A Complete Bibliography of the Publications of Jonathan Michael Borwein

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA

Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

13 October 2017
Version 1.38

Abstract
This bibliography records publications of Jonathan Michael Borwein.

Title word cross-reference

#11418 [BB09e]. #13553 [Bor81a].

(a, b) ← ((a + 3b)/4, (\sqrt{a^2 + b})/2) [BBxxb]. (a, b) ← (\frac{a+3b}{4}, \frac{\sqrt{a^2+b}}{2}) [BB89b].
(G) [BBL99]. 1/\pi [BB87b, BB88c, BB93d]. 24 [CKM+16, BB16l]. $25
[BB93g]. $27.95 [BB91d]. $30.00 [Coh15]. $44.95 [BC96]. $45 [Zei05].
$45.00 [Sha05]. $49 [Zei05]. $49.00 [Ban10, Sha05]. $49.95 [Ber88]. 5
[Ade13, ZS12]. $59.50 [Bor06o]. 6 [ZZ14]. $65 [Odl11]. $69.95 [Bai91]. 8
[BB16l, Via16]. $99.00 [Bor91b]. [nα + b] [Bor91n]. [nα + γ] [BB93e]. *
[BFG03]. b [BBG04]. R [DL02]. C^1 [BKW02, BFL02]. W [BL16b]. D^4
[Sol95]. DAD [BLN94]. E_6 [Sol95]. E_8 [Sol95]. \ell_1 [BL11]. \ell_1 [XWQ14]. ε
[LS00, YS00]. k [BBB96b, BBB97d]. L [BB15c, BB07c]. L^1 [BZ97, Hon85].
l^{nfty} [Hon85]. L^p [Bor98g]. L_1 [BL93b, BV97]. L_1(Ω, μ) [BF93c]. L_{1/2}
\[WSL16 \]. \(L_p \) [BTBT88, BBL10]. \(n \) [BB84d]. \(p \) [BLS16]. \(\pi \)
\[AW97, ABBS12, Bai88, BB+11a, BB+12b, Bai16b, BBMW16, BB83, BB84b, BB84c, Bor85b, BB86b, BB86c, BB89a, BB97b, Borxx, BB11j, Bor14o, Bor16o, Ban14, GG07, Gui08, Nim15, TK97, Wei15]. \(\pi^2 \)
\[BBMW11, BBMW13 \]. \(q \) [LL01, PP11, War03]. \(R^n \) [BBW96].
\[BFG03 \].
\[BFL02 \].
\[BBMW11, BBMW13 \]. \(q \) [LL01, PP11, War03]. \(R^n \) [BBW96].
\[ADE14b \]. \(\theta(z, q) \) [HGB93].
\[BFG03 \].
\[Bor82c \].
\[BF95b \].
\[Bor94a \]. \(\{x_n\} := M(x_{n-1}, x_{n-2}, \ldots, x_{n-k}) \)
\[Bor94a \]. \(x y z + y z + z x \) [BC00]. \(\zeta(2n + 2) \) [BB05, BB06a]. \(\zeta(4) \) [BB95d].
\[Bor94a \]. \((4n + 3) \) [AG99, BB97c, Bor97u, Bor97v, BB05f].

0 [BC96, Bor96o]. 0-12-558630-2 [BC96]. 0-19-850763-1 [Bor96o]. 0-691-14247-5 [BO11b].

1 [Bor96o, Sha05]. 1-56881-136-5 [Sha05]. 1-56881-211-6 [Sha05]. 10 [Bai17d]. 100-Digit [Bor05-40]. 11th [CGM95]. 125th [AAB12]. 14th [IEE08]. 17th [IEE08]. 1880-2 [Bor99b]. 1983 [SBW84]. 19th [HD12].

2 [BC96]. 2000 [Tod03]. 2000j [BZ02a]. 2001 [BB12p]. 2002 [KG04]. 2012 [BBL13]. 2013 [BS14a]. 2014 [BBC+14a]. 2017 [Bai17d, BE16]. 20th [IEE08]. 21st [Bai12r, BB+14a, Bor03-27, Bor03-29, Bor03-30, Bor04-27, Bor04w, Bor04x, Bor04y, Bor04z, Bor09r, Bor10a, HF05, Hoa05, R+05, Zei05, BB04b].

38 [BZ02a, BZ02b].

4 [Bor81a]. 4N [Bor97p]. 4th [HY14].

5 [Sha05]. 51 [Bor81a]. 5th [BF06b].

6th [BBB+13]. 6430-6435 [BSZ+83].

7th [KG04].

8 [Za86]. 80th [Ano15]. 85h [Za86].

= [LL09].
A. [BS14b]. AAECC [CGM95]. AAECC-11 [CGM95]. AARMS [Bor05d, Bor05e, Bor07a]. Abel [Bor03p]. Absence [BS11b, BS10b, BS10c, BS10d, Bor10i, Bor10j, Bor11q, Bor11r]. Absolute [BY84]. Abstract [BW79a, BW79b, BW81c, BW81b, BW82a, BW82b].

abundant [BB12e]. Academic [BC96]. Access [Bor04e, Bor04i, BB05e, Bor07d]. accuracy [Bor05-40]. Accurate [BB14e].

ACE [Bor05-27]. ACEnet [IEE08]. Action [BBC10]. Activated [BBB96a]. Active [BL99].

Actually [Bor11g, BB12g, BBWY11c, BBWY12c]. Acyclic [BW06].

adaptive [FN15, QYX14, ZH06]. add [BB11f]. Addenda [BC15b].

Addendum [BZ02a]. Addition [BG95]. Adjoint [Bor83a, BMWY11, Zäl86]. admit [BV96a, BV96b].

Adrian [Tod03]. Advanced [BBC10]. Advancing [Ken15]. Adventures [Bor15d, Bor16a, Bor97u, Bor97v, Bor98q]. Advice [Bor03-31]. Advising [Bor03-31]. Aesthetics [Bor01a, Bor01b, Bor01c, Bor01d, Bor06e]. affine [BW81a].

Affleck [SZ14]. AG [Bor10z, Bor10-27, Bor11-31].

again [BB13k, BB14c, BB14j]. age [BB12-28, BB13o]. AGM [Bor88, Wim88, BB87d, BB88b, BB91c, Bor95c, BB98a, Bor03d, Bor03e, Bor03f, Bor04-30, Bor04-29, Bor04-28, BCF04, BC04a, Bor06d, Bor06b, Bor06c, IEE08, Sch85, SB87, SH87, SWB84, Bor06-28].

Algebraic [Bor99]. Algebraic [KMY00]. Analysis [Bor01a, Bor01b, Bor01c, Bor01d, Bor06e]. affine [BW81a].

affine [BW81a]. AG [Bor10z, Bor10-27, Bor11-31]. again [BB13k, BB14c, BB14j]. age [BB12-28, BB13o]. AGM [Bor88, Wim88, BB87d, BB88b, BB91c, Bor95c, BB98a, Bor03d, Bor03e, Bor03f, Bor04-30, Bor04-29, Bor04-28, BCF04, BC04a, Bor06b, Bor06c, IEE08, Sch85, SB87, SH87, SWB84, Bor06-28].

Algorithms [BB96a, Bor99x, Bor09p, Bor10c, Bor10d, Bor10r, BBC03, BBC11b, BB84b, BB86c, Bor98n, BB87b, BLY13, CGM95].

Algorithms [BB96a, Bor99x, Bor09p, Bor10c, Bor10d, Bor10r, BBC03, BBC11b, BB84b, BB86c, Bor98n, BB87b, BLY13, CGM95].

Algebraic [BK05, Bor99z, BCPF04, BB84d, BB87b, BLY13, CGM95].

Algebraic [KMY00]. Algorithm [Bai88, BB09d, Bor09c, BS11b, WSL16, Bai16b, BB93a, BB94a, BBL97a, BNAB99, BJMW13, BS10b, BLY13, BLY14, JY12, Kom00, Kom02, Kom04, Pos13, QYX14, TK97, XSW12, XWQ14].

Algorithms [BB96a, Bor99x, Bor09p, Bor10c, Bor10d, Bor10r, BBC03, BBC11b, BB84b, BB86c, Bor98n, BB87b, BLY13, CGM95].

Algorithms [BB96a, Bor99x, Bor09p, Bor10c, Bor10d, Bor10r, BBC03, BBC11b, BB84b, BB86c, Bor98n, BB87b, BLY13, CGM95].

analogue [PP11]. analogues [BBG93, HGB93]. Analysis [Ano15, ABMY13, BBKL16, BBKL17, Bor72, BBS89, BB92b, Bor96a, Bor99a, BMS99b, Bor99v, BL00a, Bor00v, BZ05, BM07b, Bor08i, Bor08j, Bor09y, BLY13, BLY14, BG16a, Bor16k, Bor16l, Bor16m, BL16a, BG16d, Bor16-27, BLT17, Bor17, Tod03, ABMMY14, BBMW17, Bor81b, BS86, BS87, Bor87k, Bor93p, Bor94j, Bor94k, Bor94l, Bor94m, BL94a, BM06, Bor97o, Bor97v, Bor97a, BTZ97, BZ97, Bor98k, Bor98i, Bor98l, BZ99a, Bor99n, BL06, Bor06-30, BZ06, BM07d, Bor09l, Bor10p, Bor13-30, Bor13-33, Bor13-34, Bor13-32, BG15a, Bor15f, BLT15, BG15c, Bor16j, BLT16, BL16d, DLL05, MTCB99, Bor92c].
[Ber88, BB87d, Wim88, Bor91e, Bor91j, Bor91k, Bor91i, Bor91m, Bor92f, Bor92g, Bor98k, BB98a, BZ99a]. analytical
[BBB+13]. Ancient [BB12s, BB16e, SV14]. Andrea [BB16h]. Andrew [BE16]. anniversary [AAB12, IEE08]. anthology [BC15a, BC16]. Anthony [BS14a]. antiderivative [BBB+07]. antiproximal [Bor81a]. Antiproximinal [Bor81a, BJSM02]. anxiety [BB12k]. any [Ade11]. anyone [BWB97]. Apéry [Bor05f, AG99, BBB05, BBB06a, BB96b, BB97c, BB05f, BB05c]. Apéry-like [AG99, BBB05, BB06a, BB96b, BB97c, BB05f, BB05c]. Apéry-type [Bor05f]. APICS [Bor89a]. APICS/FRASER [Bor89a]. appeal [Bor11u]. Appeal [BB13c]. Application [TB80, BT14a, HYG09, Li15]. Applications [ABMMY13, ABMMY14, Bor96a, BL00b, Bor04-31, Bor09-27, Bor09-30, Bor12-31, Bor16v, Bor16w, Bor16x, Bor16y, Bor16z, Geo05, BBGG08, BB15c, BB16e, Bor79g, Bor86a, BP87, Bor87l, Bor88m, Bor88n, Bor89d, Bor90y, Bor90z, Bor90-27, Bor90-28, Bor94n, Bor95p, Bor95q, Bor95w, BZ96, BZ97, BTZ99, BZ99b, BZ02a, BZ02b, BCFR04, Bor14d, BT14b, BZ15, BS87]. Applied [BB15h, HDG+15, BLY13, BLY14, CGM95]. Approach [BBC+11a, BBC+12b, Bor10h, Bor11o, Ade12, BTBT88, Bor77a, Bor79d, Bor93b, BMW99, BMN00, BMW01, BZ16]. Approaches [Bor09-29, Bor09-27, Bor09-30, Bor09-28, Bor09z, BaO12, Bor90e, Bor90f]. Approximate [BBW96]. Approximating [BG99a, BG97a]. Approximation [BB97b, BB97c, BB00b, BB04b, BB16, BB97a, BB84d, BB84e, BS85, BB87a, Bor87f, BB88b]. Arabic [B14b, BS14a]. arbitrary
[Ade11, BBMW17, BB96b, BB97d, Bor14s, Bor15o, Bor15p, Bor15q]. arc [BBC08a]. Archimedean [Bor12o, Bor14o, Bor14r, Bor16p]. arccos [BC07]. arctan [Nim15]. arguments [BV94b]. arising [BB13d, BBCZ13, Cvi10]. Arithmetic [BB13h, BB84a, BB97b, LML97, BB00, BB04a, Bor10-29, Bor11-32, Bor12b, BB15j, Bor87d, Bor88a, Bor88b, Bor88c, Bor88d, Bor88e, Bor88f, Bor89e, BBGG03, Bor10e, BNSW11, BB16o, Zah06]. Art [BB12p]. articles [BC15a, BC16]. any [BBG04]. aspects
[BBBL98a, BBBL98b, BB12b]. Asplund [Bor93a, BW07, Bor07b]. Assessment [MTCB98]. assets [BCM03]. assisted
[BB05a, BB08c, Bor93c, Bor93d, Bor06h, Bor07g, Bor08d, Bor08e, Bor08f, Bor08g, Bor09a, Bor09e, Bor09f, Bor09g, Bor09u, Bor12a]. Associated [Bor16, BCLM16, BCLM17, Lin01]. Association [Coh15, KG04]. Astronomy [Fer91]. Asymptotes [BB93f]. Asymptotic
[BB97d, BB00, BB04, BB08b, BB16]. Asymptotics
[BL92a, BSxx, Bor07i, Bor07j, BBC07c, BBC08b]. Atlantic [Bor04j, Bor04k]. attractors [BR16]. Aubin [Bor92c]. August
[BF06b, HY14, SBW84, DS16a]. Australia
[Bai17a, Bea13, BB13f, BB13q, Bor10-30, Bor13a]. Australian [BB12m]. Automated [BBK14]. Automatic [Bor87a]. Autour [Dev9x]. average
[Zah06]. Averaged [BLT17, BLT15, BLT16]. avoid [BBL+16b]. Avoiding
[Bor04-32]. Avriel [Bor90b]. away [BB11d, BG16b].
[BMW99, BMW01]. Cauchy [RS02]. Causa [Bor99o]. causation
[BR14c, BR14a]. Chebysev [BK80]. CEIC
[Bor00a, Bor02c, Bor00c, Bor04-33, Bor06-36]. celebration [BB15o].
Central [BBK00, BBK01]. centres [BK80]. Century [BC+14a, Bor03-27,
Bor03-28, Bor03-29, Bor03-30, Bor04-27, Bor04x, Bor04y, Bor04z,
Bor09r, Bor10a, Ken15, R+05, BB12r, BB15o, BB04b, Hla05, Zei05, HF05].
Certain [BK05, BBS89, BBCM07b, BBS15b]. chain [BM97e, BM98a].
Challenge [Bor05b, Bor05-40, Bor09y]. Challenges
[BB08b, BB13h, BBC+14a, BB14a, BB01d, Bor01e, Bor02s, Bor02t, Bor05g,
Bor05z, Bor08i, Bor08j, BB11b, Bor10p]. Change [BB12w]. changer
[BB15b, BB15i]. changing [Bor96k, Bor97w]. Chaos [BR12, BR13b].
Chapter [BM07d]. Character [Bor14d, BB16c, BZB08]. Characterization
[BB81c, BF95a, BBP03, Bor84b, BRS11]. Characterizations
[BB79a, BB79b, BB82a, BB82b, Bor94b, BFV97, BV10b, How14].
characterizes [BO78]. charlatanism [BBLZ14]. Chasing [Bor03p],
Chebysev [Bor13h]. Chebyshev [Bor06u, Bor07y, Bor08t, Bor13d, Bor13e].
Checkerboard [Bor13j, PHB14]. cheque [Bor11e]. children [BB12m].
CHIP [BBT00]. Chiropractic [Bor11a]. Choi [HC09, Osb05, Tha02].
choice [Bor90c, Bor90d, Bor91b, Bor91c, Ray93]. Chronology [Bor04n]. ci
[BB95c]. Circle [Bor94h, Bor90o, Bor90p]. Clarendon [BB93g]. Clarke
[BF95a, BW97a, BM97a, BW00, BM00, BGV02, BV05b]. Class
[BBBC07, BB03d, BC06, BG03b, Bor07e, LZ14]. classification [Bor94c].
classifications [BFV94, Bor95t]. Clausen [BBK00, BBK01]. Clearing
[BR14c, BR14a]. Climate [BB12w]. Climbing [BB11d]. Closed
[BF95c, Bor10f, Bor10g, BC13, BBL97b, BS86, BS87, BFG03, BS16b].
closedness [BM09, BM10]. closure [BY12d, BY14b]. cm [Bai91, Ber88].
CMS [Ano16]. co [IEE08]. co-hosted [IEE08]. Coast
[BLM+07, BJL+08, BBJ12]. Coast-To-Coast [BBJ12, BLM+07, BJL+08].
Cobzas [Bor81a]. coderivatives [BBW96]. codes [CGM95]. coefficients
[BL05, BL08, War03]. coffee [BR13a]. coincide [BMWY11]. coke [Bor10o].
Cold [BB15d]. Collaboration
[Bor03b, Bor03c, Bor03a, Bor04a, Bor04b, Bor04c, Bor04i, Bor05j, BLM+07,
BM07c, Bor09w, Bor09x, Bor11g, Bor11-36, Bor12s, BBJ12]. Collaborative
[Bor98c, Bor01f, Bor04e, Bor04f, Bor06d, Bor06f, Bor06c, Bor06g, Bor07f,
IEE08, Bor16h]. Collaborator
[Bor14h, Bor14i, Bor14j, Bor14k, Bor14l, Bor14m, Bor15h]. collection
[Bor97e]. college [BBW97]. collide [BB14n]. Collins [BB95b, BB02]. Color
Combinatorial [ABT13b, ABT14a, BBBL98a, BBBL98b, ABT14c]. come
[BB12h, BB13t]. comes [Bor15b]. Coming
[Bor07w, Bor07-32, Bor08n, Bor08o]. Commemorative [Bai17a]. Common
[BLT17]. Communicating [BRR08, BMPR02, Ban10]. communications
[Bor92d]. Community [Bor03q, BS05]. compact [BRZ00, BLZ01].
Compactly [BLM00]. compactness [BF95b]. Companion
[HDG+15, Bor09b]. comparison [BGL93]. compendium
[BBS96b, BBC97d]. Competition [Bor77d]. Complementarity
[BD86, AR13, Bor84a, Bor85c, Bor87e, BD89, HLZ14, HLY16, KJR16, LLS11, LZ14, Li15]. complementary [BC09]. complete [BZ92]. completely [SZ14]. Completeness [Bor83b, QRL07]. Completion [ABT13a, ABT14b, Bor13i, Bor14e, Bor14f, Bor15g, Bor16q]. Complex [BC04a, BMN00, Bor04-29, Bor10-27]. Complex-Parameter [BC04a]. Complexity [BB84e, BB87d, BB88d, BBxsa, BB17, BB98a, Ber88, Wim88]. complicated [Bor14y, Bor16-28]. composite [HL15a]. Composition [KMZ+05]. compositions [BM97e]. Compound [BB93f]. Comprehensive [BS14a, BS14b]. Compressed [BB13d, Bor96c, Bor10-28, Bor11o, QYX14]. compressive [BB13d, BM97e]. compressed [BB13d, BM97e]. Computing [BB13d, BM97e]. Compute [BBB97c, BBB00b, BBB04b, BBB16, BBB97a]. Computers [BB12o, BB16f, BB16n]. Conjecture [Osb05, Bor94g, BBBG96, BW97b, BMS13, CV10, HC09, RP09].
Tha02, War01, War03, Zah06, Zha10. conjectured [ABBS12, BB11j].

