A Complete Bibliography of the Publications of Jonathan Michael Borwein

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA

Tel: +1 801 581 5254
FAX: +1 801 581 4148

E-mail: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

02 December 2016
Version 1.16

Abstract
This bibliography records publications of Jonathan Michael Borwein.

Title word cross-reference

#11418 [BB09e]. #13553 [Bor81a].

(a, b) ← ((a + 3b)/4, (√a + b)/2) [BBxxb]. (a, b) ← (a + 3b, √a + b) [BB99b].

(G) [BBL99]. 1/π [BB87b, BB88c, BB93d]. 24 [CKM+16, BB16m]. $25
[BB93g]. $27.95 [BB91d]. $30.00 [Coh15]. $44.95 [BC96]. $45 [Zei05].
$45.00 [Sha05]. $49 [Zei05]. $49.00 [Ban10, Sha05]. $49.95 [Ber88]. 5
[Ade13, ZS12]. $59.50 [Bor06o]. 6 [ZZ14]. $65 [Odl11]. $69.95 [Bai91]. 8
[BB16m, Via16]. $99.00 [Bor99b]. [na + b] [Bor91m]. [na + γ] [BB93e]. 8
[BFG03]. b [BBG04]. R [DL02]. C1 [BKW02, BFL02]. W [BL16b]. DAD
[BLN94]. ℓ0 [BL11]. ℓ1 [XWQ14]. ε [LS00, YS00]. k [BBB96b, BBB97d]. L
[BB15c, BB07c]. L1 [BZ97, Hon85]. l′nfty [Hon85]. l′ [Bor98g]. L1
[BL93b, BV97]. L1(Ω, μ) [BF93c]. L1/2 [WSL16]. Lp [BTBT88, BBL10]. n
\[p \] [BLS^{+16}]. \(\pi \) [AW97, AABB12, Bai88, BBC^{+11a}, BBC^{+12b}, BBC^{+12c}, BB38, BB48b, BB48c, Bor85b, BB86b, BB86c, BB89a, BG97b, Borxx, BB11j, Bor14o, Bor16o, Gan14, GG07, Gui08, Nim15, TK97, Wei15]. \(\pi^2 \) [BBMW11, BBMW13]. \(q \) [LL01, PP11, War03]. \(R^n \) [BBW96]. \(\sqrt{5} \log \phi \) [Ade14b]. \(\theta(z, q) \) [HGB93]. \(\times \) [BFG03]. W [Bor16m, Bor16n, BL16a]. Weak* [BF95b]. \(x_n := M(x_{n-1}, x_{n-2}, \ldots, x_{n-k}) \) [Bor94a]. \(xy + yz + zx \) [BC00]. \(\zeta(2n + 2) \) [BBB05, BBB06a]. \(\zeta(4) \) [BB95d]. \(\zeta(4n + 3) \) [AG99, BB97c, Bor97u, Bor97v, BB05f].

0 [BC96, Bor06o]. 0-12-558630-2 [BC96]. 0-19-850763-1 [Bor06o]. 0-691-14247-5 [BO11b].

1 [Bor06o, Sha05]. 1-56881-136-5 [Sha05]. 1-56881-211-6 [Sha05]. 100-Digit [Bor05-40]. 125th [AAB12]. 14th [IEE08]. 17th [IEE08]. 1880-2 [Bor99b]. 1983 [SBW84]. 19th [Hd12].

2 [BC96]. 2000 [Tod03]. 2000j [BZ02a]. 2001 [BB12p]. 2002 [KG04]. 2012 [BBL^{+13}]. 2013 [BS14a]. 2014 [BBC^{+14a}]. 2017 [BE16]. 20th [IEE08]. 21st [BB12r, BBC^{+14a}, Bor03-27, Bor03-28, Bor03-29, Bor04-27, Bor04w, Bor04x, Bor04y, Bor04z, Bor09r, Bor10a, HF05, Hoa05, R^{+}05, Zei05, BB04b].

38 [BZ02a, BZ02b].

4 [Bor81a]. 4N [Bor97p]. 4th [HY14].

5 [Sha05]. 51 [Bor81a]. 5th [BF06b].

60th [BBB^{+13}]. 6430-6435 [BSZ^{+83}].

7th [KG04].

8 [Zäl86]. 80th [Ano15]. 85h [Zäl86].

A. [BS14b]. AARMS [Bor05d, Bor05e, Bor07a]. Abel [Bor03p]. Absence [BS11b, Bor10i, Bor10j, Bor10k, Bor10l, Bor11q, Bor11r]. Absolute [BY84]. Abstract [BW79a, BW79b, BW81c, BW81b, BW82a, BW82b]. abundant
Chapter [BM07d]. Character [Bor14d, BB16c, BZB08]. Characterization [BW81c, BF95a, BBP03, Bor84b, BRS11]. Characterizations [BW79a, BW79b, BW82a, BW82b, Bor94b, BFV97, BV10b, How14]. characterizes [BO78]. charlatanism [BBLZ14]. Chasing [Bor03p]. Chebysev [Bor13h]. Chebyshev [Bor06u, Bor07y, Bor08t, Bor13d, Bor13e]. Checkerboard [Bor13j, PHB14]. cheque [Bor11e]. children [BB12m]. CHIP [BBT00]. Chiropractic [Bor11a]. Choi [HC09, Osb05, Tha02]. choice [Bor90c, Bor90d, Bor91b, Bor91c, Ray93]. Chronology [Bor04n]. ci [BB95c]. Circle [Bor94h, Bor90o, Bor90p]. Clarrendon [BB93g]. Clarke [BF95a, BW97a, BM97a, BW00, BM00, BGV02, BW05b]. Class [BBBC07, BB93d, BBC06, BG03b, Bor07e, LZ14]. classification [Bor94c]. classifications [BFV94, Bor95t]. Clausen [BBK00, BBK01]. Clearing [BR14c, BR14a]. Climate [BB12w]. Climbing [BB11d]. Closed [BF95c, Bor10f, Bor10g, BC13, BBL97b, BS86, BS87, BFG03, BS16b]. closedness [BM09, BM10]. closure [BY12d, BY14b]. cm [Bai91, Ber88]. co [IEE08]. co-hosted [IEE08]. Coast [BLM^+07, BJL^+08, BB12j]. Coast-To-Coast [BBJ12, BLM^+07, BJL^+08]. Cobzas [Bor81a]. coderivatives [BBW96]. coefficients [BL05, BL08, War03]. coffee [BR13a]. coincide [BMWY11]. coke [Bor10q]. Cold [BB15d]. Collaboration [Bor03b, Bor03c, Bor03a, Bor04a, Bor04b, Bor04c, Bor04i, Bor05j, BLM^+07, BM07c, Bor09w, Bor09x, Bor11g, Bor11-36, Bor12n, BJ12j]. Collaborative [Bor09e, Bor01f, Bor04d, Bor06d, Bor06b, Bor06c, Bor06g, Bor07f, IEE08, Bor16g]. Collaborator [Bor14h, Bor14i, Bor14j, Bor14k, Bor14m, Bor15h]. collection [Bor97c]. college [BW97]. collide [BB14n]. Collins [BB95b, BB02]. Color [BB13c]. Colorful [BB13c]. Columbia [BBJC97]. combat [BB12v]. Combinatorial [ABT13b, ABT14a, BBBL98a, BBBL98b, ABT14c]. come [BB12h, BB13t]. comes [Bor15b]. Coming [Bor07w, Bor07-32, Bor08n, Bor08o]. Communicating [BRR08, BMPR02, Ban10]. communications [Bor92d]. Community [Bor03q, BS05]. compact [BRLZ00, BLZ01]. Compactly [BLM00]. compactness [BF95b]. Companion [HDG^+15, Bor09b]. comparison [BGL93]. compendium [BBB96b, BB97d]. Competition [Bor77d]. Complementarity [BD86, AR13, Bor84a, Bor85c, Bor87e, BD89, HLZ14, HLY16, KJR16, LSL11, LZ14, Li15]. complementary [BC09]. complete [BZ92]. completely [SZ14]. Completeness [Bor83b, QR07]. Completion [ABT13a, ABT14b, Bor13i, Bor14e, Bor14f, Bor15g, Bor16q]. Complex [BC04a, BMN00, Bor04-29, Bor10-29]. Complex-Parameter [BC04a]. Complexity [BB84e, BB87d, BB88d, BBxxa, BB16d, BB98a, Ber88, Wim88]. complicated [Bor14y, Bor16-28]. composite [HL15a]. Composition [KMZ^+05]. compositions [BM97e]. Compound [BB93f]. Comprehensive [BS14a, BS14b]. Compressed [BB13d, Bor09e, Bor10h, Bor11o, QYX14]. compressive [XWQ14]. Computation [Bai88, BB08a, BBMW11, BB12d, BBC14b, BCC^+14a, BB15b, BB15a, BB16a, BB16b, BB16c, BB84a, BB97b, Bor99g, Bor99h, Bor99i, Bor99j, Bor99k, Bor99l, Bor99w, BB00, Bor00h, Bor00c, Bor00d, Bor00e, Bor00f, Bor00g, Bor00h, Bor00i, Bor00t, Bor01i,
Bor01j, Bor01k, Bor03b, Bor03c, Bor03a, Bor04a, Bor04b, Bor04c, BB04a, Bor05-41, BH06, Bor07h, Bor07t, Bor07u, Bor08h, Bor09h, Bor09i, Bor09t, Bor10o, Bor11s, Bor11w, Bor11x, Bor11y, Bor11f, Bor11z, Bor11-27, Bor12c, Bor12f, BMS13, BSM13, Bor14g, Bor14h, Bor14i, Bor14j, Bor14k, Bor14l, Bor14m, Bor15h, Bor16o, MTCB99, BBP97, BB01a, BB11h, BB12, BMW13, BB15c, BB16k, Bor90q, Bor90r, Bor90s, Bor90t, Bor90u, Bor90v, Bor90w, Bor93h, Bor93i, Bor93o, BBxxc, BMN00, Bor10s].

Computation [BB16p]. Computational

[BB09a, BBB13, BBL13, BBBR16, Ber88, BB87d, BBC98, Bor99t, BBC00, Bor00s, Bor02j, Bor02k, Bor03n, Bor05g, Bor05-37, SBB13, Wim88, Zei05, BB09c, BB16d, Bor93p, BB98a, BS00, BBG03, BB10c, BLLN95].

