A Complete Bibliography of the Publications of Jonathan Michael Borwein

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

03 September 2016
Version 1.07

Abstract
This bibliography records publications of Jonathan Michael Borwein.

Title word cross-reference

#13553 [Bor81a].

(a,b) ↔ (a+3b, √a+b) [BB89b]. (G) [BB99]. 1/π [BB87b, BB88b, BB93d].
24 [CKM+16, BB16k]. $25 [BB93g]. $27.95 [BB91d]. $30.00 [Coh15].
$44.95 [BC96]. $45 [Zei05]. $49 [Zei05]. $49.00 [Ban10]. $49.95 [Ber88].
5 [Ad13, ZS12]. $59.50 [Bor06]. 6 [ZS12]. $65 [Odl11]. $69.95 [Bai91].
$99.00 [Bor09b]. [nα + γ] [BB93e]. * [BFG03]. b [BG04]. R
[DL02]. C1 [BKWO2, BFL02]. DAD [BLN94]. $0 [BL11]. $1 [XWQ14]. $1
[LS00, YS00]. k [BBB91a, BB97d]. L [BB15c, BB07]. L1 [BZ97, Hon95].
l'nty [Hon85]. lp [Bor98]. L1 [BL93b, BV97]. L1(Ω, μ) [BF93c]. Lp
[BTBT88, BBL10]. n [BB84c]. p [BLS+16]. π [AW97, ABBS12, Bai88],
BB+11a, BBC+12b, BB83, BB84b, Bor85b, BB86b, BB86c, BB89a, BG97b,
BB11j, Bor14o, Gan14, GG07, Gui08, Nim15, TK97, Wei15. \(\pi^2 \) [BBMW13]. \(q \) [LL01, PP11, War03]. \(R^n \) [BBW96]. \(\sqrt{5}\log \phi \) [Ade14b]. \(\theta(z, q) \) [HGB93]. \(\times \) [BFG03]. \(\varepsilon \) [War82c]. \(W \) [War16u, Bor16o, BL16]. Weak* [BF95b].
\[x_n := M(x_{n-1}, x_{n-2}, \ldots, x_{n-k}) \] [Bor94a].
\[\zeta(4n + 3) \] [HGB93].
\[\zeta(4n + 3) \] [AG99, BB97c, Bor97u, Bor97v, BB05c].

0 [BC96, Bor06o]. 0-12-558630-2 [BC96]. 0-19-850763-1 [Bor06o]. 0-691-14247-5 [BO11b].

1 [Bor06o]. 100-Digit [Bor05-40]. 125th [AAB12]. 14th [IEE08]. 17th [IEE08]. 1880-2 [Bor09b]. 1983 [SBW84]. 19th [Hd12].

2 [BC96]. 2000 [Tod03]. 2000j [BZ02a]. 2001 [BB12p]. 2002 [KG04]. 2012 [BBL+13]. 2013 [BAS14a]. 2014 [BBM+13]. 20th [IEE08]. 21st [BB12r, BBM+13, Bor03-27, Bor03-28, Bor03-33, Bor04-27, Bor04w, Bor04x, Bor04y, Bor04z, Bor09r, Bor10a, HF05, Hoa05, R+05, Zei05, BB04b].

38 [BZ02a, BZ02b].

4 [Bor81a]. 4N [Bor97p]. 4th [HY14].

51 [Bor81a]. 5th [BF06b].

60th [BBB+13]. 6430-6435 [BSZ+83].

7th [KG04].

8 [Zä186]. 85h [Zä186].

90d [BBB97a]. 978-0-691-1 [Bor09b]. 978-0-691-14247-0 [BO11b].

A. [BS14b]. AARMS [Bor05d, Bor05e, Bor07a]. Abel [Bor03p]. Absence [BS11b, Bor10i, Bor10j, Bor10k, Bor10l, Bor11q, Bor11r]. Absolute [BY84]. abstract [BW81c, BW81b, BW82a, BW82b]. abundant [BB12c].

Academic [BC96]. Access [Bor04e, Bor04i, BB05g, Bor07d]. accuracy [Bor05-40]. Accurate [BB14c]. ACE [Bor05-27]. ACEnet [IEE08]. Action [BBC+07b, Bor07m, Odl11, Lor09]. Activated [BBB+96b]. Active [BL99]. Actually [Bor11g, BB12g, BBWY11c, BBWY12c]. Acyclic [BW06].
adaptive [FN15, QYX14, ZH06]. add [BB11f]. Addenda [BC15b].
Addendum [BZ02a]. Addition [BG95]. Adjoint [Bor83a, BMWY11, Zäl86].
admit [BV96a, BV96b]. Adrian [Tod03]. Advanced
[Bai91, BL87, Ber88, BSZ+83, BB85, Bor85a, BN86, Bor03b, Bor03c, Bor03a, Bor04f, Bor04h, Bor04e, Bor04d, Bor04a, Bor04b, Bor04c, Bor04i, Bor06d, Bor06h, Bor06c, IEE08, Sch85, SB87, SH87, SBW84, Bor06-28].
Advances [BBC10]. Advancing [Ken15]. Adventures
[Bor15d, Bor16a, Bor97u, Bor97v, Bor98q]. Advice
[Bor03-30]. Aesthetics [Bor01a, Bor01b, Bor01c, Bor01d, Bor11m]. affine
[BW81a]. Affleck [SZ14]. AG [Bor10-28, Bor10-29, Bor11-31]. again
[BB13k, BB14c]. age [BB12z, BB13o]. AGM
[Bor99x, Bor99y, Bor99z, Bor10c, Bor10d, Bor10e, Bor10f, Bor10g, Bor10h, Bor10i, Bor10j, Bor10k, Bor10l, Bor10m, Bor10n, Bor10o, Bor10p, Bor10q, Bor10r, Bor10s, Bor10t, Bor10u, Bor10v, Bor10w, Bor10x, Bor10y, Bor10z]. Aided
[Bor92b]. Alexandria [SV14]. Alf [BSZ13]. Algebra
[Bor12r, Bor11-28]. Algebraic
[BK05, Bor09z, BBCP04, BB84c, BB87b, BLY13]. algebras
[KMY00]. Algorithm
[Bai88, BB09d, Bor09c, BS11b, BB93a, BB94a, BB97a, BNCB99, BCW13, BLY14, JY12, Kom00, Kom02, Kom04, Pos13, QYX14, TK97, XSW12, XQ14]. Algorithms
[BB96a, Bor99x, Bor99y, Bor99z, Bor10c, Bor10d, Bor10e, Bor10f, Bor10g, Bor10h, Bor10i, Bor10j, Bor10k, Bor10l, Bor10m, Bor10n, Bor10o, Bor10p, Bor10q, Bor10r, Bor10s, Bor10t, Bor10u, Bor10v, Bor10w, Bor10x, Bor10y, Bor10z]. Alliance
[BB13r]. Also
[BB16l]. Alternating
[BB86a, Bor10c, Bor10d, HNP10, BB93a, BB94a]. Alternative
[Bor85c, BBG95b]. am
[Bor11m, Bor11n]. America
[Coh15, Bor12t, Bor12u]. American
[BC15a, BC16]. among
[BF95a]. amongst
[Bor94b]. AMS
[Jac09]. Anal.
[BZ02a]. Analogue
[PP11]. analogues
[BG93, HGB93]. Analysis
[ABMMY13, BBKL16, Bor72, BBS89, BB92b, BB96a, BSM99b, Bor99v, BL00a, Bor00v, BZ05, BM07b, Bor08i, Bor08j, Bor09y, BLY13, BL91a, BLY14, JY12, Kom00, Kom02, Kom04, Pos13, QYX14, TK97, XSW12, XQ14]. Analyses
[Bor98k, Bor98l, Bor98m, Bor98n, Bor98o, Bor98p, Bor98q, Bor98r, Bor98s, Bor98t, Bor98u, Bor98v, Bor98w, Bor98x, Bor98y, Bor98z]. Analysis
[ABMMY13, ABMMY14, Bor96a, BL00b, Bor04-31, Bor07n, Bor09-27, Bor09-30, Bor12-30, Bor16w, Bor16x, Bor16y, Bor16z, Bor16-27, Geo05, Bor16-28].
Based [BB06a, BB08d, Bor06j, Bor06k, BCJW13, FN15, JY12, LLS11].

Bases [Zhu91, Ade11, BBG95b].

Basic [BMS99b, BLY13, BLY14].

Battle [BB15c].

Bauerschmeickl [Vir14].

BBP [AL10, Ade10, Ade11, Ade12, Ade13, Ade14a, Ade14b, Bor11i, Cha03, GG07, Lup02, Nin15, Wei15, Zha13, ZZ14].

BBP-formulae [Cha03].

BBP-functions [Lup02].

BBP-Type [Ade14a, Ade14b, AL10, Ade10, Ade11, Ade12, Ade13, Nin15, Wei15, Zha13, ZZ14].

Be [BB14d, Bor15n, Bor16c].

beautiful [BB14n, Bor15n, Bor16b, Bor16c].

Becomes [BB13r].

Behavior [ABT15, ABT16].

Behaviour [Bor99m, Bor99n, Bor00l, BDT16, BG16b].

being [BB93g].

beispielorientierte [BD11].

Believing [BB12v].

Bello [BS14b, BS14a].
Boundedness

Bounds

Bounded

Box

box-constrained

Bradley

braain

Brainstorming

Brave

Bregman

Brain

Brezis

brief

Brailey

Brdge

Budget

build

Bumps

Burse

C2C

calculation

Categorical

Cauchy

certain

Challenge

Challenge

Children

CHIP

Chiropractic

Chasing

Chebyshev

Checkboard

check

children

ChIP

Chiropractic

Choi

choice

Chromology

ci

Clarendon

Class
BB09c, BB16c, Bor93p, BB98b, BS00, BBG03, BB10b, BLLN95]. Compute [BBB97c, BB00b, BBB04b, BB16b, BBB97a, BBB89].

Computer [BB05a, BB08c, BBKL16, Bor92j, BB92b, Bor93c, Bor93d, Bor06h, Bor07g, Bor08d, Bor08e, Bor08f, Bor09d, Bor11-28, Bor14h, Bor14i, Bor14j, Bor14k, Bor14m, Bor15h, BB12l, BB12g, BB13o, Bor91d, Bor91e, Bor91f, Bor91i, Bor91j, Bor91h, Bor91k, Bor92f, Bor92g, Bor08c, BD09].

Computer-assisted [BB05a, BB08c, Bor06h, Bor07g, Bor08d, Bor08e, Bor08f]. [MTCB98].

Computers [BB12o, BB16m].

Computer [BB05a, BB08c, Bor06h, Bor07g, Bor08d, Bor08e].

Computer-assisted [BB12o, BB16m].

Computing [BBLZ13, BBS16b, Bor98h, BB01d, Bor01e, Bor02s, Bor02t, Bor03i, Bor04g, Bor04h, Bor05-27, Cal16, IEE08, JWDS +14, Bor92l, Bor92m, Bor92n, Bor98q, Bor03y, Bor05-40, Bor06-28, BS11c, BS12a].

concave [Bor86b].

Concavity [Bor90b].

concept [BRS11].

Conditions [BBY12, BBY14, Bor82b, BZ88, BL91d, BTZ98].

Cone [BW81a, BW05a, BW81d, BS89, BBL04, BG09].

cone-convex [BW81d].

Cone-monotone [BW81d].

Cone-monotonic [BW81d].

Cones [Bor77c, Bor78a, Bor86d, Bor87c, Bor87b, EB08, BO76, Bor78c, Bor80a, BM09, BM10, Zhu91].

Conference [Bea13, HY14, ABD03, BF06b, KG04, RZ15].

conformation [BT14b, BT14a].

confusion [BR14c, BR14a].

Congress [Bor05h].

Conical [BB99a, BBL99].

Conjecture [Osb05, Bor94g, BBBG96, BW97b, BMS13, Bor90a, Bor90b, Bor90c, Bor90d, Bor91d, Bor91e, Bor91f, Bor91h, Bor91k, Bor91l, Bor92f, Bor92g, Bor08c, BD09].

conjectured [ABBS12, BB11j].

Conjugate [BPT84, BB99b, BBW13, BV09, DK16, WSdSY15, XSW12].

Conjugates [BH06].

conjugation [BO79].

consequence [Bor81e].

Consequences [Bor87c, Bor86d, Bor87b].

Conpiacy [BB16f].

Constant [BBC09, Bor95r, Bor95s, Bor10z, Bor11-29, BBC97a, BBMW13, BTT85, BVW03, BBGW11, Cra12].

constants [Ade10, Ade12, BB97, BB12x, BBGPxx, GG07, Mer15].

constraint [BTZ98, DF05, XH08, XC11, ZH06].

constructed [BB12w].