Conjugate
[BPT84, BB99b, BBWY11d, BBWY13, BV09, DK16, WSdSY15, XSW12].

Conjugates [BH06]. conjugation [BH09]. Consequence [Bor79b, Bor81e].

Consequences [Bor87c, Bor86d, Bor87b]. conspiracy [BB16g].

Concentration [BPT84, BB99b, BBWY11d, BBWY13, BV09, BSdSY15, XSW12].

Conjugation [BH06].

Consequence [Bor79b, Bor81e].

Consequences [Bor87c, Bor86d, Bor87b].

Conspiracies [BB16g].

Constant [BBC09, BBMW11, Bor95r, Bor95s, Bor10x, Bor11-29, BBC97a, BBMW13,

BBT85, BVW03, BBGW11, Crl12].

constraints [Adel12, Adel12, BB97, BB12y, BBMW17, BBGPxx, BBGPxx, G007, Mer15].

Constrained [BTZ98, DF05, XH08, XCI1, ZH06]. constraint [BW79b, BW82a, BW82b, BW86]. constraints [Bor77a, BW81a].

Constructed [BB12x]. Constructible [BV04]. Construction [BBWY11b, BBWY12b, GG07, BGW98].

Constructions [BV12, How14, BV10b]. Constructive [BK04]. contained [Art07].

contain [BV97]. continue [BB15a]. Continued [Bor03d, Bor03e, Bor03i, Bor04-30, Bor04-29, Bor04-28, BCP05, BvdPSZ14,

Bor16i, BCLM16, BHL16b, BHL16a, BCLM17, BBGPxx, BL05, Bor05i,

Bor06i, BL08, Bor10z, Bor10-27, Bor11-31, BHL17]. continues [BBxsc, Bor15c].

Convergence [BB93b, BB89d, BL91a, BL93a, BL93c, BV95a, BB99b, BV06, BTT13, BLT15, BLT16, BLT17, Lor08, Mar91, AB12,

AB13, BB93a, BB90a, Bor88j, BF89c, BL91c, BV93, BV94a, BV94b, BF94,

BV95b, BV96c, Bor09-28, BL913, BL914, BSL15, DL02, HL15b].

Convergent [Bai88, AL10, Bai16b, BB33, Bor24a, TK97]. converges [Bor94a]. converging [BB86c]. converse [BW98].

Convex [ABMMY13, BB96a, BBL97a, BW79a, Bor20b, Bos18, BT84, Bor87c,

Bor90e, Bor90f, Bor90c, Bor90d, Bor91b, Bor91c, Bor93e, Bor95a, Bor95b,

Bor96a, BV97, Bor99a, BL00a, BRLZ00, BV01, BLZ01, Bor01o, Bor02b,

BL06, Bor06s, Bor08u, Bor09-27, Bor09-31, BV010, Bor10k, Bor10-33,

Bor11p, BV12, Bor13o, BG15a, Bor15f, BL15, BG16a, Bor16j, Bor16k, Bor16l,

BG16d, BG16e, Bor16v, Bor16w, Bor16x, Bor16y, Bor16z, AB12, AB13,

ABMMY14, BBS10, BBL97b, BBL99, Bor97e, BB79b, Bor79a, Bor80e,

BV14, Bor81a, BV81c, Bor81c, BV81d, Bor81d, BV81b, Bor82a, BV82a, BV82b,

BPT84, Bor84e, BT85, Bor86e, Bor86a, Bor86b, Bor87a, Bor87k, BP87,

Bor85, Bor90g, Bor90h, Bor90a, Bor90-40, Bor90-41, Bor90-42,

Bor90-43, Bor91d, Bor91h, BFK91, Bor91q, Bor91r, Bor91s]. convex [Bor91t, BZ91, Bor22a, Bor22b, Bor22c, BL22c, Bor22d,

BTT92, BL93a, BF93a, Bor93f, Bor93g, BFV94, Bor94c, Bor94i, BN04,

BL94a, BF95c, BV95a, Bor95m, Bor95o, Bor95t, BV96c, BLN96, BFV97,

BZ98, BMN00, BLM00, Bor00r, Bor01p, Bor01q, BV02, BV04,

Bor05-32, Bor05-33, Bor05-35, Bor05-36, BMV06, Bor06-33,

Bor06-30, Bor06-34, BZ06, BM09, BGMV09, BM10, BMY12,

BY12a, Bor12p, BLY13, BLY14, BMY14, Bor14n, BY14a, Bor15i, BG15b,

BG15c, Bor15r, BG16c, NWY09, YW12, Zhu91, How14, Tod03].
convex-concave [Bor86b]. Convexity
 [Bor07-28, Bor07-29, Bor07-30, Bor07-31, BS11b, BS15a, BB11a, BBC01, BB01b, BO76, Bor77a, BO78, Bor78c, BBFG01, Bor07-27, BS10b, BS10c, BS10d, Bor10i, Bor10j, Bor11q, Bor11r, BY12d, BY14b]. convolutions
 [BBEM10]. Copulas [Bor13j, PHB12, PHB14]. correcting [CGM95].
correlation [BR14c, BR14a]. cosmic [BB11d]. could [BB12]. Counter
 [Bor17]. Counter-examples [Bor17]. counterexamples [BV10b, How14].
Counterpart [BB88b, BB91c]. Counterparts [BB15]. counting
 [BB11e, BB93g]. country [Bor13a]. crackers [Bor11a]. Crandall
 [BB12q, BB15c]. Crash [BB15m]. Creativity [Bor09o, Bor12n, Coh15].
Crime [BB15g]. crisis [BB12-29]. critical [BKW02]. Crucible
 [Bor09d, Bor08c, BD09]. Cubic [BB84b, BB88b, HGB93, AB15, BB86b, BB90b, BB91c, BBG94b, Bor95c, LL01, Liu00, XY12]. cultures [Sel16]. Cup
 [BR14b]. Curiosity [BB12b]. curve [Bor90e, Bor90f]. CUSCOS
 [Bor89c, Bor89d, Bor90y, Bor90z, Bor90-27, Bor90-28, Bor91a]. Cusps
 [Bor04l, Bor04m, Bor06c]. Cyclic
 [BT13a, BT13b, BBB*07, BB97a, BB97b, BL08, BLY13, BLY14, BT14c, BT15, DHSZ06, HLY16, XSW12, ZH06]. cyclotomic [HC09].

d [BB93g, How14, Odl11, Bor05-46]. D-DRIVE [Bor05-46]. Danger
 [BB11c, BB13c]. dangerous [BB12n]. Data
 [BB14c, BB15e, Bor09c, BTZ99, PHBH13]. dating [BB12j]. David
 [Hoa05, Sha05, Zei05, Bor04n, BE16]. Day [BB13k, BB15o, BB16i, Bor07v, Bor08l, Bor08m, Bor10u, Bor11w, Bor11x, Bor11y, Bor12u, Bor12v, Bor12w, Bor13r, Bor14t, Bor16o, Bor16c, BB14i, Bai17d, BB14c, BB14j]. Days
 [Bor11d, Bor16o, Bor11h]. DC [Coh15]. Deafening [Sol15]. death [BB11c].
December [Bea13, BB15], BBL*13]. Decimal
 [Bai88, Gan14, BB11e, Bai16b, BBGPxx]. decision [Bea13]. decisions
 [BB13g]. Decomposition [BL92b, Bor04o, BW07]. Decompositions
 [Bor06t, BWY10, Bor79e, Bor07b]. decreasing [BL93a]. Dedekind
 [BG97b, BG97a, BB98b, BB98c]. Dedekind-zeta [BB98b, BB98c]. Default
 [BBL*13, SBB13, BB13o, BB13d, Bor13-29, Bor15m]. degree
 [Adel1, Ade13]. déjà [Tre13]. delta [BB95b]. delta [BG15b, BG16c].
demand [JY12]. demonstration [BBS*15a]. Denial [BB13r].
Denominators [BZ87]. dense
 [BB99b, BBW11, BW11, BB12c, BY12f]. Densities
 [BSW21, BSW212, BSV15, BS16, Bor14s]. Density [Hon85, BS16b].
Department [Bor03]. derivative
 [Bor94, BLN95, Bor95n, Bor95o, BLLN95, BLN96]. Derivatives [BFV93a, BDF16a, AL10, BB16a, BB16b, BF93b, Bor94n, BF95b, Bor95w, BMW97].
Deriving [BB14p]. Descent [Bor09c, SD15, RS02]. design [BB16a].
Desperately [BB15]. Determination
 [BBB06a, BB05, BM00, BT14b, BT14a]. Determinations [BB98b, BB98c].
determined [BB97c, BB05]. developments [BB01a]. devices [Bor00w].
dian [BB95c]. Dictionary
 [Bai91, BB99c, BS14a, Bor90, BB91a, BB02, BB90d, BBW97, BS14b]. did
Dubious [BB14e]. doubt [Koh01]. dull [Bor11b, Bor11c]. Dumb [BB13p].
dunce [BB13q]. during [SBW84]. Dykstra [BB94a]. Dynamic
[Bor02r, KMZ+05, BNCB99, BS97a, LLC+95]. Dynamics
[Bor04-30, Bor04-29, Bor04-28, BK05, BL05, Bor05i, Bor06i, BL08, BBB12,
BBCM07b, Bor10q].

E2998 [KJ86]. E2999 [SZUM88]. E3000 [ANO+83, EWM86]. E3159
[DNG+86, DBCB88]. E3160 [NJS88]. E3161 [GC88]. E3162 [Mon89].
E3163 [KC89]. E3164 [DAK88, DNG+86]. E3325 [Rud89]. E3335
[KWK+90a, KWK+90b, KWK+90c]. E3384 [Stu90]. E3388 [CJKB92].
Earth [Bor13s, BB12-28, BB12d, BB12h]. East [Bor05j]. Easy [Gui08].
Eberhard [Bor06o]. ecological [Bea13]. economics [BB13m]. economy
[BB12r]. Edited [Bor06o, Coh15]. editor [Zäl86, Bor11b, CW16, Cha16].
Editors [BM97b]. Education [L09, Hd12]. Effective [BB06a, BB08d,
Bor06j, Bor06k, Bor07h, BB07c, Bor07i, Bor07j, Bor08h, BB08b]. effects
[BBLZ14]. efficiency [Bor08a, BZ91, BZ93, JN03, Zhu91]. Efficient
[BCJW13, Bor77c, BJCW13, Bor83e, HLZ15a, Yan94, Zho12]. eigenvalue
[AR13, GDT15, JD13]. eigenvalues [Bor84c]. Einführung [BD11].
Eisenstein [Liu01, XY12]. Ekeland [Bor06g].
[Bej94, Bor88g, Bor88h, Bor88i, Bor90m, Bor90n, LS00, YS00]. elastic
[HYG09]. Electron [BBSZ87, BBSZ88]. Electronic
[Bor01n, Bor01m, Bor02n, Bor03q, BS97b, Bor97n]. Elementary
[AJB86, ANO+83, AJ86, BB84a, BB97b, BB00, BB04a, CJKB92, DAK88,
DNW+86, DBCB88, EWM86, GC88, KJ86, KC89, KWK+90a, KWK+90b,
KWK+90c, Mon89, NJS88, NOL86, Rud89, SZUM86, Stu90, BB16o]. ellipses
[BLZ14]. Elliptic [BBBG08, BB84c, BZ87, Borxx, Bor10x, Bor11-29,
BB95b, BZ92, BBGW11, LL01, PT14]. else [BBW97]. Emerging [BC99].
Empirical [BB+11a, BBC+12h, Bor97g]. Empirically
[BB97c, BB05f]. Encourage [BB15g]. Encyclopaedia [Sel16]. Encyclopedia
[BC96]. End
[Bor90d, Bor03y, Bor03z]. Energy
[BB14f, BB14h, BB15d, BB16h, BBSZ87, BBSZ88, BB12e]. engaged
[BB16g]. engineering [BBC+11b]. engineers [BBW97]. Engines
[Bor04p, Bor05k, Bor05l, Bor05m, Bor05n, Bor05o, Bor06l, R+05].
enhancement [BM07a]. ENIAC [Bor12o, Bor14o, Bor14r, Bor16p].
Enlargements [BB11y, BBY13]. enough [BB14m]. entire [Bor02g, BS10a].
Entropic [BL11]. entropies [BGL93, BH94]. Entropy
[BL93c, BL94, BLN94, Bor97k, Bor01o, Bor05-32, Bor06-33, Bor08p, Bor09v,
Bor10k, Bor10v, Bor10w, Bor12q, Bor13j, Bor13k, Bor13o, BHP14, Bor90c,
Bor90d, BL91a, Bor91b, Bor11c, BL91b, Bor91h, Bor92e, Bor92o, Bor92k,
Bor93c, Bor93k, BL93b, Bor94i, BH95, Bor95n, Bor95o, BLLN95, BLN96,
BCM03, Bor12p, PHB12, PHBH12, PHB14]. entropy-like [BL91b].
Entrophy-Type [Bor01o]. Entry [BS16a]. Environment [IEE08].
Environments [Bor04e, B04d, Bor04i, Bor06d, Bor06b, Bor06c, Bor06g].
Bor05a, Bor05p, Bor05q, Bor05-37, Bor05-38, Bor05-41, Bor06m, Bor06n, Bor07I, Bor07k, Bor07m, Bor07n, Bor07r, Bor07s, Bor07t, Bor07u, BB08g, BB10c, BaO12, Bor14g, Bor16g, BBKW06, BB16a, BB16b, Bor93p, Bor93q, BBGP95b, BBGP96, BC99, Bor08c, Bor08b, BD09]. Experimental [BD11, Lor09, Odl11]. experimentally [ABBS12, Bor93j, BB11j].