Compute [BBB97c, BBB00b, BBB04b, BBB16, BBB97a, BBB98].

computed [MTCB98]. Computer

[BB05a, BB08c, BBKL16, Bor92j, BB92b, Bor93c, Bor93d, Bor06h, Bor07g, Bor08d, Bor08e, Bor08f, Bor09d, Bor11-28, Bor14h, Bor14i, Bor14j, Bor14k, Bor14m, Bor15h, BB12, BB12g, BB13o, Bor91d, Bor91e, Bor91f, Bor91i, Bor91h, Bor91k, Bor91l, Bor92f, Bor92g, Bor08c, BD09].

Computer-assisted

[BB05a, BB08c, Bor06h, Bor07g, Bor08d, Bor08e, Bor08f]. computers [BB12o, BB16g, BB16o]. Computing

[BBLZ13, BBS16b, Bor89h, BB01d, Bor01e, Bor02s, Bor02t, Bor03i, Bor04f, Bor04g, Bor04h, Bor05-27, Cal16, IEE08, JWDS+14, Bor92l, Bor92m, Bor92n, Bor98q, Bor03y, Bor03z, Bor05-40, Bor06-28, BS11c, BS12a]. Conant

[Bai16a, BE16]. concave [Bor86b]. Concavity [Bor90b]. concept [BRS11]. Conditions [BBY12, BBY14, Bor82b, BZ88, BL91d, BTZ98]. Cone

[BW81a, BW05a, BW81d, BB05a, BB16]. cone-convex [BW81d]. Cone-monotone [BW05a, BBL04, BG09]. Cones

[Bor77a, Bor78a, Bor86d, Bor87c, Bor87b, EB08, BO76, Bor78c, Bor80a, BM09, BM10, Zhu91]. Conference

[Ano15, Bea13, HY14, ABD03, BF06b, KG04, RZ15]. conformation [BT14b, BT14a]. confusion [BR14c, BR14a]. Congress [Bor05b]. Conical

[BBB99a, BBL99]. Conjecture [Osb05, Bor94g, BBBG96, BW97b, BMS13, BSM13, Cvi10, HC09, RP09, Tha02, War01, War03, Zha06, Zha10]. conjectured [ABBS12, BB11]. Conjugate

[BPT84, BB99b, BBWY11d, BBWY13, BV09, DK16, WSDSY15, XSW12]. Conjugates [BH06]. conjugation [BH09]. Consequence [Bor79b, Bor81c]. Consequences [Bor87c, Bor86d, Bor87b]. conspiracy [BB16h]. Constant

[BBC09, BBMW11, Mor95s, Bor10z, Bor11-29, BB97a, BMW13, BBT85, BVW03, BBGW11, Cra12]. constants

[Ade10, Ade12, BBP97, BB12y, BBGPxx, GG07, Mer15]. constrained [BTZ98, DF05, XH08, XC11, ZH06]. constraint

[BW79b, BW82a, BW82b, BW86]. constraints [Bor77a, BW81]. constructed [BB12x]. Constructible [BV04]. Construction

[BBWY11b, BBWY12b, GG07, BW98]. Constructions

[BV12, How14, BV10b]. Constructive [BK04]. contained [Art07]. containing [BV97]. continue [BB15a]. Continued
Continuity [Bor82a, Bor87a, BV02, BW05a, BY12e, BY13c]. Continuous [BB95a, BB99b, BW07, BT98, BW01]. continuously [BFKL01]. contraction [Bor83b]. Control [BB15g, BZ94, BZ97]. conundrums [Tre13]. converge [Bor98d]. Convergence [BB93b, BBT85, BL91a, BL93a, BL93c, BV95a, BBF98, BY06, BST13, BLT15, BLT16, Mar91, AB12, AB13, BB93a, BB90a, BF89c, BL91c, BV93, BV94a, BH94, BV95b, BV96c, Bor09-28, BLY13, BLY14, BST15, DL02, HL15b]. Convergent [Bai88, AL10, BB83, Bor94a, TK97]. converges [Bor94a]. converging [BB86c]. converse [BW98]. Convex [ABMMY13, BB96a, BBL97a, BW79a, Bor80b, BT84, Bor87c, Bor90e, Bor90f, Bor90c, Bor90d, Bor91b, Bor91c, Bor93e, Bor95a, Bor95b, Bor96a, BV97, Bor99a, BL00a, BRLZ00, BV01, BLZ01, Bor01a, Bor02b, BL06, Bor06s, Bor08u, Bor09-27, Bor09-31, BV10b, Bor10m, Bor10-35, Bor11p, BV12, Bor13o, BG15a, Bor15f, BL15, BG16a, Bor16i, Bor16j, Bor16k, BG16d, BG16e, Bor16v, Bor16w, Bor16x, Bor16y, Bor16z, AB12, AB13, ABMMY14, BBS10, BBL97b, BBL99, Bor79e, BW79b, Bor79a, Bor80e, BW81a, BW81c, Bor81c, BW81d, BW81b, Bor82a, BW82a, BW82b, BPT84, Bor84e, BT85, Bor86e, Bor86a, Bor86b, Bor87a, Bor87k, BP87, Bor88l, Bor89i, Bor90g, Bor90h, Bor90a, Bor90-40, Bor90-41, Bor90-42, Bor90-43, Bor91g, BFK91, Bor91p, Bor91q, Bor91r]. convex [Bor91s, BZ91, Bor92a, Bor92e, Bor92h, Bor92i, BL92c, BL92d, Bor92b, BBT92, BL93a, BF93a, Bor93f, Bor93g, BFV94, Bor94c, Bor94i, BN94, BL94a, BF95c, BV95a, Bor95n, Bor95o, Bor95t, BV96c, BL96e, BFV97, BZ98, Bor99, BMN00, BLM00, Bor00r, Bor01p, Bor01q, Bor01r, BV02, BV04, Bor05-32, Bor05-33, Bor05-34, Bor05-35, BM06, Bor06-33, Bor06-34, Bor06-35, BZ06, BM09, BGV09, BM10, BBY12, BY12a, Bor12p, BLY13, BLY14, BY14, Bor14n, BY14a, Bor15i, BG15b, BG15c, Bor15r, BG16c, NWY09, YW12, Zhu91, How14, Tod03]. convex-concave [Bor86b]. Convexity [Bor07-28, Bor07-29, Bor07-30, Bor07-31, BS11b, BS15a, BB11a, BBC01, BB01b, B076, Bor07a, BO78, Bor08c, BBFG01, Bor07-27, Bor10i, Bor10j, Bor10k, Bor10l, Bor11q, Bor11r, BY12d, BY14b]. convolutions [BBEM10]. Copulas [Bor13], PHB12, PHB14]. correlation [BR14c, BR14a]. cosmic [BB11d]. could [BB12]. Counter [Bor16]. Counter-examples [Bor16]. countrerexamples [BV10b, How14]. Counterpart [BB88b, BB91c]. Counterparts [BB15]. counting [BB11c, BB93g]. country [Bor13a]. crackers [Bor11a]. Crandall [BB12q, BB15c]. Crash [BB15m]. Creativity [Bor09o, Bor12n, Coh15]. Crime [BB15g]. crisis [BB12-29]. critical [BKW02]. Crucible [Bor09d, Bor08c, BD09]. Cubic [BB84b, BB88b, HGB93, AB15, BB86b, BB90b, BB91c, BBG94b, Bor95c, LL01, Lin00, XY12]. cultures [Se16]. Cup [BR14b]. Curiosity [BB12h]. curve [Bor90e, Bor90f]. CUSCOS [Bor89c, Bor89d, Bor90y, Bor90z, Bor90-27, Bor90-28, Bor91a]. Cusp [Bor04f, Bor04m, Bor06r]. Cyclic [BT13a, BT13b, BBB707, BB97a, BB97b, BL08, BLY13, BLY14, BT14c,
BT15, DHSZ06, HLY16, XSW12, ZH06]. cyclotomic [HC09].

D [BB93g, How14, Odl11, Bor05-46]. D-DRIVE [Bor05-46]. Danger [BB11c, BB13e]. dangerous [BB12n]. Data [BB14e, BB15e, Bor09c, BTZ98, PHBH13]. dating [BB12d]. David [Hoa05, Sha05, Zei05, Bor04n, BE16]. Day [BB13k, BB15o, BB16j, Bor07v, Bor081, Bor08m, Bor10w, Bor11w, Bor13x, Bor1u, Bor12u, Bor12w, Bor13r, Bor14t, Bor16o, Bor16c, BB14i, BB14c, BB14j]. Days [Bor11d, Bor16o, Bor11h]. DC [Coh15]. Deafening [Sol15]. death [BB11c].

December [Bea13, BBJC97, BBL+13].

Decimal [Bai88, Gan14, BBGPxx]. decision [Bea13]. decisions [BB13q].

Department [Bor03j]. derivative [Bor94i, BLN95, Bor95o, BLLN95, BLN96]. Derivatives [BFV93a, BD16, AL10, BB16a, BB16b, BFV93b, Bor94n, BF95b, Bor95w, BMV97]. Deriving [BB14p]. Descent [Bor99c, BB05e, BRR08, Ber10, BM06, Bor09o]. Desperately [BB15f]. Determination [BB06a, BB05, BM00, BT14b, BT14a]. Determinations [BB98b, BB98c].

determined [BB97c, BB05f]. developments [BB01a]. devices [BB00w].

Dian [BB95c]. Dictionary [BB91, BB99c, BS14a, Bor90, BB91a, BB02, BB90d, BWB07, BS14b]. did [BB12h]. didn't [BBW97]. Diego [BC96]. dies [BB12q, Bai16b]. Diewert [Bor90b]. Difference [Bor11p, BB11a]. different [PHBH13, Zha13].

Differentiability [BBS10, Bor90g, Bor90h, Bor90i, Bor90k, Bor90j, Bor90l, Bor92a, Bor99, Bor02d, Bor02e, BBL04, BV09, Bor70a, Bor82a, Bor86e, Bor86b, BFG87, BP87, Bor90a, Bor90-40, Bor90-41, Bor90-42, Bor90-43, Bor91p, Bor91q, Bor91r, Bor92h, Bor92b, BF93a, Bor93f, Bor93g, BF93b, BN94, BW05a, BMV06]. differentiable

[Bor95d, Bor95e, BW97a, BFKL01]. Differential [BM97c, MR96]. Digit [Bor05-40, Ade10, BB12v, BB04, Bor11i]. digit-extraction [Bor11i].