Constructible [BV04].

Construction [BBWY11b, BBWY12b, GG07, BGW98].

Constructions [BV12, How14, BV10b].

Constructive [BK04].

contained [Art07].

containing [BV97].

continued [BB15a].

Continued [Bor03d, Bor03e, Bor03f, Bor04-30, Bor04-29, Bor04-28, BCP05, Bor16i, BCLM16, BHL16b, BHL16a, BBGPxx, BL05, Bor05i, Bor06i, BL08, Bor10-28, Bor10-29, Bor11-31, BVSZ14].

continues [Bor15c].

Continuity [Bor82a, Bor87a, BV02, BW05a, BY12c, BY13c].

Continuous [BB05a, BB99b, BBW07, BTZ98, BV01].

continuously [BFKL01].

contraction [Bor83b].

Control [BB15g, BZ94, BZ97].

conundrums [Tre13].

converge [Bor98d].

Converge [BB93b, BB85, BL91a, BL93a, BL93c, BV95a, BBP98, BY06, BST13, BLT15, BLT16, Mar91, AB12, AB13, BB93a, BB90a, Bor88j, BF89c, BL91c, BV93, BV94a, BV94b, BH94, BV95b, BV96c, Bor09-28, BLY13, BLY14, BST15, DL02, HL15b].

Convergent [Bai88, AL10, BB83, Bor94a, TK97].

converges [Bor94a].

converging [BB86c].

converse [BW98].

Convex
[Bor06t, BWY10, Bor79c, Bor07b]. decreasing [BL93a]. Dedekind
[BG97b, BG97a, BB98a, BB98c]. Dedekind-zeta [BB98a, BB98c]. Default
[BBL+13, SBB13, BBS13a, BB13o, Bor13-29, Bor15m]. degree
[Ade11, Ade13]. déjà [Tre13]. delta [BB95b]. delta [BG15b, BG16c].
demand [JY12]. Denial [BB13r]. dense
[BB99b, BBWY11c, BMWY11, BBWY12c, BY12f]. Densities
[BSWZ11, BSWZ12, BSV15, BSV16, Bor14s]. Density [Hon85, BS16b].
Department [Bor03j]. derivative
[Bor94i, BLN95, Bor95o, BLLN95, BLN96]. Derivatives
[BFV93a, BD16, AL10, BB16a, BFV93b, Bor94n, BF95b, Bor95w, BMW97].
Deriving [BB14o]. Descent [Bor90c, SD15, RS02]. design [BBL16a].
Desperately [BB15f]. Determination
[BBB06a, BB05o, BM00, BT14b, BT14a]. Determinations [BB98a, BB98c].
determined [BB97c, BB05c]. developments [BB01a]. devices [Bor00w].
dian [BB95c]. Dictionary
[Bai91, BB99c, BS14a, Bor90, BB91a, BB02, BB90c, BBW97, BS14b]. did
[BB12h]. didn’t [BB937]. Diego [BC96]. dies [BB12q, Bai16]. Diewart
[Bor90b]. Difference [Bor11p, BB11a]. different [PHBH13, Zha13].
Differentiability [BBS10, Bor90g, Bor90h, Bor90i, Bor90j, Bor90l, Bor92a, Bor99, Bor02d, Bor02e, BBL04, BV09, Bor76a, Bor82a, Bor86e, Bor96l, BFG87, BP87, Bor90a, Bor90-40, Bor90-41, Bor90-42, Bor90-43, Bor91p, Bor91q, Bor91r, Bor91s, Bor92h, Bor92b, BF93a, Bor93f, Bor93g, BF93b, BN94, BW05a, BMV06]. differentiable
[Bor95d, Bor95e, BW97a, BFKL01]. Differential [BM97c, MR96]. Digit
[Bor05-40, Ade10, BB12u, BBG04, BBL16]. digit-extraction [Bor11].
Digital [Bor02f, BS03, Bor03-35, Bor05h, BRR08, Ban10, BM06, Bor06-36].
Digitally
[BBB+96b, Bor08g, Bor09a, Bor09e, Bor09f, Bor09g, Bor12a, Bor09u].
Digitally-assisted
[Bor08g, Bor09a, Bor09e, Bor09f, Bor09g, Bor12a, Bor09u]. Digitzed
[BB05a]. Digitizing [Bor02g]. Digits
[Bai88, BB13a, BB14e, BBR16, BBB97c, BBB00b, BBB04b, Bor09y, BB16, BBB97a, BBMW13, BB13b, BB14j, BB89]. Dilemmas [GS08].
dilogarithmic [Cvi10]. Dimension [Bor99b, CKM+16, Via16].
Dimensional [BCC10, AAW06, BW81c, BW86, Bor88f, Bor91g, Bor92e, Bor92o, Bor92k, Bor94b, Bor94i, BF95a, Bor95n, Bor95o, Bor97f, Bor97l].
Dimensions [BB86a, WB87, BB16k, Bej94, BL91d, BL002, Bor14s, BSV15, Bor15o, Bor15p, Bor15q, BS16b, BS16a]. Diophantine
[Kom00, Kom02, Kom04]. Dirac [BH94]. Direct [Bor03c, LLC+95, FN15].
Directionally [BS84a]. Directory [BMP05]. Dirichlet
[BB15c, Bor01g, Bor02h, Bor02i, BC03, BC04b, Bor07e]. disciplinary
[Bor16h]. Discourse [BS03]. Discover [BB09d]. discovered
[Bor95c, Bor97p, Bor97u, Bor97v]. Discovering [Bor91d, Bor91e, Bor91f, Bor91i, Bor91h, Bor91k, Bor91l, Bor92f, Bor92g]. Discovery
[BB11i, BBL16, Bor021, Bor02m, Bor03k, Bor03m, Bor04p, Bor05k, Bor05i, Bor05m, Bor05n, Bor05o, Bor05a, Bor06l, Bor07g, Bor07l, Bor07k, Bor08g,
Bor12a, R+05, Ade12, BB08c, BBG03, Bor06h, Bor08d, Bor08e, Bor08f, Bor09a, Bor09e, Bor09f, Bor09g, Bor09u, Zei05]. distance [BB01b, BF94].

Distinct [BW97a, BBT00]. Distributed [Bor99b, Bor99c]. Distribution [TB00, BG94]. distributions [BCM03]. Ditor [BO11a, Mil90, Mil89, MW12].

Dizionario [BB95b]. Do [BB13i, BB15l, BB13k, BB14c, Bor94o]. Doctor [BB12b]. dodgy [BB12a]. Does [BB15g].

doesn't [Bor07q, Bor07p]. Doing [Bor96b, Bor97a, Bor97b, Bor97c, Bor97d, Bor99e, Bor99f, Bor99d, Bor00n, Bor98r, BS99, BB11g]. domain [BY12d, BY14b]. Don't [Bor13c, BB11f]. double [BB12i, BZB08, Mer15].

Doubly [BLN94]. Douglas [AB12, ABT13a, AB13, ABT13b, ABT14a, ABT14b, ABT15, ABT14c, ABT14d, ABT16, Bor10i, Bor10j, Bor10k, Bor10l, BS11b, Bor11q, Bor11r, BT13a, BT13b, Bor13i, Bor13q, BT14c, Bor14e, Bor14f, BT15, Bor15g, Bor15r, BG16b, BLS+16]. Dreams [Bor02p]. drive [Bor13c, Bor05-46]. Dual [BV93, BV94a, BTBT88, Mer15]. Duality [BL91b, BF01, Bor09-27, BC10, BL15, Art07, Bor80c, Bor80d, BK83, Bor83f, Bor86a, BL91d, BL92c, Bor94p, BLN96, BHY12, BY14, Zül86].

Dubious [BB14e]. due [Koh01]. dull [Bor11b, Bor11c]. Dumb [BB13p].

dunce [BB13q]. during [SBW84]. Dykstra [BB94a]. Dynamic [Bor02r, KMZ+05, BNCB99, LLC+95].

Dynamics [Bor04-30, Bor04-29, Bor04-28, BK05, BL05, Bor05i, Bor10s]. E. [BB13s]. E2995 [ANO+83, AJ86]. E2996 [NOL86]. E2997 [AJB86].

E2998 [KJ86]. E2999 [SZUM86]. E3000 [ANO+83, EWM86]. E3159 [DBCB88]. E3325 [Rud89]. E3335 [KK90a, KK90b, KK90c].

E3384 [Stu09]. E3388 [CJB92]. Earth [Bor13s, BB12z, BB12d, BB12h]. East [Bor05j]. Easy [Gui08]. Eberhard [Bor06o]. ecological [Bea13].

Economics [BB13m]. economy [BB12r]. Edited [Bor06o, Coh15]. editor [Zül86, Bor11b]. Editors [BM97b]. education [Hd12]. Effective [BB06a, BB08c, Bor08d, Bor06k, Bor07h, BBC07c, Bor07i, Bor08h, BC08b].

Effects [BBLZ14]. efficiency [Bor80a, BZ91, BZ93, JN03, Zhu91]. Efficient [BCJW13, Bor77c, BJCW13, Bor83e, HLZ15a, Yan94, Zho12]. eigenvalue [GDT15, JD13]. eigenvalues [Bor84c]. Einführung [BD11]. Eisenstein [Liu01, XY12]. Ekeland [Bej94, Bor88g, Bor88h, Bor88i, Bor90m, Bor90n, LS00, YS00]. elastic [HY09]. electron [BBSZ88]. Electronic [Bor01n, Bor01m, Bor02n, Bor03q, BS97b, Bor97n].

Elementary [AJB86, ANO+83, AJ86, BB84a, BB97b, BB00, BB04a, CJK92, DBCB88, EWM86, KJ86, KK90a, KK90b, KK90c, NO86, Rud89, SZUM86, Stu90, BB16n]. Ellipses [BLS+16]. Elliptic [BBB08, Bor10z, Bor11-29, BBG95b, BZ92, BBGW11, LL01, PT14]. else [BBW97]. Emerging [BC99]. Empirical [BBSZ88, BB13i, BB12h, Bor97g].

Empirically [BB97c, BB05c]. Encourage [BBSZ88, BB13i, BB12h, Bor97g].

Encyclopedia [BC96]. End [Bor09d, Bor03y, Bor03z]. Energy [BB14f, BB14h, BB15d, BB16g, BBSZ88, BB12e]. engaged [BB16f].

engineering [BB16f]. engineers [BBSZ88, BB13i, BB12h, Bor97g]. Engines [BBSZ88, BB13i, BB12h, Bor97g].
Finite [WB87, Bej94, BW81c, Bor88l, BL92c, BL92d, BL93b, La 09]. firmly
[BR91]. First [Bor92h, Bor92i, Bor93f, Bor93g, Bor06q, BZ92]. Fisher
[BLN96]. Fitting [BBLZ13, BDdPZ16]. Fitzpatrick [BBB+07, BBW07,
BBWY11c, BMWY11, BBWY12c, Bor06a, Bor14n, Bor15i, BD15]. Five
[Bor07d, Bor15d]. Fixed
[BBC+11b, BB91b, Bor84a, Bor92l, Bor92m, Bor92n, BLT15, BLT16].
Fixed-point [BBC+11b, Bor84a]. Flash [BB15m]. fold [BBB96a, BB97d].
Forensic [BB12s, BB16e]. forever [BB12w, BB13t]. form [BS16b].
Foster [BSW82]. Foundation [RZ15].
Four [Bor02c, Bor02q, Bor06t, Bor06t, Bor06u, BSW13, Bor88f, BB13c].
Four-Color [BB13c]. four-dimensional [BOR88f]. Four-Step [BSW13].
FPV [BEY11, BY13a, BY14c]. Frack [BB14k]. Fraction [Bor04-30, Bor04-29,
Bor04-28, Bor16i, BCLM16, BHL16b, BHL16a, BZ92, BCP07, Bor05i,
Bor06i, BVSZ14]. frame [FN15]. frame-based [FN15].
Frankowska [Bor92c]. Fraser [BBJC97]. Fraud [BB92a, BB11f, BB13n].
Fréchet [BV10a, BF93a]. Fredholm [Bor92o, Bor93k]. French [Dev9x].
Fritz [Bor76b]. Function [BB96b, Bor03-32, Bor04-31, BK05, Bor08k, BL11,
BD16, BL16, AL10, AB15, BB15c, Bor91m, BZ92, BB93e, BLN95, BG97b,
BG97a, BBC00, BKW02, BB05e, BC09, BS10, BLL10, Bor14n, Bor15i, BR16,
Bor16n, Bor16o, HGB93, Liu00, NWY09, SZ14]. Functional
[Bor72, BG94, Bor98k, BZ99a, LLC+95]. Functionals
[BB93b, Bor78b, BK01]. Functions
[BB84a, BB88c, BFV93a, BB97b, BB00, Bor02b, BB04a, Bor07g, Bor07h,
Bor07k, Bor08b, Bor08u, Bor09m, Bor11p, Bor11-28, BD15, BL16, EB08,
LBP01, SBW84, AB15, AAW06, BBS10, BBEM10, BB11a, BB15, BBB+07,
BB97a, BBC01, BBW07, BBWY11d, BBWY13, BBP03, BBG95b, BFG87,
BP87, Bor90g, Bor90h, Bor90i, Bor90j, Bor90k, Bor90l, Bor90y, Bor90z,
Bor90-27, Bor90-28, Bor90a, Bor90-40, Bor90-41, Bor90-42, Bor90-43, BB91b,
Bor91a, Bor91p, Bor91q, Bor91r, Bor91s, BL92b, Bor92h, Bor92i, Bor92b,
BF93a, Bor93e, Bor93f, Bor93g, BFV93b, BFV94, Bor94c, BC94, BF94,
BN94, BV95a, Bor95d, Bor95e, Bor95t, BV96c, BV97, BW97a, BM97d,
BM97e, BM97a, BMW97, BM98a, BM98b, Bor98o, BL000, BRLZ00,
WW00, BV01, BLZ01, BV01, BV02, Bor02d]. functions
[Bor02e, BGV02, BW03, BVW03, BBL04, BW05a, BW05b, BMW06, Bor06h,
BB08a, BV09, BG09, BGG09, BV10b, BV10a, Bor11-37, BV12, BY12a,
Bor12s, BY14a, BG15b, BB16n, BDT16, BS16b, BG16c, How14, HL15a,
LL01, Lio01, Lop02, SZ14, XY12]. Fundamental [BB05d, Bor13a]. Funding
[Bor07o, BB13q]. Further [BV94b, Mim90]. Fusion [GB14f, BB15d]. Future
Infinite [Bor92k, BPB99, Bor81c, BK83, Bor83c, Bor83f, BW86, Bor91g, BL91d, Bor92e, Bor92o, Bor93k, Bor94i, Bor95u, Bor95o, BFL02, Bor11u, RZ15].

