Bor94j, Bor94i, Bor94m, BF94, BN94, Bor95a, Bor95b, BBV96a, BV96b, BZ96, BFV97, BV97, BTZ97, BJ98, Bor99, BV01, BJSW02, Bor02d, Bor02e, BG03a, BBL04, BM07d, Bor07x, BM07b, BE08, BG09, BGHV09, BV10a, Bor13d, Bor13e,
Bor13f, Bor13g, Bor13h, BG15b, BG16c. Barrow [BB93g, Bor09b]. Bartle [BD03]. Barycentres [TB80]. Barzilai [RS02, AP16, DLL05, DF05, DHSZ06, DABY15, DK16, FN15, Fleo5, GDT15, GS02, HNP10, HYG09, H07, HLZ14, HL15a, HLZ15a, HLZ15b, HL15b, HL16, JY12, JD13, KJR16, La 09, LLS11, LZ14, Li15, LL13, Mar91, MR96, NW09, NWY10, PT14, Pos13, QYX14, Ray93, Ray97, SD15, WM07, WSdSY15, WSL16, XH08, XSW12, XWQ14, XC11, YW12, ZH06, ZSQ10]. Based [BB06a, BB08d, Bor06j, Bor06k, BCJW13, FN15, JL12, LLS11]. Bases [Zhu91, Ade11, BBG95b]. Basic [BMS99b, BLY13, BLY14]. Battle [BB15e]. Buchsche [Vir14]. BBP [AL10, Ade10, Ade12, Ade14a, Ade14b, Bor11i, Cha03, GG07, Lup02, Nim15, Wei15, ZS12, Zha13, ZZ14]. BBP-formulae [Cha03]. BBP-functions [Lup02]. BBP-Type [Ade14a, Ade14b, AL10, Ade10, Ade11, Ade12, Adel3, Nim15, Wei15, ZS12, Zha13, ZZ14]. Be [BB14d, Bor15n, Bor16e]. beautiful [BB14n, Bor15n, Bor16b, Bor16e]. Becomes [BB13r]. Behavior [ABT15, ABT16]. Behaviour [Bor99m, Bor99n, Bor001, BDT16, BG16b]. being [BB93g]. beispielorientierte [BD11]. Believing [BB12v]. Bello [BS14b, BS14a]. Benson [Yan94, Zho12]. Berggren [SV14]. Bernstein [SZ14]. Bertinoro [ABD03]. Bessel [BBBG08, Bor07h, BS07, BBCP04, BG95]. Bessel-integral [Cra04]. Best [BB13d, Bor13e, Bor13f, Bor13h, BL91a, Bor03g]. betting [BR14b]. Between [BB13r, BV93, BV94a, BR14c, BR14a]. Beyond [BB12r, Bor14o, Bor14r, Bor16q]. biconjugate [BV02]. biconvex [Bor86b]. bigger [BBWY11d, BBWY13]. Billion [BB97c, BBB00b, BBB04b, BBB16, BBB97a, BBB99]. Binary [Ade14b, Cha03, Ade10, Ade12, Ade13, BCP04, BG95]. Binomial [BBK00, BBK01, BG05, GG07]. Birthday [BBB+13, AnOt5]. bit [Cra12]. blank [Bor11e]. Blaschke [BBFG01]. blessings [BB11e]. blue [Tre13]. Boltzmann [BH95]. Book [Ab00, Ask88, Bai91, Ban10, Ber88, Bor09b, Bor92c, BB09g, BC09, Bor07c, BS14b, Cas99, Coh15, HF05, Hoo05, How14, Lor90, Lor09, Odl11, Rob06, Wim88, Zei05, BBB07, BBB08a, BBB08b, BBB91d, Bor09b, Bor11-37, B011b, Tod03, Abb00, Rob06]. Books [Bai91]. Boole [BCM09]. Borchardt [Bor88f]. Bornological [BFV93a, BFV93b, BF95b]. Borwein [Bai91, Ban10, Ber88, BO11a, Coh15, Hoo05, How14, Odl11, PP11, Tod03, Zei05, AP16, BBP+13, Bai16, BWY10, Be94, BCJW13, BCJW13, Bor04n, Bor08s, Cra04, Cra12, Cvi10, DLL02, DLL05, DF05, DSHZ06, DABY15, DK16, Dev9x, Fab89, FN15, Fle05, FK00, GDT15, Geo05, GS02, Gui08, HNP10, HYG09, HC09, H07, HL15a, HL15a, HLZ15b, HL15b, HL16, JY12, JD13, JN03, KMY00, Koh01, KJR16, KPS16, La 09, LS00, LLS11, LZ14, Li15, Liu01, LL13, Mar91, Mer15, Mii90, Mii89, MW12, MR96, MR11, NW09, NW10, Osd05, PT14, Pos13, QR07, QYX14, RP09, Ray93, Ray97, RS02, Rei02, SZ14, SD15, TK97, Tha02, Vir14, WM07, WSdSY15, War01, War03, WSL16, XH08, XSW12, XWQ14, XC11, Yan94, YS00, YW12, ZH06]. Borwein [Zal86, ZH06, ZSQ10, Zha10, Zho12, Zhu91]. Borwein-based [JY12].
[Bor90c, Bor90d, Bor91b, Bor91c, Ray93]. Chronology [Bor04n]. Circle [Bor94h, Bor90o, Bor90p]. Clarendon [BB93g]. Clarke [BF95a, BW97a, BM97a, BW00, BM00, BGV02, BW05b]. Class [BBBC07, BB93d, BBC06, BG03b, Bor07e, LZ14]. classification [Bor94c]. classifications [BFV94, Bor95t]. Clausen [BB00, BBK01]. Clearing [BR14c, BR14a]. Climate [BB12v]. Climbing [BB11d]. Closed [BF95c, Bor10f, Bor10g, BC13, BBL97b, BS86, BS87, BFG03, BS16b]. closedness [BM09, BM10]. closure [BY12d, BY14b]. co [Bai91, Ber88]. co-hosted [IEE08]. Coast [BLM+07, BJL+08, BBJ12]. Coast-To-Coast [BBJ12, BLM+07, BJL+08]. Cobzas [Bor81a]. coderivatives [BBW96]. coefficients [BL05, BL08, War03]. coffee [BR13a]. coincide [BMWY11]. coke [Bor10q]. Cold [BB15d]. Collaboration [Bor03b, Bor03c, Bor03a, Bor04a, Bor04b, Bor04c, Bor04i, Bor05j, BLM+07, BM07c, Bor09w, Bor09x, Bor11g, Bor11-36, Bor12a, BBJ12]. Collaborative [Bor98e, Bor01f, Bor04d, Bor06d, Bor06b, Bor06c, Bor06g, Bor07f, IEE08, Bor16h]. Collaborator [Bor14h, Bor14i, Bor14j, Bor14k, Bor14l, Bor15h]. collection [Bor97c]. college [BB97c]. collide [BB14m]. Collins [BB95b, BB02]. Color [BB13c]. Colorful [BB13c]. Columbia [BBJC97]. combat [BB12a]. Combinatorial [ABT13b, ABT14b, BBBL98a, BBBL98b, ABT14d]. come [BB12h, BB13t]. comes [Bor15b]. Coming [Bor07w, Bor07-32, Bor08n, Bor08o]. Communicating [BRR08, BMPR02, Ban10]. communications [Bor92d]. Community [Bor03q, BS05]. compact [BRLZ00, BLZ01]. Compactly [BLM00]. compactness [BF95b]. Companion [HDG+15, Bor09b]. comparison [BGL93]. compendium [BBB96b, BBB97d]. complementarity [AR13, Bor84a, Bor85c, Bor87e, BD89, HLZ14, KJR16, LLS11, LZ14, Li15]. complementary [BC09]. complete [BZ92]. completely [SZ14]. Completeness [Bor83b, QR07]. Completion [ABT13a, ABT14a, ABT14c, Bor13i, Bor14e, Bor14f, Bor15g, Bor16r]. Complex [BC04a, BMN00, Bor04-29, Bor10-29]. Complex-Parameter [BC04a]. Complexity [BB87d, BB88c, BB16c, BB98a, Ber88, Wim88]. complicated [Bor14y, Bor16f]. composite [HL15a]. Composition [KMZ+05]. compositions [BM97e]. Compound [BB93f]. Comprehensive [BS14a, BS14b]. Compressed [BB13d, Bor09c, Bor10h, Bor11o, QYX14]. compressive [WW14]. Computation [Bai88, BB08a, BMW11, BLM+13, BBC14a, BB15b, BB15a, BB16a, BB84a, BB97b, Bor99g, Bor99h, Bor99i, Bor99k, Bor99l, Bor99m, Bor99n, Bor99o, Bor00b, Bor00c, Bor00d, Bor00e, Bor00f, Bor00g, Bor00h, Bor00i, Bor00j, Bor01k, Bor03a, Bor03c, Bor03d, Bor04a, Bor04b, Bor04c, BB04a, BB04b, BB05-41, BH06, Bor07h, Bor07i, Bor07j, Bor08h, Bor09h, Bor09i, Bor09j, Bor09k, Bor10m, Bor10n, Bor11s, Bor11w, Bor11x, Bor11y, Bor11z, Bor11-27, Bor12e, Bor12f, BMS13, BSM13, Bor14g, Bor14h, Bor14i, Bor14j, Bor14k, Bor14l, Bor14m, Bor15h, Bor16p, MTCB99, BB977, BB10a, BB11h, BB12, BBM13, BB15c, BB15i, BB16i, Bor90q, Bor90r, Bor90s, Bor90t, Bor90u, Bor90v, Bor90w, Bor90x, Bor93i, Bor94o, BMN00, Bor10s, BB16u].
Computational
[BB09a, BB+13, BBL+13, BBBR16, Ber88, BB87d, BBC98, Bor99t, BBC00, Bor00s, Bor02j, Bor02k, Bor03n, Bor05g, Bor05-37, Bor05-38, SBB13, Wim88, Zei05, BB09c, BB16c, Bor93p, BB98a, BS00, BBG03, BB10b, BLLN95].

Compute [BBB97c, BB00b, BB04b, BB16b, BB97a, BB89].

computed [MTCB98].

Computer [BB05a, BB08c, BBKL16, Bor92b, Bor93c, Bor93d, Bor06h, Bor07g, Bor08d, Bor08e, Bor08f, Bor97d, Bor11-28, Bor14h, Bor14i, Bor14j, Bor14k, Bor14m, Bor15h, BB12l, BB12g, BB13o, Bor91d, Bor91e, Bor91f, Bor91i, Bor91h, Bor91k, Bor92f, Bor92g, Bor08c, BD09].

Computer-assisted
[BB05a, BB08c, Bor06h, Bor07g, Bor08d, Bor08e, Bor08f].

computers [BB12o, BB16m].

Computing [BBB97c, BBB00b, BBB04b, BBB16, BBB97a, BBB89].

Computer-assisted
[BB05a, BB08c, BBKL16, Bor92b, Bor92b, Bor93c, Bor93d, Bor06h, Bor07g, Bor08d, Bor08e, Bor08f, Bor97d, Bor11-28, Bor14h, Bor14i, Bor14j, Bor14k, Bor14m, Bor15h, BB12l, BB12g, BB13o, Bor91d, Bor91e, Bor91f, Bor91i, Bor91h, Bor91k, Bor92f, Bor92g, Bor08c, BD09].

Conjecture [Osb05, Bor94g, BBBG96, BW97b, BMS13, Cvi10, HC09, RP09, Tha02, War01, War03, Zah06, Zha10].

Conjectured [ABBS12, BB11j].

Conjugate
[BPT84, BB99b, BBWY11d, BBWY13, BV09, DK16, WSdSY15, XSW12].

Conjugates [BH06].

Consequences [Bor87c, Bor86d, Bor87b].

Constrains [BB12j].

Continued
[BB09a, BB09b, BB09c, BB09d, BB09e, BB09f, BB09g].

Continuous
[BB95a, BB99b, BBW07, BTZ98, BW01].

continuously [BFKL01].

Contraction
[Bor83b].

Control [BB15g, BZ94, BZ97].

Conundrums [Tre13].

Converge [Bor98d].

Convergence [BB93b, BBWY11b, BBWY12b, GG07, BGW98].

Constructions
[BV12, How14, BV10b].

Constructive
[BB97, continue [BB15n]].

Continued
[BB03d, Bor03e, Bor03f, Bor04-30, Bor04-29, Bor04-28, BCP05, Bor16i, BCLM16, BHL16b, BHL16a, BBGPxx, BL05, Bor05i, Bor06i, BL08, Bor10-28, Bor10-29, Bor11-31, BVSZ14].

Continuous
[BB95a, BB99b, BBW07, BTZ98, BV07].

Conjecture
[Bor87a, BV02, BW05a, BY12e, BY13c].

Continuous
[BB95a, BB99b, BBW07, BTZ98, BV07].

Continuously [BFKL01].

Convergence [BB93b, BBW85, BL91a, BL93a, BL93c, BV95a, BBP98, BV06, BST13, BLT15, BLT16, Mar91, AB12, AB13, BB93a, BBW13].
BB90a, Bor88j, BF89c, BV94b, BH94, BV95b, BV96c, Bor90-28, BLY13, BLY14, BST15, DL02, HL15b. Convergent [Bai88, AL10, BB83, Bor94a, TK97]. converges [Bor94a]. converging [BB86c].

Convergent [Bai88, AL10, BB83, Bor94a, TK97].

Converges [Bor94a].

Converging [BB86c].

Converse [BW98].