Experimentation [BB12t, Bor92j, BBGP95a, Bor03l, BB03m, Bor03n, Bor03o, Bor04r, Bor04s, Bor09h, Bor09i, Bor10l, Bor10m, Bor11s, Bor12a, Bor12i, Bor12l, Bor13m, BB11h, BB12u, Bor09u, Sha05, Zei05]. Experimentelle [BD11]. experimenting [KMT16]. Experiments [BG06]. Explainer [BR12, BR13b, BR14a, Tre13]. Explicit [BB06b, BB84d, BB87a, BL92d, BBG95c, BB86b, BS10a]. Exploration [BB12t, BB16k]. Exploratory [BB11h, BB12u, Bor09h, Bor09i, Bor09u, Bor10l, Bor10m, Bor11s, Bor12a, Bor12i, Bor13l, Bor13m, Bor14h, Bor14l, Bor14j, Bor14k, Bor14l, Bor14m, Bor15h]. Exploring [Bor01l, KMT16]. Exponential [BB94b, BB06b]. exposing [Bor78b]. Expressions [BSW82, BBK14].

Extraordinary [Bai16d]. extraterrestrial [BB11g]. Extraordinary [Bai16d]. extraterrestrial [BB11g].

F [Ban10]. Face [Cal16, Bor96k, Bor97w]. Facial [BW18d]. Facilitating [BBS16b]. facilities [JY12]. fact [BB12f]. factorization [HNP10, HLZ15a, HLZ15b, LL13]. fail [BW98]. failing [BB12m]. failure [Bor92o, Bor93k]. Familiar [BB88d, BB03a]. family [Bor79c, Bor80e]. Fan [BZ86]. far [BB11d]. Fared [BB15k]. Farkas [BB14d, Bor83d]. Fast [BB84a, BZ92, BLN95, BB97b, BB00, BB04a, BD16a, BH95, BB16o].

Favourite [BB07-28, Bor07-29, Bor07-30, Bor08u]. Feel [ABT13a, ABT14b, ABT15, BB96a, BT13b, Bor16v, Bor16w, Bor16x, Bor16y, Bor16z, ABT16, Bor12p, BT15, Bor15r]. Feasible [JD13, LL11]. Featured [Bor06o]. February [ABD03, Bai17d]. Federated [BMP05]. Fee [Rei02]. Fenchel [BK83, BL91d, BH06, BH09]. Fenchel-duality [BK83]. Fermi [BB15f, BB15p, BH94]. few [BB12b]. Feynman [BB98b, BB98c]. Fiasco [BB15m, BB13]. Fibonacci [Ade14a]. fiction [BB12f]. field [Cvi10]. Fields [BB02p, BSZ13, Bar09p, Bor14b]. Fifty [Bor09, Bor09k, Bor10n, Bor12j, Bor12k]. filter [AP16, ZSQ10]. Final [Bor06p, Bor09z]. Finance [Ano15]. Financial [BB816a, BBLZ14, Cam16]. Financially [BB14g]. Finding [BBGP95a, BB06b, BBGP9, Bor07o]. fine [BB14n]. fine-tuned [BB14n]. Finite [BB87, Bej94, BW18c, Bor88l, Bor89i, BL92c, BL92d, BL93b, La 09]. firmly [BRS11]. First [Bor92h, Bor92i, Bor93f, Bor93g, Bor06q, BZ92]. Fisher [BLN96]. Fitting [BBLZ13]. Fitzpatrick [BBB+07, BBW07, BBWY11c, BMWY11, BBWY12c, Bor06a, Bor14n, Bor15i, BD15, BD16b]. Five [Bor07d, Bor15d]. Fixed [BB11b, BB91b, BLT17, Bor84a, Bor92l, Bor92m, Bor92n, BLT15, BLT16].
Fixed-point [BBB+11b, Bor84a]. Flash [BB15m]. fold [BBB96b, BBB97d].

Forecasters [Swe17, BBSSL17]. Forensic [BB12s, BB16e]. forever [BB12x, BB13t]. form [BS16b]. Formal [Ade13], former [Ano16]. Forms [BBBC07, Bor10f, Bor10g, BC13, La 09]. Formula [AW97, Ad14b, BG87, Borxx, Bor16b]. Formulae [BBB99x, AG99, BB97c, BBG04, BB05f, BB05c, Cha03, ZS12, Zha13, ZZ14]. Formulas [Ade14a, BB06b, AL10, Ade10, Ade11, Ade12, Ade13, ABBS12, BB11j, GG07, Nim15, Wei15]. forthcoming [Can16]. Foster [BSW82]. Foundation [RZ15].

Four [Bor02c, Bor02q, Bor06r, Bor06s, Bor06t, Bor06u, BSW13, Bor88f, BB13c].

Four-Color [BB13c]. four-dimensional [Bor88f]. Four-Step [BSW13].

FPV [BEY11, BY13a, BY14c]. Fractals [Bor12l, BR10].

Fraction [Bor03d, Bor03e, Bor03f, BCF04, BC04a, BBGpxx, BL05, BL08, Bor10z, Bor10-27, Bor11-31, Lor08]. Fractional [Bor76a]. Fractions [Bor04-30, Bor04-29, Bor04-28, BvdPS14, Bor16i, BCLM16, BHL16b, BHL16a, BCLLM17, BZ92, BCP05, Bor05i, Bor06i, BHL17]. frame [FN15].

Frame-based [FN15]. France [CGM95]. Frankowska [Bor92c]. Fraser [BBJC97]. Fraud [BB90c, BB92a, BB11f, BB13n].

Fredholm [Bor92o, Bor93k]. French [Dev9x]. Fritz [Bor76b]. Function [BZ87, BB96b, BCC98, Bor03-33, Bor04-31, BK05, Bor08k, BL11, BD16a, BL16a, AL10, AB15, BB15c, Bor91n, BZ92, BB93e, BLN95, BG97b, BG97a, BB00, BKW02, BB05c, BC09, BS10a, BBL10, Bor14n, Bor15i, BR16, Bor16m, Bor16n, HGB93, Liu00, NWY09, SZ14]. Functional [Bor12, BG94, Bor98k, BZ99a, LLC+95]. Functionals [BB93b, Bor78b, BK01].

Functions [BB84a, BB88d, BV93a, BB97b, BBxsa, BB00, Bor02b, BB04a, Bor07g, Bor07h, Bor07k, Bor08h, Bor08u, Bor09m, Bor11p, Bor11-28, Bv12, BD15, BL16a, EB08, LPB01, SBW84, AB15, AAW06, BBS10, BBEM10, BB11a, BB15, BB15-07, BB97a, BB01, BBW07, BBWY11d, BBWY13, BB03, BBG95b, BFG87, BP87, Bor90g, Bor90h, Bor90i, Bor90k, Bor90j, Bor90l, Bor90y, Bor90z, Bor90-27, Bor90-28, Bor90a, Bor90-40, Bor90-41, Bor90-42, Bor90-43, BB19b, Bor91a, Bor91q, Bor91r, Bor91s, BL92b, Bor92h, Bor92i, Bor92b, BF93a, Bor93c, Bor93e, Bor93f, Bor93g, BFV93b, BFV94, Bor94c, BG94, BF94, BN94, BV95a, Bor95d, Bor95e, Bor95t, BV96c, BFV97, BV97, BW97a, BM97d, BM97e, BM97a, BMW97, BM98a, BM98b, Bor98o, BL00, BLM00, BRLZ00, BW00, BV01, BLZ01, BF01, BV01]. functions [BV02, Bor02d, Bor02e, BGV02, BW03, BVW03, BVL04, BW05a, BW05b, BMV06, Bor06h, BCC08a, BV09, BG09, BGV09, BV10b, BV01a, Bor11-37, BY12a, Bor12t, BY14a, BG15b, BB16o, BDT16, BS16b, BL16b, BD16b, BG16c, How14, HL15a, LL01, Liu01, Lup02, SZ14, XY12]. Fundamental [BB05g, Bor13a]. Funding [Bor07o, BB13q]. Further [BV94b, Mil90].

Fusion [BB14f, BB15d]. Future [BB05a, BB16d, BB16k, Bor05r, Bor07a, Bor08i, Bor08j, Bor10p, Bor12m, Bor15j, BB01a, BB12j, BB12i, BD95, Bor95u, Bor95v, Bor98c, Bor99i, Cam16].
Gâteaux [BF93a, BF93b], game [BB12d, BB15b, BB15i]. games [BB12o].
Gamma [BZ87, BK05, Bor12r, BB15, BZ92, BC09, BB15c]. gap [BBY12, BBY14, Bor14n, Bor15i]. gas [BB12e]. Gateway [Bor04j, Bor04k].
Gauss [Bor87d, Bor88a, Bor88b, Bor88c, Bor88d, Bor88e, Borxx, TK97].
Gaussian [Cha03].
Generalisation [BLS+16]. Generalisations [Bor17]. Generalization [Mil89, YS00, AB15, Bor98g, LS00]. Generalisations [Bor17].
Generalized [Bor84a, Bor99m, Bor99n, BMW99, Bor00l, Bor00m, BMW01, Bor10x, Bor11-29, BS11d, BS11e, BHL16b, BHL16a, BHL17, LPB01, RF90, BFG87, Bor94b, BBGW11, Cha03, War01, War03, Bor90b]. generated [SZ14].
Generating [Bor07g, Bor07k, Bor91n, BB93e, Bor06h, PHBH12].
Generation [PHBH13, BB16j, BJCW13]. generator [BCJW13].
generators [BB13j].
Generic [Bor86e, Bor99m, Bor99n, Bor00l, Bor00m, Bor86b, BF93b, BW00, BK01]. generically [BW98]. genius [Bor91o, Bor91p, BB91d, Bor11e].
Geometric [BB84a, BB97b, BLM97, BB00, BB04a, Bor87d, Bor88a, Bor88b, Bor88c, Bor88d, Bor88e, Bor88f, BHL93, BB16o]. Geometry [Bor94a, Bor10t, Bor80a].
Grammar [BLS+16]. Grammars [Bor17].
Graphic [BB12a]. Graphics [BB93b, Ber88, BFG03].
Graphs [Bai91]. greatest [Bor81a]. Greatest [BB11i]. Greco [Bor89].
Greek [BS14b, BS14a, Bor90o, Bor90p, Bor94h, Bor91a, SV14]. Green [Bor99b, BB12e].
Grid [Bor03b, Bor03c, Bor03a, Bor04a, Bor04b, Bor04c, Bor04i, Bor05-27, Bor07d]. Groups [BG16a, Bor16k, Bor16l, BG16d, BG16e, BG15a, Bor15f, BG15c, Bor16j].
Grove [Bor01b]. guarantee [Cam16]. Guessing [Sei01]. Guide [Bor02j, Bor02k, Bor06o]. Guided [Bor92]. Gun [BB15a].

H [Bor92c, Ha01, Odl11]. H. [MR11]. Haar [BF95c, Bor95a, Bor95b].
Hadamard [BF93c]. Hahn [Bor82e]. Haifa [RZ15]. Half [WSL16]. Hand [BB12v]. Hand-to-hand [BB12v]. Handbook [Sch15]. handheld [Bor00w].
Handling [Bor03q]. happen [BB13a]. Hard [Bor01c, Bor02s, Bor02t, BBL+16b, XC11]. Hardback [Ban10]. hardcover [BC96, Bor99b]. HarperCollins [BB91a]. hating [BO11b]. Hausdorff [BK80]. having [BF93a]. headlines [BB12a]. Heats [BB15d]. Heisenberg
helen [Bor05], helly [Bor77b, Bor79b, Bor81c]. here [Bor05r], hermitian [Bor84c]. hersh [BO11b]. heuristic [BH95, BLN95, JY12]. Heyting [Bor98d]. Hide [BB13]. Higgins [BB13g]. high [BB08a, BB08b, BB11b, BB12, BB13h, BB15j, BB90c, BL92e, BB92a, Bor98i, Bor05a, Bor05b, Bor05v, Bor05-47, Bor05-48, Bor05-49, Bor05-50, Bor05-51, Bor05-52, Bor06a, Bor06v, Bor06w, Bor06x, Bor06y, Bor06-37, Bor06-38, Bor06-39, Bor07f, BB09g, Bor10q, IEE08, BB09b, BB87a, BWB97, Bor03y, Bor03z, Bor05-40]. high-accuracy [Bor05-40]. high-end [Bor03y, Bor03z]. High-Performance [IEE08]. high-end [Bor03i]. Higher [BCC10, AL10, BB84b, BSV15, BSV16]. Higher-Dimensional [BCC10]. Highly [BB08e, BB08b, BB13h, BB11b, BB12, BB15j]. Higher Precision [BB08a, BB08b, BB13h, BB11b, BB12, BB15j]. Higgs [BB13g]. Higgs [BB13g]. high-accuracy [Bor05-40]. high-end [Bor03y, Bor03z]. high-end [Bor03i]. Higher [BCC10, AL10, BB84b, BSV15, BSV16]. Higher Dimensional [BCC10]. Highly [BB08e, BB08b, BB13h, BB11b, BB12, BB15j]. Hilbert [BBEM10, BBL97b, Bor05w, Bor05a, Bor05b, Bor05v, Bor05-47, Bor05-48, Bor05-49, Bor05-50, Bor05-51, Bor05-52, Bor06a, Bor06v, Bor06w, Bor06x, Bor06y, Bor06-37, Bor06-38, Bor06-39, Bor07f, BB09g, Bor10q, IEE08, BB09b, BB87a, BWB97, Bor03y, Bor03z, Bor05-40]. Hilbert [BBEM10, BBL97b, Bor05w, Bor05a, Bor05b, Bor05v, Bor05-47, Bor05-48, Bor05-49, Bor05-50, Bor05-51, Bor05-52, Bor06a, Bor06v, Bor06w, Bor06x, Bor06y, Bor06-37, Bor06-38, Bor06-39, Bor07f, BB09g, Bor10q, IEE08, BB09b, BB87a, BWB97, Bor03y, Bor03z, Bor05-40]. History [Bor77d, BJL08, Bor11w, Bor11x, Bor11y, Bor16o, Sel16, BB16j, Bor90a, Bor90b, Bor90c, Bor90d, Bor90e, Bor90f, Bor90g, Bor90h, Bor90i, Bor93h, Bor93i, BC15a, BC16]. Hölder [BLT15, BLT16, BGW98, BW98]. Homo [The16]. Homotopy [BB08a, BB08b, BB13h, BB11b, BBB12, BB15j]. H¨older [BLT15, BLT16, BGW98, BW03]. Homo [The16]. Homotopy [BB08a, BB08b, BB13h, BB11b, BBB12, BB15j]. Homotopy [BB08a, BB08b, BB13h, BB11b, BBB12, BB15j]. Honour [SV14, Ano15, BBB13]. Honoris [Bor99o]. honour [Bor17]. Honours [BZ11]. Hope [BB14f]. Hop [BCC10, AL10, BB84b, BSV15, BSV16]. I'd [Bor11e]. IBM [Bor05, Bor11e]. ICERM [BB98, BB98c]. Hypergeometric [BBBC07, BBG93, BCP05]. hypertangent [BS98]. hypothesis [BF89a].
Inequality
[Bor84d, Bor05w, Bor08k, Bor77a, Bor86c, Bor93b, Bor98g, BBFG01, Mer15].