Infinite-dimensional [BW86]. Infinity [BB91d, Bor15b, Bor16d].

Information [Bor94i, BL95, Bor95u, Bor95o, BLLN95, BLN96].

Informatique [Bor00o]. Inhomogeneous [Kom00, Kom02, Kom04].

Initiatives [Bor00a, Bor01n, Bor01m, Bor02n, Bor03i]. Innovation [Bor99o, Bor12n]. Insight [Bor99i, Bor99j, Bor99k, Bor99l, Bor07t, Bor07u]. Inspired [GG07]. Institute [SBW84]. Institutional [Bor16h]. Insult [BB12v]. Integer [BB09d, BC96, Bor02a, BC07, Bor09p, Bor10t, BB93e, BL00b].

Integrability [BM00]. Integral [BBBG08, Bor84b, BB95d, BY12a, BY14a, Cvil0].

Integrals [BBC06, BBBC07, BCC10, Bor10z, Bor10-30, Bor11f, Bor11-29, Bor11z, Bor11-27, BS11d, BS11e, Bor11-33, Bor11-34, Bor12q, Bor12-31, BS13, BBC07a, BCM07a, BC10, BB10a, BB12u, BB15, BBC08, BZ92, Bor0r, Bor0q, Bor0u, BB01c, BBM02, Bor07e, BBC08a, BBGW11, BNSW11, BS13]. Integrands [BY12a, BY14a].

Integrate [Bor90o]. Integration [BB08b, BB09e, BB09b, BB11b].

Interactive [Bor98j, Bor99p, Bor09z, BBH97]. Interdisciplinary [Bor07q]. Invariance [BB16c]. Invariants [BB98a, BB98c].

Inversion [BB16c]. Intriguing [Bor93o, BB95d].

Introduction [BB97k, Bor02o, Bor07r, Bor08a, Bor10u, BR10, Bor11k, Bor11l, Bor13f, Bor08c, BDO9, Bor10u, BD11, BS11e, BS12a, BV13].

Investigation [BBGPxx]. Investigating [BB14g]. Investment [BBLZ13].

Islamic [SV14]. Israel [Bor90b, RZ15]. Issue [AAB12]. Issues [BL99, Bor0t, Bor03q].

Italian [Bor08a]. Italy [ABD03]. Iterated [BR16].

Iteration [BB89b, BT13a, AB12, AB13, BB86b, BB90b, BB93c, Bor94a, BT14c].

Iterations [Bor89g, Bor89h, BB93f, BB91b, BRS92, Bor93j, Bor10i, Bor10j, Bor10k, Bor11l, Bor11q, Bor13q, BLT15, BLT16].

Iterative [Bor92i, Bor92m, Bor92n, XCl11]. IV [Bor06u].

J [Ban10, Bor92c, BC96, Odl11]. J-P [Bor92c]. J [MR11, SV14, Zal86].

Jacobi [BB91c]. Jacobian [HGB93]. Jameson [BBL99]. Jauregui [ABB12]. John [BB93g, BO11b, BS14a, IEE08, Bor76b, Jac09].

Bor91q, Bor91r, Bor92a, Bor92b, BFV93a, BFV93b, BV95a, Bor95d, Bor95e, BFV97, BM97d, BM97e, BM97a, BMW97, BM98a, BM98b, Bor98o, Bor99, BW00, BFL02, BGV02, BW03, BVW03, BW05b.

Lipschitz-constant [BVW03]. **Lipschitzian** [BBEM10, BS84a, BLM00].

Lists [Bor05g, Bor05z]. **Literacy** [BB13f]. **Literate** [BB14g].

Literate [BB14h]. **Literature** [BB05g, BM07a, Bor02g].

Little [Bor91h]. **Littlewood** [HC09].

Local [BF89a, BVW03, QR07, BB99b, Bor79e, JN03]. **Locally** [BFV93a, BFV93b, BG16e, BB11a, BFV97, QR07]. **locating** [JY12]. **Log** [BS11a, BBSW11, Bor11f, BS11d, BS11e, BS12b, BBSW12, Bor12q, BBB15, BS13]. **log-gamma** [BBB15]. **Log-sine** [BS11a, BBSW11, Bor11f, BS11d, BS11e, BS12b, BBSW12, BS13].

Logarithmic [BB93f]. **Logarithms** [Bor99, BW00, BFL02, BGV02, BW03, BVW03, BW05b].

Log [BS11a, BBSW11, Bor11f, BS11d, BS11e, BS12b, BBSW12, BS13]. **Log-sine** [BS11a, BBSW11, Bor11f, BS11d, BS11e, BS12b, BBSW12, BS13].

Log [BS11a, BBSW11, Bor11f, BS11d, BS11e, BS12b, BBSW12, BS13]. **Log-sine** [BS11a, BBSW11, Bor11f, BS11d, BS11e, BS12b, BBSW12, BS13].

Log-arithmic [BB93f]. **Logarithms**

Log [BS11a, BBSW11, Bor11f, BS11d, BS11e, BS12b, BBSW12, BS13]. **Log-sine** [BS11a, BBSW11, Bor11f, BS11d, BS11e, BS12b, BBSW12, BS13].

Log-arithmic [BB93f]. **Logarithms**

Log [BS11a, BBSW11, Bor11f, BS11d, BS11e, BS12b, BBSW12, BS13]. **Log-sine** [BS11a, BBSW11, Bor11f, BS11d, BS11e, BS12b, BBSW12, BS13].

Log-arithmic [BB93f]. **Logarithms**

Log [BS11a, BBSW11, Bor11f, BS11d, BS11e, BS12b, BBSW12, BS13]. **Log-sine** [BS11a, BBSW11, Bor11f, BS11d, BS11e, BS12b, BBSW12, BS13].

Log-arithmic [BB93f]. **Logarithms**

Log [BS11a, BBSW11, Bor11f, BS11d, BS11e, BS12b, BBSW12, BS13]. **Log-sine** [BS11a, BBSW11, Bor11f, BS11d, BS11e, BS12b, BBSW12, BS13].

Log-arithmic [BB93f]. **Logarithms**

Log [BS11a, BBSW11, Bor11f, BS11d, BS11e, BS12b, BBSW12, BS13]. **Log-sine** [BS11a, BBSW11, Bor11f, BS11d, BS11e, BS12b, BBSW12, BS13].

Log-arithmic [BB93f]. **Logarithms**

Log [BS11a, BBSW11, Bor11f, BS11d, BS11e, BS12b, BBSW12, BS13]. **Log-sine** [BS11a, BBSW11, Bor11f, BS11d, BS11e, BS12b, BBSW12, BS13].

Log-arithmic [BB93f]. **Logarithms**

Log [BS11a, BBSW11, Bor11f, BS11d, BS11e, BS12b, BBSW12, BS13]. **Log-sine** [BS11a, BBSW11, Bor11f, BS11d, BS11e, BS12b, BBSW12, BS13].

Logarithmic [BB93f]. **Logarithms**

Log [BS11a, BBSW11, Bor11f, BS11d, BS11e, BS12b, BBSW12, BS13]. **Log-sine** [BS11a, BBSW11, Bor11f, BS11d, BS11e, BS12b, BBSW12, BS13].

Logarithmic [BB93f]. **Logarithms**

Log [BS11a, BBSW11, Bor11f, BS11d, BS11e, BS12b, BBSW12, BS13]. **Log-sine** [BS11a, BBSW11, Bor11f, BS11d, BS11e, BS12b, BBSW12, BS13].

Logarithmic [BB93f]. **Logarithms**

Log [BS11a, BBSW11, Bor11f, BS11d, BS11e, BS12b, BBSW12, BS13]. **Log-sine** [BS11a, BBSW11, Bor11f, BS11d, BS11e, BS12b, BBSW12, BS13].

Logarithmic [BB93f]. **Logarithms**
BF06b, HY14]. **Mathematician** [BB12q, Bor98h, Bor01a, Bor01b, Bor01c, Bor01d, Bor02j, Bor02k, Bor02l, Bor02m, Bor05a, Bor06c, Bor15b, CKR15]. **Mathematician/physicist/inventor** [BB12q]. **Mathematicians** [BB12q, Bor98h, Bor01a, Bor01b, Bor01c, Bor01d, Bor02j, Bor02k, Bor02l, Bor02m, Bor05a, Bor06e, Bor15b, CKR15]. **Mathematics** [BB16l, Bor03-30, BMP05, Coh15]. **Mathematics** [BB12q, Bor98h, Bor01a, Bor01b, Bor01c, Bor01d, Bor02j, Bor02k, Bor02l, Bor02m, Bor05a, Bor06e, Bor15b, CKR15]. **Mathematician** [BB12q]. **Mathematicians** [BB12q, Bor98h, Bor01a, Bor01b, Bor01c, Bor01d, Bor02j, Bor02k, Bor02l, Bor02m, Bor05a, Bor06e, Bor15b, CKR15].
Bor11, Bor11m, Bor11n, Bor14c, Bor12c, Bor12d, Bor15e. Mean [BB84a, BB89b, Bor89g, BB93f, BB97b, Bor99z, Bor99-27, Bor99-28, BB00, Bor00u, BB04a, Bor87d, Bor88a, Bor88b, Bor88c, Bor88d, Bor88e, Bor88f, Bor89e, BB90b, BBG93, Bor94a, BW98, Bor98p, BBS14a, BB16n].

Mean-Value [Bor99-28, Bor00u]. Meaning [DD15].

Measures [Bor87c, Bor93j, BLM97].

Means [BB87c, Bor99-28, Bor00u].

Measures [DD15].

Means [BB87c, Bor93j, BLM97].

Meetings [Bor11-28].

Meet [Bor14b].
Monotonicity [Bor09j, Bor09k, Bor12x, BBB99b, BMWY11, Bor97i, Bor97f, multi-disciplinary [Bor16h]. multi-institutional [Bor16h]. Multi-modal [Bor96e]. Multi-variable [BBM02].

Multidimensional [Bor96f, Bor96g, Bor96h, BH06, BTBT88, Bor97p].

Multifunctional [Bor98k, BZ99a]. multifunctions [Bor94b, BF95a, Bor95p, Bor95q, BMS99a]. Multimedia [BMPR02].

Multimodal [Bor97n]. Multiple [BBBL99, BBK00, Bor10-27, BBBL98a, BBBL98b, BBK01, BBBL01, BC10, BDT16, JY12]. multiple-zeta [BC10].

multiplier [Bor81d]. multipliers [Bor80b, BZ16]. Multivalued [Bor77a, Bor79b]. Multivariable [Bor00r, Bor01p, Bor01q, Bor01r].

Multivariate [HYG09, BL92b]. Music [Bor12r]. Musicians [BB16l].

My [Bor08q, Bor12s, Bor07-28, Bor07-29, Bor07-30, Bor08u]. Mysteries [Bor11-30].