Convex [ABMMY13, BB96a, BBL97a, Bor81b, Bor87c, Bor90e, Bor90f, Bor90c, Bor90d, Bor91b, Bor91c, Bor93e, Bor95a, Bor95b, Bor96a, BV97, Bor99a, Bor90-27, Bor90-31, BV10b, Bor90-35, Bor11p, Bor13o, BG15a, Bor15f, BL15, BG16a, Bor16j, Bor16k, BG16d, BG16e, Bor16w, Bor16x, Bor16y, Bor16z, AB12, AB13, ABMMY14, BBS10, BBL97b, BBL99, Bor79c, BW79, Bor80d, BW81a, BW81c, Bor81c, BW81d, Bor81d, BW81b, Bor82a, BW82a, BPT84, Bor84d, BT85, Bor86e, Bor86a, Bor86b, Bor87a, BP87, Bor88l, Bor89i, Bor90g, Bor90h, Bor90a, Bor90-40, Bor90-42, Bor90-43, Bor91g, BFK91, Bor91p, Bor91q, Bor91r, Bor91s, BZ91, Bor92a, Bor92e, Bor92i.

Convex [Bor92i, BL92c, BL92d, Bor92b, BBT92, BR93a, BF93a, Bor93f, Bor93g, BFV94, Bor94c, Bor94i, BN94, BL94a, BF95c, BV95a, Bor95a, Bor95o, Bor95t, BV96c, BLN96, BFV97, BZ98, Bor99, BMN00, BLM00, Bor00r, Bor01p, Bor01q, Bor01r, Bor01v, BV02, BV04, Bor05-32, Bor05-33, Bor05-34, Bor05-35, Bor05-36, BMV06, Bor06-33, Bor06-34, Bor06-35, BZ06, BM09, BGV09, BM10, BV12, BY12, BY12a, Bor12p, BLY13, BLY14, BB14, Bor14n, BY14a, Bor15i, BG15b, BG15c, Bor15r, BG15c, NYW09, YW12, Zhu91, How14, Tod03].

Convex-concave [Bor86b].

ConveXity [Bor07-28, Bor07-29, Bor07-30, Bor07-31, BS11b, BS15a, BB11a, BBC01, BB01b, BO76, B77a, BO78, B78c, BF601, Bor07-27, Bor10i, Bor10j, Bor10k, Bor10l, Bor11q, Bor11r, BY12d, BY14b].

Convolutions [BBEM10].

Copulas [Bor13j, PHB12, PHB14].

correlation [BR14c, BR14a].

cosmic [BB11d].

could [BB12].

Counter [Bor16m].

counter-examples [BV10b, How14].

counterpart [BB91c].

counterparts [BB15].

counting [BB11c, BB93g].

country [Bor13a].

crackers [Bor11a].

Crandall [BB12q, BB15c].

Crash [BB15m].

Creativity [Bor90o, Bor12n, Coh15].

Crime [BB15g].

Crisis [BB12-27].

Critical [BKW02].

Crucible [Bor09d, Bor08c, BD09].

Cubic [BB84b, HGB93, AB15, BS86b, BB90b, BB91c, BBG94b, Bor95c, LL01, Liu00, XY12].

cultures [Sel16].

Cup [BR14b].

Curiosity [BB12h].

curve [Bor90e, Bor90f].

CUSCOS [Bor89c, Bor89d, Bor90y, Bor90z, Bor90-27, Bor90-28, Bor91a].

Cusps [Bor04i, Bor04m, Bor06r].

Cyclic [BT13a, BT13b, BB8+07, BBL97a, BBL97b, BL08, BLY13, BLY14, BT14c, BT15, DHSZ06, HLY16, XSW12, ZH06].

cyclotomic [HC09].

D [BB93g, How14, Odl11, Bor05-46].

D-DRIVE [Bor05-46].

Danger [BB11c, BB13c].

dangerous [BB12n].

Data [BB14e, BB15c, Bor09c, BTZ98, PHBH13].

dating [BB12d].

David [Hoa05, Zei05, Bor04n].

Day [BB13k, BB15o, BB16h, Bor07v, Bor08l, Bor08m, Bor10w, Bor11w, Bor11x, Bor11y, Bor12u, Bor12v, Bor12w, Bor13r, Bor14t, Bor16p, Bor16c, BB14i, BB14c].

Days [Bor11d, Bor16p, Bor11h].
DC [Coh15]. **Deafening** [Sol15]. **death** [BB11c]. **December** [Bea13, BBJC97, BBL+13]. **Decimal** [Bai88, Gan14, BB11e, BBGPxx]. **decision** [Bea13]. **decisions** [BB13q]. **Decomposition** [BL92b, Bor04o, BW07]. **Decompositions** [Bor06t, BWY10, Bor79c, Bor07b]. **decreasing** [BL93a]. **Dedekind** [BG97b, BG97a, BB98b, BB98c]. **Dedekind-zeta** [BB98b, BB98c]. **Default** [BB11c, SBB13, BBS13a, BB13o, Bor13-29, Bor15m]. **degree** [Ade11, Ade13]. **déjà** [Tre13]. **della** [BB95b]. **delta** [BG15b, BG16c]. **demand** [JY12]. **Denial** [BB13r]. **dense** [BB99b, BBWY11, BBWY12c, BY11f]. **Densities** [BSWZ11, BSWZ12, BS15, BS16, Bor14s]. **Density** [Hon85, BS16b]. **Department** [Bor03j]. **derivative** [BB94i, BLN95, Bor95a, BLLN95, BLN96]. **Derivatives** [BFV93a, BD16, AL10, BB16a, BFV93b, Bor94n, BF95b, Bor95w, BMV06]. **Deriving** [BB14o]. **Descent** [Bor09c, SD15, RS02]. **design** [BB11a]. **Desperately** [BB15f]. **Determination** [BB90b]. **Determined** [BB98b, BB98c]. **development** [BB01a]. **devices** [Bor00w]. **dian** [BB95c]. **Dictionary** [Bai91, BB99c, BS14a, Lor90, BB91a, BB02, BB90c, BWB97, BS14b]. **did** [BB12a]. **didn’t** [BBW97]. **Diego** [BC96]. **dies** [BB12q, Bai16]. **Dieuwert** [Bor09b]. **Difference** [Bor11p, BB11a]. **different** [PHBH13, Zha13]. **Differentiability** [BB91a, BB90c, BBW97, BS14b]. **determined** [BB01a]. **developments** [BB01a]. **digits** [Bor00w]. **dian** [BB95c]. **Dictionary** [Bai91, BB99c, BS14a, Lor90, BB91a, BB02, BB90c, BWB97, BS14b]. **did** [BB12a]. **didn’t** [BBW97]. **Diego** [BC96]. **dies** [BB12q, Bai16]. **Dieuwert** [Bor09b]. **Difference** [Bor11p, BB11a]. **different** [PHBH13, Zha13]. **Differentiability** [BB91a, BB90c, BBW97, BS14b]. **determined** [BB01a]. **developments** [BB01a]. **digits** [Bor00w]. **digit-assisted** [BB94i, BLN95, Bor95a, BLLN95, BLN96]. **Derivatives** [BFV93a, BD16, AL10, BB16a, BFV93b, Bor94n, BF95b, Bor95w, BMV06]. **Deriving** [BB14o]. **Descent** [Bor09c, SD15, RS02]. **design** [BB11a]. **Desperately** [BB15f]. **Determination** [BBB06a, BBB05, BM00, BT14b, BT14a]. **Determinations** [BB98b, BB98c]. **Determined** [BB98b, BB98c]. **developments** [BB01a]. **devices** [Bor00w]. **Diao** [BB95c]. **Dictionary** [Bai91, BB99c, BS14a, Lor90, BB91a, BB02, BB90c, BWB97, BS14b]. **did** [BB12a]. **didn’t** [BBW97]. **Diego** [BC96]. **dies** [BB12q, Bai16]. **Dieuwert** [Bor09b]. **Difference** [Bor11p, BB11a]. **different** [PHBH13, Zha13]. **Differentiability** [BB91a, BB90c, BBW97, BS14b]. **determined** [BB01a]. **developments** [BB01a]. **digits** [Bor00w]. **digit-assisted** [BB94i, BLN95, Bor95a, BLLN95, BLN96]. **Derivatives** [BFV93a, BD16, AL10, BB16a, BFV93b, Bor94n, BF95b, Bor95w, BMV06]. **Deriving** [BB14o]. **Descent** [Bor09c, SD15, RS02]. **design** [BB11a]. **Desperately** [BB15f]. **Determination** [BBB06a, BBB05, BM00, BT14b, BT14a]. **Determinations** [BB98b, BB98c]. **Determined** [BB98b, BB98c]. **developments** [BB01a]. **devices** [Bor00w].
Discovering [Bor91d, Bor91e, Bor91f, Bor91i, Bor91j, Bor91h, Bor91k, Bor91l, Bor92f, Bor92g].

Discovery [BB11i, BBKL16, Bor02i, Bor02m, Bor03k, Bor04p, Bor05k, Bor05l, Bor05m, Bor05n, Bor05o, Bor05a, Bor06l, Bor07g, Bor07i, Bor07k, Bor08g, Bor12a, R+05, Ade12, BB08c, BBG03, Bor06h, Bor08d, Bor08e, Bor08f, Bor09a, Bor09e, Bor09f, Bor09g, Bor09u, Zei05].

Distance [BB01b, BF94].

Distinct [BW97a, BBT00].

Distributed [Bor99b, Bor99c].

Distribution [TB00, BG94].

Dizionario [BB95b].

Do [BB13i, BB15l, BB13k, BB14c, Bor94o].

Doctor [BB12b].

dodgy [BB12a].

Does [BB15g].

doesn't [Bor07q, Bor07p].

Doing [Bor96b, Bor97a, Bor97b, Bor97c, Bor97d, Bor99e, Bor99f, Bor99d, Bor00n, Bor98r, BS99, BB11g].

domain [BY12d, BY14h].

Don't [Bor13c, BB11f].

double [BB12i, BZB08, Mer15].

Doubly [BLN94].

Douglas [AB12, ABT13a, AB13, ABT13b, ABT13c, ABT14a, ABT14b, ABT15, ABT14c, ABT14d, ABT16, Bor10i, Bor10j, Bor10k, Bor10l, BS11b, Bor11q, Bor11r, BT13a, BT13b, Bor13i, Bor13q, BT14c, Bor14e, BT15, Bor15g, Bor15r, BG16b, BLS+16].

Dreams [Bor02p].

drive [Bor13c, Bor05-46].

Dual [BV93, BV94a, BTBT88, BMN00, BS10].

Duality [BL91b, BF01, Bor09-27, BC10, BL13, Art07, Bor80c, Bor80d, Bor83a, BK83, Bor83f, Bor86a, BL91d, BL92c, Bor94p, BL96, BBY12, BBY14, Zäl86].

Dubious [BB14c].

due [Koh01].

dull [Bor11b, Bor11c].

Dumb [BB13p].

dunce [BB13q], during [SBW84].

Dykstra [BB94a].

Dynamic [Bor02r, KZM+05, BNCB99, BS97a, LLC+95].

Dynamics [Bor04-30, Bor04-29, Bor04-28, BK05, BL05, Bor05i, Bor06i, BL08, BBB12, BBCM07b, Bor10s].

E. [BB13s].

E2995 [ANO+83, AJ86].

E2996 [NOL86].

E2997 [AJB86].

E2998 [KJ86].

E2999 [SZUM86].

E3000 [ANO+83, EWM86].

E3159 [DDBC88].

E3325 [Rud89].

E3335 [KWK+90a, KWK+90b, KWK+90c].

E3384 [Stu90].

E3388 [CJKB92].

Earth [Bor13s, BB12z, BB12d, BB12h].

East [Bor05j].

Easy [Gui08].

Eberhard [Bor06o].

ecological [Bea13].

economics [BB13m].

economy [BB12r].

Edited [Bor06o, Coh15].

editor [Zäl86, Bor11b].

Editors [BM97b].

education [Hd12].

Effective [BB06a, BB08d, Bor06i, Bor06k, Bor07h, BBC07c, Bor07i, Bor07j, Bor08h, BBC08b].

effects [BBLZ14].

efficiency [Bor80a, BZ91, BZ93, JN03, Zhu91].

Efficient [BCJW13, Bor77c, BJCW13, Bor83e, HLZ15a, Yan94, Zho12].

Eigenvalue [AR13, GDT15, JD13].

Eigenvalues [Bor84c].

Einführung [BD11].

Eisenstein [Lit01, XY12].

Ekeland [Bej94, Bor88g, Bor88h, Bor88i, Bor90m, Bor90n, LS00, YS00].

elastic [HYG09].

electron [BBSZ88].

Electronic [Bor01n, Bor01m, Bor02n, Bor03q, BS97b, Bor97n].

Elementary [AJB86, ANO+83, AJ86, BB84a, BB97b, BB00, BB04a, CJK92, DBCB88, EWM86, KJ86, KWK+90a, KWK+90b, KWK+90c, NOL86, Rud89, SZUM86, Stu90, BB16n].

Elliptic [BBBG08, Bor10z, Bor11-29, BBG95b, BZ92, BBGW11, LL01, PT14].

Emerging [BC99].