Digital [Bor02f, BS03, Bor03-35, Bor05b, BRR08, Ban10, BM06, Bor06-36].

Digitally

[BBB+96a, Bor08g, Bor09a, Bor09e, Bor09f, Bor09g, Bor12a, Bor09u]. Digitally-assisted

[Bor08g, Bor09a, Bor09e, Bor09f, Bor09g, Bor12a, Bor09u]. Digitized

[BB05e]. Digitizing [Bor02g].

Digits [Bai88, BBMW11, BBC+12c, BB13a, BB14e, BBBR16, BB97c, BBB00b, BBB04b, Bor09y, BB16, BB97a, BBW13, BB13b, BB14k, BB89, BBxxc].
Dilemmas [GS08]. dilogarithmic [Cvi10]. Dimension
[BB09g, CKM+16, Via16]. Dimensional
[BBCC10, AAW06, BW81c, BW86, Bor88f, Bor91g, Bor92e, Bor92o, Bor92k, Bor94b, Bor94i, BF95a, Bor95n, Bor95o, Bor97f, Bor97l]. Dimensions
[BB86a, WB87, BB16m, Bej94, BL91d, BFL02, Bor14s, BSV15, Bor15o, Bor15p, Bor15q, BS16b, BSV16]. Diophantine [Kom00, Kom02, Kom04]. Dirac [BH94]. Direct
[BB09g, BB09d, LLC+95, FN15]. Directionally
[BS84a]. Directory
[BMP05]. Dirichlet
[BB15c, Bor01g, Bor02h, Bor02i, BC03, BC04b, Bor07e]. disciplinary
[Bor06g]. Discourse
[BS03]. Discover
[BB09d]. discovered
[Bor95c, Bor97p, Bor97u, Bor97v]. Discovering
[Bor91d, Bor91e, Bor91f, Bor91l, Bor91h, Bor91k, Bor92f, Bor92g]. Discovery
[BB11i, BBKL16, Bor02h, Bor02i, Bor02l, Bor03m, Bor04p, Bor05k, Bor05l, Bor05n, Bor05o, Bor05a, Bor06l, Bor07g, Bor07l, Bor07k, Bor08g, Bor12a, R+05, Ade12, BB08c, BBG03, Bor08e, Bor08f, Bor09a, Bor09e, Bor09f, Bor09g, Bor09u, Zei05]. distance
[BB01b, BF94]. Distinct
[BW97a, BBT00]. Distributed
[Bor09b, Bor09c]. Distribution
[TB00, BG94]. distributions [BCM03]. Distor
[BO11a, Mil90, Mil89, MW12]. Dizionario
[BB95b]. Do
[BB13i, BB15l, BB14c, BB14j, Bor94o]. Doctor
[BB12b]. dodgy
[BB12a]. Does
[BB15g]. doesn’t
[Bor07q, Bor07p]. Doing
[Bor96b, Bor97a, Bor97b, Bor97c, Bor97e, Bor97d, Bor99e, Bor99f, Bor99g, Bor00n, Bor98e, BS99, BB11g]. domain
[BY12d, BY14b]. Don’t
[Bor13c, BB11f]. double
[BB12i, BZB08, Mer15]. Doubly
[BLN94]. Douglas
[AB12, ABT13a, AB13, ABT13b, ABT13c, ABT14b, ABT14a, ABT15, ABT14c, ABT16, Bor10i, Bor10j, Bor10k, Bor10l, BS11b, Bor11q, Bor11r, BT13a, BT13b, Bor13i, Bor13q, BT14c, Bor14e, Bor14f, BT15, Bor15g, Bor15r, BG16b, BLS+16]. Dreams
[Bor02p]. drive
[Bor13c, Bor05-46]. Dual
[BV93, BV94a, BTBT88, BMN00, BS10]. Duality
[BL91b, BF01, Bor09-27, BC10, BL15, Art07, Bor80d, Bor80e, Bor83a, BK83, Bor83f, Bor86a, BL91d, BL92c, Bor94p, BLN96, BBY12, BBY14, Zal86]. Dubious
[BB14c, due
[Koh01], dull
[Bor11b, Bor11c]. Dumb
[BB13p].
dunce
[BB13q]. during
[SBW84]. Dykstra
[BB94a]. Dynamic
[Bor02r, KMZ+05, BNCB99, BS97a, LLC+95]. Dynamics
[Bor04-30, Bor04-29, Bor04-28, BL08, BBB12, BBM07b, Bor16s].