N [BC96, Odl11]. National [Bor05j]. NATO [SBW84]. natural [RP09].

Nearest [BG15b, BG16c, Bor88k, BF89b]. Necessary [Bor82b, BTZ98, BZ88]. needs [Bor13a]. negative [BMWY11, BY12f, LL13]. negative-infinum [BMWY11]. Nested [BdB91]. Network [Bor99b, Bor99c]. Networking [Bor98e]. Neumann [BB93a]. Nevanlinna [Bor03p]. Neverending [BVZS14]. Newfoundland [IEE08, SBW84].

Newly [BB12k]. news [BB12a]. Newton [BBW97].

Next [Bor02c, Bor02q, BB16i]. NI [BE08]. Nielsen [BS15b]. NJ [Bor09b]. NMR [BMN00]. No [BB13i, BM97b, BB13e, BWH02, Cam16, Zal86, BB12w]. no. [BZ02a]. Nobel [Bor14b]. Non [Bor72, Bor05-32, Bor06-33, Bor13o, Bor16w, Bor16x, Bor16y, Bor16z, Bor16-27, AB12, AB13, BBWY11b, BBWY12b, BZ94, BE08, BS10, Bor15r, LL13, Sel16, BM07d]. Non- [Bor05-32, Bor06-33].

Non-Convex [Bor16w, Bor16x, Bor16y, Bor16z, Bor16-27, Bor13o, AB12, AB13].

non-expansive [BS10]. Non-Linear [Bor72]. non-negative [LL13].

non-reflexive [BMWY11b, BBWY12b, BZ94, BE08]. Non-smooth [BM07d]. non-Western [Sel16]. nonattaining [BK01].

Nonconvex [ABT15, Bor10m, Bor13q, ABT16, BZ98, BJ98, Bor12o].

nondifferentiability [BG09]. Nonexpansive [BS83, BS84b, Bor09-28, BRS11]. Nonlinear [BBC09, Bor99a, BLO00a, BZ02a, BZ02b, Tod03, BL06]. nonlocal [PT14].

Nonmonotone [GS02, QXY14, XWQ14, AP16, Li15, YW12, ZSQ10].
nonnegative [HNP10, HLZ15a, HLZ15b, WM07]. Nonnormality [BB12x]. nonreflexive [BL93a, BV94b, BZ97]. nonsense [BB12y]. Nonsmooth [Bor94i, Bor94k, Bor94m, BM07b, WB87, Bor98k, BZH99a, XWQ14, YW12]. Norm [Bor86a, BST13, BST15, Art07, BFG03]. Normal [BB13j, BB13k, BB14c, BCJW13, BG87]. nonnegative [HNP10, HLZ15a, HLZ15b, WM07]. Nonnormality [BB12x]. nonreflexive [BL93a, BV94b, BZ97]. nonsense [BB12y]. Nonsmooth [Bor94i, Bor94k, Bor94m, BM07b, WB87, Bor98k, BZH99a, XWQ14, YW12]. Norm [Bor86a, BST13, BST15, Art07, BFG03]. Normal [BB13j, BB13k, BB14c, BCJW13, BG87]. Normality [BBC+10a, BBC+10b, BBC+10c, BN84]. Norm [Bor86a, BST13, BST15, Art07, BFG03]. Normal [BB13j, BB13k, BB14c, BCJW13, BG87]. Normality [BBC+10a, BBC+10b, BBC+10c, BN84]. Norm [Bor86a, BST13, BST15, Art07, BFG03]. Normal [BB13j, BB13k, BB14c, BCJW13, BG87].
DHSZ06, WSdSY15, XH08, XSW12, YW12, ZH06, ZSQ10, Zho12. option [BCM03]. Order [Bor87e, EB08, BB84b, BB84c, Bor86e, BB87a, BD89, Bor92h, Bor92i, Bor93f, Bor93g, BF93b, BN94]. order-bounded [Bor86e]. orderings [Bor74]. Organic [Bor96i, BBJC97, BJ12, Bor97e, BBC+97b, BBJC97]. oriented [BD11]. origin [BDT16, BG16b]. originating [Bor05i, Bor06i]. Origins [BS14b, BS14a]. OSCAR [IEE08]. oscillatory [BB10a]. Other [Bor00j, Bor00k, Bor05-42, Bor05-43, Bor05-44, GS08, Bor92o, Bor93k, BFV97, Bor05-45, BL16, Bor16p, Tre13]. out-of-sample [BBLZ14]. outlook [BB01a]. Over-Fitting [BBLZ13, BBdPZ16]. Overseas [BB15l]. Overview [Bor09-29]. Oxford [BB93g, Bor06o, BO11b, Bor06o]. Oz [Bor11m, Bor11n].

P [Bor92c]. PACBB [ZH06]. Pacific [Bai91]. packing [BB16k, CKM+16, Via16]. pain [BB12k]. Paleo [BB12s, BB16e]. Paleo-Mathematics [BB12s, BB16e]. Pamphlet [BBB03]. Paper [Bor14u, Bor14v, Bor81a, Zäl86]. Papers [BB14h, Bor11b, Bor11c, Cam16, KG04]. Paradox [Bor04-32, BB15f, BB15p]. Parallel [Bor00t, BB09b, BJCW13]. Parameter [BCF04, BC04a]. parameters [LLC+95]. Parametric [BBB06b, Geo05]. Pareto [Bor80a, Bor83e]. Pari [Bor92d]. part [BB93e, Bor16h, Bor15f, BL92d, Bor03n, Bor08e, Bor08f, Bor12e, Bor12f, Bor12-29, Bor12-30, Bor13-33, Bor13-34]. partial [Bor74, MR96]. Partially [Bor86b, Bor88l, BL92c, BL92d, BL93b, Bor97o, Bor98l, Bor98m, BTZ99, Bor99u, Bor99v, Bor00v]. Partially-finite [Bor88l, BL93b]. partitions [RP09]. Parts [Bor15h]. pass [BB12i, BB12g]. Past [Bor07a, Cam16, Bor08r]. Patents [BB14h]. pathological [BBWY11b, BBWY12b]. Paths [Bor03m, Zei05, BBG03]. Cole [Bai91]. FRASER [Bor89a]. inventor [BB12q]. physicist [BB12q]. Zagier [BBB96a, BB97d, Bor97f]. perfect [Bor80c]. Performance [Bor98h, Bor05s, Bor05t, Bor05u, Bor05v, Bor05-47, Bor05-48, Bor05-49, Bor05-50, Bor05-51, Bor05-52, Bor06z, Bor06v, Bor06w, Bor06x, Bor06y, Bor06-37, Bor06-38, Bor06-39, Bor07f, IEE08, BBLZ14, Cam16, MTCB98]. Person [BB12i]. personal [Bor03g]. Perspective [Bor98h, BB12n]. Perth [Bea13]. perturbation [BCFR04]. perturbations [BB94, BB97]. perturbed [BV09]. Peter [Bai91, Ber88, Coh15, Bor08s]. Peters [Ban10, Odl11, Zei05]. Phelps [BBWY11c, BMWY11, BBWY12c]. Philosophical [Bor05p, Bor05q, Bor05-37, Bor05-38]. Philosophy [Bor04t, GS08, BR14m, Bor08b]. Physics [BB08a, BBC09, BBBZ10a, BB15e, Fer91, BBBZ10b, BB12, BB15j, Bor10s]. PI [Bor90q, Bor90r, Bor90s, Bor90t, Bor90u, Bor90v, Bor90w, Bor90x, BB13b, BB13a, BB13k, BB14d, BB14i, BB14c, BB14b, BB15o, BB16h, BB16i, BBBR16, BB97b, BB00a, BB03, BB04a, BB87d, Bor89e, BB89, Bor89f, Bor90-29, Bor90-30, Bor90-31, Bor90-32, Bor90-33, Bor90-34, Bor90-35, Bor90-36, Bor90-37, Bor90-38, Bor90-39, Bor91h, Bor93h, Bor93i, BG97a, BBB97, BB97c, Bor97q, Bor97r, Bor97s, Bor97t, Bor97x, Bor98i, BB98h].
Bor98b, Bor99w, Bor99-29, Bor99-30, BBD00, BBD00b, Bor03r, Bor03s, Bor03u, Bor03v, Bor03w, Bor03x, BBD04, BB04b, Bor05x, Bor05y, Bor06-27, Bor07v, Bor08l, Bor08m, Bor10v, Bor10w, Bor11u, Bor11v, Bor11w, Bor11x, Bor11y, Bor11d, Bor11h, Bor12t, Bor12u, Bor12v, Bor13n, Bor13r, Bor13s, Bor14r, Bor14p, Bor14t, Bor14z, Bor15k, BC15b, BC15a, Bor16q]. Pi
[Bor16p, Bor16c, BBD16, BC16, Bor16b, BBB16, Sei01, Bor14q, AL10, BBP97, BBB97a, BBC12a, BB14l, BB84c, Bor86f, BB87a, Bor87g, Bor87f, Bor89b, BB89, Bor01e, Bor08a, Bor88, BB88d, BB91e, BB96c, BM06, Bor12w, BB16o, Abb00, Ask88, BB93g, Cas99, Rob06, Wim88]. Pioneer
[BB16g]. pitfalls
[Bor94d, Bor94e, Bor94f, Bor95g, Bor95h, Bor95i, Bor95j, Bor95k, Bor95l, Bor95m, Bor96c]. Plan
[Bor04p, Bor05k, Bor05l, Bor05m, Bor05n, Bor05o, Bor06l, R+05, Bor03y, Bor03z, Bor06-28]. plane
[Bor79f, BNSW10]. Planet
[Bor13s, BB12z, Bor06f]. plates
[BB91d]. Plausible
[Bor93c, Bor93d, Bor03-27, Bor03-28, Bor03-33, BB04b, Bor04-27, Bor04v, Bor04x, Bor04y, Bor04z, Bor06-29, Bor10a, HF05, Hoa05, Zei05]. playing
[BB12o]. Please
[BB13l]. Pleasure
[Bor02l, Bor02m, Bor05a]. Plouffe
[BC96]. Point
[BB88a, BBC11b, Bor84a, BB91b, BLT15, BLT16, HD07]. Points
[Bor77c, Bor83e, Bor86c, Bor88k, BF89b, Bor92l, Bor92m, Bor92n, BF93a, BW97a, BKW02, BY12e, BY13c, BG15b, BG16c]. Poisson
[BB13d, BBCZ13, BBKL16, TB00]. Pol
[BB07]. politicians
[BB12z]. politics
[BB12b, Bor13c]. polyhedra
[Bor00r, Bor01p, Bor01q, Bor01r, BBM02]. polylogarithmic
[BBP97, Bor97l, GG07]. Polylogarithms
[BBBL99, Bor01r, Bor01s, Bor01t, BBM02]. polynomial
[BH95]. Polynomials
[BBKL16, HC09]. Poorten
[BSZ13]. Portfolio
[Bor09a, Bor12n, BB16a]. positive
[DABY15]. Possible
[Bor07w, Bor07-32, Bor08n, Bor08o]. postcards
[Bor10q]. powers
[BC07]. Pp
[Ban10, Bai91, Ber88, BB91d, BB93g, BC96, Bor06o, Bor09b, BO11b, Coh15, Od11, Zei05]. Practical
[BL91d]. Practice
[BBS16b, BJL+08]. precedent
[BB14b]. Precision
[BB08a, BB08b, BB13h, BL92e, BB92a, BB92c, BB92e, BB92h, BB11b, BB12, BB15, Bor10s]. Preconditioned
[MR96]. Preface
[AAB12]. prefer
[Bor15k, BC15b, BC15a, BC16]. Preiss
[Bej94, Dev9x, Fab89, Geo05, KPS16, LS00, QR07, YS00]. Preisses
[Bor89c]. Prepared
[BB15o]. prescribed
[BMW97, BW03]. Presence
[Bor09e, Bor99f, Bor99d, Bor16-28, Bor13-33, Bor13-34, Bor13-32, BZ13, BLT15, BLT16]. Present
[Bor07a]. Presentation
[Bor05e, Bor09a]. presidential
[BB12y]. Press
[Bor93g, BC96, Bor06o, Bor09b, BO11b, BS14a]. previously
[BBMW13]. Price
[Bai91, Ber88]. prices
[BCM03]. primality
[Bor94g, BBBBB96, BB97b, BMS13, BSM13]. primes
[Cha03]. Princeton
[Bor09b, BO11b, HDG+15]. Principle
[Bor03-32, Bor04-31, BHP14, Geo05, YS00, Bor83b, Bor85g, BP87, Bor87i, Bor87j, Bor90m, Bor90n, BCM03, BCFR04, Fab89, KPS16, LS00, QR07]. Principles
[BBS16b, BSM99b, Bor06r, Bor06s, Bor06t, Bor06u, Bor09-30, Bej94, BZT99, BV09]. Prize
[Bor03p, Bor14b]. Prizes
[Bor03p]. Probability
[Bor98a, BS97b]. **Publishing** [Bor99y, Bor96d, Bor97h, Bor97i, Bor97n]. puzzles [Bor15a].