Empirical [BBC+11a, BBC+12b, Bor97g].
Empirically [BB97c, BB05f]. Encourage [BB15g]. Encyclopaedia [Sel16]. Encyclopedia [BC96]. End [Bor09d, Bor03y, Bor03z]. Energy [BB84f, BB14b, BB15d, BB16g, BBSZ88, BB12e]. engaged [BB16f]. engineering [BBC14+11b]. engineers [BWB97]. Engines [Bor04p, Bor05k, Bor05l, Bor05m, Bor05n, Bor05o, Bor06l, R90+05]. enhancement [BM07a]. ENIAC [Bor12o, Bor14o, Bor14r, Bor16q]. Enlargements [BBY11, BBY13]. enough [BB14l]. entire [Bor02g, BS10]. Entropic [BL11]. entropies [BGL93, BH94]. Entropy [BL93c, BLL94, BLN94, Bor97k, Bor01o, Bor05-32, Bor06-33, Bor06-34, Bor06g]. ENIAC [Bor12o, Bor14o, Bor14r, Bor16q]. Enlargements [BBY11, BBY13]. enough [BB14l]. entire [Bor02g, BS10]. Entropic [BL11]. entropies [BGL93, BH94]. Entropy [BL93c, BLL94, BLN94, Bor97k, Bor01o, Bor05-32, Bor06-33, Bor06-34, Bor06g].
exp-arc [BBC08a]. Expansion [Gan14, BB83]. Expansions [BB97, BB00, BB04, BB07, BBFC04, BB89, BG95, BBGPxx, BB16]. expansive [BS10]. Expectations [BBDR13, Bor12g, Bor12h, BR16].

Experience [Bor07d]. experiences [Bor08q, Bor12t]. Experimental [Bor03-27, Bor03-28, Bor03-29, Bor04n, BB04b, Bor05-30, Bor05-28, Bor05-29, BB08f, Bor10a, HF05, Zei05, Hooa05]. Experimental [BB94a, BB01a, BBB05, BB05b, BBB06a, BBC+07b, BB09c, BB09a, BB10a, BBZ10b, BBZ10a, BBL+13, BB14a, BB15h, BB15i, BB16d, BB94d, BB94e, BB94f, BB94g, BB94r, BB95f, BB95g, BB95h, BB95i, BB95j, BB95k, BB95l, BB95m, BB95x, BB96c, BB99g, BB99h, BB99i, BB99k, BB99l, BBGPxx, BB00b, BB00c, BB00d, BB00e, BB00f, BB00g, BB00h, BB00i, BB00j, BB00k, BB01h, BB01i, BB01j, BB01k, BB02j, BB02k, BB02l, BB02m, BB02n, BB02o, BB05a, BB05p, BB05q, BB05-37, BB05-38, BB05-41, BB06m, BB06n, BB07l, BB07k, BB07m, BB07n, BB07r, BB07s, BB07t, BB07u, BB08c, BB10b, BaO12, BB14g, BB16g, BB0W06, BB16a, BB93p, BB93q, BBGP95b, BBGP96, BC99, BB05c, BB08b, BD09, BD11, Bor09, Odi11]. experimentally [ABBS12, Bor93j, BB11j]. Experimentation [Bor92], BBGP95a, Bor03l, BB03m, BB03n, BB03o, BB04q, BB04r, BB04s, BB04t, BB09h, BB09i, BB10n, BB10o, BB11s, BB12a, BB12i, BB13l, BB13m, BB11h, BB12t, BB09u, Zet05]. Experimentelle [BD11].

Experiments [BBG06]. Explainer [BR12, BR13b, BR14a, Tre13]. Explicit [BB84c, BB87a, BL92d, BBG95c, BB86b, BS10]. Exploration [BB16j].

Exploratory [BB11h, BB12t, BB09h, BB09i, BB09u, BB10n, BB10o, BB11s, BB12a, BB12i, BB13l, BB13m, BB11h, BB12t, BB09u, Zet05].

Extended [NWy09, NWy10, BB14a]. Extension [La 09, Bor82e, DABY15, Mil90]. Extensions [Bor10z, Bor11-29, Bor88g, Bor88h, BB88l, BB94b, BB0V02, BMV06, BBGW11]. extraction [Ade10, Bor11i]. extraterrestrial [BB11g]. Extreme [BB06m, BB06n, DGT15, JD13].

F [Ban10]. Face [Cal16, Bor96k, Bor97w]. Facial [BW81d]. Facilitating [BB16b]. facilities [YJ12]. fact [BB12f]. factorization [HNP10, HLZ15a, HLZ15b, LL13]. fail [BW98]. failing [BB12m]. failure [Bor92o, Bor93k]. Familiar [BB88c]. family [Bor79a, Bor80d]. Fan [BZ86].

far [BB11d]. Faded [BB15k]. Farkas [Bor79b, Bor83d]. Fast [BB84a, BZ02, BLN95, BB97b, BB00, BB04a, BD16, BH95, BB16a].

Favourite [Bor07-28, Bor07-29, Bor07-30, Bor08u]. Feasibility [ABT13a, ABT14a, ABT15, BB96a, BT13b, BB16w, BB16x, BB16y, BB16z, BB16-27, ABT14c, ABT16, Bor12p, BT15, Bor15r]. Feasible [JD13, LLS11].

Featured [Bor06o]. February [ABD03]. Federated [BMP05]. Fee [Rei02].

Fenchel [BK83, BL91d, BH06, BH09]. Fenchel-duality [BK83]. Fermi [BB15f, BB15p, BH94]. few [BB12b]. Feynman [BB98b, BB98c]. Fiasco [BB15m, BB13].

Fibonacci [Ade14a]. fiction [BB12f]. field [Cvi10]. Fields
fifty

{\text{filter}} \text{ [AP16, ZSQ10].} \text{ Final }
{\text{Finance}} \text{ [Ano15].} \text{ Financial} \text{ [BBS+16a, BBLZ14, Cam16].} \text{ Financially} \text{ [BB14g].} \text{ Finding} \text{ [BBG95a, BBG04, Bor07o].} \text{ fine} \text{ [BB14m].}

\text{fine-tuned} \text{ [BR14m].} \text{ Finite}
{\text{First}} \text{ [Bor92h, Bor92i, Bor93f, Bor93g, Bor06q, BZ92].} \text{ Fisher}
{\text{Fitting}} \text{ [BBLZ13, BdPZ16].} \text{ Fitzpatrick} \text{ [BBB+07, BBW07, BBWY11c, BBWY12c, Bor06a, Bor14m, Bor15i, BD15].} \text{ Five}
{\text{First}} \text{ [Bor97d, Bor15d].} \text{ Fixed}
{\text{First}} \text{ [Bor02c, Bor02q, Bor06r, Bor06t, Bor06u, BSW13, Bor88f, BB13c].} \text{ Four-Color} \text{ [BB13c].} \text{ four-dimensional} \text{ [Bor88f].} \text{ Four-Step} \text{ [BSW13].} \text{ FPV} \text{ [BEY11, BY13a, BY14c].} \text{ frack} \text{ [BB14k].} \text{ Fractal}
{\text{First}} \text{ [Bor10q, Bor11t, BCCR13, Bor12g, Bor12h].} \text{ Fractals} \text{ [Bor12l, BR10].} \text{ Fraction}
{\text{First}} \text{ [Bor03d, Bor03e, Bor03f, BCF04, BC04a, BBGPxx, BL05, BL08, Bor10-28, Bor10-29, Bor11-31].} \text{ Fractional} \text{ [Bor76a].} \text{ Fractions}
{\text{First}} \text{ [Bor04-30, Bor04-29, Bor04-28, Bor16i, BCLM16, BHL16b, BHL16a, BZ92, BCP05, Bor05i, Bor06i, BVSZ14].} \text{ frame} \text{ [FN15].} \text{ frame-based} \text{ [FN15].} \text{ Frankowska} \text{ [Bor92c].} \text{ Fraser} \text{ [BBJC97].} \text{ Fraud} \text{ [BB92a, BB11f, BB13n].} \text{ Fréchet} \text{ [BV10a, BF93a].} \text{ Fredholm} \text{ [Bor92o, Bor93k].} \text{ French} \text{ [Dev9x].} \text{ Fritz} \text{ [Bor76b].} \text{ Function}
{\text{First}} \text{ [BB96b, BBC98, Bor03-32, Bor04-31, BK05, Bor08k, BL11, BD16, BL16, AL10, AB15, BB15c, Bor91m, BZ92, BB93e, BLN95, BG97b, BG97a, BBC00, BKW02, BB05c, BC09, BS10, BL10, Bor14n, Bor15i, BR16, Bor16m, Bor16o, HGB93, Liu00, NYW09, SZ14].} \text{ Functional}
{\text{First}} \text{ [Bor72, BG94, Bor98k, BZ99a, LL+95].} \text{ Functionals}
{\text{First}} \text{ [BB93b, Bor78b, BK01].} \text{ Functions}
{\text{First}} \text{ [BB84a, BB88c, BFV93a, BB97b, BB00, Bor02b, Bor04a, Bor07g, Bor07h, Bor08h, Bor08u, Bor09m, Bor11-28, BD15, BL16, EB08, LPB01, SBW84, AB15, AAW06, BBS10, BBEM10, BB11a, BB15, BBB+07, BB97a, BBC01, BBW07, BBWY11d, BBWY13, BBP03, BBG95b, BFG87, BP87, Bor90g, Bor90h, Bor90i, Bor90k, Bor90l, Bor90y, Bor90z, Bor90-27, Bor90-28, Bor90a, Bor90-40, Bor90-41, Bor90-42, Bor90-43, BB01b, Bor91a, Bor91p, Bor91q, Bor91r, Bor91s, BL92b, Bor92h, Bor92i, Bor92b, BF93a, Bor93e, Bor93f, Bor93g, BFV93b, BFV94, Bor94c, BG94, BF94, BN94, BV95a, Bor95d, Bor95e, Bor95t, BV96c, BFV97, BV97, BW97a, BM97d, BM97e, BM97a, BMW97, BM98a, BM98b, Bor98o, BL00, BRLZ00, BW00, BV01, BLZ01, BF01, BV01, BV02, Bor02d].} \text{ functions}
{\text{First}} \text{ [Bor02c, BGV02, BW03, BBW03, BB05a, BW05b, BMV06, Bor06h,}
Gâteaux [BF93a, BF93b]. game [BB12d, BB15b, BB15i]. games [BB12o].

Gamma [BK05, Bor13a].

Gaussian [Cha03].

Gauss [Bor87d, Bor88a, Bor88b, Bor88c, Bor88d, Bor88e, TK97].

Geometric [BB93a, BB97b, BLM97, BB00, BB04a, Bor87d, Bor88a, Bor88b, Bor88c, Bor88d, Bor88e, Bor88f, Bor89e].

Geometry [Bor09z, Bor11t, Bor80a].

German [BD11]. get [BB14d].

Girgensohn [Odl11, Zei05, Rei02, SZ14].

Global [AB12, AB13, ABT15, ABT16, BB12c].

Glum [BB13f].

Go [Bor15a].

goals [Bor13c].

God [BB12v].

go [Bor05j].

Going [Bor12x].

Goldbach [Bor05c, BB05d, BB06b, Bor10b, Bor10-33].

Golden [Ade14a].

Good [Bor00j, Bor00k].

googol [Cra12].

googol-th [Cra12].

Got [Bor15t].

Gowers [Bor09b].

Gradient [BB88a, SD15, BFKL01, BFL02, DLL05, DK16, GS02, Li15, LL13, Mat91, QYX14, Ray93, Ray97, WsdSY15, XH08, XSW12, XWQ14, YW12].

Gradients [Bor99m, Bor99n, Bor00l, Bor00m].

graphs [BJCW13].

Graphs [BB93b, Ber88, BFG03].

Graves [BD03].

great [Bor13a].

Greatest [BB11i].

Greek [Bor08a].

H [Bor92c, Hoa05, Odl11].

H. [MR11].

Haar [BF95c, Bor95a, Bor95b].
Individual [BBG04]. Individuals [BB15]. induced [Bor93j]. Inequalities [BSW82, BB93f, Bor99-27, Bor09m, Bor98p, BF01, BG03b].

Inequality [Bor05w, Bor08k, Bor77a, Bor86c, Bor93b, Bor98g, BBFG01, Mer15]. Inexact [HD07]. inferred [BCM03]. Infimal [BBEM10]. infimum [BMWY11, BY12f]. Infinite [Bor92k, BPB99, Bor81c, BK83, Bor83c, Bor83f, BW86, Bor91g, BL91d, Bor92e, Bor92o, Bor93k, Bor94i, Bor95n, Bor95o, BFL02, Bor11u, RZ15]. infinite-dimensional [BW86]. Infinity [BB91d, Bor15b, Bor16d]. information [Bor94i]. Inhomogeneous [Kom00, Kom02, Kom04]. Initiatives [Bor09a, Bor01n, Bor01m, Bor02n, Bor03i]. Innovation [Bor99o, Bor12n]. Insight [Bor99i]. Integer [BB09d, BC96, Bor09a, BC07, Bor09p, Bor09q, Bor10t, BB93e, BL00b].

integrability [BM00]. integral [BBBG08, Bor84b, BB95d,BY12a, BY14a, Cra04, Cvi10]. Integrals [BBC06, BBBC07, BCC10, Bor10y, Bor10-30, Bor10-31, Bor11f, Bor11-29, Bor11z, Bor11-27, BS11d, BS11e, Bor11-33, Bor11-34, Bor11-32, Bor12r, Bor12-32, BSW13, BBC07a, BBCM07a, BBC10, BB10a, BB12a, BB15, BB08, BZ92, Bor01a, BB12u, BB01c, BMM02, Bor07e, Bor07a, BBGW11, BNSW11, BS13]. integrands [BY12a, BY14a].