Inexact [HD07]. inferred [BCM03]. Infimal [BBEM10]. infimum
[BMWY11, BY12f]. Infinite [Bor92k, BPB99, Bor79a, Bor81c, BK83, Bor83c, Bor83f, BW86, Bor91h, BL91d, Bor92e, Bor92o, Bor93k, Bor94i, Bor95a, Bor95o, BFL02, Bor11u, RZ15]. infinite-dimensional [BW86]. Infinity
[BB91d, Bor15b, Bor16d]. information
[Bor94i, BLN95, Bor95o, BLLN95, BLN96], informatique [Bor00o]. inhomogeneous [Kom00, Kom02, Kom04]. Initiatives
[Bor00a, Bor01n, Bor01m, Bor02n, Bor03i]. Innovation [Bor09o, Bor12n]. Insight
[Bor99i, Bor99j, Bor99k, Bor99l, Bor07t, Bor07u]. inspired [GG07]. inspiring [KMT16]. Institute [SBW84]. institutional
[Bor16h]. Instruments [MTB16]. Insult
[BB12w]. Integer
[BB09d, BC96, Bor02a, BC07, Bor09p, Bor09q, Bor10r, BB93e, BL00b]. integrability [BM00]. Integral
[BB06b, BZ87, BBBC07, Bor84b, BB95d, BY12a, BY14a, Cra04, Cvi10]. Integrals
[BBC06, BBBC07, Borxx, BCC10, Bor10x, Bor10-28, Bor10-29, Bor11f, Bor11-29, Bor11z, Bor11-27, BS11d, BS11e, Bor11-33, Bor11-34, Bor11-32, Bor12r, Bor12-32, BSW13, BBC07a, BBCM07a, BBC10, BB10a, BB12v, BB15, BB008, BB84c, BZ92, Bor00r, Bor01p, Bor01q, Bor01r, BB01c, BBM02, Bor07e, BB08a, BBGW11, BNSW11, BS13]. integrands
[BY12a, BY14a]. integrate
[Bor94o]. Integration
[BB08e, BB08b, BB09g, BB09b, BB11b]. Interactive
[Bor98], Bor99p, Bor09z, BWB97]. Interdisciplinary
[Bor07p, Bor12n]. Interdisciplinary
[Bor07q]. interior [BG03a]. interiors [BL92c]. International
[Bor03q, Bor09z, HY14, IEE08, ABD03, BF06b, CGM95, Ano15, Bor01a, Bor01m, Bor02n]. Internet
[Bor01l]. interpolation
[Bor98o]. intersection [BBL99]. Interview
[Ano15, BB16h, Bor12w]. intriguing
[Bor93o, BB95d]. Introduction
[Bor97k, Bor02a, Bor07r, Bor07s, Bor07t, Bor07u, Bor09s, Bor09q, BR10, Bor11k, Bor11l, Bor13f, BvdPSZ14, Bor08c, BD09, Bor01a, BD11, BS11c, BS12a]. invariance
[BLZ01].
invariants
[BB98b, BB98c]. Inverse
[Bor97g, Bor08p, Bor09r, Bor09v, Bor10k, Bor10v, Bor10w, Bor12q, Bor13k, Bor13o, AL10, BBC+11b, Bor921, Bor92n, Bor92m, Bor92n, Bor12p, BT14b, BT14a]. investigation
[BBGPxx]. Investing
[BB14g]. Investment
[BBLZ13]. Involving
[BSW82, Bor93o, Mer15, XY12]. ISBN
[Ban10, BC96, Bor06o, Bor09b, BO11b, Coh15, Odl11, Sha05]. ISBN-10
[BB06b, BBC06, BBBC07]. Ising-Class
[BBBC07]. Islamic
[SV14]. Israel
[Bor90b, RZ15]. issue
[AAB12]. Issues
[BL99, Bor00t, Bor03q]. Italian
[Bor08a]. Italy
[ABD03]. iterated
[Bor16]. Iteration
[BB89b, BBxxb, BT13a, AB12, AB13, BB86b, BB90b, BBG93, Bor94a, BT14c]. Iterations
[Bor89g, Bor89h, BB93f, BLT17, BB91b, BRS92, Bor93j, BS10c, BS10d, Bor10i, Bor10j, Bor11q, Bor11r, Bor13q, BLT15, BLT16]. Iterative
[Bor92l, Bor92m, Bor92n, WSL16, XC11]. IV
[Bor06u].
likely [BB16g]. Liljedahl [Coh15]. limit [BF95b]. Limiting [WG17, BBS13b, BBS14b]. line [BW03, YW12]. Linear [BB93b, Bor72, BD86, BB95a, BB99b, BBL99, BBT00, BBW07, BWY10, BMWY11, Bor84a, BFG87, BD89, Bor93b, BM09, BM10, BY12b, BY13b, BBS14a, DL02, DLL05, DABY15, HLZ14, HLY16, KJR16, LLS11, LZ14, Li15]. lines [Bor79h]. [BB16g]. Lim [Coh15]. Limiting [BF95b]. Limits [WG17, BBS13b, BBS14b]. line [BW03, YW12]. Linear [BB93b, Bor72, BD86, BB95a, BB99b, BBL99, BBT00, BBW07, BWY10, BMWY11, Bor84a, BFG87, BD89, Bor93b, BM09, BM10, BY12b, BY13b, BBS14a, DL02, DLL05, DABY15, HLZ14, HLY16, KJR16, LLS11, LZ14, Li15]. lines [Bor79h]. [BB16g]. Limit [Coh15]. Limiting [BF95b]. Limits [WG17, BBS13b, BBS14b]. line [BW03, YW12]. Linear [BB93b, Bor72, BD86, BB95a, BB99b, BBL99, BBT00, BBW07, BWY10, BMWY11, Bor84a, BFG87, BD89, Bor93b, BM09, BM10, BY12b, BY13b, BBS14a, DL02, DLL05, DABY15, HLZ14, HLY16, KJR16, LLS11, LZ14, Li15]. lines [Bor79h]. [BB16g]. Limit [Coh15]. Limiting [BF95b]. Limits [WG17, BBS13b, BBS14b]. line [BW03, YW12]. Linear [BB93b, Bor72, BD86, BB95a, BB99b, BBL99, BBT00, BBW07, BWY10, BMWY11, Bor84a, BFG87, BD89, Bor93b, BM09, BM10, BY12b, BY13b, BBS14a, DL02, DLL05, DABY15, HLZ14, HLY16, KJR16, LLS11, LZ14, Li15]. lines [Bor79h]. [BB16g]. Limit [Coh15]. Limiting [BF95b]. Limits [WG17, BBS13b, BBS14b]. line [BW03, YW12]. Linear [BB93b, Bor72, BD86, BB95a, BB99b, BBL99, BBT00, BBW07, BWY10, BMWY11, Bor84a, BFG87, BD89, Bor93b, BM09, BM10, BY12b, BY13b, BBS14a, DL02, DLL05, DABY15, HLZ14, HLY16, KJR16, LLS11, LZ14, Li15]. lines [Bor79h]. [BB16g]. Limit [Coh15]. Limiting [BF95b]. Limits [WG17, BBS13b, BBS14b]. line [BW03, YW12]. Linear [BB93b, Bor72, BD86, BB95a, BB99b, BBL99, BBT00, BBW07, BWY10, BMWY11, Bor84a, BFG87, BD89, Bor93b, BM09, BM10, BY12b, BY13b, BBS14a, DL02, DLL05, DABY15, HLZ14, HLY16, KJR16, LLS11, LZ14, Li15]. lines [Bor79h]. [BB16g]. Limit [Coh15]. Limiting [BF95b]. Limits [WG17, BBS13b, BBS14b]. line [BW03, YW12]. Linear [BB93b, Bor72, BD86, BB95a, BB99b, BBL99, BBT00, BBW07, BWY10, BMWY11, Bor84a, BFG87, BD89, Bor93b, BM09, BM10, BY12b, BY13b, BBS14a, DL02, DLL05, DABY15, HLZ14, HLY16, KJR16, LLS11, LZ14, Li15].
[Bor81a, Bor98j, Bor99d, BL99, Bor01e, Bor01m, Bor02s, Bor02t, Bor03h, Bor06m, Bor06u, Bor07w, Bor08n, Bor08o, BZ11, KMZ+05, BWB97, Bor98a, Bor14b]. Math. [Zä16]. MathBrowser [Bor97j]. Mathematica [BS12a]. Mathematical [BB08a, BBBZ10b, BB11i, BBB12, BBC+14a, BB15e, Bai16d, Ber88, BB93g, BBGP95a, Bor96d, Bor97h, Bor97i, Bor98e, Bor98a, BB01d, Bor01e, Bor01n, Bor02j, Bor02k, Bor02n, Bor02p, Bor02s, Bor02t, Bor03p, BS03, Bor05-42, Bor05-44, BLM+07, BM07c, BM07a, Bor11-30, Bor13l, Bor12n, BS14a, BC15a, BC16, CW16, Coh15, Sch15, SV14, TB80, BBMZ10a, BB15b, BB15j, BMM17, Bor10v, Bor95u, Bor97w, BBGPxx, Bor02g, Bor08q, Bor09e, Bor09f, Bor09g, Bor10q, BS11c, BS12a, BS14b, RZ15, ABD03, BF06b, HY14]. Mathematician [BB12q, Bai17b, Bai17c, Bor98h, Bor01a, Bor01b, Bor01c, Bor01d, Bor02j, Bor02k, Bor02l, Bor02m, Bor05a, Bor06e, Bor15b, CKR15]. Mathematician/physicist/inventor [BB12q]. Mathematicians [BB16m, Bor03-31, BMP05, Coh15]. Mathematics [ABMMY13, BB05a, BBC+07b, BB09a, BBBZ10b, BB12s, BBL+13, BB14a, BB15b, BB16e, BB16d, BB02, Bor92j, Bor93c, Bor93d, Bor93q, Bor94h, Bor94q, Bor94s, BD09, BB09a, BBGP95b, Bor95x, Bor96c, BBGP96, Bor97e, Bor97f, Bor97h, Bor97i, Bor97m, Bor98j, Bor99b, Bor99c, Bor99g, Bor99h, Bor99i, Bor99j, Bor99k, Bor99l, Bor99o, Bor00b, Bor00c, Bor00d, Bor00e, Bor00f, Bor00g, Bor00h, Bor00i, Bor00j, Bor00k, Bor00n, Bor00s, Bor01a, Bor01b, Bor01i, Bor01j, Bor01k, Bor02f, Bor02a, Bor02r, Bor03k, Bor03l, Bor03m, Bor03n, Bor03o, Bor03-27, Bor03-28, Bor03-29, Bor03-30, Bor03-35, Bor04j, Bor04k, Bor04q, Bor04r, Bor04s, Bor04t, Bor04u, Bor04v, Bor05b, Bor05d, Bor05e, Bor05f, Bor05g, Bor05h, Bor05i, Bor05j, Bor05k, Bor05m, BBGP95b, Bor95x, Bor96c, BBGP96, Bor97e, Bor97f, Bor97g, BWB97, BBJ97, BBC+97b, BC99, BS99, BS00, Bor01f, BMP02, BBG03]. mathematics [Bor05-45, BF06a, Bor08c, Bor08b, BD09, BB10c, BD11, Bor11b, Bor11c, Bor14w, Bor14x, Bor16b, HD12, KMT16, Sha05, Bor06o, Bor06b, BO11b, HF05, Hoa05, Sha05, Zei05]. Mathematik [BD11, Fal96]. Mathématiques [Bor00o]. MathResource [BWB97, Bor97j]. Maths [Bor09u, Bor12m, BB11g, BB11f, BB12k, BB12m, BB13g, Bor11e]. matrices [Bor84c, BR84]. Matrix [ABT13a, ABT14b, BRxx, Bor13i, Bor14e, Bor14f, Bor15g, Bor16q, HNP10, HLZ15a, HLZ15b, LL13]. matter [Bor10f, Bor10g].
MKM [ABD03, BF06b]. modal [Bor96e]. model [Bor16h, Cam16]. Modelling [Bor13p, BHP14, PHP14, PHB14, Bea13]. models [BL92d, Cam16]. Modern [Bor09y, BB12x, BB15b, BB15i, BS11c, BS12a]. Moderne [Fal96]. Modified [LL13, XSW12]. MODSIM [Bea13]. Modular [BB97c, BBB00b, BBB04b, BBB16, BBB97a, Bor85b, Bor86f, Bor87g, Bor87f, BB89a, BBB89, BBG94b, Liu00]. moduli [Zha13]. modulo [ZS12, ZZ14]. Moll [Odl11]. moment [Bor90c, Bor90f, BL91c, BGL93, BH94, BL94a, BH95]. Moments [BS07, BS08, Bor10x, BBGW11, Bor11-29, Bor14s, BS16a, TB00, BBBG08]. Mono [Ber88]. Mono- [Ber88]. Monochrome [Bor79h]. monoids [Bor15f, Bor16j]. Monotone [BBWY11d, BBWY13, Bor72, Bor02b, Bor04o, Bor05-33, Bor05-34, Bor05-35, Bor05-36, BW06, Bor06s, Bor06t, Bor06-34, Bor06-35, Bor06-31, Bor09-28, BB11, BEY11, BY12c, BBY13, BB15, EB08, BB95a, BBC03, BBW07, BWY10, BBWY11b, BBWY11c, BMWY11, BBWY12b, BBWY12c, Bor86b, BF89a, BFK91, Bor98n, Bor02d, Bor02e, BBL04, BW05a, Bor06-32, BB07, Bor07b, Bor07x, BE08, BG09, Bor12j, Bor12k, BY12f, BY12b, BY12d, BY12e, BY13b, BY13a, BY13c, BY14b, BY14c, BY15, BB16b, HLZ15a, SZ14]. Monotonicity [Bor09j, Bor09k, Bor12y, BB99b, BMWY11, BB82c, Bor06-30, Bor10n, BRS11, Bor12j, Bor12k]. Monthly [BB07a, BB12-27, BB09e, BB09f, BB10b, BC15a, BC16]. Montreal [KG04]. Moore [BB12j, BB12i, BB15m, Bor15j]. Mordecai [Bor90b]. Mordell [BBC14b, BB15a, BB16a, BB16b, BB16c, Bor12e, Bor12f, Bor12r]. Mosco [BB90a, BB93b, Bor88j, BF89c, BV93, BV94a]. most [Bor16b]. Motivation [Bor09-29]. Movements [BB13r]. movies [Bor15b]. MR [Bor81a]. MR0716121 [Zai86]. MR0991866 [BBB97a]. Multi [Bor96c, Bor97f, BBB02, Bor97f, Bor16h]. Multi-dimensional [Bor97i, Bor97f]. multi-disciplinary [Bor16h]. multi-institutional [Bor16h]. Multi-modal [Bor96e]. Multi-variable [BBM02]. Multidimensional [Bor96f, Bor96g, Bor96h, BH06, BTBT88, Bor97p]. Multifunctional [Bor98k, BZ99a]. multifunctions [Bor94b, BF95a, Bor95p, Bor95q, BMS99a]. Multimedia [BMPR02]. Multimodal [Bor97m]. multiobjective [MPB16]. Multiple [BBKL99, BBK00, Bor10y, BZ11, BBBL98a, BBBL98b, BBK01, BBBL01, BC10, BDT16, JY12]. multiple-zeta [BC10]. Multiplier [Bor80b, Bor81d]. multipliers [Bor80c, BZ16]. Multivalued [Bor77a, Bor79d]. Multivariable [Bor00r, Bor01p, Bor01q, Bor01r]. Multivariate [HYG09, BL92b]. Music [Bor12s]. Musicians [BB16m]. My [Bor08q, Bor12t, Bor07-28, Bor07-29, Bor07-30, Bor08u]. Mysteries [Bor11-30].