QC [KG04]. **QPQC** [Pos13]. **Quadratic** [Bor89g, Bor89h, BY06, HLZ15b, Bor82b, DF05, La 09, NWY09].

quadratically [BB86c]. **Quadrature** [BB06a, BW82b, BW86]. quantitative [Koh01]. quantum [Cvi10].

Quartic [Bai88, TK97]. Quasi [BL92c]. quasiconvex [BBP03]. quest [BBBP97]. question [BB14k, MR11]. Questions [Bor03-34]. Quinn [BBC09].

R [Odl11]. **Rachford** [AB12, ABT13a, AB13, ABT13b, ABT13c, ABT14a, ABT14b, ABT14c, ABT14d, ABT16, Bor10i, Bor10j, Bor10k, Bor10l, BS11b, Bor11q, Bor11r, BT13a, BT13b, Bor13i, Bor13q, BT14c, Bor14e, Bor14f, BT15, Bor15g, Bor15k, BG16b, BLS+16]. radicals [BdB91]. **Rainfall** [Bor13], BHP14, Bor13p, PHBH12, PHBH13, PHB13, PHB14]. **Ramanujan** [AB15, AAB12, BB97a, BBG95b, Bor85b, Bor86f, BB87a, Bor87g, BB87b, Bor87l, BB88b, BB88d, BB89a, Bor89f, BB89g, BB90-29, BB90-30, Bor90-31, Bor90-32, Bor90-33, Bor90-34, Bor90-35, Bor90-36, Bor90-37, Bor90-38, Bor90-39, Bor91i, Bor91j, Bor91k, Bor91l, Bor91m, Bor91n, Bor91o, Bor92, Bor92g, Bor92j, BB93d, Bor93m, BBC94b, BB96c, BB97c, BB97b, BB006b, BB01e, Bor03d, Bor03e, Bor03f, Bor04-30, Bor04-29, Bor04-28, BCF04, BC04a, BB04b, BL05, Bor05i, Bor06i, BL08, Bor10z, Bor10-28, Bor10-29, Bor11-28, BBGW11, Bor11-29, Bor11-31, Bor12w, BB16, Bor16d, BB16o, Liu00, BB91d]. Ramanujan-type [BB87a, BB88b, BL08]. Ramble [Bor10-30, Bor10-31, Bor11-32]. Rand [BBC09]. Random [BB13a, BNSW10, Bor10-30, Bor10-31, Bor11-32, BSW13, Gan14, BB13b, BB97a, BCJC13, BCJW13, BL05, Bor10e, BSWZ11, BNSW11, Bor12b, BSWZ12, BR13a, BSV15, BS16b, BS16c, BS16a]. Randomness [BBBR16].

Range [Bor04p, Bor05k, Bor05i, Bor05m, Bor05n, Bor05o, Bor06l, R05, BW81c, BFKL01, BFL02, Bor03y, Bor03z, Bor06-28]. rapid [BBP97]. rapidly [AL10, BB83]. rate [BLY13, BLY14, BLT15, BLT16, HL15b]. Ratio [Ade14a]. rational [BB87b, BZ92, BB98a, BB98c]. Reactions [BB14h].

Real [ABBB13, B91, C04, Bor13-27, Bor13-28, Bor90, BFG87, BB90c, BB91b, Bor04-30, Bor10-28, Bor14w, Bor14x, Bor16s, Bor16t, Bor16u]. Real-Parameter [CF04]. Realistic [BMC09, BST13, BST15]. Reality [Bor05-39, BB12p, BB13g]. Really [BB14e]. rearrangement [BLZ01].

Reasoning [Bor93c, Bor93d, Bor03-27, Bor03-28, Bor03-29, Bor03-33, BB04b, Bor04-27, Bor04w, Bor04x, Bor04y, Bor04z, Bor06-29, Bor10a, HF05, Hoa05, Zei05].

Reconstruction [Bor09z, Bor92o, Bor93k, BLN95, BLSN95, BLY96, LLY95, MTC98].

reconstructions [MTCB99]. **Recurrence** [B08, BBCM07b]. recurrences [BBS14a]. **Recursion** [B07]. reduction [BW81d]. Refined [BBFG01, War03]. Reflection
sandwiched [BF01]. Sink [Bor11-35, BBS12]. Santalo [BBFG01]. Satire [Bor07c]. Scale [JWDS+14, DF05, Ray97, WM07, XH08]. scales [PHBH13]. scaling [WSdSY15]. sceptics [BB12d]. Sceptics [Bor90b]. Scheme [BT13a, BT14c]. Schemes [BB08d, Bor06j, Bor06k]. scholars [Bor03g]. School [BB12m, WB97]. Science [BB13p, BB13r, BB15g, BBBR16, Bor95u, Bor95v, RZ15, Sel16, SBB13, BB12f, BB12j, BB12w, BB13i, BB13n, BB13o, BB13q, BB14m, BB14+1b, Bor96k, Bor97w, Bor98r, Bor14a, Bor15c]. Sciences [Bor98e, Bor07o, Bor13l, Bor13m, SV14]. Scientific [BB12d]. Scientists [Bor04i, BB11f]. SCIHTBB [XC11]. Scissors [Bor14u, Bor14v]. Scribner [BB91d]. search [FN15, YW12]. Searching [BB96b, BB05e]. Seasonal [BHP14, Bor13p, PHB13, PHB14]. Second [BN04, EB08, ABDO3, Bor92h, Bor92i, Bor93f, Bor93g, BF93b]. second-order [BF93b]. Security [BB15]. Seeing [Bor12y, Bor13-27, Bor13-28, Bor13t, Bor13u, Bor13v, Bor13w, Bor13x, Bor13y, Bor13z, Bor14w, Bor14x, Bor16s, Bor16t, Bor16u]. Seeking [BB15f]. self [Art07], self-contained [Art07], sell [BB12]. Semi [Bor83f, Bor89i, Bor81c, Bor83c, BLY13]. semi-algebraic [BLY13]. Semi-finite [Bor89]. Semi-infinite [Bor83f, Bor81c, Bor83c]. semialgebraic [BLY14]. semicontinuity [BLZ01], semiconcave [Bor90]. Separable [BM00, Bor95b, Bor92d, Bor02e, BLB04]. separately [BK83], separately-infinite [BK83]. separate [BB01b]. separation [BJ98]. September [SWBW84], sequence [BL92a], sequences [BL93a, Bor98d, Bor15d, BC96], sequential [BF95b], sequentially [Bor93a]. Ser. [BZ92a]. Series [Ber88, BB86a, BB92a, Bor01g, Bor05f, BB07, BB12j, BB15c, BB87b, BB88b, BB93d, Bor93o, BB95d, Bor02h, Bor02i, BC03, BC04b, BC05, Bor07e, Liu01, Nim15, XY12]. Serious [Bor07c, BB13e]. Serving [Ze10]. session [Bea13]. Set [BB91a, BB13o, Bor13-29, Bor15m, BZ88, BV95b, Zho12, Bor92c]. set-valued [BZ88, Zho12, Bor92c]. Sets [BB93b, Bor06a, BBCR13, BB93a, BB94a, BRL97a, BRL97b, Bar81, BT85, BS86, Bor87m, BS87, BFK91, BL93a, BF94, BF95c, Bor95a, Bor95b, BV96a, BV96b, BM98b, BLM00, BV04, Bor07y, Bor08t, Bor12g, Bor12h, BLY13, BLY14]. Setting [BB13+13, Bor07c, SBB13]. Seven [Bor13-30]. Several [BB86a, Wei15]. Shafrir [Koh01]. Shannon [BH95]. shape [S14]. share [BW97a]. Short [BM97c, Bor10-31, Bor11f, Bor11-33, Bor11-34, Bor11-32, Bor15o, Bor15p, Bor15q, BSW211, BSW211, Bor12b, BSWZ12, BS13, Bor14s, BS15, Bor15n, BS16, Bor16e]. Shrum [Bor93a]. Shu [BB95c]. SIAM
[Bor12w]. St [IEE08]. Stability
[Bor86c, BM09, BM10, BW81a, BS97a, MTCB99]. Stage [Bor07z]. Standing
[JWDS+14]. Starshape [BEO76, BEO77, Bor78c]. static [BBSZ88].
Statistical [BSW82]. Statistically [Gan14]. Statistics
[BB09a, BB15g, BB09c, BB11f]. staunch [BW05b]. steepest [RS02].
Steiner [BO11b]. Step [BB88a, BSW13, Bor10e, SD15, XC11]. steplength
[Pos13, Ray93, XSW12]. stepsizesize [DABY15]. Still
[Bor01c, Bor02s, Bor02t, BB13k, BB14c, BB14l]. Stochastic
[BL99, SD15, HLZ14, HLY16, KJR16, LLS11, LZ14, Li15]. Stock [BBL16a].
Stoneham [BB12x]. stop [BB12f]. Story [Bor94h, Bor09y, Bor90o, Bor90p].
Strange [BB92a]. Strategies [BBLZ13, BBC00]. Street [BB97d]. strict
[BBC01]. strictly [Bor95d, Bor95e, NWY09]. Strogatz [BBC09]. Strong
[BBL99, BL94b, BBT00, Bor80d, Bor10e]. strongly [Bor78b]. Structure
[BY12e, BY13c, BB16b]. students [BBW97]. Studies [SV14, BWB97].
Study [BBBR16, BB87d, Bo05f, Bor11f, Bor11z, Bor11-27, SBW84,
Wim88, BB98b, Bo05-40, H112]. Stuff [Bo00j, Bo00k]. Stupid [BB13q].
Style [Bor11-28]. Subderivatives
[Bor88m, Bor88n, BZ96, BW97, BGW98]. Subdifferentiability
[BB01, Fab89, BP87]. subdifferential
[BW97a, BM97a, BZ98, BM00, BZ02a, BZ02b, BS10]. Subdifferentials
[BFG03, BBEM10, BGM00, BW00, BGM01, BW03, BVW03, BW05b].
Subgradient [BMS99a, BFG03, Bor91a, Bor10h, Bor11o]. Subgradients
[Bor84d, Bor82d, Bor82c, BFG87, Bor91a, Bor94b, BF95a, BB96].
Subspace [XH08, LL13]. Substance [DD15]. success [Cam16]. sufficiency
[Bor76b]. sufficient [Bor82b, BZ88]. suggest [Cam16]. Sum
[BY13a, BY14c, BB16a, BB06b, BY12b, BY13b]. Summary
[BB06a, BC04b]. summation [BCM09].
Sum [BB94b, Bor96f, Bor96g, Bor96h, BBK00, Bor01g, BB05d, Bor06-31, Bor12q,
BGM+13, BBG94a, BB13d, BBC13, BB14a, BB15a, BB16b, BB08,
BBT85, BB89, BB96c, BB09f, BB86b, BM00, BB97d, Bor97f, Bor97l,
BBP98, Bor98f, BBK01, Bor02h, Bor02i, BC03, BC04b, Bor06-32, Bor07x,
BZB08, Bor12e, Bor12f, BBS13b, BBS14b, BB15, GG07]. sunlight [BR13a].
Super [BZ91, BZ93]. supercomputers [BBG95a]. superrelaxation
[Pos13]. support [BV96a, BV96b]. supportability [Bor79e]. supportless
[BT85]. Surnise [DD15, Bor02g]. Surprise
[Bor99q, Bor99r, Bor99s, Bor00p, Bor00q, BMM00, Bor04v, Bor04-32,
Bor05-31, Bor09a, Bor13-11, Bor09n]. Surprising [BBB08]. Survey
[BL93c, Bor90a, Bor90-40, Bor90-41, Bor90-42, Bor90-43, Bor91p, Bor91q,
Bor91r, Bor91s, Bor92b, Bor95t, BV95b, BW97b, BZ99b, BZ02a, BZ02b].
Surveys [SV14]. SVM [SD15]. Sylvester [Bor79d]. Symbolic [Ade11,
Bor98h, Bor00t, Bor05-41, BH06, Bor09t, BH09, BBK14, Bor97g, Bor98q].
Symbolically [BB96b, Bor97p, Bor97u, Bor97v, BB05e]. Symbols [Bo09t].
symmetric [DABY15, JD13]. Symmetry
[Bor16-28, Bor13-33, Bor13-34, Bor13-32, BZ13]. Symposium [IEE08].
systems [Bea13, Bor86c, Bor92o, Bor93b, Bor93k, BS97a, BR16, DABY15].
tails [BCP05, BC10]. Talk [Bor93n, Bor07v, Bor08l, Bor08m, Bor10w, Bor11w, Bor11x, Bor11y, Bor11-28, Bor16p, Bor16v, Bor89a]. Talking [Bor97q, Bor97r, Bor97s, Bor97c, Bor98b, Bor99-29, Bor10-32, Bor12-27]. Tangency [Bor99x]. Tangent [BO76, Bor78c, Bor78a, AL10]. Tangential [BS85]. Tanh [BY06]. Taylor [Nim15]. teacher [Bor03g], teachers [BWB97]. Teaching [Bor11g, Bor11-36]. Technical [Bor16v]. Techniques [BZ05, Bor94o, BZ99a, GS02]. Technology [Bor98e, Bor99e, Bor99f, Bor99d, Bor00n, Bor07f, Sel16, BS99]. Telco [Bor10-32]. telelearning [Bor00w]. Telstra [Bor10-32]. Tentative [BB97a]. ternary [Ade10]. Tertiary [Bor11g, Bor11-36]. Test [BB12g, BB12-27]. Testing [BBLZ13]. Texas [BB13]. textbook [BB13]. Texts [Ber88]. their [BCLM16, Bor88m, Bor88n, Bor89d, Bor95p, Bor95q, Bor14d, RZ15]. Theorem [BBWY11a, TB80, Art07, BBWY12a, BO11a, Bor79d, Bor80d, Bor81e, Bor81d, BZ86, Bor88g, Bor88h, Bor88i, Bor89c, Bor90m, Bor90n, BW98, BD03, Bor14y, Bor16f, Dev9x, Koh01, MW12, OBB+96, Rei02, BB13c, Bor13g]. théorème [Dev9x]. Theorems [Bor99-28, Bor00u, Bor12-29, Bor14g, Bor14h, Bor14i, Bor14k, Bor14m, Bor15h, Bor16-29, BB99a, Bor77b, Bor81c, Bor85c, Bor87m, RT92, BG95, Bor98o, BY13a, BY14c]. Theoretical [BaO12]. theories [BBC95b]. Theory [BB15e, Bor88, BB87d, BZ02a, BM07b, Bor09d, Bor12e, Bor12f, BR12, BY12c, Bor12-29, BR13b, Bor16w, Bor16x, Bor16y, Bor16z, Bor16-27, SBW84, Tod03, Wim88, BBC10, BB13t, BBC14a, BB15a, Bor84a, BL92c, Bor94n, Bor95w, BB98b, BM07d, BY12e, BSZ13, BY13c, BY15, Cv110, KG04, BS86]. Théra [Bor16m]. there [BB12-27, Bor14a]. theta [AB15, AAW06, Bor87l, HGB93, LL01, Liu00, XY12]. Things [Bor13-27, Bor13-28, BB11f, Bor12y, Bor13t, Bor13u, Bor13v, Bor13w, Bor13x, Bor13y, Bor14w, Bor14x, Bor16s, Bor16t, Bor16u]. Thinking [BaO12, BB12z, BB93g, Bor94p]. Thirty [BB05f, BB06b, Bor10-33]. Thirty-two [BB05f, BB06b]. Thompson [Bor07-27]. thousand [BB12u]. thousand-digit [BB12u]. threatens [BB13]. Three [Bor93p, Bor97u, Bor97v, Bor98q, Bor03-34, Bor07-31, BSW13, BB93d]. Three-Step [BSW13]. thresholding [XC11]. Time [WG16, BB16c, PHBH13]. time-scales [PHBH13]. times [Bor05b]. Timothy [Bor09b]. Tipsy [BR13a]. TMA [BZ02b]. Together [JWDS+14]. tomographic [MTCB99]. tomography [MTCB98]. Tony [Bor15d]. tool [BWB97]. Tools [Bor00v, Bor05-42, Bor05-43, Bor05-44, Bor06d, Bor11g, Bor11-36, MTB16, BB15b, BB15i, BC99, BMPR02, Bor05-45]. topics [BS84b]. Topological [BG16d, BG15c]. topology [Pea07]. Tornheim [BB14a, BB15a, BB16a, BB16b, Bor12q, BBB15, Bor12e, Bor12f]. tottering [BR13a]. Trademarked [BB14d]. trademarking [BB14b]. train [Bor15c]. transform [War01]. transitivity [Hon85]. Treasury [Fer91]. treated [Bor84a]. trenches [BS97b, Bor97n, Bor06-36]. Tribute [BB13c].
triggers [BB12k]. Trigonometric [BB94b, LPB01]. trilogarithm [Ade10].
trinomial [War03]. triple [BG96a]. troubling [BB14b]. trustworthiness [Fab89].
Tsallis [ABBS12]. tuned [BB14m]. Turing [BB12g, BB12j]. turn [Bor11e].
Turns [BB15f, BB15p]. Tutorial [BM97c, Bor92k]. Two
BB88a, Bor79d, BN84, BB05d, Bor10-33, Bor10-32, Bor15r, AAW06, BB13t,
BB93a, BB94a, BS97b, Bor97n, BB05f, BB06-32, BB06b, Bor07x, Cam16].
two-dimensional [AAW06]. Two-Point [BB88a]. Type
[Adel4a, Ade14b, Bor10o, AL10, Ade10, Ade11, Ade12, Ade13, BB99b,
BBWY11c, BMWY11, BBWY12c, BB87a, BB88b, Bor91g, Bor92e, BB93d,
Bor93e, BH94, BV01, BBG04, Bor05f, BE08, BL08, BEY11, BY12a, BY12f,
BY13a, BY14a, BY14c, HLZ14, HL15a, Nim15, Wei15, ZS12, Zha13, ZZ14].
typical [BB01].