Integrate [Bor94o]. Integration [BB08b, BB09e, BB09b, BB11b]. Interactive [Bor98j, Bor99p, Bor09a, BWB97]. Interdisciplinarity [Bor07p, Bor12n]. Interdisciplinary [Bor07q]. interior [BG03a]. interiors [BL92c]. International [Bor03q, Bor09r, HY14, IEE08, ABD03, BF06b, Ano15, Bor01n, Bor01m, Bor02a]. Internet [Bor01i]. interpolation [Bor98o]. intersection [BBL99]. Interview [Ano15, BB16g, Bor12w]. intriguing [Bor93o, BB95d]. Introduction [Bor97k, Bor02o, Bor07r, Bor07s, Bor07t, Bor07u, Bor09h, Bor09q, BR10, Bor11k, Bor11l, Bor13f, Bor08c, BD09, Bor10u, BD11, BS11c, BS12a, BVSZ14].

invariance [BLZ01]. invariants [BB98b, BB98c]. inverse [Bor97g, Bor09p, Bor09r, Bor09v, Bor10m, Bor10y, Bor10y, Bor12q, Bor13k, Bor13o, AL10, BCC+11b, Bor92l, Bor92m, Bor92n, Bor12r, BT14a, BT14a]. investigation [BBGFxx]. Investing [BB14g]. Investment [BBLZ13].

Islamic [SV14]. Israel [Bor90b, RZ15]. issue [AAB12]. Issues [BL99, Bor00t, Bor03q]. Italian [Bor08a]. Italy [ABD03]. iterated [BR16]. Iteration [BB98b, BT13a, AB12, AB13, BB86b, BB90b, BB93, Bor94a, BT14c].

Iterations [Bor98b, Bor98c, BB93f, BB91b, BRS92, Bor93j, Bor10i, Bor10j, Bor10k, Bor10l, Bor11q, Bor11r, Bor13q, BLT15, BLT16]. Iterative
[Bor92l, Bor92m, Bor92n, WSL16, XC11]. IV [Bor06u].

L [SV14]. L. [BSW82]. Laboratories [Bor99b, Bor99c]. Labs [BL99, Bor99p]. ladder [BB11d]. Lagrange [Bor81d, BZ16]. Lagrangeans [Bor80c]. Lagrangian [BBKL16, JWDS+14, BBK14, DF05, Ray97, WM07, XH08]. Large-Scale [BBKL16, JWDS+14, DF05, WM07, XH08]. largest [Bor10-32]. Later [BB13j, BD95]. Latin [BS14b, BS14a]. Lattice [BBCZ13, BLL94, BB94b]. Largest-Size [BB98b, BB98c]. know [BB13k, BB14c]. Knowledge [BB95, AB06]. Konjagin [Bor13g]. Korea [HY14]. Kós [FK00]. Krasnosel’ski [BRS92, Bor77b]. Kurt [BBC14b, BBC14c, BBC15].

Legendre [BB97a, BBC01, Bor87d, Bor88a, Bor88b, Bor88c, Bor88d, Bor88e, BV01, BV10a, BY12a, BY14a, TK97]. Legendre-type [BY12a, BY14a]. Leibniz [BW97]. Lemma [Bor79b, Bor83d]. LENR [BB15d, BB16g]. Lessons [BB14m, KMZ+05]. let [Bor13c]. Letter [Bor11b, Zäl86]. Level [BB93b, Bor99t, Bor00s, Bor11g, Bor11-36, BS00]. Lewis [Tod03]. Lexicographic [Bor80b]. Library [Bor02f, Bor03-35]. Life [BB13c, BB91d, Bor93m, Bor03r, Bor03s, Bor03t, Bor03u, Bor03v, Bor03w, Bor03x, Bor05x, Bor05y, Bor06-27, Bor07v, Bor081, Bor08m, Bor10v, Bor10w, Bor11v, Bor11w, Bor11x, Bor11y, Bor12o, Bor13n, Bor14o, Bor14r, Bor14p, Bor16p, Bor16q, Bor14q, BB11g, BB12h, Bor91n, Bor91o, BM06, Bor08a, Bor15b]. light [Fab89]. Like [WSL16, AG99, BBB05, BBB06a, Bor87m, BL91b, BB96b, BB97c, Bor97v, BBP98, BB05f, BB05c, Bor07-27, Bor15d, DABY15, GTD15, JD13]. likely [BB16f]. Liljedahl [Coh15]. Limit [BF95b]. Limiting
BY12d, BY12e, BY13b, BY13a, BY14b, BY14c. Maximization [Bor94i, Bor04-32, Bor13-31, BBM00]. Maximizations [Bor77c]. maximize [Bor09a]. Maximizing [Bor99q, Bor99r, Bor99s, Bor00p, Bor00q, Bor04v, Bor05-31]. Maximum [BL93c, Bor95n, Bor95o, BLN95, BLN96, Bor97k, Bor01o, Bor05-32, Bor06-33, Bor08p, Bor09v, Bor10x, Bor10y, Bor12p, Bor12q, Bor13o, BHP14, PHBH12, Bor92o, Bor93k, BL93b, BCM03, PHB12, PHB14]. May [IEE08, KG04, RZ15, BW97a, BW98, Bor15d]. Me [Bor94n, Bor11j, Bor11k, Bor11l, Bor11m, Bor11n, Bor14c, Bor12c, Bor12d, Bor15e]. Mean [BB84a, BB89b, Bor89g, Bor89h, BB93f, BB97b, Bor99z, Bor99-27, Bor99-28, BB00, Bor00u, BB04a, Bor87d, Bor88a, Bor88b, Bor88c, Bor88d, Bor88e, Bor88f, Bor89e, BB90b, BBG93, Bor94a, BW98, Bor98p, BBS14a, BB16n]. Mean-Value [Bor99-28, Bor00u]. Meaning [DD15]. Means [BB87c, Bor93j, BLM97]. Methodology [BBGP95a]. Methods [ABT13a, ABT13b, ABT14a, ABT14b, BB88a, BL93c, Bor97k, Bor00t, Bor01o, BZ02a, Bor02b, Bor05-32, Bor06-33, Bor08p, Bor09q, Bor09v, Bor09z, Bor10m, Bor10x, Bor10y, Bor12q, Bor13j, Bor13k, Bor13o, BST13, Sch15, ABT13c, ABT14c, ABT14d, BB05b, Bor92l, Bor92m, Bor92n, Bor94i, BLN95, Bor95n, Bor95o, Bor98k, BZ06, Bor12p, Bor13i, BZ13, Bor14e, Bor14f, BT14b, BT14a, Bor15g, BST15, Bor15r, Bor16r, DF05, GDT15, HNP10, HL15b, JD13, PHBH12, metric [BK80, BZ96]. Michel [Bor16m]. might [Bor07-27]. mine [BB12i]. Minimal [Bor89c, Bor89d, Bor90y, Bor90z, Bor90-27, Bor90-28, Bor91a, BFK91, Bor95p, Bor95q, BF89a, BM97a, BK04]. Minimality [Bor87c, Bor82b, Bor86d, Bor87b, BM00]. minimax [BZ86, Bor14y, Bor16f]. Minimization [BL94, BLN94, Bor09-29, Bor09-27, Bor09-30, Bor09-28, Bor09z, BL91b, Bor92k, Bor93k, BV09, NWY10, Ray97, XW14]. minimizing [HL15a, NWY10]. minimum [Bor79a, Bor80d]. miscalculate [BB11c]. Missing [Bor96c]. MKM [ABD03, BF06b]. modal [Bor96e]. model [Bor16h, Cam16]. Modelling [Bor13p, BHP14, PHB13, PHB14, Bea13]. models [BL92d, Cam16]. Modern [Bor09y, BB12w, BB15b, BB15i, BS11c, BS12a]. Moderne [Fal96]. Modified [LL13, XSW12]. MODSIM [Bea13]. Modular [BB97c, BB00b, BB04b, BB16, BBG94b, BB16]. moduli [Zha13]. modulo [ZS12, ZZ14]. Moll [Odl11]. moment [Bor09a].
non-expansive [BS10]. Non-Linear [Bor72]. non-negative [LL13].
non-reflexive [BBWY11b, BBWY12b, BZ94, BE08]. Non-smooth
[BM07d]. non-Western [Sel16]. nonattaining [BK01]. Nonconvex
[ABT15, Bor10m, Bor13q, ABT16, BZ98, BJ98, Bor12p].

nondifferentiability [BG09]. Nonexpansive
[BS83, BS84b, Bor09-28, BR511]. Nonlinear
[BBC09, Bor99a, BL00a, BZ02a, BZ02b, Tod03, BL06]. nonlocal [PT14].
Nonmonotone [G802, QYX14, XWQ14, AP16, Li15, YW12, ZSQ10].
nonnegative [HNP10, HLZ15a, HLZ15b, WM07]. Nonnormality [BB12x].
nonnegative [BL93a, BV94b, BZ97]. nonsense [BB12y]. Nonsmooth
[Bor94b, Bor94k, Bor94l, Bor94m, BM07b, WB87, Bor98k, BZ99a, XWQ14,
YW12]. Normal [Bor86a, BST13, BST15, Art07, BFG03]. Normal
[BB13j, BB13k, BB14c, BCJW13, BG87]. Normality
[BBC+11a, BBC+12b, BBC+12a, BN84]. normed
[BFG87, BRS92, BFV94, Bor94c, Bor95t, BLM00]. norms
[BY84, BV93, BV94a, BJSM02, BG02, BBL10]. notation [BB11e]. Note
[BB86a, BM97b, Bor76b, Bor80c, Bor82d, Bor82c, Bor83d, BF94, Re02,
Tha02]. Notes [Bor06-36, HC09]. notion [JN03]. Notions
[BB13c, BG03a, Bor86d, Bor87b]. novel [Ad12]. Nuclear [BB14h]. Null
[BM98b, BF95c, Bor95a, Bor95b]. Number [Ber88, BB87d, KG04, Wim88,
BB13t, BCJW13, BB93d, BB98a, BSZ13]. Numbered
[Bor11d, Bor11h]. Numbers [Ad14a, ABBR13, BB88c, BB97, BB00,
BB04, Bor09t, Bor13-27, Bor13-28, Bor16-30, Bor16-31, Bor16-32, BBCP04,
BB11e, BB12a, BB13j, BB14j, BCJW13, BB989, Bor90c, Bor11i, Bor13t,
Bor13u, Bor13v, Bor13w, Bor13x, Bor13y, Bor13z, Bor14w, Bor14x, BBID6,
Bor16s, Bor16t, Bor16u, RP09, Bai91, Lor90]. numeracy [BB12-27].
Numerical
[BB08b, BB12y, Bor99t, BS00, Bor00s, Bor09y, BB11b, Bor05-40, MR96].
numerique [Bor00b]. Nurturing [Bor03-30].

O [BB13s]. objectives [Bor91g, Bor92e]. Objects
[Bor06s, Bor91d, Bor91e, Bor91f, Bor91i, Bor91j, Bor91h, Bor91k, Bor91l,
Bor92f, Bor92g, Bor05-33, Bor05-34, Bor05-35, Bor05-36, Bor06-34, Bor06-35].
Observations [BB92b]. odd [BS16b]. odds [BR14b]. Odyssey [BB12p].
OEIS [Bor15d, Bor16a]. Official [Bor03-31]. often [Bor15a]. oil [BB12e].
Old [BB14o, BB12d, BB15n, Bor15]. one [BB13t, BB15o]. One
[BBB97c, BB00b, Bor03-32, BB04b, BB16, BB97a, BB89, Bor94b,
BF95a, BCFR04]. one-dimensional [Bor94b, BF95a]. Online
[BS97b, Bor97n, Bor01f]. only [BB13q]. ontological [BB15b, BB15i].
Ontology [DD15, BB15b, BB15]. Open
[Bor88k, Bor03-34, Pea07, BBS13a, BB13o, BB99a]. openess
[Bor87a, BZ88]. Oper. [Zal86]. Operator [BY12c, BBWY11c, BBWY12c,
BY12b, BY12d, BY13b, BY14b, BY15, BG16b, KMY00]. Operators
[Bor72, Bor04a, BW06, Bor06t, Bor06-31, BBY11, EB08, BB99b, BBW07,
BBWY11b, BBWY11d, BBWY12b, BBWY13, Bor82a, BPT84, Bor84d,
Bor86e, Bor86b, BF89a, BFK91, Bor92o, BT92, Bor98n, BRL20, BLZ01,
Opinion [BBS13a].

Opportunities [BB13b, BBM+13, BB14a]. optimal [Pos13]. optimality [BW79, BW81c, BW82a, BW82b]. Optimization [Bor16m, BM07d, JN03].

Optimization [Bor16m, BM07d, JN03].

Organic [Bor96i, BBJC97, BJ12, Bor97e, BBC+97b, BBJC97]. oriented [BD11]. origin [Bor09-29]. Oxford [BB93g, Bor06o, BO11b, Bor06o]. Oz [Bor11m, Bor11n].

P [Bor92c]. PACBB [ZH06]. Pacific [Bai91]. packing [BB16k, CKM+16, Via16]. pain [BB12k]. Paleo [BB12s, BB16e].

Paleo-Mathematics [BB12s, BB16e]. Pamphlet [BBD03]. Paper [Bor14u, Bor14v, Bor81a, Zäl86]. Papers [BB14h, Bor11b, Bor11c, Cam16, KG04]. Paradox [Bor04-32, BB15f, BB15p].

Parallel [Bor00t, BB09b, BJCW13]. Parameter [BCF04, BC04a]. parameters [LLC+95]. Parametric [BBB06b, Geo05]. Pareto [AR13, Bor80a, Bor83e]. Pari [Bor92d]. part [BB93e, Bor16b, Bor15f, BBG03]. Cole [Bai91].