E2998 [KJ86]. E2999 [SZUM86]. E3000 [ANO+83, EWM86]. E3159
[DNG+86, DBCB88]. E3160 [NJS88]. E3161 [GC88]. E3162 [Mon89].
E3163 [KC89]. E3164 [DAK88, DNG+86]. E3325 [Rud89]. E3335
[KWK+90a, KWK+90b, KWK+90c]. E3384 [Stu90]. E3388 [CJKB92].
Earth
[Bor13s, BB12-28, BB12d, BB12h]. East
[Bor05j]. Easy
[Gui08]. Eberhard
[Bor06o]. ecological
[Bea13]. economics
[BB13n]. economy
[BB12r]. Edited
[Bor06o, Coh15]. editor
[Zal86, Bor11b, Cha16]. Editors
[BM97b]. education
[Hd12]. Effective
[BB06a, BB08d, Bor06j, Bor06k, Bor07h, BBC07c, Bor07i, Bor07j, Bor08h, BBC08b]. effects
[BBLZ14].
efficiency [Bor80a, BZ91, BZ93, JN03, Zhu91]. Efficient [BCJW13, Bor77c, BJWC13, Bor83e, HLZ15a, Yan94, Zho12].
eigenvalue [AR13, GDT15, JD13]. eigenvalues [Bor84c]. Einführung [BD11].
Eisenstein [Liu01, XY12].
Ekeland [Bej94, Bor88g, Bor88h, Bor88i, Bor90m, Bor90n, LS00, YS00]. elastic [HYG09].
Electron [BBSZ87, BBSZ88].
Electronic [Bor01n, Bor01m, Bor02n, Bor03q, BS97b, Bor97n].
Elementary [AJB86, ANO83, AJ86, BB84a, BB97b, BB00, BB04a, CJKR92, DAK88, DNG86, DBCB88, EWM86, GC88, KJ86, KC89, KWK90a, KWK90b, KWK90c, Mon89, NJS88, NOL86, Rud89, SZUM86, Stu90, BB16p].
ellipses [BLS16]. Elliptic [BBBG08, BB84c, BZ87, Borxx, Bor10z, Bor11-29, BBG95b, BZ92, BBGW11, LL01, PT14]. else [BWB97].
Emerging [BC99].
Empirical [BBC11a, BBC12b, Bor97g]. Empirically [BB97c, BB05f].
Encourage [BB15g]. Encyclopaedia [Sel16]. Encyclopedia [BC96].
End [Bor09d, Bor03y, Bor03z].
Energy [BB14f, BB14h, BB15d, BBSZ87, BBSZ88, BB12e]. engaged [BB16h].
engineering [BBC11b]. engineers [BWB97]. Engines [Bor04p, Bor05k, Bor05m, Bor05n, Bor05o, Bor06l, R+05].
enhancement [BM07a]. ENIAC [Bor12o, Bor14o, Bor14r, Bor16p].
Enlargements [BBY11, BBY13]. enough [BB14m]. entire [Bor02g, BS10].
Entropic [BL11]. entropies [BGL93, BH94].
Entropy [BL93c, BL94, BLN94, Bor77k, Bor91o, Bor05-32, Bor06-33, Bor08p, Bor09v, Bor10m, Bor10x, Bor10y, Bor12q, Bor13j, Bor13k, Bor13o, BHP14, Bor90c, Bor90d, BL91a, Bor91b, Bor91c, BL91b, Bor91g, Bor92e, Bor92o, Bor92k, Bor93e, Bor93k, BL93b, Bor94i, BH95, Bor95n, Bor95o, BL95, BLN96, BCM03, Bor12p, PHB12, PHBH12, PHB14]. entropy-like [BL91b].
Entropy-Type [Bor01o]. Entry [BS16a]. Environment [IE08].
Environments [Bor04e, Bor04d, Bor04i, Bor06d, Bor06b, Bor06c, Bor06g].
Epi [Bor87m, BLM00]. Epi-Lipschitz-like [Bor87m]. epi-Lipschitzian [BLM00].
Epigraphical [BV96c]. equality [Bor77a]. equation [BB13d, BBCZ13].
Equations [BM97c, BBB97c, BBB00b, BBB04b, BB16, BBB97a, Bor86f, Bor87g, Bor87f, BB89a, BB89g, Bor93k, BBG94, DLL05, MR96]. Equivalence [BMS99b, Zho12, Bor77b, Yan94]. Era [BRR08, BB12e, Ban10]. Erdélyi [FK00]. Erdos [Cra12, Mer15]. Ergodic [BG16b]. Error [BB08d, Bor06j, Bor06k, BB13m, BBL99]. Especially [Bor94h]. essays [BR01]. Essential [BBC01, BB12r, BBW97]. Essentially [Bor95d, Bor95e, BM97d, BM97e, BM98a, BM98b].
estimates [BL91a, BL93b]. Estimation [Bor91g, Bor92e, BTBT88, Bor90c, Bor90f, Bor90c, Bor90d, Bor91b, BB97b, BBT92]. eta [BG97b, BG97a]. Euclidean [Bor84b, La 09]. Euler [BBG94a, BB06a, BB08d, BBD89, Bor89f, Bor90-29, Bor90-30, Bor90-31, Bor90-32, Bor90-33, Bor90-34, Bor90-35, Bor90-36, Bor90-37, Bor90-38, Bor90-39, Bor91i, Bor91j, Bor91k, Bor91l, Bor92f, Bor92g, Bor92j, BBG95c, Bor95f, BBB96b, BC96, Bor96f, Bor96g, Bor96h, BB97d, Bor97f, BBD97, Bor98f, BBD00, BBD04, BBD05, Bor06j, Bor06k, BB06b, BZB08, BCM09, BB16]. Euler/Zagier
[BBB96b, BBB97d, Bor97f]. Eulerian [BBB15]. Evaluation [BZ7, BG96, Bor97f, BD16, BBG94a, BB16a, BB16b, BZ92, BBG95c, Bor95f, BBC08a, BZB08]. Evaluations [BBB96b, BBB97d, BG05, BBBG08, BS11a, BBSW11, BS12h, BBSW12].
even [BKW02]. ever [Bor03g]. Every [BBWY11c, BBWY12c]. everybody [BB11d, BB11g]. everywhere [Bor12l]. Exact [Bor99g, Bor99h, Bor00b, Bor00d, Bor00e, Bor00f, Bor00g, Bor00h, Bor00i, Bor01j, Bor01k]. example [Bor92d, BD11].
example-oriented [BD11]. Examples [BFV94, Bor94c, Bor16l, BB05b, Bor87m, Bor93p, Bor95t, BZ98, Tod03]. Excel [BB13n]. excluding [BBG04]. Excursion [Bor87d, Bor88a, Bor88b, Bor88c, Bor88d, Bor88e]. Exercise [BB12a, BB16f].
Existence [BF89b, Bor82d, Bor83e, Bor84c, Bor88k, BL93b]. exp [BBC08a]. exp-arc [BBC08a]. Expansion [Can14, BB83]. Expansions [BBD97, BBD00, BBD04, BB07c, BBCP04, BBD89, BG95, BBGPxx, BBD16].
expansive [BS10]. Expectations [BBCR13, Bor12g, Bor12h, BR16]. Experience [Bor07d]. experiences [Bor08q, Bor12t]. Experiment [Bor03-27, Bor03-28, Bor03-29, Bor04u, BB04b, Bor05-30, Bor05-31, Bor05-29, BB08b, Bor10a, HF05, Zei05, Hoa05, Sha05]. Experimental [BBG94a, BB01a, BB10a, BB05b, BBZ10b, BBZ10a, BBL+13, BB14a, BB15h, BB15i, BB16e, Bor94d, Bor94e, Bor94f, Bor94g, Bor94h, Bor95f, Bor95g, Bor95h, Bor95i, Bor95j, Bor95k, Bor95l, Bor95m, Bor95x, Bor96c, Bor99g, Bor99h, Bor99i, Bor99j, Bor99k, Bor99l, BBG95b, BBGP95b, BBGP96, BC99, Bor08c, BB09d, BD09, BD11, Bor09, Od11].
experimentally [ABB82, Bor93j, BB11j]. Experimentation [BB12t, Bor92j, BBGP95a, Bor03l, BBG03, Bor03m, Bor03n, Bor03o, Bor04q, Bor04r, Bor04s, Bor09h, Bor09i, Bor10n, Bor10o, Bor11s, Bor12a, Bor12i, Bor13, Bor13m, Bor11h, BB12u, Bor09u, Sha05, Zei05]. Experimentelle [BD11]. Experiments [BBG06]. Explainer [BR12, BR13b, BR14a, Tre13]. Explicit [BB06b, BB84d, BB87a, BL92d, BBG95c, BB86b].
Exploration [BB12t, BB16l]. Exploratory [BB11h, BB12u, Bor09h, Bor09i, Bor09j, Bor10n, Bor10o, Bor11s, Bor12a, Bor12i, Bor13, Bor13m, Bor14, Bor14j, Bor14k, Bor14l, Bor14m, Bor15b]. Exploring [Bor01i].
Exponential [BB94b, BBG93b]. exposing [Bor78b]. Expressions [BSW82, BBK14]. Extended [NYW09, NYW10, BBC14b]. Extension [La 09, Bor82e, DABY15, Mii90]. Extensions [Bor10z, Bor11-29, Bor88g, Bor88h, Bor88i, Bor94b, BMV06, BBGW11]. extraction [Ade10, Bor11i]. extraterrestrial [BB11g]. Extreme [Bor06m, Bor06n, GDT15, JD13].
F [Ban10]. **Face** [Cal16, Bor96k, Bor97w]. **Facial** [BW81d]. **Facilitating** [BSS16b]. **facilities** [YJ12]. **fact** [BB12f]. **factorization** [HN10, HLZ15a, HLZ15b, LL13]. **fail** [BW98]. **failing** [BB12m]. **failure** [Bor92o, Bor93k]. **Familiar** [BB88d, BBxxa]. **family** [Bor79c, Bor80e]. **Fan** [BZ86]. **far** [BB11d]. **Fared** [BB15k]. **Farkas** [Bor79d, Bor83d]. **Fast** [BB84a, BZ92, BLN95, BB97b, BB00, BB04a, BD16, BH95, BB16p]. **Favourite** [Bor07-28, Bor07-29, Bor07-30, Bor08u]. **Feasibility** [ABT13a, ABT14b, ABT15, BB96a, BT13b, Bor16v, Bor16w, Bor16x, Bor16y, Bor16z, ABT16, Bor12f, BT15, Bor15r]. **Feasible** [JD13, LLS11]. **Feasibly** [ABT13a, ABT14b, ABT15, BB96a, BT13b, Bor16v, Bor16w, Bor16x, Bor16y, Bor16z, ABT16, Bor12f, BT15, Bor15r]. **February** [ABD03]. **Federated** [BMP05]. **Fee** [Rei02]. **Fenchel** [BK83, BL91d, BH06, BH09]. **Fenchel-duality** [BK83]. **Fermi** [BB15f, BB15p, BH94]. **few** [BB12b]. **Feynman** [BB98b, BB98c]. **Fiasco** [BB15m, BB13l]. **Fibonacci** [Ade14a]. **fiction** [BB12f]. **field** [Cvi10]. **Fields** [Bor02p, BSZ13, Bor03p, Bor14b]. **Fifty** [Bor09j, Bor09k, Bor10p, Bor12f, Bor12k]. **filter** [AP16, ZSQ10]. **Final** [Bor06p, Bor09z]. **Finance** [Ano15]. **Financial** [BBS + 16a, BBLZ14, Cam16]. **Financially** [BB14g]. **Finding** [BBG95a, BB06b, BBG04, Bor07o]. **fine** [BB14n]. **fine-tuned** [BB14n]. **Finite** [WB87, Bej94, BW81c, Bor88l, Bor89i, BL92c, BL92d, BL93b, LA 09]. **firmly** [BR81i]. **First** [Bor92h, Bor92i, Bor93f, Bor93g, Bor06q, BZ92]. **Fisher** [BL996]. **Fitting** [BLZ13, BdPZ16]. **Fitzpatrick** [BBB + 07, BBW07, BBWY11c, BMWY11, BBWY12c]. **Five** [Bor07d, Bor15d]. **Fixed** [BB11b]. **Fixed-point** [BBBC + 11b]. **Flash** [BB15m]. **fold** [BB96b, BB97d]. **Forensic** [BB12s, BB16f]. **forever** [BB12x, BB13t]. **form** [BS16b]. **Formal** [Ade13]. **Forms** [BBBC07, Bor10f, Bor10g, BC13, LA 09]. **Formula** [AW97, Ade14b, BG87, Borxx, Bor16b]. **Formulae** [BB96b, Bor99x, AG99, Bor97c, BBG04, BB05f, BB05c, Cha03, ZS12, Zha13, ZZ14]. **Formulas** [Ade14a, BB06b, AL10, Ade10, Ade11, Ade12, Ade13, ABB12, BB11j, GG07, Nim15, Wei15]. **forthcoming** [Cam16]. **Foster** [BSW81]. **Foundation** [RZ15]. **Four** [Bor02c, Bor02q, Bor06r, Bor06s, Bor06t, Bor06u, BSW13, Bor88f, BB13c]. **Four-Color** [BB13c]. **four-dimensional** [Bor88f]. **Four-Step** [BSS16b]. **FPV** [BEY11, BY13a, BY14c]. **frack** [BB14l]. **Fractal** [Bor10q, Bor10r, Bor12f, Bor12g, Bor12h]. **Fractals** [Bor12i]. **Fraction** [Bor03d, Bor03e, Bor03f, BCF04, BC04a, BBGPxx, BL05, BL08, Bor10-28, Bor10-29, Bor11-31]. **Fractional** [Bor76a]. **Fractions** [Bor04-30, Bor04-29, Bor04-28, Bor16b, BCLM16, BHL16b, BHL16a, BZ92, BCP05, Bor05i, Bor06i, BV12a, BVSZ14]. **frame** [FN15]. **frame-based** [FN15]. **Frankowska** [Bor92c]. **Fraser** [BBJC97]. **Fraud** [BB90c, BB92a, BB11f, BB13a]. **Fréchet** [BV10a, BF93a]. **Fredholm** [Bor92o, Bork93]. **French** [Dev93]. **Fritz** [Bor76b]. **Function** [BZ87, BB96b, BBC98, Bor03-32, Bor04-31, BK05, Bork98, BL11, BD16, BL16a, AL10, AB15, BB15c, Bor91m, BZ92, BB93e, BLN95, BG97b, BG97a, BBC00, BKW02, BB05c, BC09, BS10, BBL10, Bor14n, Bor15i, BR16,