U.S. [BB12y, BB12z]. U.K. [BF06b]. ultraproducts [BS15a]. uncertain
[BB12c]. unconstrained [AP16, DHSS06, NWY10, Ray97, WSdSY15, XSW12]. uncovers [Cam16].
Underdetermined [BL94a, BGL93]. Undergraduate
[Bor99b, Bor00s, BS00]. Understand [BB15j]. Understanding [WG16].
Unholy [BB13c]. unified [Bor17a]. Uniform
[BH04, BC09, Bor10-31, Bor11-32, BV96c, BSWZ11, BSWZ12, BSV15, BSV16].
Uniformly [BGHV09, BV12]. Union [Bor01n, Bor01m, Bor02n]. units
[BJCW13]. Universe [Bor11-30, BB14m]. University [BB93g, BBJC97,
Bor06o, Bor09b, BO11b, BS14a, IEE08, KG04, SBW84, BWB97]. Unknown
[Bor02j, Bor02k]. Unsolved [BB87c]. unsymmetric [DLL05]. untitled
[Bor08v, Bor10-34, Bor12-28, Bor15s]. Update [BB15d, SD15]. upon
[BV13k, BB14c]. US$29.95 [BO11b]. uscos [BFK91, BK04]. Use
[Bor12-29, Bor12-30, Bor00w]. useful [Bor85b]. User [Bor06o]. uses
[BWB97]. Using [Bor88, BHP14, BFG87, Bor91g, BZ92, Bor94i,
BLN95, Bor95n, Bor95o, BLNN95, BLN96, BRS11, PHB14].

V [BSW82, Odl11]. Value
[Bor99-28, Bor00u, BW98, Bor98p, Bor99z, Bor99-27]. valued
[BB03, BZ88, Zho12, Bor92c]. Values
[BB06b, BBBL09, BBK00, BK05, Bor10-27, BS11d, BS11e, BBBL98a,
BBBL95b, BBK01, BBBL01, BB05e, BC10]. Vanderwerff [How14]. variable
[BB02, KJR16]. Variant [YS00, LS00]. variants [Bor79d]. Variational
[BZ97, BMS99b, Bor99v, Bor00v, Bor03-32, BZ05, Bor06r, Bor06s,
Bor06t, Bor06u, BZ06, Bor07n, Bor08i, Bor08j, Bor09-29, Bor09-27, Bor09-30,
Bor09-28, Bor09z, Bor13-33, Bor13-34, Bor13-32, BZ13, Bor16-28, Geo05,
YS00, Bor86g, BP87, Bor87h, Bor87j, Bor87i, Bor90m, Bor90n, Bor97o,
Bor98l, Bor98m, BTZ99, Bor99u, BCFR04, Bor09l, Bor10r, Bor13-30, BZ16,
Fab89, KPS16, LS00, QR07]. Variations
[Bor05c, BB05f, Bor10b, Bor10-33, BB06b]. various
[BBP03, BY84, BN84, BZ91, BZ93, JN03]. vector-valued [BB03]. vectors
[BL92a]. Vera [BO11b]. Verifiable [BZ88]. version [BWB97, Koh01].
versus [BB12p]. vertex [KMY00]. very [BB83, Bor14y, Bor16f]. via [Bor87k, BBT92, BG97, BCM03, Bor06-30, BBC08a, EB08, TB80]. view [BB16c]. Views [DD15, BS97b, Bor97n, Bor98c]. vii [Bai91]. viral [Bor15a]. Virtual [Bor95u, Bor95v, Bor96k, Bor97w, Bor98r]. Viscosity [Bor94n, Bor95w, BZ96]. Visibility [BEO76, BEO77]. vision [Bor94o]. Visual [Bor14g, Bor14h, Bor14i, Bor14j, Bor14k, Bor14l, Bor14m, Bor15h, Bor16-29]. Visualisation [Bor05-42, Bor05-43, Bor05-44]. Visualization [Bor05-45, Bor14z]. visualizing [BWB97]. vita [Bor08a]. Vol [BM97b]. volume [Bor06a]. volumes [Bor00r, Bor01p, Bor01q, Bor01r, BBM02]. vs [BB13f, BB15e]. vu [Tre13]. Wadsworth [Bai91]. wait [BB13t]. Walk [BSW13, BNSW11, Bor15n, Bor16e]. Walking [ABBB13, Bor13-27, Bor13-28, Bor16-30, Bor16-31, Bor16-32, Bor13t, Bor13u, Bor13v, Bor13w, Bor13x, Bor13y, Bor13z, Bor14w, Bor14x, Bor16s, Bor16t, Bor16u]. Walks [Bor10-30, Bor10-31, Bor11f, Bor11z, Bor11-27, Bor11-33, Bor11-32, Bor12-31, Bor10e, BNSW11, Bor12b, BSWZ12, BS13, Bor14s, BSV15, Bor15o, Bor15p, Bor15q, BS16b, BSV16, BS16a]. Walter [Bor90b]. warming [BB12c]. Washington [Coh15]. Watson [Bor11e]. Way [BB12w, BB13i, BB87c, Bor15t, Bor11a]. Ways [Bor94p]. Weak [Bor78a, Bor79e, BF93c, BFG03]. Web [Bor96h, Bor97a, Bor97c, Bor99y, Bor96d, Bor97e, Bor97d, Bor97h, Bor97i, Bor98s, BB+96b, Bor98a]. weeks [Bor10-32]. Welcome [Bor02r]. Well [BB15i]. Wellesley [Odl11]. were [BB12z]. West [Bor05j]. Western [Sel16]. WestGrid [Bor01m, Bor03-31]. Where [BB11g, BB15p]. which [BF93a]. Who [BB91d, Bor15b, Bor15t, BBW97, Bor16d]. whose [BFG03, BS10]. Wide [BBB+96b]. Wiersma [BWY10, MR11]. Wigner [BBS13b, BBS14b]. Wijsman [BV93, BV94a]. wild [Bor02g]. Wiley [Ber88]. Will [BB16m, BB15a]. Wilson [BB13s]. winners [Bor14b]. Winter [BM97b]. wireless [Bor00w]. wishing [Bor01f]. within [ABMMY13, ABMMY14]. without [Bor76a, BW82a, BW82b, Bor84a, BBY11, BBY13]. Witt [BL92a]. Witten [Bor12e, Bor12f, BBC14a, BB15a, BBB15, BB16a, BB16b, Bor05w, Bor08k, Bor09m, Bor12q, BDT16, BD16]. Wokingham [BF06b]. Wonderful [Bor93m, Bor91n, Bor91o]. word [BB12d]. Words [BS14a, BS14b]. work [Bor2o, Bor04-33, Bor06-36]. Working [Bor01a, Bor01b, Bor01c, Bor01d, Bor06e]. works [BB12t, Bor07q, Bor07p, BR14b]. Workshop [BBM+13, BBL+13, BBJC97, RZ15]. Workspaces [Bor98j]. World [Bor03-35, BMP05, Fer91, BB+96b]. Would [BB12g]. wreck [Bor15c]. writings [BB10b]. wrong [BB13s].

x [BB91d, Zei05]. xii [BB93g, BC96, Odl11]. XSEDE [JWDS+14]. xue [BB95c]. xv [Ber88]. xviii [Coh15]. xxii [Bor06o, Bor09b].

year [BB15o]. Years [Bor02c, Bor02q, Bor07d, Bor09j, Bor09k, BBJ12,
REFERENCES

BB15n, BD95, Bor08r, Bor10p, Bor12j, Bor12k, Bor15l. Yes
[BB12-27, BB13n]. York [Ber88, BB91d, BB93g, Tod03]. Young [Bor98g].
you're [BB13e].