FRASER [Bor98a]. inventor [BB12q]. physicist [BB12q]. Zagier [BBB96b, BB97d, Bor97f]. perfect [Bor80c]. Performance [Bor98h, Bor05s, Bor05t, Bor05u, Bor05v, Bor05-47, Bor05-48, Bor05-49, Bor05-50, Bor05-51, Bor06z, Bor06v, Bor06w, Bor06x, Bor06y, Bor06-37, Bor06-38, Bor06-39, Bor07f, IEE08, BBLZ14, Cam16, MTCB98].

Person [BB12l]. personal [Bor03g]. Perspective [Bor98h, BB12m]. Perth [Bea13]. perturbation [BCFR04]. perturbations [BZ94, BZ97]. perturbed [BV09]. Peter [Bai91, Ber88, Coh15, Bor08s]. Peters [Ban10, Odl11, Zei05]. Phelps [BBWY11c, BMWY11, BBWY12c]. Philosophical [Bor05p, Bor05q, Bor05-37, Bor05-38]. Philosophy
Bor91r, Bor91s, Bor92a, Bor92b, Bor99, BB01c, BNSW11, Mar91]. **property** [BBL99, Bor82e, Bor88j, BF89c, BJ98]. **Prophets** [BB15k]. **Prospects** [BB05d]. **protein** [BT14b, BT14a]. **Prototype** [BMP05]. **proving** [Hd12]. **prox** [BBEM10]. **prox-regular** [BBEM10]. **Proximal** [BS86, BS87, BI96, BG87, BGW98]. **Proximality** [Bo96u, Bo97y, Bo98t]. **Pseudo** [BBLZ14, BCJW13]. **Pseudo-mathematics** [BBLZ14]. **pseudo-random** [BCJW13]. **pseudoconvex** [QR07]. **pseudorandom** [BB15k]. **PSLQ** [BB09d]. **Public** [BB14g, Bo93h, Bo98t-28]. **Publication** [Bo98a, BS97b]. **Publishing** [Bo99y, Bo96d, Bo97h, Bo97i, Bo97n]. **puzzles** [Bo15a].

QC [KG04]. **QPQC** [Pos13]. **Quadratic** [Bo98g, Bo98h, BY06, HLZ15b, Bo98b, DF05, La 09, NYW09]. **quadratically** [BB86c]. **Quadrature** [BB06a, BB08d, Bo906j, Bo906k, Bo906m, Bo906n, BY06]. **qualification** [BW82a, BW82b, BW86]. **Quantitative** [Ano15, Koh01]. **quantum** [Cvi10]. **Quartically** [Bai88, TK97]. **Quasi** [BL92c]. **quasiconvex** [BBP03].

quest [BBBP97]. **question** [Bo93t-34]. **Quinn** [BBC09].

R [Odl11]. **Rachford** [AB12, AB13a, AB13, AB13b, AB13c, AB14a, AB14b, AB15, AB14c, AB14d, AB16, Bo90i, Bo90j, Bo90k, Bo90l, BS11b, Bo91q, Bo91r, BT13a, BT13b, Bo91i, Bo91j, Bo91k, Bo91l, Bo91f, BT15, Bo915, Bo91r, BG16b, BLS+16]. **radicals** [BdB91]. **Rainfall** [Bo93d, BHPH12, PHBH13, PHBH13, PHBH13]. **Ramanujan** [AB15, AB12, BB97a, BBC95b, BR01, Bo985b, Bo986f, BB97a, Bo987g, Bo987f, BB97b, Bo987l, BB98b, BB98d, BB98a, Bo989f, BB989, Bo989-29, Bo989-30, Bo989-31, Bo989-33, Bo989-34, Bo989-35, Bo989-36, Bo989-37, Bo989-38, Bo989-39, Bo989i, Bo989j, Bo989k, Bo989l, Bo989m, Bo989n, Bo989o, Bo989p, BB99d, BB99e, BB99f, BB99g, BB99h, BB99i, BB99j, BB99k, BB99l, BB99m, BB99n, BB99o, BB99p, BB99q, BB99r, BB99s, BB99t, BB99u, BB99v, BB99w, BB99x, BB99y, BB99z]. **Ramanyan-type** [BB97a, BB98b, BL08]. **Ramble** [Bo93t-30, Bo93t-31, Bo93t-32]. **Rand** [BBC09]. **Random** [BB13a, BNSW10, Bo93t-30, Bo93t-31, Bo93t-32, BS87, Gal94, BB13b, BB97a, BCJW13, BCJW13, BL05, Bo90c, BSWZ11, BNSW11, Bo912b, BSWZ12, BR13a, BS15, BS16b, BSV16, BS16a].

Randomness [BBBR16]. **Range** [Bo98p, Bo95k, Bo95l, Bo95m, Bo95n, Bo95o, Bo96l, R+05, BW81c, BFKL01, BFL02, Bo93y, Bo93z, Bo95-28]. **rapid** [BBP97]. **rapidly** [AL10, BB83]. **rate** [BLY13, BLY14, BLT15, BLT16, HL15b]. **Ratio** [Ade14a]. **rational** [BB87b, BZ92, BB98b, BB98c]. **Reactions** [BB14h]. **Real** [ABB13, Bai91, BCF04, Bo93t-27, Bo93t-28, Bo990, BFG87, BB90c, BB91b, Bo93t-30, Bo93t-28, Bo93t-29, Bo93t-14, Bo93t-16, Bo93t-16t, Bo93t-16u].

Real-Parameter [BCF04]. **Realistic** [BST13, BST15]. **Reality**
[Bor05-39, BB12p, BB13g]. Really [BB14e]. rearrangement [BLZ01].

Reasoning
[Bor93c, Bor93d, Bor03-27, Bor03-28, Bor03-33, BB04b, Bor04-27, Bor04w, Bor04x, Bor04y, Bor04z, Bor06-29, Bor10a, HF05, Hoa05, Zei05].

Reconstruction
[Bor09z, Bor92o, Bor93k, BLN95, BLLN95, BLN96, LLC+95, MTCB98]. reconstructions [MTCB99]. Recurrence [BS08, BBCM07b]. recurrences [BBS14a]. Recursion [BS07]. reduction [BW81d]. Refrined [BBFG01, War03]. Reflection [BST13, BT14b, BT14a, Bor16r, BST15, Bor15r]. reflexive [BBWY11b, BWY12b, Bor93a, BZ94, BTZ97, BE08, BV10a, Bor13f, Bor13g, Bor13h]. reflexivity [BB90a]. regional [JY12]. registration [HYG09]. regular [BBEM10, Bor86c]. regularity [BB99a, BBL99, BBT00, BZ88, BF94, BZ96, BLT15, BLT16].

Regularization [BL11, HLZ15b]. regularizations [BV94a]. regularized [BB93c, BB94, BZ96, BLLN95, BLLN96, LLC+95, MTCB98].

Remote [BLM+07, BM07c, Bor09w, Bor09x, BB12]. renorming [BF93c, BV95b]. replace [BB16m]. Report [BBM+13, JWD97]. reported [BB94a]. reporting [BB12f]. reports [Bor03g]. representation [BMS99a]. representations [BC00]. Representative [EB08]. Reproducibility [BBL+13, BBS16b, BBR16, JWD97]. Reproducible [BB13o, BBL+13, SBB13, Bor13-29, Bor15m]. Res [Za16]. Research [BB13i, Bor09o, Bor11-36]. Resolution [BBC09]. Resources [Bor98j]. Respect [Bor77c, Bor74]. Response [Ba02]. restoration [WM07]. Result [Mii99, FK00, Mii99]. Results [ABT13b, ABT14b, BL93c, Bor96f, Bor96g, Bor96h, Bor07-28, Bor07-29, Bor07-30, Bor07-31, BB14a, ABT13c, ABT14d, BB13f, BB13t, BLLN95, BBB96b, BBB97d, BW97b, BK01, Bor07-27, Bor12j, Bor12k, BY12d, BY14b, Hon85]. retires [Jac09]. retraction [Bor15c]. Retro [BM07a]. Retro-enhancement [BM07a]. Retrospective [Bor08s]. Reubens [BO11b]. Review [Abb00, Ask88, Bai91, Ban10, Ber88, Bor09b, Bor92c, BB93g, BC96, Bor06a, BS14a, Cas99, Coh15, HF05, Hoa05, How14, Bor90, Lore09, Odl11, Rob06, Wim88, BB91d, Bor09b, Bor11-37, BO11b, BS14b, Tod03]. Reviews [Zei05].

Revisited [BLM97, Bor08s, BCM09, BY12f, KPS16]. Revivals [Bor96j].

Revolution [R+05]. Richard [BB12q]. Riemann [BB96b, BBC98, BBC00, BB05c, Bor07g, BBS15]. risk
Robert [BB91d]. Rocha [Ban10]. Rock [Bor91d]. Rockafellar [Ano15, BBB+07]. Rodrigues [Ban10]. Rogoff [BB13m]. Roland [Zei05]. Role [Bor02i, Bor02m, Bor05a]. root [BB13g]. Roots [BB12s, BR84, BS14a, BS14b]. Rossi [BB16g]. Rotund [BGV02]. rotundity [BL94b]. routes [Ade11]. Rule [BY06, BM98a]. rules [BM97e].

S [Tod03, Ano15]. S. [Bor91n, Bor91o, Bor93m, Bor81a]. saddle [HD07]. salt [BF06a]. same [BB99b, BW97a]. sample [BBBB+11]. Sampler [BG16a, BG15a]. San [BC96]. Sandwich [BT92, Bor98o, Bor81d]. sandwiched [BF01]. Sink [Bor11-35, BBS12]. Santalo [BBFG01]. Satire [Bor07c]. Scale [JWDS+14, DF05, Ray97, WM07, XH08]. scales [PHBH13]. scaling [WSDSY15]. sceptics [BB12d]. Schaible [Bor90b]. Scheme [BT13a, BT14c]. Schemes [BB08d, Bor06j, Bor06k]. scholars [Bor03g].

School [BB12m, BWB97]. Science [BB13p, BB13r, BB15g, BBBR16, Bor95u, Bor95v, RZ15, Sel16, SBB13, BB12f, BB12j, BB12w, BB13o, BB13n, BB13q, BB14m, BBC+11b, Bor96k, Bor97w, Bor89r, Bor14a, Bor15c]. Sciences [Bor98c, Bor07o, Bor13l, Bor13m, SV14]. Scientific [BB13i, BB15g, BBS16b, Bor04i, BB11f].

SCIHTBB [XC11]. Scissors [BB14u, BB14v]. Scribner [BB91d]. search [FN15, YW12]. Searching [BB96b, BB05c]. Seasonal [BHP94, Bor13p, PHB13, PHB14]. Second [BN94, EB08, ABD03, Bor92i, Bor92j, Bor93f, Bor93g, BF93b].

second-order [BF93b]. Security [BB15l]. Seeing [Bor12z, Bor13-27, Bor13-28, Bor13t, Bor13u, Bor13v, Bor13w, Bor13x, Bor13y, Bor13z, Bor14w, Bor14x, Bor16s, Bor16t, Bor16u]. Seeking [BB15f]. select [BBGPxx]. selected [BB12t, BB10b]. Selection [Bor12-30, Bor12-31]. self [Art07]. self-contained [Art07]. sell [BB12e]. Semi [Bor81f, Bor81i, Bor81c, Bor83c, BLY13]. semi-algebraic [BLY13].

Semi-finite [Bor89i]. Semi-infinite [Bor83f, Bor81c, Bor83c].

semialgebraic [BLY14]. semicontinuity [BLZ01]. semicontinuous [Bor90g, Bor90h, Bor90k, Bor90l, Bor90-40, Bor90-41, Bor90-42, Bor90-43, Bor91p, Bor91q, Bor91s, Bor91a, BT92, BTZ98, Bor99]. Semigroups [BG16a, Bor16k, Bor16l, BG15a].

Seminar [BLM+07, Bor07d, BM07c, BJL+08, BB11d]. sense [BBGP95b, BBGP96, JN03]. Sensing [Bor09c, Bor10h, Bor11o, QYX14, WXQ14]. Sensitivity [BTZ97]. Seoul [HY14]. Separable [BM00, Bor95a, Bor95b, Bor02d, Bor02e, BBL04]. separably [BK83]. separably-infinite [BK83]. separate [BB01b].

separation [BJ98]. September [SBW84]. sequence [BL92a]. sequences [BL93a, Bor98d, Bor15d, BC96]. sequential [BF95b]. sequentially [Bor93a]. Ser. [BZ02a]. Series [Ber88, BB86a, BB92a, Bor01g, Bor05f, BB07, BB12, BB15c, BB87b, BB88b, BB93d, Bor93o, BB95d, Bor02h, Bor02i, BC03, BC04b, BC05, BG05, Bor07e, Lin01, Nim15, XY12]. Serious [Bor07c, BB13c]. Serving [Zei05]. session [Bea13]. Set
[BBS13a, BB13o, Bor13-29, Bor15m, BZ88, BV95b, Zho12, Bor92c].

set-valued [BZ88, Zho12, Bor92c]. **Sets** [BB93b, Bor06u, BBCR13, BB93a, BB94a, BBL97a, BBL97b, Bor81a, BT85, BS86, Bor87m, BS87, BFK91, BL93a, BF94, BF95c, Bor95a, Bor95b, BV96a, BV96b, BM98b, BLM00, BV04, Bor70y, Bor08t, Bor12g, Bor12h, BLV13, BLY14]. **Setting** [BBL+13, Bor07z, SBB13]. **Seven** [Bor13-30]. **Several** [BB86a, Wei15].