Bor16m, Bor16n, HGB93, Liu00, NWY09, SZ14]. Functional
[Bor72, BG94, Bor98k, BZ99a, LLC+95]. Functionals
[BB93b, Bor78b, BK01]. Functions
[BB84a, BB88d, BFV93a, BB97b, BBxxa, BB00, Bor02b, BB04a, Bor07g,
Bor07h, Bor07k, Bor08h, Bor08u, Bor09m, Bor11p, Bor11-28, BV12, BD15,
BL16a, EB08, LPB01, SBW84, AB15, AAW06, BBS10, BBEM10, BB11a,
BBB15, BBB+07, BB97a, BBC01, BBW07, BBWY11d, BBWY13, BBP03,
BBG95b, BF97, BP87, Bor90g, Bor90h, Bor90i, Bor90k, Bor90j, Bor90l,
Bor90y, Bor90z, Bor90-27, Bor90-28, Bor90a, Bor90-40, Bor90-41, Bor90-42,
Bor90-43, BB91b, Bor91a, Bor91p, Bor91q, Bor91s, BL92b, Bor92h,
Bor92i, Bor92b, BF93a, Bor93e, Bor93f, Bor93g, BF93b, BF94, BF94, BN94,
BG94, BF94, BF94, BM97d, BM97e, BM97a, BM97f, BM98a, BM98b, Bor98o,
BRLZ0, BW00, BVO1, BLZ01, BF01, BW01]. functions
[BV02, Bor02d, Bor02e, BVG02, BW03, BWV03, BVL04, BW05a, BW05b,
BMV06, Bor06h, BCC08a, BV09, BG09, BGHV09, BV10b, BV10a, Bor11-37,
BY12a, Bor12t, BY14a, BG15b, BB16p, BJT16, BS16b, BL16b, BG16c,
How14, HL15a, LL01, Liu01, Lupo2, SZ14, XY12]. Fundamental
[BB05g, Bor13a]. Funding [Bor07o, BB13q]. Further [BV94b, Mil90].
Gateaux [BF93a, BF93b]. game [BB12d, BB15b, BB15i]. games [BB12o].
Gamma [BZ87, BK05, Bor12r, BBB15, BZ92, BC09, BB15c]. gap
[BBY12, BBY14, Bor14n, Bor15i]. gas [BB12e]. Gateway [Bor04]. Bor04k.
Gauss [Bor87d, Bor88a, Bor88b, Bor88c, Bor88d, Bor88e, Borxx, TK97].
Gaussian [Cha03]. General
[BB06b, AB15, BBWY11a, BBWY12a, Bor85c, BV01, Bor07x]. Generalisation
[BLS+16]. Generalisations [Bor16]. Generalization
[Mil89, YS00, AB15, Bor98g, LS00]. Generalizations [TB80]. Generalized
[Bor84a, Bor99m, Bor99n, BW16, Bor00l, Bor00m, BW16, Bor10z,
Bor11-29, BS11d, BS11e, BHL16b, BHL16a, LPB01, RP09, BF97, Bor94b,
BBGW11, Cha03, War01, War03, Bor90b]. generated [SZ14]. Generating
[Bor07g, Bor07k, Bor91m, BB93e, Bor06h, PHBH12]. Generation
[PHBH13, BB16k, BCW13]. generator [BCJW13]. generators [BB13].
Generic
[Bor86e, Bor99m, Bor99n, Bor00l, Bor00m, Bor86b, BF93b, BW00, BK01].
genERICALLY [BW98]. genius [Bor91n, Bor91o, BB91d, Bor11e]. Geometric
[BB84a, BB97b, BLM97, BB00, BB04a, Bor87d, Bor88a, Bor88b, Bor88c,
Bor88d, Bor88e, Bor88f, Bor88e, BBG93, BB16p]. Geometry
[Bor09z, Bor11t, Bor80a]. German [BD11]. get [BB14n]. Girgensohn
[ODL11, Sha05, Zei05, Rei02, SZ14]. Giuga
[Bor94g, BBG96, BW97b, BMS13, BSM13]. Glenn [BE16]. Global
[AB12, AB13, ATB15, ATB16, BB12c]. globalization [GS02]. Glum
[BB13f]. glummer [BB13f]. go [Bor15a]. goals [Bor13c]. God [BB12w].
goes [Bor05j]. Going [Bor12x]. Goldbach [Bor05c, BB05d, Bor06c, Bor10b, Bor10-33]. Golden [Ade14a]. Good [Bor00i, Bor00k]. googol [Cra12]. googol-th [Cra12]. Got [Bor15t]. Gowers [Bor09b]. Gradient [BB88a, SD15, BFKL01, BFL02, DL02, DLL05, DK16, GS02, Li15, LL13, Mar91, QYX14, Ray93, Ray97, WsdSY15, XH08, XSW12, XWQ14, YW12]. Gradients [Bor09m, Bor99n, Bor00l, Bor00m]. graphics [BJCW13]. Graphs [BB93b, Ber88, BFG03]. Graves [BD03]. great [Bor13a]. Greatest [BB11i]. greco [Bor08a]. Greek [BS14b, BS14a, Bor90o, Bor90p, Bor94h, Bor08a, SV14]. Green [Bor09b, BB12e]. Grid [Bor03b, Bor03c, Bor03a, Bor04e, Bor04a, Bor04b, Bor04c, Bor04i, Bor05-27, Bor07d]. Groups [BG16a, Bor16j, Bor16k, BG16d, BG16c, BG15a, Bor15f, BG15c, Bor16i]. Grove [Bai91]. guarantee [Cam16]. Guessing [Sei01]. Guide [Bor02j, Bor02k, Bor06o]. Guided [Bor92j]. Gun [BB15g]. H [Bor92c, Hoa05, Odl11]. H. [MR11]. Haar [BF95c, Bor95a, Bor95b]. Hadamard [BF93c]. Hahn [Bor82e]. Haifa [RZ15]. Half [WSL16]. Hand [BB12v]. Hand-to-hand [BB12v]. Handbook [Sch15]. handheld [Bor00w]. Handling [Bor03q]. happen [BB13a]. Hard [Bor01e, Bor02s, Bor02t, BBL+16b, XC11]. Hardback [Ban10]. hardcover [BC96, Bor09f]. HarperCollins [BB91a]. hated [BO11b]. Hausdorff [BK80]. having [BF93a]. headlines [BB12a]. Heats [BB15d]. Heisenberg [BBEM07a]. held [SBW84]. Helen [Coh15]. Hello [Bor77b, Bor79b, Bor81e]. Here [Bor05r]. Hermitian [Bor84c]. Hersh [BO11b]. heuristic [BH95, BLN95, JY12]. Heyting [Bor98d]. Hide [BB13]. Higgs [BB13g]. High [BB08a, BB08e, BB09b, BB11b, BBB12, BB13h, BB15j, BB90c, BL92e, BB92a, Bor98h, Bor05s, Bor05t, Bor05u, Bor05v, Bor05-47, Bor05-48, Bor05-49, Bor05-50, Bor05-51, Bor05-52, Bor06z, Bor06v, Bor06w, Bor06x, Bor06y, Bor06-37, Bor06-38, Bor06-39, Bor07f, BB09g, Bor10s, IE08, BB09b, BB87a, BBW97, Bor03y, Bor03z, Bor05-40]. high-accuracy [Bor05-40]. high-end [Bor03y, Bor03z]. High-Performance [IE08]. High-Precision [BB08a, BB08e, BB08b, BB13h, BB11b, BBB12, BB15j]. Higher [BCC10, AL10, BB84b, BS15, BS16]. Higher-Dimensional [BCC10]. Highly [BB08e, BB09b, Bor03g]. Hilbert [BBEM10, BBL97b, Bor05w, Bor08k, Bor09m, Bor10c, Bor10d]. History [Bor77d, BJL+08, Bor11w, Bor11x, Bor11y, Bor16o, Sel16, BB16k, Bor09q, Bor90r, Bor90s, Bor90t, Bor90u, Bor90v, Bor90w, Bor90x, Bor93h, Bor93i, BC15a, BC16]. Hölder [BLT15, BLT16, BGW98, BW03]. Homotopy [BO11a]. Honor [SV14, Ane15, BBB+13]. Honoris [Bor99o]. honour [Bor16]. Honours [BZ11]. Hope [BB14f]. hoping [Bor01f]. Hopkins [BS14a]. hosted [IE08]. Hot [BB12c]. HPC [Bor04p, Bor05k, Bor05l, Bor05m, Bor05n, Bor06o, R+05]. HPCS [IE08, IE08]. HPCS06 [BB06a]. hull [BBL99]. Human [Cal16, WG16]. humans [BB16g, BB16h]. hundred [BBx]. Hurwitz [BB15]. Hybrid [Bor11f, Bor11z, Bor11-27]. Hype [BB13i, BB14f]. hyperbolic
BBT85, BBS89, BL92d, BBP98, BBS13b, BBS14b. Lattices
[BBSZ87, BS83, BY84, BS84b, BBSZ88]. Lau [Bor13g]. Launch [Bor03-31].
Law [BB12], BB12i, BB15n, Bor15i]. Lawrence [Bor07c]. Leader [Bor09b].
Learning [Bor05-42, Bor05-43, Bor05-44, MTB16]. Lecture
[Bor06q, Bor06p, Bor09z]. Lectures [Bor06r, Bor06s, Bor06t, Bor06u,
Bor09-29, Bor09-27, Bor09-30, Bor09-28, Bor09z, Bor13-30, Bor15r]. legacy
[BC14c, BC14d, BC15]. Legendre
[BB97a, BBC01, Bor87d, Bor88a,
Bor88b, Bor88c, Bor88d, Bor88e, BV01, BV10a, BY12a, BY14a, TK97].
Legendre-type [BY12a, BY14a]. Leibniz
[BWB97]. lemma
[Bor79d, Bor83d]. LENR
[BB15d, BB16i]. Lessons
[BB15m, KMZ05]. let
[Bor13c]. Letter
[Bor11b, Cha16, Zäi86]. Level
[BB93b, Bor99t, Bor00s, Bor11g, Bor11-36, BS00]. Levi [Bai16a].
Lewis
[Tod03]. Lexicographic
[Bor80c]. Library
[BB13c, BB91d, Bor93m, Bor93r, Bor93s, Bor93t, Bor93u, Bor93v, Bor93w,
Bor93x, Bor16p, Bor14q, BB11g, BB12h, Bor91n, Bor91o, BM06, Bor08a, Bor15b].
light
[Fab89]. Like
[WSL16, AG99, BBB05, BBB06a, Bor87m, BL91b, BB96b, BB97c, Bor97u,
Bor97v, BBP98, BB05f, BB05c, Bor07-27, Bor15d, DAB15, GDT15, JD13].
likely
[BB16h]. Liljedahl
[Coh15]. limit
[BF95a]. Limiting
[Bor79b, BZ98, Bor80d, Bor11e]. Limits
[WG16, BBS13b, BBS14b]. line
[BW03, YW12]. Linear
[BB93b, Bor72, BD86, BB95a, BB99b, BBL99, BB00, BBW07, BWY10,
BMWY11, BB94a, BFG87, BB99, Bor93b, BM09, BM10, BY12b, BY13b,
BBS14a, DL02, DL05, DAB15, HLZ14, HLY16, KJR16, LLS11, LZ14, Li15].
lines [Bor79h]. links
[BB98b, BB98c]. Lipschitz
[BB11a, Bor99h, Bor90i, Bor90j, Bor90k, Bor90l, Bor90m, Bor90n, Bor90o,
Bor90p, Bor90q, Bor91r, Bor91s, Bor92a, Bor92b, BFV93a, BFV93b, BFV95a,
Bor95a, Bor95d, Bor95e, BFV97, BM97d, BM97e, BM97d, BM97w, BM98a,
BM98b, Bor98b, Bor99h, Bor00b, BFI02, BGV03, BW03, BVW03, BW05b].
Lipschitz-constant
[BVW03]. Lipschitzian
[BBEM10, BS84a, BLM00]. Lists
[Bor05g, Bor05i]. literacy
[BB13f]. Literate
[BB14g]. Literature
[BB05c, BM07a, Bor02g]. little
[Bor11h]. Littlewood
[HC09]. Local
[BF98a, BVW03, QR07, BB99b, Bor79g, LN03]. Locally
[BFV93a, BFV93b, BD16c, BB11a, BFV97, QR07]. locating
[JY12]. Log
[BB84e, BS11a, BBSW11, Bor11f, BS11d, BS11e, BS12b, BBSW12, Bor12r,
BBBB15, BS13]. log-gamma
[BBB15]. Log-sine
[BS11a, BBSW11, Bor11f, BS11d, BS11e, BS12b, BBSW12, BS13].
Logarithmic
[BB93f]. Logarithms
[Bor16h, BCLM16, BHL16b, BHL16a, Cha03]. Logsin
[Bor11-33, Bor11-34].
Long
[Bor04p, Bor05k, Bor05l, Bor05m, Bor05n, Bor05o, Bor06l, R+05,
Bor03y, Bor03z, Bor06-28]. long-range
[Bor06-28]. Loving
[BO11b]. Low
[BB14h]. Lowell
[Bor77d]. lower
[Bor90k, Bor90l, BMS13, BS13, BLZ01]. LRP
[Bor05-27]. lsc
[Bor90a, Bor92b]. Ltd
[Ban10]. Luke
[Odl11].
WM07, WSdSY15, XH08, YW12, ZH06, ZSQ10. **Methodology [BBGP95a].**