Zang [Bor90b]. Zeidler [Bor06o]. zero [BBY12, BBY14]. ZETA [Bor97p,
BB96b, BBK00, Bor05w, Bor07g, Bor08k, Bor09m, Bor10-27, BD16, BB15c,
BBB15, BBBL98a, BBBL98b, BB98a, BB98c, BBC00, BBK01, BB05e, Bor06h,
BC10, BDT16]. Zeta-Function [Bor08k]. Zhai [Coh15].

References

Abbott:2000:BRP

AragonArtacho:2013:WRN

Amdeberhan:2012:FEC

Asperti:2003:MKM

AragonArtacho:2013:ACA

AragonArtacho:2014:ACA

cial volume of Serdica Mathematical Journal in honour of Asen Dontchev.

REFERENCES

Victor Adamchik and Stan Wagon. A simple formula for π. *American Mathematical Monthly*, 104(9):852–855, November 1997. CODEN AMMYAE. ISSN 0002-9890 (print), 1930-0972 (electronic). URL http://www.maa.org/pubs/monthly_nov97_toc.html. The authors employ Mathematica to extend earlier work of Bailey, Borwein, and Plouffe, [BBP97], done in 1995, but only just published, that discovered an amazing formula for π as is a power series in 16^{-k}, enabling any base-16 digit of π to be computed without knowledge of any prior digits. In this paper, Mathematica is used to find several simpler formulas having powers of 4^{-k}. They also note that it has been proven that their methods cannot be used to exhibit similar formulas in powers of 10^{-k}.

REFERENCES

REFERENCES

REFERENCES

[BB91b] David Borwein and Jonathan Borwein. Fixed point iterations for real functions. Journal of Mathematical Analysis and Ap-

Beer:1993:MSC

Borwein:1993:PSPb

Borwein:1993:CNT

Borwein:1993:GFI

Borwein:1993:ICM

Borwein:1993:MMB

REFERENCES

[Ba96a] Heinz H. Bauschke and Jonathan M. Borwein. On projection algorithms for solving convex feasibility problems. SIAM Review,
REFERENCES

REFERENCES

REFERENCES

References

REFERENCES

REFERENCES

Bailey:2009:PAD

Borwein:2009:HPH

Bailey:2010:ECO

Borwein:2010:ECM

Bacak:2011:DCL

Bailey:2011:HPN

Bailey:2011:DDW

[BB11j] D. Borwein and Jonathan M. Borwein. Proof of some experimentally conjectured formulas for π. Preprint, Department of Mathe-
mathematics, University of Western Ontario and Centre for Computer-assisted Research Mathematics and its Applications (CARMA), School of Mathematical and Physical Sciences, University of Newcastle, London, ON, Canada and Callaghan, NSW 2308, Australia, December 4, 2011.

Bailey:2012:JCD

Bailey:2012:MMD

Bailey:2012:MLF

Bailey:2012:NCM

Bailey:2012:PCC

Bailey:2012:SMF

Bailey:2012:SMA

[BB12n] David Bailey and Jonathan Borwein. Smart meters are about as dangerous as *The Conversation*, ??(??): ??,

REFERENCES

REFERENCES

//www.huffingtonpost.com/david-h-bailey/are-the-digits-of-pi-random_.b_3085725.html.

[BB13i] David H. Bailey and Jonathan M. Borwein. Hype now, hide later: No way to do scientific research. Huffington Post, ??

Bailey:2013:NNP

Bailey:2013:PDU

Bailey:2013:PMT

Bailey:2013:RRE

Bailey:2013:SFS

Bailey:2013:SDO

REFERENCES

huffingtonpost.com/david-h-bailey/set-the-default-to-open-r_b_2635850.html.

REFERENCES

huffingtonpost.com/david-h-bailey/pi-day-314-14_b_4851011.html.

Bailey:2014:SDJ

Bailey:2014:FF

Bailey:2014:WCG

Bailey:2014:WSP

Bailey:2014:WMB

Borwein:2014:DNS

Bailey:2015:CTM

Special Issue Dedicated to Dick Askey on the occasion of his 80th birthday.

[BB15g] David H. Bailey and Jonathan M. Borwein. Does gun control encourage crime? The science of crime statistics. Huffington Post,
Bailey:2015:EAM

Bailey:2015:ECO

Bailey:2015:HPA

Bailey:2015:HMP

Bailey:2015:HWD

Bailey:2015:LFC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

75

REFERENCES

[134x692]76

[BBC+12b] David H. Bailey, Jonathan M. Borwein, Cristian S. Calude, Michael J. Dinneen, Monica Dumitrescu, and Alex Yee. An em-

Bailey:2013:EFS

Bailey:2013:LSA

Borwein:1989:PEN

Borwein:1997:PEN

Borwein:2000:PEN

Borwein:2004:PEN

Borwein:2016:PEN

Bailey:2016:PBT

Bacak:2010:ICL

Borwein:2001:RCS

Borwein:1993:HAA

Borwein:1994:SCM

Borwein:1994:SCM

REFERENCES

Bailey:1995:FNI

Berndt:1995:RTE

Borwein:1995:EEEa

Borwein:2003:EMCa

Borwein:2004:FEA

[BBG04] Jonathan M. Borwein, David Borwein, and William F. Galway. Finding and excluding b-ary Machin-type individual digit formulas. Canadian Journal of Mathematics = Journal canadien de mathématiques, 56(5):897–925, 2004. CODEN CJMAAB. ISSN 0008-414X (print), 1496-4279 (electronic). This paper established the result that there are no degree-1 BBP-type formulas for \(\pi \), except when the base is 2 (or an integer power thereof).

Borwein:2006:EM

REFERENCES

REFERENCES

Borwein:2000:CBS

Borwein:2001:CBS

Bailey:2014:ASL

Bailey:2016:CDA

Bailey:2006:TPE

Bauschke:1997:CSC

[BBL97a] H. H. Bauschke, J. M. Borwein, and A. S. Lewis. Convex sets and the cyclic projection algorithm. In Yair Censor and Simeon Reich,

REFERENCES

ment, ??(??):??, ???. 2016. ISSN 1545-9144 (print), 1545-9152 (electronic).

REFERENCES

REFERENCES

[BBT00] Heinz H. Bauschke, Jonathan M. Borwein, and Paul Tseng. Bounded linear regularity, strong CHIP, and CHIP are distinct

REFERENCES

REFERENCES

See [BC15a]. The addenda correct formulas (4) and (12), references [34] and [74], and add a new reference.

REFERENCES

REFERENCES

REFERENCES

[BF89a] Jon Borwein and Simon Fitzpatrick. Local boundedness of monotone operators under minimal hypotheses. *Bulletin of the*

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

2001. CODEN SVANEG. ISSN 0927-6947 (print), 1572-932x (electronic). Wellposedness in optimization and related topics (Gargnano, 1999).

REFERENCES

[B99] Jonathan M. Borwein and June Lester. Issues for active math and math labs. Issues for next generation telelearning systems, Tele-
REFERENCES

learning 1999, Montreal, QC, Canada, November 6–9, November 9, 1999.

Borwein:2000:CAN

Borwein:2000:AIR

Borwein:2005:DCF

Borwein:2006:CAN

Borwein:2008:DRT

Borwein:2011:ERF

REFERENCES

[BLM+07] Jonathan M. Borwein, David Langstroth, Mason Macklem, Scott Wilson, and V. Jungić. The coast-to-coast seminar and remote

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Borwein:1979:MLP

Borwein:1980:GPE

Borwein:1980:LM

Borwein:1980:NPD

Borwein:1980:SDT

Borwein:1981:SRP

Borwein:1981:CRO

REFERENCES

[122]

[379]

REFERENCES

REFERENCES

REFERENCES

[Bor87k] Jonathan M. Borwein. Spectral analysis via convex programming. Charnes’ 70th birthday conference, IC2, University of Texas at Austin, Austin, TX, USA., October 15, 1987.

REFERENCES

REFERENCES

[Bor89g] Jonathan M. Borwein. Quadratic mean iterations. Carleton University/Université d’Ottawa joint Colloquium, Carleton University, Ottawa, ON, Canada., March 4, 1989.

REFERENCES

REFERENCES

Jonathan M. Borwein. Differentiability properties of convex, Lipschitz and semicontinuous functions. Ontario Math Meetings #88, Brock University, St. Catharines, ON, Canada., April 21, 1990.

Jonathan M. Borwein. Differentiability properties of convex, Lipschitz and semicontinuous functions. Ontario Math Meetings #88, Brock University, St. Catharines, ON, Canada., April 21, 1990.

Borwein:1990:GMSa

Borwein:1990:GMSb

Borwein:1990:HCPa

Borwein:1990:HCPb

Borwein:1990:HCPc

[Bor90s] Jonathan M. Borwein. The history of the computation of pi. APICS Lecture, Memorial University, St John's, NL, Canada., March 31, 1990.

Borwein:1990:HCPd

[Bor90t] Jonathan M. Borwein. The history of the computation of pi. APICS Lecture, Université de Moncton, Moncton, NB, Canada., April 5, 1990.

Borwein:1990:HCPe

Borwein:1990:HCPf

Borwein:1990:HCPg

[Bor90w] Jonathan M. Borwein. The history of the computation of pi. APICS Lecture, Memorial University, St John’s, NL, Canada., March 31, 1990.
[Bor90x] Jonathan M. Borwein. The history of the computation of pi. APICS Lecture, Université de Moncton, Moncton, NB, Canada., April 5, 1990.

[134x692]REFERENCES

[0x0]Borw
[403x655]ein:1990:PERf

[134x636][Bor90-34] Jonathan M. Borwein. Pi, Euler, Ramanujan, and MAPLE. APICS Lecture, Mount St Vincent University, Halifax, NS, Canada., January 22, 1990.

[Borw
[400x508]ein:1990:PERg

[Borw
[400x543]ein:1990:PERh

[Borw
[403x581]ein:1990:PERi

[Borw
[403x617]ein:1990:PERj

[Borw
[403x655]ein:1990:PERk

[Borw
[401x677]ein:1990:PERl

[Borw
[402x712]ein:1990:SDPb

[Borw
[401x732]ein:1990:SDPc
REFERENCES

REFERENCES

[Bor91h] Jonathan M. Borwein. Euler, Mahler, Ramanujan and a little pi: Discovering analytic objects by computer. One of two invited talks at the Festkolloquium for Dr. A. Peyerimhoff’s 65th birthday, Ulm, Germany., April 25, 1991.

REFERENCES

REFERENCES

[Bor92g] Jonathan M. Borwein. Euler, Mahler, Ramanujan: Discovering analytic objects by computer. Seminar, Department of Mathematics, University of Michigan, Ann Arbor, MI, USA., February 20, 1992.

[Bor92k] Jonathan M. Borwein. Infinite dimensional entropy minimization: a tutorial. 14th Symposium on Mathematical Programming with
REFERENCES

[Bor93a] J. M. Borwein. Asplund spaces are sequentially reflexive. Accepted for publication in the Canadian Journal of Mathematics, but withdrawn and merged with another paper. Jon Borwein recorded that as publication number 121, but because the article numbers changed with each update of his CV, that number has long been incorrect., 1993.

[Bor93c] Jonathan M. Borwein. Computer assisted ‘mathematics and plausible reasoning’. Kempner Colloquium, Department of Mathe-
REFERENCES

REFERENCES

[Bor94e] Jonathan M. Borwein. Experimental mathematics, promises and pitfalls. Colloquium, Department of Mathematics, Indiana University, Bloomington, IN, USA., November 18, 1994.

[Bor94i] Jonathan M. Borwein. Maximization entropy methods (using derivative information) and infinite dimensional convex programming. XV International Mathematical Programming Symposium, Ann Arbor, MI, USA., August 18, 1994.

REFERENCES

REFERENCES

Borwein:1995:EMPd

Borwein:1995:EMP

Borwein:1995:EMPf

Borwein:1995:EMPg

Jonathan M. Borwein. Experimental mathematics, promises and pitfalls. Colloquium, Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, SK, Canada., November 9, 1995.

Borwein:1995:MEMb

Borwein:1995:MEMd

Jonathan M. Borwein. Maximum entropy methods (using derivative information) and infinite dimensional convex programming. Pure Mathematics Seminar, University of Western Australia, Crawley, WA 6009, Australia., August 1, 1995.