Shafrir [Koh01]. **Shannon** [BH95]. **shape** [SZ14]. **share** [BW97a]. **Short** [BM97c, Bor10-31, Bor11f, Bor11-33, Bor11-32, Bor15o, Bor15p, Bor15q, BSWZ11, BNSW11, Bor12b, BSWZ12, BS13, Bor14s, BSV15, Bor15n, BSV16, Bor16c]. **Shrum** [Bor93n]. **Shu** [BB95c]. **SIAM** [Bor07y, Bor08t, Bor12g, Bor12h, BLY13, BLY14]. **significance** [BB14j]. **Silence** [Sol15]. **Silicon** [Zei05].

Simon [BC96, BB96a, Simple] [AW97, BW86, BLS+16]. **simplification** [BBK14]. **Simulate** [Bor13j]. **simulated** [PHBH12, PHBH13]. **Simulation** [BHP14, Bor13p, PHB13, PHB14]. **Sinc** [Bor11-35, BB14o, BB00r, Bor01p, Bor01q, Bor01r, BB01c, BBM02, BBL10, BBS12]. **sine** [BS11a, BBSW11, Bor11f, BS11d, BS11e, BS12b, BSW12, BS13]. **Single** [Bor04-31, BZ88]. **single-valued** [BZ88]. **singular** [BB91d]. **Sinh** [BY06]. **Six** [BBJ12]. **Size** [BB88a, KJR16, XC11]. **Skepticism** [BB13r]. **skews** [BR14b]. **sky** [BB93g, Tre13]. **Slice** [BB93b, BV93, BV94a, BV94b]. **Slices** [Bor04l, Bor04m, Bor06r]. **Sloane** [BC96]. **sloppy** [BB13a]. **small** [BF91, BZ92]. **Smart** [BB12n, BB13p, Bor12-27]. **smell** [BR13a]. **Smooth** [Bor99v, Bor00v, YS00, Bor86g, BP87, Bor87i, Bor87j, Bor90m, Bor90n, BF88c, Bor94j, Bor94k, Bor94l, Bor94m, BF96, BZ96, BM97d, BM97e, Bor970, BM98a, BM98b, Bor98l, Bor98m, BTZ99, Bor99n, BFL02, LS00, LLS11, BM07d]. **Smoothing** [HLY16, Li15]. **smoothness** [BBC01]. **Social** [BB15I, Bor15c]. **socially** [BB12w]. **Society** [BB16d, Ber88].

softcover [Bor06o]. **Software** [Bai91, HY14, Bor08q]. **solution** [Bor11-37, BB12-27, BBS14a, MR96, Zho12]. **Solutions** [AJB86, ANO+83, AJ86, BL87, BS82, BSZ+83, BB85, Bor85a, BN86, Bor93, BB93e, Bor96, BDT96, BBS+97, BBP99, BKL+93, CJKB92, DBC88, EWM86, GRM+97, KJ86, KWK+90a, KWK+90b, LBP01, NOL86, RSP+93, Rad89, Sch85, SB87, SH87, SZUM86, Stu90, TB00, BZ96, Yan94]. **solved** [BB16k]. **Solving** [BB96a, AR13, AP16, Bor92, Bor92m, Bor92n].

Some [BEO77, Bor81a, BSW82, Bor85b, BB92h, Bor93o, BBG94b, BB94b, Bor98p, BMS99b, Bor99z, Bor99-27, Bor99-28, Bor00u, BK01, BB01c, Bor03-30, Bor07-27, Bor07-28, Bor07-29, Bor07-30, Bor08u, BNSW11, BY12d, BY14b, BG15c, BG16d, BG16e, Liu01, Liu02, TB80, BB95d, Bor96f, Bor96g, Bor96h, Bor05i, Bor06l, BB11j, Gui08, Lin00]. **sorry** [BB13e]. **Soul** [BB15e]. **Source** [Abb00, Rob06, BB597b, BB597b, BB00a, BB04a]. **sourcebook** [BB16i].

sources [Cam16]. **South** [HY14]. **Space** [BB12p, BB16q, Bor78a, BM07b, Bor10c, Bor10d, Bor13d, Bor13e, WG16, BB16c, BB95a, BBL97b, BFWY11a, BFWY12a, Bor84b, BS86, BFG87, Bor87m, BS87, BG87, BZ94, BF94, Bor02d, Bor02e, BBL04, BS07d, BB07x, Bor13f, Bor13g, Bor13h]. **spaces** [BBS10, BBEM10, BBC01, BFWY11b, BFWY12b, Bor81a, BS84a, BF89b, Bor92a, Bor92h, BRS92, Bor93a, BL93a, Bor93f, Bor93g, BFV94,
Surprising [BBB08].\textbf{Survey} [BL93c, Bor90a, Bor90-40, Bor90-41, Bor90-42, Bor90-43, Bor91p, Bor91q, Bor91r, Bor91s, Bor92b, Bor95t, BV95b, BW97b, BZ99b, BZ02a, BZ02b]. \textbf{Surveys} [SV14, BR01]. SVM [SD15]. Sylvester [Bor79d]. Symbolic [Ade11, Bor98h, Bor00t, Bor05-41, BH06, Bor09t, BH09, BK14, Bor97g, Bor98q]. Symbolically [BB96b, Bor97p, Bor97u, Bor97v, BB05c]. Symbols [Bor99]. \textbf{Symmetric} [BB84c, Cra12]. \textbf{Symmetry} [Bor16-28, Bor13-33, Bor13-34, Bor13-32, BZ13]. \textbf{Symposium} [IEE08]. Systems [Bea13, Bor86c, Bor92o, Bor93b, Bor93k, BS97a, BR16, DABY15].

tails [BCP05, BC10]. Talk [Bor93n, Bor07v, Bor08l, Bor08m, Bor10w, Bor11w, Bor11x, Bor11y, Bor11-28, Bor16p, Bor16v, Bor89a]. Talking [Bor97q, Bor97r, Bor97s, Bor97t, Bor98b, Bor99-29, Bor10-32, Bor12-28]. Tangency [Bor99x]. Tangent [BO76, Bor78c, Bor78a, AL10]. Tangential [BS85]. Tanh [BY06]. Taylor [Nim15]. teacher [Bor03g]. teachers [BW97b]. Teaching [Bor11g, Bor11-36]. Technical [Bor16v]. Techniques [BZ05, Bor94o, BZ99a, GS02]. Technology [Bor98e, Bor99e, Bor99f, Bor99d, Bor00n, Sel16, BS99]. Telco [Bor16-31]. \textbf{Telelearning} [Bor00w]. Telstra [Bor10-32]. Ten [Bor10-32]. test [BB12g, BBdPZ16, BB12l]. Testing [BBLZ13]. Texas [BB13]. \textbf{Textbook} [BB13]. Texts [Ber88]. th [BB4c, Cra12]. Their [BCLM16, Bor88m, Bor88n, Bor95p, Bor95q, Bor14d, RZ15]. Theorem [BBWY11a, TB80, Art07, BBWY12a, BO11a, Bor79d, Bor80d, Bor81e, Bor81d, BZ86, Bor88g, Bor88h, Bor88i, Bor89c, Bor90m, Bor90n, BW98, BD03, Bor14y, Bor16f, Dev9x, Koh01, MW12, OBB+96, Rei02, BB13c, Bor13g]. \textbf{théorème} [Dev9x]. \textbf{Theorems} [Bor99-28, Bor00n, Bor12-30, Bor12-31, Bor14g, Bor14h, Bor14r, Bor14j, Bor14k, Bor14l, Bor14m, Bor15h, Bor16-29, BB99a, Bor77b, Bor81c, Bor85c, Bor87m, BT92, BG95, Bor98o, BY13a, BY14c]. \textbf{Theoretical} [BaO12]. \textbf{Theories} [BBG95b]. Theory [BB15e, Ber88, BB87d, BZ02a, BM07b, Bor09d, Bor12e, Bor12f, BR12, BY12c, Bor12-30, BR13b, Bor16w, Bor16x, Bor16y, Bor16z, Bor16-27, SBW84, Tod03, Wim88, BBC10, BB13t, BBC14a, BB15a, Bor84a, BL92c, Bor94n, Bor95w, BB98a, BM07d, BY12e, BZ13, BY13c, BY15, Cv110, KG04, BS86]. Théra [Bor16a]. \textbf{There} [BB12-27, Bor14a]. theta [AB15, AAW06, Bor87l, HGB93, LL01, Liu00, XY12]. Things [Bor13-27, Bor13-28, BB11f, Bor12z, Bor13t, Bor13u, Bor13v, Bor13w, Bor13x, Bor13y, Bor13z, Bor14w, Bor14x, Bor16s, Bor16t, Bor16u]. Thinking [BaO12, BB12z, BB93g, Bor94p]. Thirty [BB05d, BB06b, Bor10-33]. Thirty-two [BB05d, BB06b]. Thompson [Bor07-27]. thousand [BB12u]. thousand-digit [BB12u]. threatens [BB13]. Three [Bor93p, Bor97u, Bor97v, Bor98q, Bor03-34, Bor07-31, BS13, BB93d].
[BBM02, KJR16]. Variant [YS00, LS00]. variants [Bor79d]. Variational [Ano15, BZ97, BMS99b, Bor99v, Bor03-32, Bor04-31, BZ05, Bor06r, Bor06s, Bor06t, Bor06u, BZ06, Bor07n, Bor08i, Bor08j, Bor09-29, Bor09-27, Bor09-30, Bor09-28, Bor09z, Bor13-33, Bor13-34, Bor13-32, BZ13, Bor16-28, Geo05, YS00, Bor86g, BP87, Bor87h, Bor87i, Bor87j, Bor90m, Bor90n, Bor97o, Bor98l, Bor98m, BTZ99, Bor99u, BCFR04, Bor09l, Bor10r, Bor13-30, BZ16, Fab89, KPS16, LS00, QR07]. Variations [Bor05c, BB05d, Bor10b, Bor10-33, BB06b]. various [BBP97, Bor92h, Bor92i, Bor93f, Bor93g]. vector [BBP03, BY84, BN84, BZ91, BZ93, JN03]. vector-valued [BBP03]. vectors [BL92a]. Vera [BO11b]. Verifiable [BZ88]. version [BWB97, Koh01]. versus [BB12p]. vertex [KMY00]. very [BB83, Bor14y, Bor16f]. via [Bor87k, BBT92, BG97b, BFV97, BCM03, Bor06-30, BBC08a, EB08, TB80]. view [BB16c]. Views [DD15, BS97b, Bor97n, Bor98c]. viii [Bai91]. viral [Bor15a]. Virtual [Bor95u, Bor95v, Bor96k, Bor97w, Bor98r]. Visibility [BZ96]. Visual [Bor14g, Bor14h, Bor14j, Bor14k, Bor14l, Bor14m, Bor15h, Bor16-29]. Visualisation [Bor05-42, Bor05-43, Bor05-44]. Visualization [Bor05-45, Bor14z]. visualizing [BWB97]. vita [Bor08a]. Vol [BM97b]. volume [Bor06a]. volumes [Bor00r, Bor01p, Bor01q, Bor01r, BBM02]. vs [BB13f, BB15e]. vu [Tre13].

Wadsworth [Bai91]. wait [BB13t]. Walk [BSW13, BNSW11, Bor15n, Bor16e]. Walking [ABBB13, Bor13-27, Bor13-28, Bor16-30, Bor16-31, Bor16-32, Bor13t, Bor13u, Bor13v, Bor13w, Bor13x, Bor13y, Bor13z, Bor14w, Bor14x, Bor16s, Bor16t, Bor16u]. Walks [Bor10-30, Bor10-31, Bor11f, Bor11z, Bor11-27, Bor11-33, Bor11-34, Bor11-32, Bor12-32, Bor13e, BNSW10, BSWZ11, Bor12b, BSWZ12, BS13, Bor14s, BS15, Bor15o, Bor15q, BS16b, BS16v, BS16a]. Walter [Bor90b]. warming [BB12c]. Washington [Coh15]. Watson [Bor11e]. Way [BB12w, BB13i, BB87c, Bor15t, Bor11a]. Ways [Bor94p]. Weak [Bor79a, Bor79e, BF93c, BFG03]. Web [Bor96b, Bor97a, Bor97b, Bor97c, Bor99y, Bor96d, Bor97e, Bor97d, Bor97f, Bor98l, Bor98m, Bor98r, BB83+96a, Bor98a]. weeks [Bor10-32]. Welcome [Bor02r]. Well [BB15]. Wellesley [Od11]. were [BB12z]. West [Bor05j]. Western [Sel16]. WestGrid [Bor01m, Bor03-31]. Where [BB11g, BB15p]. which [BF93a]. Who [BB01d, Bor15b, Bor15t, BWW97, Bor16d]. whose [BFG03, BS10]. Wide [BB83+96a]. Wiersma [BWY10, MR11]. Wigner [BBS13b, BBS14b]. Wijsman [BV93, BV94a]. wild [Bor02g]. Wiley [Ber88]. Will [BB16m, BB15n]. Wilson [BB13s]. winners [Bor14b]. Winter [BM97b]. wireless [Bor00w]. wishing [Bor01f]. within [ABMMY13, ABMMY14]. without [Bor76a, BW82a, BW82b, Bor84a, BBY11, BBY13]. Witt [BL92a]. Witten [Bor12e, Bor12f, BB14a, BB15a, BB16a, BB16b, Bor05w, Bor08k, Bor09m, Bor12r, BDT16, BD16]. Wokingham [BF06b]. Wonderful [Bor93m, Bor91n, Bor91o]. word [BB12d]. Words [BS14a, BS14b]. work
[Bor02o, Bor04-33, Bor06-36]. Working
[Bor01a, Bor01b, Bor01c, Bor01d, Bor06e]. works
[BB12t, Bor07q, Bor07p, BR14b]. Workshop
[BBM+13, BBL+13, BBBC97, RZ15]. Workspaces [Bor98j]. World
[Bor03-35, BMP05, Fer91, BBBC+96a]. Would [BB12g]. wreck [Bor15c]. writings [BB10b]. wrong [BB13s].

x [BB91d, Zei05]. xii [BB93g, BC96, Odl11]. XSEDE [JWDS+14]. xue
[BB95c]. xv [Ber88]. xviii [Coh15]. xxii [Bor06o, Bor09b].

cyear [BB15o]. Years [Bor02c, Bor02q, Bor07d, Bor09j, Bor09k, BBJ12,
BB15n, BD95, Bor08r, Bor10p, Bor12j, Bor12k, Bor15l]. Yes
[BB12-27, BB13n]. York [Ber88, BB91d, BB93g, Tod03]. Young [Bor98g].
you’re [BB13e].