N [BC96, Odl11]. National [Bor05j]. NATO [SBW84]. natural [RP09]. Nearest [BG15b, BG16c, Bor88k, BF89b]. Necessary [Bor82b, BTZ08, BZ88]. needs [Bor13a]. negative [BMWY11, BY12f, LL13]. negative-infinum [BMWY11]. Nested [BD91]. Network [Bor99b, Bor99c]. Networking [Bor98e]. Neumann [BB93a]. Nevanlinna...
BF95a, BCFR04]. one-dimensional [Bor94b, BF95a]. Online
[BBS+15a, BS97b, Bor97n, Bor01f]. only [BB13q]. ontological
[BB15b, BB15i]. Ontology [DD15, BB15b, BB15i]. Open
[Bor88k, Bor03-34, Pea07, BBS13a, BB13o, BB99a]. openness
[Bor87a, BZ88]. Oper. [Zäi86]. Operator [BY12c, BBWY11c, BBWY12c,
BY12b, BY12d, BY13b, BY14b, BY15, BG16b, KMY00]. Operators
[BB13q, BBS13a]. optimal [Pos13]. Optimality
[BW79a, BW79b, BW81c, BW82a, BW82b]. Optimisation
[Ano15, ABT13b, ABT14a, BBLZ13, Bor74, Bor78a, Bor99a, BL00a, Bor02b,
Bor12-30, Bor12-31, Bor16m, Bor16n, BL16a, Tod03, ABT14c, AP16, BBL99,
BB08k, Bor81b, BN84, BZ91, BZ93, BL94b, BTZ98, BL06, BL16b,
DHSZ06, MPB16, WsdSY15, XH08, XSW12, YW12, ZH06, ZSQ10, Zho12].
option [BCM03]. Order [BD86, Bor87e, EB08, BB84b, Bor86e,
Bor87a, BD89, Bor92a, BB99b, BF93b, BN94].
oriented [BD11]. orienting [Bor05i, Bor06i]. Origins
Bor09-29]. Oxford [BB93g, Bor06o, BO11b, Bor06o].
Oz [Bor11m, Bor11n].
organised [Bor92c]. PACBB [ZH06]. Pacific [Bai91]. packing
[BB161, CKM+16, Via16]. pages [Sha05]. pain [BB12k]. Paleo
[BB12s, BB16e]. Paleo-Mathematics [BB12s, BB16e]. Pamphlet [BB03].
Papers [BB14h, Bor14v, Bor18a, Zäl86]. Papers
[BB14h, Bor11b, Bor11c, Cam16, KG04]. Paradox [Par04-32, BB15f, BB15p].
Parallel [BB08e, Bor00e, BB09b, BJCW13]. Parameter
[BCF04, BC04a]. parameters [LLC+95]. Parametric
[BBS06b, Geo05]. Pareto
[AR13, Bor80a, Bor83e]. Pari [Bor92d]. Paris [CGM95, Bai17d]. part
[BB93e, Bor16b, BB15f, BL92d, Bor03a, Bor03o, Bor08e, Bor08f, Bor12e,
Bor12-30, Bor12-31, Bor13-33, Bor13-34]. partial [Bor74, MR96].
Partially [Bor86b, Bor88l, BL92d, BL93b, Bor97o, Bor98l, Bor98m,
BTZ99, Bor99u, Bor99v, Bor00v]. Partially-finite [Bor88l, BL93b].
partitions [RP09]. Parts [Bor15h]. pass [BB121, BB12g]. Past
[BB07a, Cam16, Bor08r]. Patents [BB14h]. pathological
FRASER [Bor89a]. inventor [BB12q]. physicist [BB12q]. Zagier [BBB96b, BBB97d, Bor97f]. perfect [Bor80d]. Performance [Bor98h, Bor05s, Bor05t, Bor05u, Bor05v, Bor05-47, Bor05-48, Bor05-49, Bor05-50, Bor05-51, Bor05-52, Bor06z, Bor06v, Bor06b, Bor06y, Bor06-37, Bor06-38, Bor06-39, Bor07f, IEE08, BBLZ14, Cam16, MTCB98].

PI [Bor90q, Bor90r, Bor90s, Bor90t, Bor90u, Bor90v, Bor90w, Bor90x, Bor13b, Bor13a, BB13k, BB13d, BB14d, BB14i, BB14b, BB15o, BB16i, BB16j, BB16k, BB17, BB97b, BB98a, BB98b, BB87d, BB89e, BB89f, Bor90-29, Bor90-30, Bor90-31, Bor90-32, Bor90-33, Bor90-34, Bor90-35, Bor90-36, Bor90-37, Bor90-38, Bor90-39, Bor91i, Bor93h, Bor93i, BG97a, BB97d, BB97e, Bor97r, Bor97s, Bor97t, Bor98i, Bor98a, Bor98b, Bor99w, Bor99-29, Bor99-30, BBxxc, BBDD, BB00b, Bor10r, Bor03s, Bor03t, Bor03u, Bor03w, Bor03x, BBB04d, BB05y, Bor06-27, Bor07v, Bor08i, Bor08m, Bor10t, Bor10u, Bor11u, Bor11v, Bor11w, Bor11x, Bor11y, Bor11z, Bor12o, Bor12u, Bor12v, Bor12w, Bor13n, Bor13r, Bor13s, Bor14r, Bor14p, Bor14t, Bor14z, Bor15k, BB15b].

Planet [Bor13s, BB12-28, Bor06d]. Plausible [Bor93c, Bor93d, Bor03-27, Bor03-28, Bor03-30, BBDD, Bor04, Bor04v, Bor04w, Bor04x, Bor04y, Bor04z, Bor06-29, Bor10a, HF05, Hoa05, Zei05].

Please [BB13]. Pleasure [Bor021, Bor02m, Bor05a, Bor16f]. Plouffe [BC96]. Point [BB88a, BLT17, BBC+11b, Bor84a, BB91b, BLT15, BLT16, HD07]. Points [Bor77c, Bor84d, Bor83e, Bor86c, Bor88k, BF98b, BF98l, Bor92i, Bor92m, Bor92n, BF93a, BW97a, BKW02, BY12e, BY13c, BG15b, BG16c]. Poisson [BB13d, BBCZ13, BBKL16, BBKL17, TB00]. Poorten [BB07]. politicians [BB12-28]. politics [BB12b, Bor13c]. polyhedra [Bor03r, Bor01p, Bor01q, Bor01r, BBM02]. polylogarithm [Adel2]. polylogarithmic [BBP97, Bor97l, GG07]. Polylogarithms [BBBL99, Bor14d, BB16c, Bor97p, BBBL01, BS15b]. polynomial [BH95]. Polynomials [BBKL16, BBKL17, HC09]. Playing [BB12o]. Please [BB13].
27
[Bor09o, Bor12n, BBL16a]. positive [DABY15]. Possible
[Bor07w, Bor07-32, Bor08n, Bor08o, BBxxc]. postcards [Bor10o]. powers
[BC07]. PP [Ban10, Bai91, Ber88, BB91d, BB93g, BC96, Bor06a, Bor09b,
Bo11b, Coh15, Odl11, Zei05]. Practical [BL91d]. Practice
[BBS16b, BJL +08]. precedent [BB14b]. Precision
[BB08a, BB08e, BB08b, BB13h, BB90c, BL92e, BB92a, BB09g, BB09b,
BB11b, BB12, BB15j, Bor10q]. Preconditioned [MR96]. Preface
[AAB12]. prefer [Bor15k, BC15a, BC16]. Preiss
[Bej94, Dev9x, Fab89, Geo05, KPS16, LS00, QR07, YS00]. Preisses [Bor89c].
Prepared [BBS16b, BJL +08]. precedent [BBMW11, BBMW13, BBMW16]. Price
[Bai91, Ber88]. prices [BCM03]. primality [Bor94g, BBGG96, BW97b, BMS13, BSM13]. primes [Cha03].
Princeton [Bor09b, BO11b, HDG +15]. Principle [Bor03-33, Bor04-31,
BHP14, Geo05, YS00, Bor83b, BB84f, BB86g, BP87, Bor87h, Bor87j, Bor90m,
Bor90n, BCM03, CBFRO4, Fab89, KPS16, LS00, QR07]. Principles
[BBS16b, BMS99b, Bor06r, Bor06s, Bor06t, Bor06u, Bor09-30, Bej94, BTZ99,
BV09]. Prize [Bor03p, Bai16a, Bor14b, BE16]. Prizes
[Bor03p]. Probability [BLZ13, BBLZ17, BCM03]. Problem
[ABT15, BB07b, BB07a, BB08f, BB09e, BB10b, BB12-27, BD86, Bor13d,
Bor13e, Bor13h, WSL16, ABT16, BB16l, BW81d, BD89, BGL93, CKM +16,
GD15, LLS11, PT14, Pos13, Ray97, Via16, Vir14, Zho12]. Problems
[AJ986, ABT13a, ABT13b, ABT14b, ABT14a, ANO +83, AJ86, BB09f,
BB96a, BL87, BSS +83, BB85, Bor85a, BN86, BB87c, Bor93l, BB93c, BLN94,
Bor96j, BDT96, BBS +97, BPB99, Bor05b, Bor80p, Bor09c, Bor09v, Bor09-29,
Bor09-27, Bor09-30, Bor09-28, Bor09z, Bor10k, Bor10w, Bor12q,
BT13b, Bor13k, Bor13o, Bor16v, BR16, Bor16y, Bor16z, BLT17,
BKL +93, CJKB92, DAK88, DNG +86, DBCB88, EWM86, GRM +97, GC88,
KJ86, KC89, KWK +90a, KWK +90b, KWK +90c, LPB01, Mon89, NJS88,
NOL86, RSP +93, Rud89, Sch85, SB87, SH87, SZUM86, Stu90, TB00, AR13,
ABT14c, AP16, BKKW06, BCB +11b, BTBT88, Bor84a, Bor85c, Bor88k,
BL91c, BL91b, Bor21, Bor22m, Bor22n, BZ94, BH94, BL94a, BH95, BZ97,
BTZ98, Bor12p, Bor13i, Bor14e, Bor14f, BT14b]. problems
[BT14a, BT15, Bor15g, Bor15r, HD07, HLZ14, HLY16, JD13, KIR16, LZ14,
L15, MPB16, NWY10, Pea07, WSdSY15, YW12]. Proceedings
[Bor96i, IL09, BBJC97, HY14, AB03, BF06b, CGM95, RZ15]. process
[Bor83a, Zal86]. processes [Bor86a, MTCB98]. processing [BJCW13].
Product [BPB99, BB83]. productive [Bor03g]. products [RZ15]. Program
[BW79a, BW79b, BW81c, BW81b, BW82a, BW82b, BWB97]. programmed
[BB11c]. Programming [Bor01o, Bor05-32, Bor06-33, BL15, TB80, Bor76a,
Bor79a, BW81a, Bor81c, BW81d, Bor83c, Bor83f, BW86, Bor87k, Bor88l,
Bor89i, Bor90e, Bor90f, Bor90c, Bor90d, Bor91b, Bor91c, BL92c, BL92d,
BBT92, Bor93e, BL93b, Bor94i, Bor95a, Bor95o, BBY12, BBY14, DF05].
programs [Bor79c, Bor80e, BK83, Bor91h, Bor92e]. Progress
[BBo8b, BB11b, Bor12y, BY12c, BY15]. progressions [Zah06]. Projected
[DF05, LZ14, WM07, HNP10, HLZ15a, HLZ15b, HL15b, HLY16, ZH06].

Projection
[BBo6a, Bor98n, Bor99x, Bor09v, Bor10c, Bor10d, Bor10k, Bor10v, Bor10w,
Bor12q, Bor13o, BST13, BB93a, BB94a, BB1L7a, BLY13, BLY14, BST15].

progressions [BB97a, BBL97b]. promises [Bor94d, Bor94f, Bor95g,
Bor95h, Bor95i, Bor95j, Bor95k, Bor95l, Bor95m, Bor96c]. Proof
[Bor02i, Bor02m, Bor05a, Bor07g, Bor07k, BS07, Bor08g, BS08,
BB11j, Bor12a, Bor16f, Cvi10, GS08, Hdy12, Art07, BB08c, Bor77b, Bor94a,
Bor06h, Bor08d, Bor08e, Bor08f, Bor09a, Bor09e, Bor09f, Bor09g, Bor09u,
BY12f, Bor14y, Bor16-28, IL09]. proofs [Ade13, Gui08]. Proper
[Bor77c, JN03, Yan94, Zhu91]. properly [Zho12]. Properties
[Bor00m, BDEM10, BB010, Bor82a, Bor90g, Bor90h, Bor90i, Bor90j,
Bor91g, Bor90a, Bor90, 40, Bor90-41, Bor90-42, Bor90-43, Bor91d, Bor91q,
Bor91r, Bor91s, Bor91t, Bor92a, Bor92b, BB01c, BNSW11, Mar91]. property
[BBL99, Bor82e, Bor88j, BF89c, BJ98]. Prophets [BB15k]. Proposed
[BB08f]. Prospects [BB05a, Bor09w, Bor09x]. protein [BT14b, BT14a].
Prototype [BMP05]. Proving [IL09, Hdy12]. prox [BEEP10]. prox-regular
[BCEM10]. Proximal [BS86, BS87, BI96, BG87, BGW98]. Proximity
[Bor06u, Bor07y, Bor08t]. Pseudo [BBLZ14, BCJW13].

Pseudo-mathematics [BBLZ14]. pseudo-random [BCJW13].

pseudoconvex [QR07]. pseudorandom [BB13j]. PSLQ [BB00d]. Public
[BB14g, Bor03h, Bor12-28]. Publication [Bor98a, BS97b]. Publishing
[Bor99y, Bor96d, Bor97h, Bor97i, Bor97n]. Putnam [Bor77d]. puzzles
[Bor15a].

QC [KG04]. QPQC [Pos13]. Quadratic
[Bor89g, Bor89h, BY06, HLZ15b, Bor82b, DF05, La 09, NWY09].

quadratically [BB86c]. Quadrature
[BBo6a, BB08d, Bor06j, Bor06k, Bor06m, Bor06n, BY06]. qualification
[BW79b, BW82a, BW82b, BW86]. Quantitative [Ano15, Koh01]. quantum
[Cvi10]. Quartically [Bai88, Bai16b, TK97]. Quasi [BL92c]. quasiconvex
[BBP03]. question [BB14b, BBx]. question [BB14l, MR11]. Questions
[Bor03-34]. Quinn [BB09].

R [Odl11]. Rachford [AB12, AB13a, AB13b, AB13c, AB14b, AB14a, AB15,
AB14c, AB16, BS10b, BS10c, BS10d, Bor10i, Bor10j, BS11b, Bor11q, Bor11r,
BT13a, BT13b, Bor13i, Bor13q, BT14c, Bor14e, Bor14f, BT15, Bor15g, Bor15r,
BG16b, BLS16]. radicals [BdB91]. Rainfall
[Bor13b, BHP14, Bor13p, PHBH12, PHBH13, PHB13, PHB14]. Ramanujan
[AB15, AAB12, BB97a, BBG95b, BR01, Bor05b, Bor05d, BB07a, BS07g,
BS07f, BS07b, BS07, BB88c, BB88e, BB89a, BS09, BB08g, Bor90-29,
Bor90-30, Bor90-31, Bor90-32, Bor90-33, Bor90-34, Bor90-35, Bor90-36,
Bor90-37, Bor90-38, Bor90-39, Bor91j, Bor91k, Bor91i, Bor91l, Bor91m,
BB91e, BB91o, Bor91e, Bor92f, BB93d, Bor93m, BBG94b,
BB96c, BB97c, BBB00b, BB01e, Bor03d, Bor03e, Bor03f, Bor04-30, Bor04-29, Bor04-28, BCF04, BC04a, BBB04b, BL05, Bor05i, Bor06i, BL08, Bor10x, Bor10z, Bor10-27, Bor11-28, BBGW11, Bor11-29, Bor11-31, Bor12x, BBB16, Bor16d, BB16p, Liu00, Bor08, Bor91d.

Ramanujan-type [BB87a, BB88c, BL08]. Ramble [Bor10-28, Bor10-29, Bor11-32]. Rand [BBC09]. Random [BB13a, BNSW10, Bor10-28, Bor11-32, BSW13, Bor10e, BSWZ11, BSWZ12, Bor12b, Bor11-29, Bor11-31, Bor12x, Bor10-27, Bor13-28, BB13b, BB97a, BJCW13, BCJW13, BL05, Bor10e, BSWZ11, BSW11, Bor12b, BSWZ12, Bor13a, BS15, BSW15, BS16b, BS16b, BS16a].

Randomness [BBBR16, BBBR17, Gan17]. Range [Bor04p, Bor05k, Bor05m, Bor05n, Bor06l, R+05, BW81c, BFKL01, BL02, Bor03y, Bor03z, Bor06-28]. ranking [BBSL17]. rapid [BBP97]. rapidly [AL10, BB83]. Rate [BLT17, BLY13, BLY14, BLT16, HL15b]. Ratio [Ade14a]. Rational [BZ78, BB78b, BZ92, BB98b, BB98c]. Real [ABBB13, BBB13, BCF04, Bor13-27, Bor13-28, Lor90, BFG87, BB90d, BB91b, Bor04-30, Bor10x, Bor14w, Bor14x, Bor16r, Bor16s, Bor16t].

Reasoning [Bor93c, Bor93d, Bor03-27, Bor03-28, Bor03-30, BB04b, Bor04-27, Bor04w, Bor04x, Bor04y, Bor04z, Bor06-29, Bor10a, HF05, Hooa05, Zei05]. Receive [BE16, Bai16a]. Reconstruction [Bor09z, Bor09a, Bor93k, BLN95, BLN95, BLN96, LLC+95, MTCB98]. reconstructions [MTCB99]. Recurrence [BS08, BCM07b]. recurrences [BS81a]. Recursion [BS07]. Recursions [BB06b]. Reduced [BB84e]. reduction [BW81d]. Refined [BBFG01, War03]. Reflection [BST13, BT14b, BT14a, Bor16q, BST15, Bor15r]. reflexive [BBWY11b, BBWY12b, Bor93a, BZ94, BTZ97, BE08, BV10a, Bor13f, Bor13g, Bor13h]. reflexivity [BB90a]. regional [JY12]. registration [HYG09]. Regular [Bor84d, BBEM10, Bor86c]. regularity [BB99a, BLL10, BT00, BZ88, BF94, BZ96, BL15, BL16].