Borwein:1995:MMTa

Borwein:1995:MMTb

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[Bor97s] Jonathan M. Borwein. Talking about pi. Colloquium, School of Mathematical Sciences, Lakehead University, Thunder Bay, ON P7B 5E1, Canada., September 22, 1997.

REFERENCES

Borwein:1998:GYI

Borwein:1998:HPS

Borwein:1998:MRI

Borwein:1998:MFA

Borwein:1998:PSVa

Borwein:1998:PSVb

Borwein:1998:PAM
Jonathan M. Borwein. Projection algorithms and monotone operators. Plenary lecture in conjunction with CMA National Symposium on Functional Analysis, Optimization and Applications,
REFERENCES

[Bor99d] Jonathan M. Borwein. Doing math in the presence of technology. Colloquium, Department of Mathematics and Statistics, Miami
REFERENCES

University of Ohio (1999 Buckingham Fellow in Residence), October 14, 1999.

[Bor99e] Jonathan M. Borwein. The doing of mathematics in the presence of technology. Canadian Mathematics Education Study Group (CMESG), First Plenary, Brock University, St. Catharines, ON, Canada, June 4–8, June 4, 1999.

REFERENCES

[Bor99m] Jonathan M. Borwein. Generic behaviour of generalized gradients. Special Session on Nonlinear Analysis, Canadian Mathematical Society Summer Meeting, Memorial University, St John’s, NL, Canada., May 29, 1999.

[Bor99t] Jonathan M. Borwein. Numerical and computational mathematics at the undergraduate level. Technology in Mathematics Edu-
cation (TMEST), Plenary, Brock University, St. Catharines, ON, Canada, June 3–4., June 4, 1999.

REFERENCES

[Bor00e] Jonathan M. Borwein. Experimental mathematics and exact computation. Colloquium, University of Western Australia, Crawley, WA 6009, Australia., April 19, 2000.

[Bor00g] Jonathan M. Borwein. Experimental mathematics and exact computation. Ernst Schrödinger Lecture, Schrödinger Institute, University of Vienna, Vienna, Austria., October 5, 2000.
REFERENCES

REFERENCES

[Bor01a] Jonathan M. Borwein. Aesthetics for the working mathematician. Public Lecture at Queen’s University Symposium on Beauty and
the Mathematical Beast, April 18–19, Kingston, ON, Canada., April 18, 2001.

[Bor02c] Jonathan M. Borwein. The CEIC: The next four years. West Coast Optimization Fall Meeting, University of Washington, Seattle, WA, USA., November 2, 2002.

REFERENCES

Jonathan M. Borwein. Introduction to the work of the CEIC. Electronic Information Afternoon at the ICM, Beijing, August 20–27, 2002., August 26, 2002.

REFERENCES

REFERENCES

REFERENCES

Borwein:2004:AGMc

Borwein:2004:BSCa

Borwein:2004:BSCb

Borwein:2004:DBM

Borwein:2004:DMO

Borwein:2004:ED

Borwein:2004:EMa

Borwein:2004:EMb

Borwein:2004:EMc

REFERENCES

[Bor04-28] Jonathan M. Borwein. Ramanujan’s AGM continued fractions and dynamics. Workshop on Analytic and Computational Num-

[Bor05b] Jonathan M. Borwein. (2 times) ten challenge problems. Third Clifford Lecture, Tulane University, New Orleans, LA, USA., April 1, 2005.
REFERENCES

[Bor05d] Jonathan M. Borwein. Aarms. Presentation, Department of Math and Stats, Memorial University, St John’s, NL, Canada., November 17, 2005.

REFERENCES

[Bor05r] Jonathan M. Borwein. The future is here? Presentation to National Educational Forum, Fields Institute, Toronto, ON M5T 3J1, Canada, May 6–8., May 6, 2005.

[Bor05t] Jonathan M. Borwein. High performance mathematics. Presentation to HPC@Dal, Dalhousie University, Halifax, NS, Canada., June 10, 2005.
REFERENCES

[Bor05z] Jonathan M. Borwein. Lists and challenges in mathematics? Colloquium, Mathematics Department, Rutgers, the State University of New Jersey., November 10, 2005.

REFERENCES

REFERENCES

Department, Dalhousie University, Halifax, NS, Canada., January 26, 2005.

[Bor06g] Jonathan M. Borwein. Collaborative environments. Panel Discussion HPCS 06, Memorial University, St John’s, NL, Canada., May 17, 2006.

[Bor06j] Jonathan M. Borwein. Effective error bounds for Euler–Maclaurin-based quadrature schemes. HPCS 06, Memorial University, St John’s, NL, Canada., May 16, 2006.
REFERENCES

REFERENCES

[Bor06s] Jonathan M. Borwein. Four lectures on variational principles. II: Monotone operators as convex objects. Spring School on Analysis, Paseky, Czech Republic, April 25, 2006.

REFERENCES

REFERENCES

REFERENCES

[Bor07-27] Jonathan M. Borwein. Some convexity results a Jon or a Thompson might like. 65th Birthday Colloquium lecture for Jon Thompson, (Inter-Campus Seminar Day), University of New Brunswick, Moncton, NB, Canada., June 8, 2007.

REFERENCES

Borwein:2008:CADb

Borwein:2008:CADc

Borwein:2008:DAD

Borwein:2008:ECB
Effective computation of Bessel functions. SIAM-AMS Special Session on Special Functions, Combined Membership Meetings, San Diego, CA, USA, Jan 6–9, 2008., January 6, 2008.

Borwein:2008:FCVb

Borwein:2008:HIW

[Bor08r] Jonathan M. Borwein. The past 60 years in mathematics. Colloquium, Department of Mathematics, University of Auckland, Auckland, New Zealand., December 4, 2008.

Borwein:2009:DAMc

Borwein:2009:EECa

Borwein:2009:EECb

[Bor09i] Jonathan M. Borwein. Exploratory experimentation and computation. Plenary lecture Fields-IRMACS Workshop on Discovery and Experiment in Number Theory, Simon Fraser University, Burnaby, BC, Canada and Toronto, ON, Canada, September 22–26., September 23, 2009.

Borwein:2009:FYMa

Borwein:2009:FYMb

Borwein:2009:FVA

Borwein:2009:HIW

Borwein:2009:HMS

REFERENCES

[Bor09s] Jonathan M. Borwein. Introduction to carma. Presentation to students from Dungog High School in CARMA., August 11, 2009.

REFERENCES

REFERENCES

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title and Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bor10q</td>
<td>Jonathan M. Borwein. Fractal postcards and coke cans. Presentation to West Wallsend High School students in CARMA., September 24, 2010.</td>
</tr>
<tr>
<td>Bor10s</td>
<td>Jonathan M. Borwein. High precision computation in mathematical physics and dynamics. AMSI-SIGopt Seminar. Delivered to Australian National University, UWA, RMIT and USA from Newcastle, NSW, Australia., June 2, 2010.</td>
</tr>
</tbody>
</table>
REFERENCES

REFERENCES

[Bor11e] Jonathan Borwein. If i had a blank cheque i’d ... turn IBM Watson into a maths genius. The Conversation, ?? (??):??, July 8, 2011. URL https://theconversation.com/if-i-had-a-blank-cheque-id-turn-ibms-watson-into-a-maths-genius-1213

[Bor11g] Jonathan M. Borwein. Actually: Teaching and researching at the tertiary level with collaboration tools. CARMA Colloquium., November 3, 2011.

Jonathan M. Borwein. CARMA and me: or why am i in Oz? Two presentations to 2011 Teachers’ Visit Day, University of Newcastle, NSW, Australia. July 8., June 30, 2011.

Jonathan M. Borwein. Fractal geometry. Presentation to Year 7 students form Wallsend with Michael Rose to the NSW MEGS program (Making Educational Goals Sustainable)., February 16, 2011.

REFERENCES

[Bor12n] Jonathan M. Borwein. Interdisciplinarity, innovation, collaboration and creativity or how to manage a research portfolio. CARMA Colloquium., September 13, 2012.

REFERENCES

[Bor13t] Jonathan M. Borwein. Seeing things by walking on numbers. Workshop on Nonsmooth Variational Inequalities, Optimization
Problems and Fixed Point Theory, April 24–26, Naresuan University, Phitsanulok, Thailand., April 26, 2013.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[Bor14x] Jonathan M. Borwein. Seeing things in mathematics by walking on real numbers. Inaugural Möbius Lecture Series, Colloquium, Department of Mathematics, Baylor University, Waco, Texas., April 24, 2014.

Borwein:2015:MWK

Borwein:2015:TW

Borwein:2015:AOF

Borwein:2015:BMY

Borwein:2015:CAGb

Borwein:2015:DRM

Borwein:2015:ECV

Borwein:2015:FFC

Keynote lectures, RMIT Workshop on Optimisation, August 11, 2013., August 11, 2015.

[Bor16g] Jonathan Borwein. Experimental mathematics. In *The Human Face of Computing* [Cal16], pages 141–156. ISBN 1-78326-
REFERENCES

Jonathan M. Borwein. The Lambert W function in analysis and optimization. Keynote lecture, Fields Workshop on the 20th an-

643-0 (hardcover), 1-78326-645-7 (e-book). LCCN QA76.9.C66.

Borwein:2016:CMM

Borwein:2016:CLA

Borwein:2016:CAGb

Borwein:2016:CAGc

Borwein:2016:CAGd

Borwein:2016:GEC

Borwein:2016:LFA

REFERENCES

REFERENCES

REFERENCES

[Borwein:1986:PAB]

[Borwein:1987:PAB]

[Borwein:1989:HC]

[Borwein:1997:SAD]

[Borwein:1997:OJP]

[Borwein:1999:ITD]

[Borwein:2000:NCMa]
J. M. Borwein and T. Stanway. Numerical and computational mathematics (at the undergraduate level). In Bruce Cload and
REFERENCES

REFERENCES

REFERENCES

[Borwein:2014:ROM]

[Borwein:2014:BRB]

[Borwein:2015:CU]

[Borwein:2015:RNP]

[Borwein:2016:EAM]

[Borwein:2016:CFD]

REFERENCES

URL http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=10230818.

REFERENCES

[Bt92] J. M. Borwein and M. Théra. Sandwich theorems for semicontinuous operators. Canadian mathematical bulletin = Bulletin cana-
REFERENCES

REFERENCES

Borwein:2004:CCS

Borwein:2009:DCF

Borwein:2010:FLF

Borwein:2010:CFC

Borwein:2012:CUC

Borwein:2014:NFI

REFERENCES

REFERENCES

Borwein:2012:MMO

Borwein:2013:STMa

Borwein:2013:MSM

Borwein:2013:STMb

Borwein:2014:LTI

Borwein:2014:SRC

Borwein:2014:STMa

REFERENCES

Borwein:2015:RPM

Borwein:1986:FMT

Borwein:1988:VNS

Borwein:1991:SEC

Borwein:1992:FEG

Borwein:1993:SEV
REFERENCES

REFERENCES

REFERENCES

[CKM+16] Henry Cohn, Abhinav Kumar, Stephen D. Miller, Danylo Radchenko, and Maryna Viazovska. The sphere packing problem

Fang:2015:DSF

Ganz:2014:DES

Gao:2015:BBL

Georgiev:2005:PBP

Gourevitch:2007:CBS

Galvin:1997:PSP

Grippo:2002:NGT

REFERENCES

[Huang:2015:QRP]

[Han:2009:APB]

[Hoare:2005:BRM]

[Honor:1985:DTR]

[Howlett:2014:BR]

REFERENCES

[KJRC16] Nataša Krejić, Nataša Krklec Jerink, and Sanja Rapajić. Barzilai–Borwein method with variable sample size for stochas-

REFERENCES

Miller:2012:MBD

Nimbran:2015:TSA

Novinger:1986:PSS

Narushima:2010:EBB

Narushima:2009:EBB

Octavio:1996:IT

Odlyzko:2011:BRE

Osburn:2005:RCB

Pearl:2007:OPT

Piantadosi:2012:CME

Piantadosi:2013:MSS

Piantadosi:2014:MSS

Piantadosi:2012:MEM

Piantadosi:2013:GSR

Pospisil:2013:OAB

REFERENCES

REFERENCES

REFERENCES

Wuppuluri:2016:STL

Wimp:1988:BRP

Wang:2007:PBB

Wang:2015:BBS

Xie:2011:SSC

Xiao:2008:SBB

Xiao:2012:MCG

Yunhai Xiao, Huina Song, and Zhiguo Wang. A modified conjugate gradient algorithm with cyclic Barzilai–Borwein

Zalinescu:1986:LEJ

Zeilberger:2005:SSM

Zhang:2006:PPA

Zhao:2010:CBB

Zhang:2013:NFB

Zhou:2012:EBP