Zang [Bor90b]. Zeidler [Bor06o]. zero [BBY12, BBY14]. ZETA [Bor97p,
BB96b, BBC98, BBK00, Bor05w, Bor07g, Bor08k, Bor09m, Bor10-27, BD16,
BB15c, BB15n, BBBL98a, BBBL98b, BB98c, BBC00, BBK01, BB05c,
Bor06h, BC10, BDT16]. Zeta-Function [Bor08k]. Zhai [Coh15].

References

REFERENCES

Adegoke:2011:SRB

Adegoke:2012:NAD

Adegoke:2013:FPD

Adegoke:2014:GRF

Adegoke:2014:NBB

Almkvist:1999:BBA

Asic:1986:PSS

REFERENCES

Adler:1986:PSS

Adegoke:2010:HDI

Asic:1983:PSE

Anonymous:2015:IJB

Arzani:2016:NNF

Adly:2013:NMS

REFERENCES

[AW97] Victor Adamchik and Stan Wagon. A simple formula for \(\pi \). *American Mathematical Monthly*, 104(9):852–855, November 1997. CODEN AMMYAE. ISSN 0002-9890 (print), 1930-0972 (electronic). URL http://www.maa.org/pubs/monthly_nov97_toc.html. The authors employ Mathematica to extend earlier work of Bailey, Borwein, and Plouffe, [BBP97], done in 1995, but only just published, that discovered an amazing formula for \(\pi \) as a power series in \(16^{-k} \), enabling any base-16 digit of \(\pi \) to be computed without knowledge of any prior digits. In this paper, Mathematica is used to find several simpler formulas having powers of \(4^{-k} \). They also note that it has been proven that their methods cannot be used to exhibit similar formulas in powers of \(10^{-k} \).

REFERENCES

[BB84c] J. M. Borwein and P. B. Borwein. Explicit algebraic \(n \) th order approximations to \(\pi \). In Singh et al. [SBW84], pages

[Borwein:1992:SSH]

[Borwein:1992:SOC]

[Bauschk:1993:CNA]
REFERENCES

Beer:1993:MSC

Borwein:1993:PSPb

Borwein:1993:CNT

Computational complex analysis.

Borwein:1993:GFI

Borwein:1993:ICM
REFERENCES

REFERENCES

REFERENCES

Borwein:2001:CMCa

Borwein:2001:RP

Borowski:2002:MCD

Borwein:2004:AGMa

Borwein:2004:MEP

Bailey:2005:FPC
REFERENCES

Advanced Collaborative Environment (HPCS’06), page 34. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, May 2006. ISSN 1550-5243 (print), 2378-2099 (electronic).

REFERENCES

REFERENCES

REFERENCES

[BB11j] D. Borwein and Jonathan M. Borwein. Proof of some experimentally conjectured formulas for π. Preprint, Department of Mathematics, University of Western Ontario and Centre for Computer-assisted Research Mathematics and its Applications (CARMA),
School of Mathematical and Physical Sciences, University of Newcastle, London, ON, Canada and Callaghan, NSW 2308, Australia, December 4, 2011.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Bailey:2013:SMD

Bailey:2013:SSF

Bailey:2013:WSB

Bailey:2013:WWW

Bailey:2013:YWF

Bailey:2014:OCE

Bailey:2014:RTP

REFERENCES

huffingtonpost.com/david-h-bailey/pi-day-314-14_b_4851011.

REFERENCES

[Bailey:2015:COG]

[Bailey:2015:CCI]

[Bailey:2015:CFH]

[Bailey:2015:DVT]

[Bailey:2015:DSF]

[Bailey:2015:DGC]

David H. Bailey and Jonathan M. Borwein. Does gun control encourage crime? The science of crime statistics. Huffington Post,

REFERENCES

See also Part II [BB15f].

REFERENCES

Bailey:2016:EMS

Bailey:2016:AIS

Bailey:2016:HLI

Bailey:2016:IAR

Bailey:2016:PD

Bailey:2016:PNG

See research papers [Via16, CKM+16].

[BBB97c] J. M. Borwein, P. B. Borwein, and D. H. Bailey. Ramanujan, modular equations, and approximations to pi or how to compute

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Miroslav Bačák, Jonathan M. Borwein, Andrew Eberhard, and Boris S. Mordukhovich. Infimal convolutions and Lips-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[Bauschke:2011:BBT]

[Bauschke:2011:CPM]

[Bauschke:2011:EMM]

[Bauschke:2011:MOB]

[Bauschke:2012:BBT]

REFERENCES

Bauschke:2012:CPM

Bauschke:2012:EMM

Bauschke:2013:MOB

Borwein:2011:MOE

Borwein:2012:CZD

Borwein:2013:MOE

REFERENCES

2015. CODEN AMMYAE. ISSN 0002-9890 (print), 1930-0972 (electronic). URL http://www.jstor.org/stable/10.4169/amer.math.monthly.122.8.800. See [BC15a]. The addenda correct formulas (4) and (12), references [34] and [74], and add a new reference.

REFERENCES

REFERENCES

Borwein:1996:PSS

Borwein:2016:BOM

Borwein:2008:BST

Bean:2013:MDM

Bejancu:1994:EBP

Borwein:1976:VS

Borwein:1977:SRV

REFERENCES

Jonathan M. Borwein and Warren B. Moors. Chapter 50: Nonsmooth analysis, optimisation theory and Banach space theory.

REFERENCES

REFERENCES

REFERENCES

[125]

[Bor72]

[Bor74]

[Bor76a]

[Bor76b]

[Bor77a]

REFERENCES

[Bor79c] J. M. Borwein. On convex decompositions. Accepted for publication in Nanta Mathematica, but the journal ceased publi-

Borwein:1979:TVS

Borwein:1979:WLS

Borwein:1979:MLP

Borwein:1980:GPE

Borwein:1980:LM

Borwein:1980:NPD

Borwein:1980:SDT

[Bor80d] J. M. Borwein. A strong duality theorem for the minimum of a family of convex programs. *Journal of Optimization Theory and
REFERENCES

REFERENCES

REFERENCES

February 1985. CODEN AMMYAE. ISSN 0002-9890 (print),
1930-0972 (electronic). See also [BSZ+83].

[Bor85b] Jon Borwein. Some modular identities of Ramanujan useful
in approximating π. *Proceedings of the American Mathematical
ISSN 0002-9939 (print), 1088-6826 (electronic). URL

[Bor85c] Jonathan M. Borwein. Alternative theorems for general comple-
mentarity problems. In *Infinite programming (Cambridge, 1984)*,
volume 259 of *Lecture Notes in Econom. and Math. Systems*,
pages 194–203. Springer-Verlag, Berlin, Germany / Heidelberg,
Germany / London, UK / etc., 1985.

[Bor86a] J. M. Borwein. Norm duality for convex processes and applica-
53–64, 1986. CODEN JOTABN. ISSN 0022-3239 (print), 1573-
BF00938589. Fourth symposium on nonlinear programming with
data perturbations.

[Bor86b] J. M. Borwein. Partially monotone operators and the generic dif-
ferentiability of convex-concave and biconvex mappings. *Israel
BF02764875.

[Bor86c] J. M. Borwein. Stability and regular points of inequality sys-
9–52, 1986. CODEN JOTABN. ISSN 0022-3239 (print), 1573-
BF00938588. Fourth symposium on nonlinear programming with
data perturbations.
REFERENCES

REFERENCES

[Bor87k] Jonathan M. Borwein. Spectral analysis via convex programming. Charnes’ 70th birthday conference, IC2, University of Texas at Austin, Austin, TX, USA., October 15, 1987.

REFERENCES

REFERENCES

Jonathan M. Borwein. Minimal CUSCOS and preiss theo-
rem. Miniconference on Optimization Theory, University of Pau,

Jonathan M. Borwein. Minimal CUSCOS and their applications.
Plenary talk, Conference on Fixed Point Theory, CIRM, Marseille,

Jonathan M. Borwein. Pi and the arithmetic–geometric mean.
Colloquium, Rutger’s University, New Brunswick, NJ, USA.,
April 14, 1989.

Jonathan M. Borwein. Pi, Euler, Ramanujan, and MAPLE. Collo-
quium, Department of Computer Science, University of Manitoba,

Jonathan M. Borwein. Quadratic mean iterations. Carleton Uni-
versity/Université d’Ottawa joint Colloquium, Carleton Univer-
sity, Ottawa, ON, Canada., March 4, 1989.

Jonathan M. Borwein. Quadratic mean iterations. Seminar, Rut-
gger’s University, New Brunswick, NJ, USA., April 12, 1989.

Jonathan M. Borwein. Semi-finite convex programming. ORSA/
TIMS National Meeting, New York (presented by A. Lewis)., Oc-
tober 17, 1989.

Jonathan M. Borwein. Differentiability properties of convex, of
Lipschitz, and of semicontinuous mappings on Banach spaces. In
Univ. Pierre et Marie Curie, pages Exp. No. 19, 11. Université de
Paris VI, Paris, France, 199?

J. M. Borwein. A survey of differentiability properties of con-
vex, Lipschitz and lsc functions. In Gustave Choquet et al., edi-

[Bor90g] Jonathan M. Borwein. Differentiability properties of convex, Lipschitz and semicontinuous functions. Ontario Math Meetings #88, Brock University, St. Catharines, ON, Canada., April 21, 1990.

Borwein:1990:DPLa

Borwein:1990:DPLc

Borwein:1990:DPLb

Borwein:1990:DPLd

Borwein:1990:ETSa

Borwein:1990:ETSb

Borwein:1990:GMSa

Borwein:1990:GMSb

Borwein:1990:HCPa

REFERENCES

Jonathan M. Borwein. The history of the computation of pi. APICS Lecture, St. Francis Xavier University, Antigonish, NS, Canada., March 24, 1990.

Jonathan M. Borwein. The history of the computation of pi. APICS Lecture, Memorial University, St John’s, NL, Canada., March 31, 1990.

Jonathan M. Borwein. The history of the computation of pi. APICS Lecture, Université de Moncton, Moncton, NB, Canada., April 5, 1990.

Jonathan M. Borwein. The history of the computation of pi. APICS Lecture, St. Francis Xavier University, Antigonish, NS, Canada., March 24, 1990.

Jonathan M. Borwein. The history of the computation of pi. APICS Lecture, Memorial University, St John’s, NL, Canada., March 31, 1990.

Jonathan M. Borwein. The history of the computation of pi. APICS Lecture, Université de Moncton, Moncton, NB, Canada., April 5, 1990.

Borwein:1990:MCAd

Borwein:1990:PERb

Borwein:1990:PERc

Borwein:1990:PERf

Borwein:1990:PERg

Borwein:1990:PERh

Borwein:1990:PERh
REFERENCES

[Bor91h] Jonathan M. Borwein. Euler, Mahler, Ramanujan and a little pi: Discovering analytic objects by computer. One of two invited talks at the Festkolloquium for Dr. A. Peyerimhoff ’s 65th birthday, Ulm, Germany., April 25, 1991.

REFERENCES

REFERENCES

[Bor92g] Jonathan M. Borwein. Euler, Mahler, Ramanujan: Discovering analytic objects by computer. Seminar, Department of Mathematics, University of Michigan, Ann Arbor, MI, USA., February 20, 1992.

[Bor92n] Jonathan M. Borwein. Iterative methods for solving inverse problems and computing fixed points. Third FrancoLatin American

[Bor93a] J. M. Borwein. Asplund spaces are sequentially reflexive. Accepted for publication in the Canadian Journal of Mathematics, but withdrawn and merged with another paper. Jon Borwein recorded that as publication number 121, but because the article numbers changed with each update of his CV, that number has long been incorrect., 1993.

REFERENCES

REFERENCES

[Bor94e] Jonathan M. Borwein. Experimental mathematics, promises and pitfalls. Colloquium, Department of Mathematics, Indiana University, Bloomington, IN, USA., November 18, 1994.
REFERENCES

[Bor94i] Jonathan M. Borwein. Maximization entropy methods (using derivative information) and infinite dimensional convex programming. XV International Mathematical Programming Symposium, Ann Arbor, MI, USA., August 18, 1994.

Borwein:1994:VDT

Borwein:1994:VHD

Borwein:1994:WTA

Borwein:1994:WEMa

Borwein:1994:WEMc

Borwein:1994:WEMb

Borwein:1995:CHNa

Borwein:1995:CHNb

REFERENCES

[Bor95m] Jonathan M. Borwein. Experimental mathematics, promises and pitfalls. Colloquium, Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, SK, Canada., November 9, 1995.