Methods

[ABT13a, ABT13b, ABT14b, ABT14a, BB88a, BL93c, Bor97k, Bor00t, Bor01o, BZ02a, Bor02b, Bor05-32, Bor06-33, Bor08p, Bor09q, Bor09v, Bor09z, Bor10m, Bor10f, Bor10y, Bor12q, Bor13j, Bor13k, Bor13o, BST13, Sch15, ABT13c, ABT14c, BB05b, Bor92l, Bor92m, Bor94i, BLN95, Bor95n, Bor95o, Bor98k, BZ06, Bor12p, Bor13i, BZ13, Bor14e, BT14b, BT14a, Bor15g, BST15, Bor15r, Bor16q, DF05, GT15, HNP10, HL15b, JD13, PHBH12].

metric [BK80, BZ96]. Michel [Bor16l]. might [Bor07-27]. mine [BB12i].

Minimal [Bor89c, Bor89d, Bor90y, Bor90z, Bor90-27, Bor90-28, Bor91a, BFK91, Bor95p, Bor95q, BF89a, BM97a, BK04]. Minimality [Bor87c, Bor82b, Bor86d, Bor87b, BM00]. minimax [BZ86, Bor14y, Bor16-28]. **Minimization [BL94, BLN94, Bor09-29, Bor09-27, Bor09-30, Bor09z, BL91b, Bor92k, BV09, NWY10, Ray97, XWQ14]. minimizing [HL15a, NWY09].

**minimum [Bor79c, Bor80e]. miscalculate [BB11c]. Missing [Bor09c]. MKM [ABD03, BF06b]. modal [Bor96e]. model [Bor16g, Cam16].

Modelling [Bor13p, BHP14, PHB14, Bea13]. **models** [BL92d, Cam16]. Modern [Bor99y, BB12x, BB15b, BB15i, BS11c, BS12a].

Moderne [Fall96]. Modified [LL13, XSW12]. MODSIM [Bea13]. **Modular** [BBB97c, BB00b, BB04b, BBB16, BB97a, Bor85b, Bor86f, Bor87g, Bor87f, BB89a, BBB94b, Lin00]. moduli [Zha13]. modulo [ZS12, ZZ14].

Moll [Odl11]. moment [Bor90c, Bor90f, BL91c, BGL93, BH94, BL94a, BH95]. Moments [BS07, BS08, Bor10z, BBGW11, Bor11-29, Bor14s, BS16a, TB00, BBBG08].

Mono [Ber88]. Mono- [Ber88]. Monochrome [Bor79h]. monoids [Bor15f, Bor16i]. **Monotone** [BBWY11d, BBWY13, Bor72, Bor02b, Bor04o, Bor05-33, Bor05-34, Bor05-35, Bor05-36, BW06, Bor06s, Bor06t, Bor06-34, Bor06-35, Bor06-31, Bor09-28, BBY11, BEY11, BY12c, BY13, BD15, EB08, BB95a, BB10c, BBW07, BWY10, BBWY11b, BBWY11c, BMWY11, BBWY12b, BBWY12c, Bor86b, BF89a, BFK91, Bor98n, Bor02d, Bor02e, BBL04, BW05a, Bor06-32, BW07, Bor07b, Bor07x, BE08, BG09, Bor12j, Bor12k, BY12f, BY12b, BY12d, BY12c, BY13b, BY13a, BY13c, BY14b, BY14c, BY15, HLZ15a, ZS14].

Monotonicity [Bor09j, Bor09k, Bor12y, BB815b, BB89b, BMWY11, Bor82c, Bor06-30, Bor10p, BR11, Bor12j, Bor12k]. Monthly [BB07a, BB12-27, BB09e, BB09f, BB10b, BC15a, BC16]. Montreal [KG04]. Moore [BB12j, BB12i, BB15m, Bor15i]. Mordecai [Bor90b]. Mordell [BBC14b, BB15a, BB16a, BB16c, Bor12e, Bor12f, Bor12r]. Mosco [BB90a, BB93b, Bor88j, BF89c, BV93, BV94a]. most [Bor16b]. Motivation [Bor09-29]. Movements [BB13r]. movies [Bor15b]. MR [Bor81a].

MR0716121 [Zal86]. **MR0991866** [BBB97a]. Multi [Bor96c, Bor97l, BBBM02, Bor97f, Bor16g]. Multi-dimensional [Bor97l, Bor97f]. multi-disciplinary [Bor16g]. multi-institutional [Bor16g]. **Multi-modal** [Bor96c]. Multi-variable [BBM02]. Multidimensional [Bor96f, Bor96g, Bor96h, BH06, BTBT88, Bor97p].
Multifunctional [Bor98k, BZ99a]. multifunctions [Bor94b, BF95a, Bor95p, Bor95q, BMS99a]. Multimedia [BMPR02].
Multimodal [Bor97m]. multiobjective [MPB16]. Multiple [BBBL99, BBK00, Bor10-27, BZ11, BBBL98a, BBBL98b, BBK01, BBBL01, BC10, BDT16, JY12]. multiple-zeta [BC10]. Multiplier [Bor80b, Bor81d]. multipliers [Bor80c, BZ16]. Multivalued [Bor77a, Bor79d].
Multivariable [Bor00r, Bor01p, Bor01q, Bor01r]. Multivariate [HYG09, BL92b]. Music [Bor12s]. Musicians [BB16n]. My [Bor08q, Bor12t, Bor07-28, Bor07-29, Bor07-30, Bor08u]. Mysteries [Bor11-30].

N [BC96, Odl11]. National [Bor05]. NATO [SBW84]. natural [RP09]. Nearest [BG15b, BG16c, Bor88k, BF89b]. Necessary [Bor82b, BZ708, BZ88]. needs [Bor13a]. negative [BMWY11, BY12f, LL13]. negative-infinity [BMWY11]. Nested [BdB91]. Network [Bor99b, Bor99c]. Networking [Bor98e]. Neumann [BB93a]. Nevanlinna [Bor03p]. Neverending [BVSZ14]. Newfoundland [IEE08, SBW84].
Newly [BB12k]. news [BB12a]. Newton [BWB97]. Next [Bor02c, Bor02q, BB16k]. NI [BE08]. Nielsen [BS15b]. NJ [Bor09b]. NMR [BMN00]. No [BB13i, BM97b, BB13e, BKW02, Cam16, Zal86, BB12x]. no. [BZ02a]. Nobel [Bor14b]. Non [Bor72, Bor05-32, Bor06-33, Bor13o, Bor16v, Bor16w, Bor16x, Bor16y, Bor16z, AB12, AB13, BBWY11b, BBWY12b, BZ94, BE08, BS10, Bor15r, LL13, Sel16, BM07d]. Non- [Bor05-32, Bor06-33].
Non-Convex [Bor16v, Bor16w, Bor16x, Bor16y, Bor16z, Bor13o, AB12, AB13]. non-expansive [BS10]. Non-Linear [Bor72]. non-negative [LL13]. non-reflexive [BBWY11b, BBWY12b, BZ94, BE08]. Non-smooth [BM07d]. non-Western [Sel16]. nonattaining [BK01]. Nonconvex [AB15, Bor10m, Bor13q, AB16, BZ98, BJ98, Bor12p].
nondifferentiability [BG09]. Nonexpansive [BS3, BS84b, Bor09-28, BR11]. Nonlinear [BBC09, Bor99a, BL00a, BZ02a, BZ02b, Tod03, BL06]. nonlocal [PT14]. Nonmonotone [GS02, QYX14, XWQ14, AP16, L115, YW12, ZSQ10]. nonnegative [HNP10, HLZ15a, HLZ15b, WM07]. Nonnormality [BB12y]. nonreflexive [BL93a, BV94b, BZ97]. nonsense [BB12z]. Nonsmooth [Bor94]. Bor94k, Bor94l, Bor94m, BM07b, WBS7, Bor98k, BZ99a, XWQ14, YW12]. Norm [Bor86a, BST13, BST15, Art07, BFG03]. Normal [BB13j]. BB13k, BB14c, BB14j, BCWJ13, BG87]. Normality [BBC+11a, BB+12b, BBC+12c, BB+12a, BN84]. normed [BFG87, BR92, BFV94, Bor95c, BLM00]. norms [BY84, BV93, BV94a, BSM02, BGV02, BBL10]. notation [BB11e]. Note [BB86a, BM97b, Bor76b, Bor80d, Bor82d, Bor82c, Bor83d, BF94, Re02, Tha02]. Notes [Bor06-36, HC09]. notion [JN03]. Notions [Bor79c, BZ93a, Bor08d, Bor79b]. novel [Ade12]. Nuclear [BB14h]. Null [BM98b, BF95c, Bor95a, Bor95b]. Number [Ber88, BB87d, KG04, Wim88, BB13t, BCWJ13, BCWJ13, BB93d, BB98a, BSZ13]. Numbered
24

[Bor11d, Bor11h]. Numbers [Ade14a, ABBB13, BB88d, BBD97, BBxxa, BDD00, BDD04, Bor09t, Bor13-27, Bor13-28, Bor16-03, Bor16-31, Bor16-32, BBCP04, BB11e, BB12a, BB13j, BB14k, BCJW13, BBD89, BB90d, Bor11i, Bor13h, Bor13i, Bor13v, Bor13w, Bor13x, Bor13y, Bor13z, Bor14w, Bor14x, BBD16, Bor16r, Bor16s, Bor16t, RP09, Bai91, Lor90]. numeracy [BB12-29]. Numerical [BB08e, BB08b, BB12z, Bor99t, BS00, Bor00s, Bor09y, BB11b, Bor05-40, MR96]. numerique [Bor00a]. Nurturing [Bor03-30].