Regularization [BL11, HLZ15b]. regularizations [BV95a]. Regularized [WSL16, MTCB99, XWQ14]. Regularizing [BW81b]. Regulatory [BB15m].

Reich [Koh01]. Reinhart [BB13a]. Related [Bor02b, BHL16b, BHL16a, BS84b, BB95d, BB01c, BSZ13, BHL17]. relating [BW97b]. Relation [Bor09p, Bor09q, Bor10r, BL00b, BY12b, BY13b].

Relations [BB09d, Bor08b, Bor02a, BS15b, BW10, BMY11, Bor81b, Bor81d, Bor87a, BBM07b]. relationships [BL91b, BV93, BV94a]. relative [BB13e, BL92c, BG03a]. Relaxed [RS02]. reliable [BB14k]. Remark [Osb05]. remarkable [BB90b, BB01c]. Remarks [BG16d, BG16e, BEO07, Bor81a, BG15c]. remembrance [Bai17d]. Remote [BLM+07, BM07c, Bor09w, Bor09x, BB12j]. renorming [BF93c, BV95b]. replace [BB10n]. Reply [Gan17]. Report [BBC+14a, Bai17d, JWD+14, BBL+13]. reported [BB14k]. reporting [BB12f]. reports [Bor03g]. representation [BMS99a]. representations [BC00]. Representative [EF08]. Reproducibility
[BBL⁺13, BBS16b, BBBR16, BBBR17, Gan17, JWDS⁺14, JWDS⁺14].

Reproducible [BB13o, BBL⁺13, SBB13, Bor13-29, Bor15m]. **Res** [Zal86].

Research [BB13i, Bor09o, Bor12n, Cam16, SBB13, Bor95u, Bor95v, Bor97w, Bor97q, Bor13a, Bor13c, Bor14a, Bor16h, RZ15]. **researchers** [WBB97].

Researching [BB13o, BBL⁺13, SBB13, Bor13-29, Bor15m]. **Res** [Zal86]. **Research** [BB13i, Bor09o, Bor12n, Cam16, SBB13, Bor95u, Bor95v, Bor97w, Bor97q, Bor13a, Bor13c, Bor14a, Bor16h, RZ15]. **researchers** [WBB97].

Resolution [BBC09]. **Resources** [Bor98j].

Respect [Bor77c, Bor74]. **Response** [BaO12]. **restoration** [WM07]. **Result** [Mil89, FK00, Mil90]. **Results** [ABT13b, ABT14a, BL93c, Bor96f, Bor96g, Bor96h, Bor97-28, Bor97-29, Bor97-30, Bor97-31, BB14p, ABT13c, ABT14c, BB13f, BB13t, BLLN95, BBB96b, BBB97d, BW97b, BK01, Bor97-27, Bor12j, Bor12k, BY12d, BY14b, Hon85]. **retires** [Jac09]. **retraction** [Bor15c]. **Retro** [BM07a]. **Retro-enhancement** [BM07a]. **Retrospective** [Bor08s]. **Revision** [Abb00, Ask88, Bai91, Ban10, BB99b, BWB97]. **Reviews** [Zei05]. **Revised** [BLM97, Bor08s, BCM09, BY12f, KPS16]. **Revivals** [Bor96j]. **Revolution** [R⁺05]. **Richard** [BB12q]. **Riemann** [BB96b, BBC09, BBC00, Bor07q, BBS15b]. **risk** [BB11e, BB13c, Cam16]. **Robert** [BB91d]. **Rocha** [Ban10]. **Rock** [Bor14u, Bor14v]. **Rockafellar** [Ano15, BBB+B07]. **Rodrigues** [Ban10]. **Rogoff** [BB13n]. **Roland** [Sha05, Zal05]. **Role** [Bor02l, Bor02m, Bor05a, Bor16f]. **root** [BB13g]. **roots** [BB12s, BB16e, BR84, BS14a, BS14b]. **Rossi** [BB16h]. **Rotundity** [BL94b].

S [Tod03, Ano15]. **S.** [Bor91o, Bor91p, Bor93m, Bor81a]. **saddle** [HD07]. **Salamin** [Borxx]. **salt** [BF06a]. **same** [BB99b, BW97a]. **same** [BBLZ14, KJR16]. **Sampler** [BG16a, BG15a]. **San** [BC96]. **Sandwich** [Bor80b, BT92, Bor98o, Bor81d]. **sandwiched** [BF01]. **Sank** [Bor11-35, BBS12]. **Santalo** [BBFG01]. **Sapiens** [The16]. **Satire** [Bor07c]. **Scale** [JWDS⁺14, DF05, Ray97, WM07, XH08]. **scales** [PHBH13]. **scaling** [WDsSY15]. **sceptics** [BB12d]. **Schaible** [Bor90b]. **Scheme** [BT13a, BT14c]. **Schemes** [BB08d, Bor06j, Bor06k]. **scholars** [Bor03g]. **School** [BB12m, BWB97]. **Science** [BB13p, BB13r, BB15g, BBB16, BBBR17, Bor95u, Bor95v, Gan17, RZ15, Sel16, SBB13, BB12f, BB12j, BB12x, BB13f, BB13l, BB13o, BB13n, BB13q, BB14n, BBC⁺11b, Bor96k, Bor97w, Bor98r, Bor13a, Bor13c, Bor13y, Bor13z, Bor14w, Bor14x, Bor16r, Bor16s, Bor16t]. **Seeking** [BB15f].
select [BBGPxx]. selected [BB12u, BB10c]. Selection [Bor12-30, Bor12-31]. self [Art07], self-contained [Art07], sell [BB12e]. Selected [BB12u, BB10c]. Selection [Bor12-30, Bor12-31]. self [Art07]. self-contained [Art07]. sell [BB12e]. Sensing [Bor07c, Bor95a, Bor95b, Bor02d, Bor02e, BBL04]. separably [BK83], separably-infinite [BK83], separate [BB01b]. separation [BB84f, BJ98]. September [Bai17a, SBW84]. Sequence [BSxx, BL92a]. sequences [BL93a, Bor98d, Bor15d, BC96]. sequential [BF95b]. sequentially [Bor93a]. Ser. [BZ88, Zho12, Bor92c]. Sets [BB93b, BT84, Bor06u, BBCR13, BB93a, BB94a, BBL97a, BBL97b, Bor81a, BT85, BS86, Bor87m, BS87, BFK91, BL93a, BF94, BF95c, Bor95a, Bor95b, BV96a, BV96b, BM98b, BLM00, BV04, Bor07y, Bor08t, Bor12g, Bor12h, BLY13, YL14]. Setting [BBL*13, Bor07z, SBB13]. Seven [Bor13-30]. Several [BB86a, Wei15]. Shafrir [Koh01]. Shannon [BH95]. shape [SZ14]. share [BW97a]. Short [BM97c, Bor10-29, Bor11f, Bor11-33, Bor11-34, Bor11-32, Bor15o, Bor15p, Bor15q, BSWZ11, BNSW11, Bor12b, BSWZ12, BS13, Bor14s, BSV15, Bor15n, BSV16, Bor16e]. Shrum [Bor93n]. Shu [BB95c, ILO9]. SIAM [BB08f, Bor05-40, Bor09y]. Siegfried [Bor90b]. signal [Bor90d, Bor90f]. significance [BB14k]. Silence [Sol15]. Silicon [Zei05]. Simon [BC96, BBJ97, Bor06a]. Simple [AW97, BW86, BLS*16]. simplification [BBK14]. Simulate [Bor13]. simulated [PHBH12, PHBH13]. Simulation [BHP14, Bor13p, PHB13, PHB14]. Sinc [Bor11-35, BB14p, BB08b, Bor00r, Bor01q, Bor01r, Bor01q, Bor01
[Bor78b]. Structure [BY12e, BY13c, BB16c]. students [BWB97]. Studies [SV14, BWB97]. Study [BBBR16, BBBR17, Ber88, BB87d, Bor05f, Bor11f, Bor11z, Bor11-27, Gan17, IL09, SBW84, Wim88, BB98a, Bor05-40, Hd12]. Stuff [Bor00j, Bor00k]. Stupid [BB13q]. Style [Bor11-28]. Subderivatives [Bor88m, Bor88n, BZ96, BMW97, BGW98]. Subdifferentiability [BW01, Fab89, BP87]. subdifferential [BW97a, BM97a, BZ98, BM00, BZ02a, BS10a]. Subdifferentials [BFG03, BBEM10, BMW97, BW00, BW01, BGV02, BW03, BVW03, BW05b]. Subgradient [BMS99a, Bor09c, Bor10h, Bor11o]. Subgradients [Bor84e, Bor82d, BFG87, Bor91a, Bor94b, BF95a, BB96a]. Subspace [XH08, LL13]. Substance [DD15]. success [Cam16]. sufficiency [Bor76b]. sufficient [Bor82b, BZ88]. suggest [Cam16]. Sum [BY13a, BY14c, BB16a, BB16b, BB06b, BY12b, BY13b]. Summary [BB06a, BC04b]. summation [BCM09]. Sums [BB94b, Bor96f, Bor96g, Bor96h, BBK00, Bor01g, BB06-31, Bor12r, BGM*13, BBG94a, BB13d, BCBZ13, BBC14b, BB15a, BB16c, BB08, BB78, BB89, BBCG95c, Bor95f, BB96b, BB96c, BB97d, BB97f, Bor97l, BB98, Bor98f, BBK01, Bor02h, Bor02i, BC03, BC04b, Bor06-32, Bor07x, BBZ08, Bor12e, Bor12f, BBS13b, BBS14b, BBS15b, BB07]. sunlight [BR13a]. Super [BZ91, BZ93]. supercomputers [BBG95a]. superrelaxation [Pos13]. support [BV96a, BV96b]. supportability [Bor79g]. Supportless [BT84, BT85]. Surmise [DD15, Bor02g]. Surprise [Bor99q, Bor99r, Bor99s, Bor00p, Bor00q, BM00, Bor04v, Bor04-32, Bor05-31, Bor09z, Bor13-31, Bor09n]. Surprising [BBB08]. Survey [BL93c, Bor90a, Bor90-40, Bor90-41, Bor90-42, Bor90-43, Bor91q, Bor91r, Bor91s, Bor91t, Bor92b, Bor95t, BV95b, BW97b, BZ99b, BZ02a, BZ02b]. Surveys [SV14, BR01]. SVM [SD15]. Swedroe [Swe17]. Sylvester [Bor79f]. Symbolic [Ade11, Bor98h, Bor00e, Bor05-41, BH06, Bor09t, BH09, BBK14, BB97g, Bor98q]. Symbolically [BB96b, Bor97p, Bor97u, Bor97v, BB05c]. Symbols [Bor09t]. symmetric [DABY15, JD13]. Symmetry [Bor16-27, Bor13-33, Bor13-34, Bor13-32, BZ13]. Symposium [IEE08, CGM95]. Systems [Bor84d, Bea13, Bor86c, Bor92o, Bor93b, Bor93k, BS97a, BR16, DABY15].

tails [BCP05, BC10]. Talk [Bor93n, Bor07v, Bor08l, Bor08m, Bor10u, Bor11v, Bor11x, Bor11y, Bor11-28, Bor16o, Bor16u, Bor89a]. Talking [Bor97q, Bor97r, Bor97s, Bor97t, Bor98b, Bor99-29, Bor10-30, Bor12-28]. Tangency [Bor99x]. Tangent [BO76, Bor78c, Bor78a, AL10, BB84f]. Tangential [BS85]. Tanh [BY06]. Taylor [Nim15]. teacher [Bor03g]. teachers [BWB97]. Teaching [Bor11g, Bor11-36]. Technical [Bor16u]. Techniques [BZ05, Bor94o, BZ99a, GS02]. Technology [Bor98e, Bor99e, Bor99f, Bor99d, Bor00n, Bor07f, Sel16, BS99]. Telco [Bor10-30]. telelearning [Bor06w]. Telstra [Bor10-30]. Ten [BBKW06, Bor05b, Bor09-29, Bor09-27, Bor09-30, Bor09-28, Bor09z].
tentative [BB12x]. ternary [Ade10]. Terry [Ano15]. Tertiary
typical [BW01].

U.S. [BB12z, BB12-28]. UK [BF06b]. ultraproducts [BS15a]. uncertain [BB12c]. unconstrained [AP16, DHSZ06, NY10, Ray97, WSdSY15, XSW12]. uncovers [Cam16]. Underdetermined [BL94a, BLG93]. Undergraduate [Bor99t, Bor00s, BS00]. Understand [BB15l]. Understanding [WG17]. Unholy [BB13r]. unified [Bor77a]. Uniform [BH94, BC09, Bor10-29, Bor11-32, BV96c, BSWZ11, BSWZ12, BSV15, BSV16]. Uniformly [BGHV09, BV12]. Union [Bor01n, Bor01m, Bor02a]. units [BJCW13]. Universe [Bor11-30, BB14a]. University [BB93g, BBJC97, Bor06o, Bor09b, BO11b, BS14a, IEE08, KG04, SWB84, WBW97]. Unknown [Bor02j, Bor02k]. Unsolved [BB87c]. unsymmetric [DLL05]. untitled [Bor08v, Bor10-32, Bor12-29, Bor15s]. Update [BB15d, SD15]. upon [BB13k, BB14c, BB14j]. US$29.95 [BO11b]. uscos [BFK91, BK04]. Use [Bor12-30, Bor12-31, Bor00w]. useful [Bor85b]. User [Bor06o]. uses [BBW97]. Using [Bai88, BHP14, Bai16b, BFG87, Bor91h, Bor92e, BZ92, Bor94i, BLN95, Bor95n, Bor95o, BLLN95, BLN96, BRS11, PHB14].