[Bor95o] Jonathan M. Borwein. Maximum entropy methods (using derivative information) and infinite dimensional convex programming. Pure Mathematics Seminar, University of Western Australia, Crawley, WA 6009, Australia., August 1, 1995.

REFERENCES

[Bor96g] Jonathan M. Borwein. Multidimensional Euler sums: some recent results. Fifth Canadian Number Theory Association Meeting, Carleton University, Ottawa, ON, Canada, August 17–22., August 21, 1996.

REFERENCES

REFERENCES

REFERENCES

[Bor97s] Jonathan M. Borwein. Talking about pi. Colloquium, School of Mathematical Sciences, Lakehead University, Thunder Bay, ON P7B 5E1, Canada., September 22, 1997.

[Bor97v] Jonathan M. Borwein. Three adventures: Symbolically discovered identities for ζ(4n + 3) and like matters. Joint CS/C&O Colloquium, University of Waterloo, Waterloo, ON, Canada., October 9, 1997.

REFERENCES

[Bor98o] Jonathan M. Borwein. Projection algorithms and monotone operators. Plenary lecture in conjunction with CMA National Symposium on Functional Analysis, Optimization and Applications,

Jonathan M. Borwein. Doing math in the presence of technology. Colloquium, Department of Mathematics and Statistics, Miami
University of Ohio (1999 Buckingham Fellow in Residence)., October 14, 1999.

[Bor99e] Jonathan M. Borwein. The doing of mathematics in the presence of technology. Canadian Mathematics Education Study Group (CMESG), First Plenary, Brock University, St. Catharines, ON, Canada, June 4–8., June 4, 1999.

REFERENCES

[Bor99m] Jonathan M. Borwein. Generic behaviour of generalized gradients. Special Session on Nonlinear Analysis, Canadian Mathematical Society Summer Meeting, Memorial University, St John’s, NL, Canada., May 29, 1999.

[Bor99t] Jonathan M. Borwein. Numerical and computational mathematics at the undergraduate level. Technology in Mathematics
REFERENCES

Borwein:1999:PSVb

Borwein:1999:PSVc

Borwein:1999:PC

Borwein:1999:PAT

Borwein:1999:PW

Borwein:1999:SNMa

Borwein:1999:SNMb

Borwein:1999:SNMc

[Bor00e] Jonathan M. Borwein. Experimental mathematics and exact computation. Colloquium, University of Western Australia, Crawley, WA 6009, Australia., April 19, 2000.

REFERENCES

[Bor00g] Jonathan M. Borwein. Experimental mathematics and exact computation. Ernst Schrödinger Lecture, Schrödinger Institute, University of Vienna, Vienna, Austria., October 5, 2000.

REFERENCES

Borwein:2000:UWH

Borwein:2001:AWMa

Borwein:2001:AWMb

Borwein:2001:AWMc

Borwein:2001:AWMd

Borwein:2001:CMCb

Borwein:2001:COM

Borwein:2001:DSS

REFERENCES

REFERENCES

[Bor02c] Jonathan M. Borwein. The CEIC: The next four years. West Coast Optimization Fall Meeting, University of Washington, Seattle, WA, USA., November 2, 2002.

REFERENCES

[Bor02m] Jonathan M. Borwein. The experimental mathematician: The pleasure of discovery and the role of proof. Response and Dis-
REFERENCES

Jonathan M. Borwein. Introduction to the work of the CEIC. Electronic Information Afternoon at the ICM, Beijing, August 20–27, 2002., August 26, 2002.

[Bor03q] Jonathan M. Borwein. Handling electronic issues in the international mathematical community. ICIAM 2003 Minisymposium,

Borwein:2003:MEPa

Borwein:2003:MEPb

Borwein:2003:MEPc

Borwein:2003:NNM

Borwein:2003:OWL

Borwein:2003:OFV

Borwein:2003:PRC

Borwein:2003:TOQ

REFERENCES

REFERENCES

[Bor05b] Jonathan M. Borwein. (2 times) ten challenge problems. Third Clifford Lecture, Tulane University, New Orleans, LA, USA., April 1, 2005.

[Bor05d] Jonathan M. Borwein. Aarms. Presentation, Department of Math and Stats, Memorial University, St John’s, NL, Canada., November 17, 2005.

REFERENCES

[Bor05r] Jonathan M. Borwein. The future is here? Presentation to National Educational Forum, Fields Institute, Toronto, ON M5T 3J1, Canada, May 6–8., May 6, 2005.

[Bor05t] Jonathan M. Borwein. High performance mathematics. Presentation to HPC@Dal, Dalhousie University, Halifax, NS, Canada., June 10, 2005.

[Bor05z] Jonathan M. Borwein. Lists and challenges in mathematics? Colloquium, Mathematics Department, Rutgers, the State University of New Jersey., November 10, 2005.

REFERENCES

REFERENCES

[Bor06g] Jonathan M. Borwein. Collaborative environments. Panel Discussion HPCS 06, Memorial University, St John’s, NL, Canada., May 17, 2006.

REFERENCES

[Bor06s] Jonathan M. Borwein. Four lectures on variational principles. II: Monotone operators as convex objects. Spring School on Analysis, Paseky, Czech Republic, April 25, 2006.

Borwein:2006:MST

Borwein:2006:MEM

Borwein:2006:MOCa

Borwein:2006:MOCb

Borwein:2006:NDT

Borwein:2006:WHPa

Borwein:2006:WHPb

Borwein:2006:WHPc

REFERENCES

REFERENCES

REFERENCES

[Bor07-27] Jonathan M. Borwein. Some convexity results a Jon or a Thompson might like. 65th Birthday Colloquium lecture for Jon Thompson, (Inter-Campus Seminar Day), University of New Brunswick, Moncton, NB, Canada., June 8, 2007.

REFERENCES

[Bor08h] Jonathan M. Borwein. Effective computation of Bessel functions. SIAM-AMS Special Session on Special Functions, Combined Membership Meetings, San Diego, CA, USA, Jan 6–9, 2008., January 6, 2008.

REFERENCES

[Bor08r] Jonathan M. Borwein. The past 60 years in mathematics. Colloquium, Department of Mathematics, University of Auckland, Auckland, New Zealand., December 4, 2008.

REFERENCES

[Bor09h] Jonathan M. Borwein. Exploratory experimentation and computation. Colloquium, Mathematics Dept, University of Victo-
REFERENCES

[199]

REFERENCES

[Bor09s] Jonathan M. Borwein. Introduction to carma. Presentation to students from Dungog High School in CARMA., August 11, 2009.

REFERENCES

REFERENCES

REFERENCES

[Bor11e] Jonathan Borwein. If i had a blank cheque i’d . . . turn IBM Watson into a maths genius. The Conversation, ??
REFERENCES

[Bor11g] Jonathan M. Borwein. Actually: Teaching and researching at the tertiary level with collaboration tools. CARMA Colloquium., November 3, 2011.

REFERENCES

[Bor11t] Jonathan M. Borwein. Fractal geometry. Presentation to Year 7 students form Wallsend with Michael Rose to the NSW MEGS program (Making Educational Goals Sustainable)., February 16, 2011.

Jonathan M. Borwein. Short walks and ramble integrals: The arithmetic of uniform random walks. AMS Special Session on Special Functions, Combined Membership Meetings, New Orleans, LA, USA., January 9, 2011.

REFERENCES

[Bor12i] Jonathan M. Borwein. Exploratory experimentation in mathematics. ICERM Workshop on Reproducibility in Computational

[Bor12n] Jonathan M. Borwein. Interdisciplinarity, innovation, collaboration and creativity or how to manage a research portfolio. CARMA Colloquium., September 13, 2012.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Borwein:2013:STWb

Borwein:2013:SDR
Jonathan M. Borwein. Set the default to ‘reproducible’. Session on reproducible computational science, MPE 2013, Melbourne, VIC, Australia, July 8–12., July 9, 2013.

Borwein:2013:SLV

Borwein:2013:SM

Borwein:2013:VAPc

Borwein:2013:VAPa

Borwein:2013:VAPb

Borwein:2014:BTM

Borwein:2014:MWF
J. M. Borwein. Meet the winners of the Fields Medal: the ‘Nobel Prize of maths’. The Conversation, ??(??):

[Bor14x] Jonathan M. Borwein. Seeing things in mathematics by walking on real numbers. Inaugural Möbius Lecture Series, Colloquium, Department of Mathematics, Baylor University, Waco, Texas., April 24, 2014.
Borwein:2014:VPP

Borwein:2015:OPB

Borwein:2015:MWK

Borwein:2015:TWC

Borwein:2015:AOF
Jonathan M. Borwein. Adventures with the oeis: Five sequences Tony may like. Tony Guttmann: Seventy and counting, December 7–8, Newcastle, NSW, Australia., December 7, 2015.

Borwein:2015:BMY

Borwein:2015:CAGb

Borwein:2015:DRM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[Borwein:1984:COC]

[Berndt:2001:RES]

[Borwein:2010:ICF]

[Borwein:2012:EWC]

[Borwein:2013:TTS]

[Borwein:2013:EWC]

[BRS92] Jonathan Borwein, Simeon Reich, and Itaï Shafrir. Krasnosel’ski–Mann iterations in normed spaces. Canadian mathematical bul-
REFERENCES

REFERENCES

[Borwein:1987:PAB]

[Borwein:1989:HC]

[Borwein:1997:SAD]

[Borwein:1997:OJP]

[Borwein:1999:ITD]

[Borwein:2000:NCMa]

J. M. Borwein and T. Stanway. Numerical and computational mathematics (at the undergraduate level). In Bruce Cload and
REFERENCES

Borwein:2003:MDM

Borwein:2005:KCM

Borwein:2007:PRB

Borwein:2008:PRB

Borwein:2010:ENE

Borwein:2011:LSEa

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[BY12b] J. M. Borwein and L. Yao. Maximality of the sum of a maximally monotone linear relation and a maximally monotone oper-

REFERENCES

REFERENCES

[BZ97] Jonathan M. Borwein and Qiji J. Zhu. Variational analysis in nonreflexive spaces and applications to control prob-

REFERENCES

Cohen:2015:BRM

Crandall:2004:BIJ

Crandall:2012:GTB

Cvijovic:2010:PBB

Dai:2015:PBB

Deutsch:1988:PSS

Davis:2015:MSS

Deville:199x:ADT

Dai:2005:PBB

Dai:2006:CBB

Dai:2016:BBC

Dai:2002:LCB

Dai:2005:ABB

Eberhard:2008:SOC

REFERENCES

Reinhard E. Ganz. The decimal expansion of π is not statistically random. *Experimental Mathematics*, 23(2):99–104, 2014. CODEN ???? ISSN 1058-6458 (print), 1944-950X (electronic). See the reproduction of results, and reanalysis, in [BBBR16], that reveals a flaw in the statistical analysis in this paper: Ganz used only a single blocksize in sampling digits, and that blocksize produces anomalous statistics.

REFERENCES

REFERENCES

REFERENCES

Jiang:2012:BBB

Kennedy:2015:CAM

Kisilevsky:2004:NTP

Kimberling:1986:PSS

Krejic:2016:BBM

[KJR16] Nataša Krejić, Nataša Krklec Jerinkić, and Sanja Rapajić. Barzilai–Borwein method with variable sample size for stochas-

REFERENCES

Knuth:1990:PSSa

Knuth:1990:PSSb

Knuth:1990:PSSc

LaCruz:2009:EBB

Li:2015:SNB

Liu:2000:BCT

[Liu00] Zhi-Guo Liu. The Borweins’ cubic theta function identity and some cubic modular identities of Ramanujan. The Ramanujan

REFERENCES

REFERENCES

Miller:1989:FER

Molina:1996:PBB

Musev:2011:QJB

Monaghan:2016:TM

Marechal:1998:APR

Marechal:1999:CSA

MTCB98
P. Marechal, D. Togane, A. Celler, and J. M. Borwein. Computation and stability analysis for regularized tomographic re-

MTCB99
P. Marechal, D. Togane, A. Celler, and J. M. Borwein. Computation and stability analysis for regularized tomographic re-

[MTB16]

[MR96]

[MR11]

[MR11]

[MR11]

[MR11]

[MR11]

[MR11]

[MR11]

[MR11]

REFERENCES

Osburn:2005:RCB

Pearl:2007:OPT

Piantadosi:2012:CME

Piantadosi:2013:MSS

Piantadosi:2014:MSS

Piantadosi:2012:MEM

Piantadosi:2013:GSR

time-scales. In Bean [Bea13], page ?? LCCN ???? URL

Pospisil:2013:OAB

[Pos13] Lukáš Pospíšil. An optimal algorithm with Barzilai–Borwein

Pilehrood:2011:ABB

Petrov:2014:BBM

Qiu:2007:LCL

Qiu:2014:NAB

Rowe:2005:EDC

[R+05] Kerry Rowe et al. Engines of Discovery: The 21st Century Rev-

Raydan:1993:BBC

[Ray93] Marcos Raydan. On the Barzilai and Borwein choice of steplengt
REFERENCES

Raydan:1997:BBG

Reisner:2002:NTB

Robin:2006:BRP

Rajkovic:2009:GBC

Raydan:2002:RSD

Richter:1993:PSP

Rudin:1989:PSE

REFERENCES

Nature-Inspired Algorithms for Large Scale Global Optimization.

REFERENCES

REFERENCES

Yang:1994:EBP

Yongxin:2000:GEV

Yuan:2012:BBG

Zaharescu:2006:BCA

Zalinescu:1986:LEJ

Zeilberger:2005:SSM