O [BB13a]. objectives [Bor91g, Bor92e]. Objects [Bor06s, Bor91d, Bor91e, Bor91i, Bor91j, Bor91k, Bor91l, Bor92f, Bor92g, Bor05-33, Bor05-34, Bor05-35, Bor06-34, Bor06-35]. Observations [BB92b]. odd [BS16b]. odds [BR14b]. Odyssey [BB12p]. OEIS [Bor15d, Bor16a]. Official [Bor03-31]. often [Bor15a]. oil [BB12e]. Old [BB14p, BB12d, BB15n, Bor15l]. One [BB97c, BB00b, Bor03-32, BBB04b, BB16, BB97a, BB89, Bor94b, BF95a, BCFR04]. one-dimensional [Bor94b, BF95a]. Online [BBS16a, BS97b, Bor97n, Bor01f]. only [BB13q]. ontological [BB15b, BB15i]. Ontology [DD15, BB15b, BB15i]. Open [Bor88k, Bor03-34, Pea07, BBS13a, BB13o, BB99a]. openness [Bor87a, BB13n]. Oper. [Zal86]. Operator [BY12c, BBWY11c, BWY12c, BY12b, BY12d, BY13b, BY14b, BY15, BG16b, KMY00]. Operators [Bor72, Bor04a, BW06, Bor06t, Bor06-31, BBY13, EB08, BB99b, BBW07, BBWY11b, BBWY12b, BBWY13, BB82a, BPT84, Bor84e, Bor86e, Bor86b, BF99a, BFK91, Bor92o, BT92, Bor98n, BRLZ00, BLZ01, Bor05-33, Bor05-34, Bor05-35, Bor05-36, Bor06s, Bor06-34, Bor06-35, Bor06-32, BW07, Bor07b, Bor07x, BE08, BJS11, BEY11, Bor12j, Bor12k, BY12f, BY12e, BBY13, BY13a, BY13c, BY14c, RZ15]. Opinion [BBS13a]. Opportunities [BB13b, BBS14a, BB14a]. optimal [Pos13]. Optimality [BW79a, BW79b, BW81c, BW82a, BW82b]. Optimisation [Bor16l, BM07d, JN03]. Optimization [Ano15, ABT13b, ABT14a, BBC13, Bor74, Bor78a, Bor99a, BL00a, Bor02b, Bor12-30, Bor12-31, Bor16m, Bor16n, BL16a, Tod03, ABT14c, AP16, BBL99, BBC03, Bor77a, Bor81b, BN84, BZ91, BZ93, BL94b, BTZ98, BL06, BL16b, DHJS06, MPB16, WSdSY15, XH08, XSW12, YW12, ZH06, ZSQ10, Zho12]. option [BCM03]. Order [BD86, Bor87e, EB08, BB84b, BB84d, Bor86e, BB87a, BD89, Bor92h, Bor92i, Bor93f, Bor93g, BF93b, BN94].

order-bounded [Bor86e]. orderings [Bor74]. Organic [Bor96i, BBWC97, BJ12, Bor97e, BBC+97b, BBWC97]. oriented [BD11].

origin [BDT16, BG16b]. originating [Bor05i, Bor06i]. Origins [BS14b, BS14a]. OSCAR [IE08]. oscillatory [BB10a]. Other [Bor00j, Bor00k, Bor05-42, Bor05-43, Bor05-44, Bor16o, GS08, Bor92o, Bor93k, BFV97, Bor05-45, BL16a, BL16b, Tre13]. out-of-sample [BB13c]. outlook [BB01a]. Over-Fitting [BBL13, BB1PZ16]. Overfitting [BBS+16a, BBLZ14, BBS+15a, BBS+16b, BBL16a]. Overseas [BB15].

Overview [Bor09-29]. Oxford [BB93g, Bor06o, BO11b, Bor06o]. Oz [Bor11m, Bor11n].
plates [BB91d]. Plausible
[Bor93c, Bor93d, Bor03-27, Bor03-28, Bor03-33, BB04b, Bor04-27, Bor04w, Bor04x, Bor04y, Bor04z, Bor06-29, Bor10a, HF05, Hoa05, Zei05]. playing [BB12o]. Please [BB13l]. Pleasure [Bor02l, Bor02m, Bor05a].

Point [BB88a, BBC+11b, Bor84a, BB91b, BLT15, BLT16, HD07]. Points
[Bor77c, Bor84d, Bor83e, Bor86c, Bor88k, BF89b, Bor92l, Bor92m, Bor92n, BF93a, BW97a, BKW02, BY12e, BY13c, BG15b, BG16c]. Poisson
[BB13d, BBCZ13, BBKL16, TB00]. Pol [BB07c]. politicians [BB12-28].

Pleisure [Bor02l, Bor02m, Bor05a]. Point [BB88a, BBC+11b, Bor84a, BB91b, BLT15, BLT16, HD07]. Points
[Bor77c, Bor84d, Bor83e, Bor86c, Bor88k, BF89b, Bor92l, Bor92m, Bor92n, BF93a, BW97a, BKW02, BY12e, BY13c, BG15b, BG16c]. Poisson
[BB13d, BBCZ13, BBKL16, TB00]. Pol [BB07c]. politicians [BB12-28].

Ploue [BC96]. Point [BB88a, BBC+11b, Bor84a, BB91b, BLT15, BLT16, HD07]. Points
[Bor77c, Bor84d, Bor83e, Bor86c, Bor88k, BF89b, Bor92l, Bor92m, Bor92n, BF93a, BW97a, BKW02, BY12e, BY13c, BG15b, BG16c]. Poisson
[BB13d, BBCZ13, BBKL16, TB00]. Pol [BB07c]. politicians [BB12-28].

Plasticity [Bor02l, Bor02m, Bor05a]. Point [BB88a, BBC+11b, Bor84a, BB91b, BLT15, BLT16, HD07]. Points
[Bor77c, Bor84d, Bor83e, Bor86c, Bor88k, BF89b, Bor92l, Bor92m, Bor92n, BF93a, BW97a, BKW02, BY12e, BY13c, BG15b, BG16c]. Poisson
[BB13d, BBCZ13, BBKL16, TB00]. Pol [BB07c]. politicians [BB12-28].

Pol
[BB07c]. politicians [BB12-28].

Polynomials [BBKL16, HC09]. Poorten [BSZ13]. Portfolio
[BB90a, Bor91a, BB93c, BC96, Bor06o, Bor09b, BO11b, BS14a]. Preiss
[Bej94, Dev9x, Fab89, Geo05, KPS16, LS00, QR07, YS00]. Preisses
[Bor89c].

Prepared [BB15o]. prescribed [BMW97, BW03]. Presence
[BB90a, Bor91a, BB93c, BC96, Bor06o, Bor09b, BO11b, BS14a]. Preiss
[Bej94, Dev9x, Fab89, Geo05, KPS16, LS00, QR07, YS00]. Preisses
[Bor89c].

Presentation [Bor05e, Bor89a]. presidential [BB12z]. Press [BB93g, BC96, Bor06o, Bor09b, BO11b, BS14a].

Previously [BBMW11, BBM13]. Price [Bai91, Ber88].

primes [BCM03], primality [Bor94g, BBBG96, BW97b, BMS13, BSM13].

Princeton [Bor99b, BO11b, HDG+15]. Principle [Bor03-32, Bor04-31, BHP14, Geo05, YS00, Bor83b, BB84f, Bor86g, BP87, Bor87h, Bor87j, Bor90m, Bor90n, BCM03, BCFR04, Fab89, KPS16, LS00, QR07]. Principles
[BB96a, BM599b, Bor06a, Bor06b, Bor06c, Bor09-30, Bej94, BTZ99, BV09]. Prize [Bor03p, Bai16a, Bor14b, BE16]. Prizes [Bor03p].

probability [BBZ13, BCM03, BBdPZ16].