V [BSW82, Odl11]. Value [Bor99-28, Bor00u, BW98, Bor98p, Bor99z, Bor99-27]. valued [BBP03, BZ88, Zho12, Bor92c]. Values [BBZ7, BB96b, BBBL99, BBK00, BK05, Bor0y, BZ11, BS11d, BS11e, BBBL98a, BBBL98b, BBK01, BBBL01, BB05c, BC10]. Vanderwerff [How14]. variable [BBM02, KJR16]. Variant [YS00, LS00]. variants [Bor79]. Variational [Ano15, BZ97, BMS99b, Bor99v, Bor00v, Bor03-33, Bor04-31, BZ05, Bor06r, Bor06s, Bor06t, Bor06u, BZ06, Bor07n, Bor08i, Bor08j, Bor09-29, Bor09-27, Bor09-30, Bor09-28, Bor09z, Bor13-33, Bor13-34, Bor13-32, BZ13, Bor16-27, Geo05, YS00, Bor86g, BP87, Bor87h, Bor87i, Bor87j, Bor87k, Bor90n, Bor90o, Bor97o, Bor98z, Bor98m, BTZ99, Bor99u, BCFR04, Bor09i, Bor10p, Bor13-30, BZ16, Fab89, KPS16, LS00, QR07]. Variations [Bor05c, BB05d, Bor10b, Bor10-31, BB06c]. various [BBP97, Bor92h, Bor92i, Bor93f, Bor93g]. vector [BBP03, BY84, BNS4, BZ91, BZ93, JN03]. vector-valued [BBP03]. Vectors [BSxx, BL92a]. Vera [BO11b]. Verifiable [BZ88]. version [BBW97, Koh01]. versus [BB12p]. vertex [KMY00]. very [BB83, Bor14y, Bor16-28]. via [Bor87k, BBFT92, BG09, BFV97, BCM03, Bor06-30, BBC08a, EBO8, TB80]. view [BB17]. Views [DD15, BS97b, Bor97n, Bor98c]. viii [Bai91]. viral [Bor15a]. Virtual [Bor95u, Bor95v, Bor96k, Bor97w, Bor98r]. Visibility [Bor94n, Bor95w, BZ96]. Visibility [BEO76, BEO77]. vision [Bor94o]. Visual [Bor14g, Bor14h, Bor14i, Bor14j, Bor14k, Bor14l, Bor14m, Bor15h, Bor16-29]. Visualisation [Bor05-42, Bor05-43, Bor05-44]. Visualization [Bor05-45, Bor14z]. visualizing [BBW97]. vita [Bor08a]. Vol [BM97b]. volume [Bor06a]. volumes [Bor0r, Bor01p, Bor01q, Bor01r, BBM02]. vs [BB13f, BB15e]. vu [Tre13].
Wadsworth [Bai91]. wait [BB13t]. Walk
[BSW13, BNSW11, Bor15n, Bor16c]. Walking [ABBB13, Bor13-27, Bor13-28,
Bor16-30, Bor16-31, Bor16-32, Bor13t, Bor13u, Bor13v, Bor13w, Bor13x,
Bor13y, Bor13z, Bor14w, Bor14x, Bor16t, Bor16u, Bor16k]. Walks
[Bor10-28, Bor10-29, Bor11f, Bor11z, Bor11-27, Bor11-33, Bor11-34, Bor11-32,
Bor12-32, Bor10e, BNSW10, BSWZ11, Bor12b, BSWZ12, BS13, Bor14s,
BS15, Bor15o, Bor15p, BS16b, BS16c, BS16a]. Walter [Bor90b]. warming
[BB12c]. Washington [Coh15]. Watson [Bor11e]. Way
[BB12x, BB13i, BB87c, Bor15t, Bor11a]. Ways [Bor94p]. Weak
[Bor78a, Bor79g, BF93c, BFG03]. Web [Bor96b, Bor97a, Bor97b, Bor97c,
Bor99y, Bor96d, Bor97e, Bor97d, Bor97h, Bor97i, Bor98r, BBB+96a, Bor98a].
weeks [Bor10-30]. Welcome [Bor02r]. Well
[BB15l]. Wellesley [Odl11]. were [BB12-28]. West [Bor05]. Western [Sci16]. WestGrid
[Bor01m, Bor03-32]. Where [BB11g, BB15p], which [BF93a]. Who
[Bor91d, Bor15b, Bor15t, BWB97, Bor16d]. whose [BFG03, BS10a]. Wide
[BBB+96a]. Wiersma [BFWY10, MR11]. Wightwick [Bai16a, BE16].
Wigner [BBS13b, BSB14b]. Wijsman [BV93, BV94a]. wild [Bor02g].
Wiley [Ber88]. Will [BB16n, BB15n]. William [Bor77d]. Wilson [BB13s].
winners [Bor14b]. Winter [BM97b]. wireless [Bor00w]. wishing [Bor01f].
within [ABMMY13, ABMMY14]. without
[Bor76a, BW79b, BW82a, BW82b, Bor84a, BBY11, BBY13]. Witt
[BL92a, BSxx]. Witten [Bor12e, Bor12f, BBC14b, BB15a, BBS15, BB16a,
BB16b, BB16c, Bor05w, Bor08k, Bor09m, Bor12r, BDT16, BD16a].
Wokingham [BF06b]. Wonderful [Bor93m, Bor91o, Bor91p]. word
[BB12d]. Words [BS14a, BS14b]. work [Bor02o, Bor04-33, Bor06-36].
Working [Bor01a, Bor01b, Bor01c, Bor01d, Bor06e]. works
[BB12a, Bor07q, Bor07p, BR14b]. Workshop
[BBBL+13, BBC+14a, BBJC97, RZ15]. Workspaces [Bor98j]. World
[Bor03-35, BMP05, Fer91, BBB+96a]. Would [BB12g]. wreck [Bor15c].
writings [BB10c]. wrong [BB13s].

x [BB91d, Zei05]. xii [BB93g, BC96, Odl11]. XSEDE [JWDS+14]. xue
[BB95c, IL09, IL09]. xv [Ber88], xviii [Coh15], xxii [Bor06o, Bor09b].

year [BB15o, BBxxc]. Years [Bor02c, Bor02q, Bor07d, Bor09j, Bor09k,
BB12, BB15n, BD95, Bor08r, Bor10n, Bor12j, Bor12k, Bor15l]. Yes
[BB12-29, BB13n]. York [Ber88, BB91d, BB93g, Tod03]. Young [Bor98g].
you're [BB13e]. yu [IL09].

Zang [Bor90b]. Zeidler [Bor06a]. zero [BBY12, BBY14]. ZETA [Bor97p,
BB96b, BBC98, BBK00, Bor05w, Bor07g, Bor08k, Bor09m, Bor10y, BZ11,
BD16a, BB15c, BB15b, BBFL98a, BBFL98b, BB98b, BB98c, BBC00, BBK01,
BB05c, Bor06h, BC10, BDT16]. Zeta-Function [Bor08k]. Zhai [Coh15].
zheng [IL09].
References

REFERENCES

REFERENCES

Asic:1986:PSS

Adler:1986:PSS

Adegoke:2010:HDI

Asic:1983:PSE

Anonymous:2015:IJB

Anon:2016:JMB

Arzani:2016:NNF

Adly:2013:NMS

Artacho:2007:NSC

Askey:1988:BRP

Adamchik:1997:SF

[AW97] Victor Adamchik and Stan Wagon. A simple formula for π. *American Mathematical Monthly*, 104(9):852–855, November 1997. CODEN AMMYAE. ISSN 0002-9890 (print), 1930-0972 (electronic). URL http://www.maa.org/pubs/monthly_nov97_toc.html. The authors employ Mathematica to extend earlier work of Bailey, Borwein, and Plouffe, [BBP97], done in 1995, but only just published, that discovered an amazing formula for π as is a power series in 16−k, enabling any base-16 digit of π to be computed without knowledge of any prior digits. In this paper, Mathematica is used to find several simpler formulas having powers of 4−k.
They also note that it has been proven that their methods cannot be used to exhibit similar formulas in powers of 10^{-k}.

REFERENCES

[BB83] J. M. Borwein and P. B. Borwein. A very rapidly convergent product expansion for π. BIT (Nordisk tidskrift for in-
Borwein:1984:AGM

Borwein:1984:CHO

Borwein:1984:EIA

J. M. Borwein and P. B. Borwein. Elliptic integrals and approximations to \(\pi \). Typescript, with 84-01 added by hand on cover page., January 1984.

Borwein:1984:EOA

Borwein:1984:RCC

Borwein:1984:TCS

REFERENCES

References

REFERENCES

REFERENCES

Borwein:1993:ICM

Borwein:1993:MMB

Bauschke:1994:DAP

Borwein:1994:STE

Bauschke:1995:CLM
Borowski:1995:DCD

Borowski:1995:SXC

Borwein:1995:I

Bauschke:1996:PAS

Borwein:1996:SSA

Borwein:1996:RP

Bauschke:1997:LFM
Heinz H. Bauschke and Jonathan M. Borwein. Legendre functions and the method of random Bregman projections. *Journal of

[Borwein:1997:AGMa]

[Borwein:1997:EDA]

[Borwein:1997:MMS]

Jonathan M. Borwein and Peter B. Borwein. Mathematics on main street. Board–Faculty Association Dinner, Simon Fraser University, Burnaby, BC, Canada., April 24, 1997.

[Borwein:1998:PAS]

[Borwein:1998:DRDa]

[Borwein:1998:DRDb]

Jonathan M. Borwein and David J. Broadhurst. Determinations of rational Dedekind-zeta invariants of hyperbolic manifolds and Feynman knots and links. CECM Preprint 98:120, Centre

[BBxxb] J. M. Borwein and P. B. Borwein. On the mean iteration \((a, b) \leftarrow ((a + 3b)/4, (\sqrt{ab} + b)/2)\). Report, Department of Mathematics, Statistics and Computing Science, Dalhousie University, Halifax, NS B3H 3J5, Canada, 19xx. 39 pp.

[BBxxc] Jonathan M. Borwein and Peter B. Borwein. Pi and its computation: a twenty-two hundred year quest continues: why it is now possible to calculate a billion digits of \pi. Report, Dalhousie University, Halifax, NS, Canada, 19xx. 21 pp. Undated typeset
manuscript intended for *Scientific American*, but never published. The latest reference is to a 1987 book.

Borwein:2000:AGM

Bailey:2001:EMR

Bauschke:2001:JSC

Borwein:2001:SRP

Borwein:2001:CMCa

REFERENCES

Borwein:2005:TTG

Borwein:2005:ADL

Borwein:2005:EDA

Borwein:2005:TFI

Bailey:2006:EBE

Bailey:2006:FGE

Borwein:2006:TTG

Bailey:2007:SPb

Bailey:2007:SPa

Borwein:2007:VPE

Bailey:2008:HPC

Bailey:2008:HPN

REFERENCES

REFERENCES

[BB11i] David H. Bailey and Jonathan M. Borwein. The greatest mathematical discovery? Report, Lawrence Berkeley National Laboratory and Centre for Computer Assisted RMA, University of

[Borwein:2011:PSE] D. Borwein and Jonathan M. Borwein. Proof of some experimentally conjectured formulas for \(\pi \). Preprint, Department of Mathematics, University of Western Ontario and Centre for Computer-assisted Research Mathematics and its Applications (CARMA), School of Mathematical and Physical Sciences, University of Newcastle, London, ON, Canada and Callaghan, NSW 2308, Australia, December 4, 2011.

REFERENCES

REFERENCES

Bailey:2012:SMP

Bailey:2012:WEW

Borwein:2012:YTN

Bailey:2013:DPR

Bailey:2013:DPN

Bailey:2013:CLF

REFERENCES

[Bailey:2013:SSF] David H. Bailey and Jonathan M. Borwein. Stupid science funding decisions? Australia’s not the only dunce. The Conversation,
REFERENCES

[Bailey:2013:WSB]

[Bailey:2013:WWW]

[Bailey:2013:YWF]

[Bailey:2014:OCE]

[Bailey:2014:PDUa]

REFERENCES

com/david-h-bailey/does-gun-control-encourage-crime_b_7917684.html.

Bailey:2015:EAM

Bailey:2015:ECO

Bailey:2015:HPA

Bailey:2015:HMP

Bailey:2015:HWD

Bailey:2015:LFC

REFERENCES

REFERENCES

[BB16f] David H. Bailey and Jonathan M. Borwein. Are humans or computers better at mathematics? Blog posting, November 27, 2016. This article was co-authored with Jonathan M. Borwein before his death on 2 August 2016. A condensed version of this article appeared in [BB16n].

REFERENCES

huffingtonpost.com/david-h-bailey/pi-day-2016_b_9432600.html.

REFERENCES

REFERENCES

[BBB00b] J. M. Borwein, P. B. Borwein, and D. H. Bailey. Ramanujan, modular equations, and approximations to pi or how to compute one

REFERENCES

Bailey:2015:ELG

Borwein:2016:RME

Bailey:2007:HFI

Borwein:1996:GCP

Bailey:2008:EIE
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[BBC12c] David H. Bailey, Jonathan M. Borwein, Cristian S. Calude, Michael J. Dinneen, Monica Dumitrescu, and Alex Yee. Normality

REFERENCES

Bailey:2007:HSI

Borwein:2007:DCR

Bailey:2004:BEA

Bailey:2013:EFS

Bailey:2013:LSA

Borwein:1989:PEN

REFERENCES

[BBWY12a] Heinz H. Bauschke, Jonathan M. Borwein, Xianfu Wang, and Liangjin Yao. The Brézis–Browder theorem in a general Ba-
REFERENCES

Bauschke:2012:CPM

Bauschke:2012:EMM

Bauschke:2013:MOB

Borwein:2011:MOE

Borwein:2012:CZD

Borwein:2013:MOE

Borwein:2004:DSS

Borwein:2007:IPA

Borwein:2009:UBC

Borwein:2010:DTM

Borwein:2013:CFW

Borwein:2015:PPB

REFERENCES

Borwein:2016:CLT

Borwein:2017:CLA

Borwein:2003:PDA

Borwein:2009:EBS

Borwein:2005:CFT

Borwein:1986:LOC
REFERENCES

REFERENCES

REFERENCES

[BF89a] Jon Borwein and Simon Fitzpatrick. Local boundedness of monotone operators under minimal hypotheses. Bulletin of the
REFERENCES

[BF94] Jonathan M. Borwein and Marián Fabián. A note on regularity of sets and of distance functions in Banach space. Jour-

Borwein:1995:CCS

Borwein:1995:SCB

Borwein:1995:CCH

Borwein:2001:DIS

Borwein:2006:MS

Borwein:2006:MKM

REFERENCES

in artificial intelligence. Springer-Verlag, Berlin, Germany / Hei-
delberg, Germany / London, UK / etc., 2006. ISBN 3-540-
37104-4 (paperback). ISSN 0302-9743 (print), 1611-3349 (elec-
gov/catdir/enhancements/fy0825/2006930246-d.html;http://
www.loc.gov/catdir/enhancements/fy1402/2006930246-t.
html.

[BFG87] J. M. Borwein, S. P. Fitzpatrick, and J. R. Giles. The differen-
tiability of real functions on normed linear space using general-
ized subgradients. Journal of Mathematical Analysis and Ap-
plications, 128(2):512–534, 1987. CODEN JMANAK. ISSN 0022-
com/science/article/pii/0022247X87902034.

[BFG03] Jonathan Borwein, Simon Fitzpatrick, and Roland Girgen-
sohn. Subdifferentials whose graphs are not norm × weak∗
closed. Canadian mathematical bulletin = Bulletin canadien
de mathématiques, 46(4):538–545, December 2003. CODEN
CMBUA3. ISSN 0008-4395 (print), 1496-4287 (electronic).
docserver.carma.newcastle.edu.au/149/.

mal convex uscos and monotone operators on small sets. Canadian
Journal of Mathematics = Journal canadien de mathématiques,
newcastle.edu.au/1573/.

The range of the gradient of a continuously differentiable bump.
ISSN 1345-4773 (print), 1880-5221 (electronic). URL http://
co.jp/online2/opjnca/vol12/pl.html. Special issue for Profes-
sor Ky Fan.

[BFL02] J. M. Borwein, M. Fabian, and P. D. Loewen. The range of
the gradient of a Lipschitz C^1-smooth bump in infinite dimen-

REFERENCES

REFERENCES

REFERENCES

[BGV02] Jon Borwein, John Giles, and Jon Vanderwerff. Rotund norms, Clarke subdifferentials and extensions of Lipschitz functions. *Non-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Jonathan M. Borwein and Adrian S. Lewis. Partially finite convex programming. I. Quasi relative interiors and duality theory.
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[BMP05] Jonathan M. Borwein, Mason Macklem, and Jaehyun Paek. A prototype for the federated world directory of mathematicians. In
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

DEN PJMAAI. ISSN 0030-8730 (print), 1945-5844 (electronic).

REFERENCES

[Bor87k] Jonathan M. Borwein. Spectral analysis via convex programming. Charnes’ 70th birthday conference, IC2, University of Texas at Austin, Austin, TX, USA., October 15, 1987.

REFERENCES

Jonathan M. Borwein. The arithmetic–geometric mean of Gauss
and Legendre: An excursion. Distinguished Lecturer Series, Uni-

Jonathan M. Borwein. The arithmetic–geometric mean of Gauss
and Legendre: An excursion. Colloquium, University of Newcas-

Jonathan M. Borwein. The arithmetic–geometric mean of Gauss
and Legendre: An excursion. Colloquium, University of New Eng-

Jonathan M. Borwein. The arithmetic–geometric mean of Gauss
and Legendre: An excursion. Colloquium, Auckland University,

Jonathan M. Borwein. The arithmetic–geometric mean of Gauss
and Legendre: An excursion. Colloquium, Macquarie University,

Jonathan M. Borwein. Borchardt’s four-dimensional arithmetic–
geometric mean. Seminar, Macquarie University, Sydney, NSW,

Jonathan M. Borwein. Ekeland’s theorem and its extensions. Dis-
tinguished Lecturer Series, University of Delaware, Newark, DE,

Jonathan M. Borwein. Ekeland’s theorem and its extensions. Col-
loquium, University of New England, Armidale, NSW, Australia.,

REFERENCES

[Bor89g] Jonathan M. Borwein. Quadratic mean iterations. Carleton University/Université d’Ottawa joint Colloquium, Carleton University, Ottawa, ON, Canada., March 4, 1989.

REFERENCES

[Bor90g] Jonathan M. Borwein. Differentiability properties of convex, Lipschitz and semicontinuous functions. Ontario Math Meetings #88, Brock University, St. Catharines, ON, Canada., April 21, 1990.

REFERENCES

[Bor90s] Jonathan M. Borwein. The history of the computation of pi. APICS Lecture, Memorial University, St John’s, NL, Canada., March 31, 1990.
REFERENCES

[Bor90t] Jonathan M. Borwein. The history of the computation of pi. APICS Lecture, Université de Moncton, Moncton, NB, Canada., April 5, 1990.

[Bor90w] Jonathan M. Borwein. The history of the computation of pi. APICS Lecture, Memorial University, St John’s, NL, Canada., March 31, 1990.

[Bor90x] Jonathan M. Borwein. The history of the computation of pi. APICS Lecture, Université de Moncton, Moncton, NB, Canada., April 5, 1990.

REFERENCES

REFERENCES

[Bor91c] Jonathan M. Borwein. Convex programming and the choice of entropy in spectral estimation. Special session on Dynamic Opti-

[Bor91g] Jonathan M. Borwein. Discovering analytic objects by computer. Colloquium, Department of Mathematics, Guelph University, Guelph, ON, Canada., November 12, 1991.

[Bor91i] Jonathan M. Borwein. Euler, Mahler, Ramanujan and a little pi: Discovering analytic objects by computer. One of two invited talks at the Festkolloquium for Dr. A. Peyerimhoff ’s 65th birthday, Ulm, Germany., April 25, 1991.

Jonathan M. Borwein. Euler, Mahler, Ramanujan: Discovering analytic objects by computer. Colloquium, Department of Mathematics, York University, Toronto, ON, Canada., February 6, 1992.
REFERENCES

[Bor92g] Jonathan M. Borwein. Euler, Mahler, Ramanujan: Discovering analytic objects by computer. Seminar, Department of Mathematics, University of Michigan, Ann Arbor, MI, USA., February 20, 1992.

[Bor92n] Jonathan M. Borwein. Iterative methods for solving inverse problems and computing fixed points. Third FrancoLatin American

[Bor93a] J. M. Borwein. Asplund spaces are sequentially reflexive. Accepted for publication in the Canadian Journal of Mathematics, but withdrawn and merged with another paper. Jon Borwein recorded that as publication number 121, but because the article numbers changed with each update of his CV, that number has long been incorrect., 1993.

REFERENCES

REFERENCES

[Bor94e] Jonathan M. Borwein. Experimental mathematics, promises and pitfalls. Colloquium, Department of Mathematics, Indiana University, Bloomington, IN, USA., November 18, 1994.
Borwein:1994:EMPd

Borwein:1994:GCP

Borwein:1994:GME

Borwein:1994:MEM

Jonathan M. Borwein. Maximization entropy methods (using derivative information) and infinite dimensional convex programming. XV International Mathematical Programming Symposium, Ann Arbor, MI, USA., August 18, 1994.

Borwein:1994:NASa

Borwein:1994:NASb

Borwein:1994:NASc

Borwein:1994:NASd

REFERENCES

REFERENCES

[Bor95m] Jonathan M. Borwein. Experimental mathematics, promises and pitfalls. Colloquium, Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, SK, Canada., November 9, 1995.

[Bor95o] Jonathan M. Borwein. Maximum entropy methods (using derivative information) and infinite dimensional convex programming. Pure Mathematics Seminar, University of Western Australia, Crawley, WA 6009, Australia., August 1, 1995.

Borwein:1996:DMW

Borwein:1996:EMP
Jonathan M. Borwein. Experimental mathematics, promises and pitfalls. Colloquium & MAA Visiting Lecture, Department of Mathematics, Western Washington University, Bellingham, WA 98225, USA., February 6, 1996.

Borwein:1996:MPW

Borwein:1996:MMM

Borwein:1996:MESa

Borwein:1996:MESb

Borwein:1996:MESc
Jonathan M. Borwein. Multidimensional Euler sums: some recent results. Fifth Canadian Number Theory Association Meeting, Carleton University, Ottawa, ON, Canada, August 17–22., August 21, 1996.

Borwein:1996:OMP
REFERENCES

REFERENCES

REFERENCES

[Bor97s] Jonathan M. Borwein. Talking about pi. Colloquium, School of Mathematical Sciences, Lakehead University, Thunder Bay, ON P7B 5E1, Canada., September 22, 1997.

[Bor97v] Jonathan M. Borwein. Three adventures: Symbolically discovered identities for \(\zeta(4n + 3) \) and like matters. Joint CS/C&O Colloquium, University of Waterloo, Waterloo, ON, Canada., October 9, 1997.
REFERENCES

[Bor98n] Jonathan M. Borwein. Projection algorithms and monotone operators. Plenary lecture in conjunction with CMA National Symposium on Functional Analysis, Optimization and Applications,

[Bor99d] Jonathan M. Borwein. Doing math in the presence of technology. Colloquium, Department of Mathematics and Statistics, Miami
University of Ohio (1999 Buckingham Fellow in Residence)., October 14, 1999.

[Bor99e] Jonathan M. Borwein. The doing of mathematics in the presence of technology. Canadian Mathematics Education Study Group (CMESG), First Plenary, Brock University, St. Catharines, ON, Canada, June 4–8., June 4, 1999.

REFERENCES

[Bor99m] Jonathan M. Borwein. Generic behaviour of generalized gradients. Special Session on Nonlinear Analysis, Canadian Mathematical Society Summer Meeting, Memorial University, St John’s, NL, Canada., May 29, 1999.

[Bor99t] Jonathan M. Borwein. Numerical and computational mathematics at the undergraduate level. Technology in Mathematics
REFERENCES

Education (TMEST), Plenary, Brock University, St. Catharines, ON, Canada, June 3–4., June 4, 1999. URL http://docserver.carma.newcastle.edu.au/246/.

[Bor00e] Jonathan M. Borwein. Experimental mathematics and exact computation. Colloquium, University of Western Australia, Crawley, WA 6009, Australia., April 19, 2000.
REFERENCES

[Bor00g] Jonathan M. Borwein. Experimental mathematics and exact computation. Ernst Schrödinger Lecture, Schrödinger Institute, University of Vienna, Vienna, Austria., October 5, 2000.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[Bor02c] Jonathan M. Borwein. The CEIC: The next four years. West Coast Optimization Fall Meeting, University of Washington, Seattle, WA, USA, November 2, 2002.

REFERENCES

[Bor02h] Jonathan M. Borwein. The experimental mathematician: A computational guide to the mathematical unknown. Plenary Lecture at 25th Anniversary Meeting of the Canadian Math Educators Study Group (CMESG), Queen’s University, Kingston, ON, May
REFERENCES

[Bor02o] Jonathan M. Borwein. Introduction to the work of the CEIC. Electronic Information Afternoon at the ICM, Beijing, August 20–27, 2002., August 26, 2002.

REFERENCES

REFERENCES

REFERENCES

[Bor03-34] Jonathan M. Borwein. Three open questions. Special Session in Honour of Petar Kenderov’s 60th Birthday, First Congress of
the Mathematical Society of South East Europe (MASSEÉ), Bulgaria., September 17, 2003.

REFERENCES

REFERENCES

Borwein:2004:WC

Jonathan M. Borwein. The work of the CEIC. Presentation to ICMI General Assembly, ICME10, Copenhagen, Denmark, July 5–11, July 9, 2004.

Borwein:2005:EMPa

Borwein:2005:TTC

Jonathan M. Borwein. (2 times) ten challenge problems. Third Clifford Lecture, Tulane University, New Orleans, LA, USA., April 1, 2005.

Borwein:2005:GV

Borwein:2005:A

Jonathan M. Borwein. Aarms. Presentation, Department of Math and Stats, Memorial University, St John’s, NL, Canada., November 17, 2005.

Borwein:2005:AP

Borwein:2005:ATS

Borwein:2005:CLC

Jonathan M. Borwein. Computational lists and challenges in mathematics? Applied and Computational Mathematics Sem-
REFERENCES

inan, Dalhousie University, Halifax, NS, Canada., October 28, 2005.

REFERENCES

[Bor05r] Jonathan M. Borwein. The future is here? Presentation to National Educational Forum, Fields Institute, Toronto, ON M5T 3J1, Canada, May 6–8., May 6, 2005.

[Bor05t] Jonathan M. Borwein. High performance mathematics. Presentation to HPC@Dal, Dalhousie University, Halifax, NS, Canada., June 10, 2005.

[Bor05z] Jonathan M. Borwein. Lists and challenges in mathematics? Colloquium, Mathematics Department, Rutgers, the State University of New Jersey., November 10, 2005.

REFERENCES

[Bor06g] Jonathan M. Borwein. Collaborative environments. Panel Discussion HPCS 06, Memorial University, St John’s, NL, Canada., May 17, 2006.

[Bor06s] Jonathan M. Borwein. Four lectures on variational principles. II: Monotone operators as convex objects. Spring School on Analysis, Paseky, Czech Republic, April 25, 2006.

[Bor07-27] Jonathan M. Borwein. Some convexity results a Jon or a Thompson might like. 65th Birthday Colloquium lecture for Jon Thompson, (Inter-Campus Seminar Day), University of New Brunswick, Moncton, NB, Canada., June 8, 2007.

REFERENCES

[Bor08h] Jonathan M. Borwein. Effective computation of Bessel functions. SIAM-AMS Special Session on Special Functions, Combined Membership Meetings, San Diego, CA, USA, Jan 6–9, 2008., January 6, 2008.

REFERENCES

[Bor08r] Jonathan M. Borwein. The past 60 years in mathematics. Colloquium, Department of Mathematics, University of Auckland, Auckland, New Zealand., December 4, 2008.

[Bor09s] Jonathan M. Borwein. Introduction to carma. Presentation to students from Dungog High School in CARMA., August 11, 2009.

REFERENCES

[Bor11e] Jonathan Borwein. If I had a blank cheque I’d ... turn IBM Watson into a maths genius. The Conversation, ??(?!!):??, July 8, 2011. URL https://theconversation.com/if-i-had-a-blank-cheque-id-turn-ibms-watson-into-a-maths-genius-1213

REFERENCES

Jonathan M. Borwein. Actually: Teaching and researching at the tertiary level with collaboration tools. CARMA Colloquium., November 3, 2011.

Jonathan M. Borwein. Are pi’s days numbered? Interview with ABC Goldcoast, Australia., July 18, 2011.

Jonathan M. Borwein. CARMA and me. New Fellows Seminar, Australian Academy of Science, Shine Dome, Canberra, ACT, Australia., May 4, 2011.

Jonathan M. Borwein. CARMA and me: An introduction. CDSC-CARMA-CISRA (Canon Information Systems Research Australia) afternoon, CARMA., April 26, 2011.

Jonathan M. Borwein. CARMA and me: or why am i in Oz? JonFest 2011, IRMACS, Simon Fraser University, Burnaby, BC, Canada, 16–20 May., May 17, 2011.

Jonathan M. Borwein. CARMA and me: or why am i in Oz? Two presentations to 2011 Teachers’ Visit Day, University of Newcastle, NSW, Australia. July 8., June 30, 2011.
REFERENCES

[Bor11t] Jonathan M. Borwein. Fractal geometry. Presentation to Year 7 students form Wallsend with Michael Rose to the NSW MEGS program (Making Educational Goals Sustainable)., February 16, 2011.

REFERENCES

REFERENCES

[Bor12n] Jonathan M. Borwein. Interdisciplinarity, innovation, collaboration and creativity or how to manage a research portfolio. CARMA Colloquium., September 13, 2012.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[Bor14x]</td>
<td>Jonathan M. Borwein. Seeing things in mathematics by walking on real numbers. Inaugural Möbius Lecture Series, Colloquium, Department of Mathematics, Baylor University, Waco, Texas., April 24, 2014.</td>
</tr>
</tbody>
</table>
REFERENCES

REFERENCES

Keynote lectures, RMIT Workshop on Optimisation, August 11, 2013., August 11, 2015.

REFERENCES

REFERENCES

Borwein:1984:HMM

Borwein:19xx:WMS

[BRxx] J. M. Borwein and B. Richmond. When is a matrix a square? Research report 5, Department of Mathematics, Dalhousie University and Department of Combinatorics and Optimization, University of Waterloo, Halifax, NS, Canada and Waterloo, ON, Canada, 19xx. 22 pp.

Berndt:2001:RES

Borwein:2010:ICF

Borwein:2012:EWC

Borwein:2013:TTS

Borwein:2013:EWC

...

REFERENCES

REFERENCES

[Borwein:1989:HC]

[Borwein:1997:OJP]

[Borwein:1999:ITD]

[Borwein:1999:ITD]

REFERENCES

REFERENCES

Borwein:2014:BRB

Borwein:2015:CU

Borwein:2015:RNP

Borwein:2016:EAM

Borwein:2016:CFD

Borwein:2013:CLB

[BSM13] Jonathan M. Borwein, Matthew Skerritt, and Christopher Maitland. Computation of a lower bound to Giuga’s primality con-
REFERENCES

REFERENCES

REFERENCES

Ben-Tal:1988:DAM

Borwein:1997:SAR

Borwein:1998:NCC

Borwein:1999:PSVa

Borwein:1993:DKK

Borwein:1994:DKK

REFERENCES

REFERENCES

REFERENCES

[BW82b] J. M. Borwein and H. Wolkowicz. Characterizations of optimality without constraint qualification for the abstract convex program. In Optimality and Stability in Mathematical Programming,
REFERENCES

Borwein:1986:SCQ

Borwein:1997:DDF

Borwein:1997:SRR

Borwein:1998:CMV

Borwein:2000:LFM

REFERENCES

REFERENCES

REFERENCES

BY12f Jonathan M. Borwein and Liangjin Yao. Maximally monotone operators of negative infimum type are of dense type: the proof revisited. Preprint., June 2012.

REFERENCES

REFERENCES

[BZ97] Jonathan M. Borwein and Qiji J. Zhu. Variational analysis in nonreflexive spaces and applications to control prob-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[EB08]
REFERENCES

Erdos:1986:PSS

Fabian:1989:STL

Faltings:1996:MM

Ferris:1991:WTP

Foster:2000:IBE

Fletcher:2005:BBM

Fang:2015:DSF

Ganz:2014:DES

Reinhard E. Ganz. The decimal expansion of π is not statistically random. *Experimental Mathematics*, 23(2):99–104, 2014. CODEN ????? ISSN 1058-6458 (print), 1944-950X (electronic). See the reproduction of results, and reanalysis, in [BBBR16], that reveals a flaw in the statistical analysis in this paper: Ganz used only a single blocksize in sampling digits, and that blocksize produces anomalous statistics.

Ganz:2017:RRC

Gessel:1988:PSSb

Gao:2015:BBL

Georgiev:2005:PBP

Gourevitch:2007:CBS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Kisilevsky:2004:NTP

Kimberling:1986:PSS

Krejic:2016:BBM

Kortenkamp:2016:JMB

Kitazume:2000:BIV

Kellar:2005:DCM

Kohlenbach:2001:QVT

Komatsu:2000:IDA

Komatsu:2002:IDA

Komatsu:2004:IDA

Kruger:2016:BPV

Knuth:1990:PSSa

REFERENCES

-Knuth:1990:PSSb-

-Knuth:1990:PSSc-

-LaCruz:2009:EBB-

-Li:2015:SNB-

-Liu:2000:BCT-

-Liu:2001:SES-

-Lewis:2001:BCT-
REFERENCES

Lin:2009:PPM

Liu:2013:MSB

Limber:1995:DRF

Li:2011:FSM

Lord:1990:BRD

Lorentzen:2008:CDR

REFERENCES

REFERENCES

279

Miller:1989:FER

Monsky:1989:PSS

Morovati:2016:BBM

Molina:1996:PBB

Musev:2011:QJB

Monaghan:2016:TMI

[NWY09] Yasushi Narushima, Takahiko Wakamatsu, and Hiroshi Yabe. Extended Barzilai–Borwein method for minimizing a strictly convex

REFERENCES

REFERENCES

Qiu:2014:NAB

Rowe:2005:EDC

Raydan:1993:BBC

Raydan:1997:BBG

Reisner:2002:NTB

Robin:2006:BRP

Rajkovic:2009:GBC

Raydan:2002:RSD
Marcos Raydan and Benar F. Svaiter. Relaxed steepest descent and Cauchy–Barzilai–Borwein method. Computational optimi-
REFERENCES

Richter:1993:PSP

Rudin:1989:PSE

Reich:2015:IPO

Schoenberg:1987:APS

Stodden:2013:SDR

Singh:1984:ATS
S. P. Singh, J. W. H. Burry, and B. Watson, editors. *Approximation Theory and Spline Functions. NATO Advanced Study Institute held at Memorial University of Newfoundland during August*

Seife:2001:PKE

Selin:2016:EHS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Yang:1994:EBP

Yongxin:2000:GEV

Yuan:2012:BBG

Zaharescu:2006:BCA

Zalinescu:1986:LEJ

Zeilberger:2005:SSM

REFERENCES