Problem
[ABT15, BB07b, BB07a, BB08f, BB09e, BB10b, BB12-27, BD86, Bor13d, Bor13e, Bor13h, WSL16, ABT16, BB16m, BW81d, BD89, BGL93, CKM+16, GD15, LLS11, PT14, Pos13, Ray97, Vla14, Vir14, Zho12]. Problems
[AJB86, ABT13a, ABT13b, ABT14b, ABT14a, ANO+83, AJ86, BB09f, BB09a, BL87, BSZ+83, BB85, Bor85a, BN86, BB87c, Bor93l, BB93c, BLN94, Bor96j, BD96, BBS+97, BBP99, Bor05b, Bor08p, Bor09c, Bor09v, Bor09-29, Bor09-27, Bor09-28, Bor09z, Bor10m, Bor10x, Bor10y, Bor12q, BT13b, Bor13k, Bor13o, Bor16v, Bor16w, Bor16x, Bor16y, Bor16z, BKL+93, CJKB92, DAK88, DNG+86, DBCB88, EWM86, GRM+97, GC88, KJ86, KC89, KWK+90a, KWK+90b, KWK+90c, LPB01, Mon89, NJS88, NOL86, RSP+93, Rud89, Sch85, SB87, SH87, SZUM86, Stu90, TB00, AR13, ABT14c.
AP16, BBKW06, BBC+11b, BTBT88, Bor84a, Bor85c, Bor88k, BL91c, BL91b, Bor92, Bor92m, Bor92a, BZ94, BH94, BL94a, BH95, BZ97, BTZ98, Bor12p, Bor13i, Bor14e, Bor14f, BT14b, BT14a. problems [BT15, Bor15g, Bor15r, HD07, HLZ14, HLY16, JD13, KJR16, LZ14, Li15, MPB16, NWY10, Pea07, WSDSY15, YW12]. Proceedings [Bor96i, BBJC97, HY14, ABD03, BF06b, RZ15]. process [Bor96i, BBJC97, HY14, ABD03, BF06b, RZ15]. processes [Bor86a, MTCB98]. processing [BJC13]. Product [BPB99, BB83]. productive [Bor03g]. products [RZ15]. Program [BB79a, BW79b, BW81c, BW81b, BW82a, BW82b, BWB97]. programmed [BB11c]. Programming [Bor01o, Bor05-32, Bor06-33, BL15, TB80, Bor76a, Bor79a, BW81a, Bor81c, BW81d, Bor83c, Bor83f, BW86, Bor87k, Bor88l, Bor89i, Bor90e, Bor90f, Bor90c, Bor90d, Bor91b, Bor91c, Bor92a, BL92d, BT92, Bor93e, BL93b, Bor94i, Bor95m, Bor95o, BBY12, BBY14, DF05]. programs [Bor79c, Bor80e, BK83, Bor91g, Bor92e]. Progress [BB08b, BB11b, Bor12y, BY12c, BY15]. progressions [Zah06]. Projected [DF05, LZY14, WM07, HNP10, HLZ15a, HLZ15b, HLY16, ZH06].

Projection [BB96a, Bor98n, Bor99x, Bor09v, Bor10c, Bor10d, Bor10m, Bor10y, Bor12q, Bor13o, BST13, BB93a, BB94a, BB97a, BLY13, BLY14, BST15]. projections [BB97a, BB97b]. promises [Bor94d, Bor94e, Bor94f, Bor95g, Bor95h, Bor95i, Bor95j, Bor95k, Bor95l, Bor95m, Bor96c]. Proof [Bor02l, Bor02m, Bor05a, Bor07g, Bor07k, BS07, Bor08g, BS08, BB11j, Bor12a, Cvi10, GS08, HD12, Art07, BB08c, Bor77b, Bor94a, Bor06h, Bor08d, Bor08e, Bor08f, Bor09a, Bor09c, Bor09f, Bor09g, Bor09a, BY12f, Bor14y, Bor16-28]. proofs [Ade13, Gui08]. Proper [Bor97c, JD03, Yan94, Zhu91]. properly [Zho12]. Properties [Bor00m, BBEM10, BBEM10, BBEM10, BBT00, Bor82a, Bor90g, Bor90h, Bor90i, Bor90j, Bor90l, Bor90a, Bor90c, Bor90d, Bor90-43, Bor91b, Bor91c, Bor91d, Bor91e, Bor92a, Bor92b, Bor99, BB01c, BNSW11, Mar91]. property [BB99, Bor82e, Bor88r, B89c, BJ98]. Prophets [BB15k]. Proposed [BB08b]. Prospects [BB05a, Bor09w, Bor09x]. protein [BT14b, BT14a]. Prototype [BMP05]. proving [HD12]. prox [BBEM10]. prox-regular [BBEM10]. Proximal [BS86, BS87, BI96, BG87, BGW98]. Proximity [Bor06u, Bor07y, Bor08t]. Pseudo [BBLZ14, BCJW13].

Pseudo-mathematics [BBLZ14]. pseudo-random [BCJW13]. pseudoconvex [QR07]. pseudorandom [BB13]. PSLQ [BB09d]. Public [BB14g, Bor03h, Bor12-28]. Publication [Bor98a, BS97b]. Publishing [Bor99y, Bor96d, Bor97h, Bor97i, Bor97n]. Putnam [Bor77d]. puzzles [Bor15a].

QC [KG04]. QPQC [Pos13]. Quadratic [Bor89g, Bor89h, BY06, HLZ15b, Bor82b, DF05, La 09, NWY09]. quadratically [BB86c]. Quadtature [BB06a, BB08d, Bor06j, Bor06k, Bor06m, Bor06n, BY06]. qualification [BW79b, BW82a, BW82b, BW86]. Quantitative [Ano15, Koh01]. quantum [Cvi10]. Quartically [Bai88, TK97]. Quasi [BL92c]. quasiconvex [BBP03].
quest \[BBBP97, BBxxc\]. question \[BB14l, MR11\]. Questions \[Bor03-34\]. Quinn \[BBC09\].

R \[Odl11\]. Rachford \[AB12, ABT13a, AB13, ABT13b, ABT13c, ABT14b, ABT14a, ABT15, ABT14c, ABT16, Bor10i, Bor10j, Bor10k, Bor10l, BS11b, Bor11q, Bor11r, BT13a, BT13b, Bor13i, Bor13j, BT14c, Bor14e, Bor14f, BT15, Bor15g, Bor15r, BG16b, BLS+16]. radicals \[BdB91\]. Rainfall \[Bor14l\]. Ramanujan \[AB15, AAB12, BBB97a, BBG95b, BR01, Bor85b, Bor86f, BB87a, Bor87g, Bor87f, BB87b, Bor87l, BB88c, BB88e, BB89a, Bor89f, BB89, Bor90-29, Bor90-30, Bor90-31, Bor90-32, Bor90-33, Bor90-34, Bor90-35, Bor90-36, Bor90-37, Bor90-38, Bor90-39, Bor91i, Bor91j, Bor91k, Bor91l, BB91e, Bor91n, Bor91o, Bor92f, Bor92g, BB92d, BB93d, BB94d, BB96c, BB97c, BB00b, BB01, Bor03d, Bor03e, Bor03f, Bor04-30, Bor04-29, Bor04-28, BCF04, BC04a, BBB04b, BL05, Bor05i, Bor06i, BL08, Bor10z, Bor10-28, Bor10-29, Bor11-28, BBGW11, Bor11-29, Bor11-30, Bor12x, BB16, Bor16d, BB16q, Lu00, BB91d]. Ramanujan-type \[BB87a, BB88c, BL08\]. Ramble \[Bor10-30, Bor10-31, Bor11-32\]. Rand \[BBC09\]. Random \[BB13a, BNSW10, Bor10-30, Bor10-31, Bor11-32, BSW13, Gan14, BB13b, BB97a, BCJW13, BCJW13, BL05, Bor10c, BSWZ11, BNSW11, Bor12b, BSWZ12, BR13a, BS16b, BS16a].

Randomness \[BBBR16\]. Range \[Bor04p, Bor05k, Bor05l, Bor05m, Bor05n, Bor05o, Bor06l, R+05, BW81c, BFKL01, BFL02, Bor03y, Bor03z, Bor06-28\]. rapid \[BBP97\]. rapidly \[AL10, BB83\]. rate \[BLY13, BLY14, BLT15, BLT16, HL15b\]. Ratio \[Ade14a\]. Rational \[BZ87, BB87b, BZ92, BB98b, BB98c\]. Reactions \[BB14h\]. Real \[ABB13, Bai91, BCF04, Bor13-27, Bor13-28, Bor90, BBG87, BB90, BB91b, Bor04-30, Bor10-28, Bor14w, Bor14x, Bor16r, Bor16s, Bor16t]. Real-Parameter \[BCF04\]. Realistic \[BST13, BST15\]. Reality \[Bor05-39, BB12p, BB13g\]. Really \[BB14e\]. rearrangement \[BLZ01\].

Reasoning \[Bor93c, Bor93d, Bor03-27, Bor03-28, Bor03-29, Bor03-33, BB04b, Bor04-27, Bor04w, Bor04x, Bor04y, Bor04z, Bor06-29, Bor06a, HF05, Haoa05, Zei05\]. Receive \[BE16, Bai16a\]. Reconstruction \[Bor09z, Bor92o, Bor93k, BLN95, BLNN95, BLN96, LLC+95, MTCB98\]. reconstructions \[MTCB99\]. Recurrence \[BS08, BBCM07b\]. recurrences \[BB814a\]. Recursion \[BS07\]. Recursions \[BB06b\]. Reduced \[BB84e\]. reduction \[BW81d\]. Refined \[BBFG01, War03\]. Reflection \[BST13, BT14b, BT14a, Bor16q, BST15, Bor15r\]. reflexive \[BBWY11b, BBWY12b, Bor93a, BZ94, BTZ97, BE08, BV10a, Bor13f, Bor13g, Bor13h\]. reflexivity \[BB90a\]. regional \[JJ12\]. registration \[HYG09\]. Regular \[Bor84d, BBEM10, Bor86c\]. regularity \[BB99a, BBL99, BBT00, BS11b, BS16a, BS16b, BS16c, BS16d, BS16e, BS16f, BS16g, BS16h, BS16i, BS16j, BS16k, BS16l, BS16m, BS16n, BS16o, BS16p, BS16q, BS16r, BS16s, BS16t, BS16u, BS16v, BS16w, BS16x, BS16y, BS16z, BS16\]. Regularization \[BL11, HJZ15b\]. regularizations \[BV95a\]. Regularized \[WSL16, MTCB99, XWQ14\]. Regularizing \[BW81b\]. Regulatory \[BB15n\]. Reich \[Koh01\]. Reinhart \[BB13m\]. Related
[Bor02b, BHL16b, BHL16a, BS84b, BB95d, BB01c, BSZ13]. relating
[BW97b]. Relation [Bor09p, Bor09q, Bor10t, BL00b, BY12b, BY13b].
Relations [BB09d, Bor90b, Bor02a, BS15b, BWY10, BMWY11, Bor81b,
Bor81d, Bor87a, BBCM07b]. relationships [BL91b, BV93, BV94a]. relative
[BB13e, BL92c, BG03a]. Relaxed [RS02]. reliable [BB14k]. Remark
[Os95]. remarkable [BB90b, BB01c]. Remarks [BG16d, BG16e, BEO77, Bor81a, BG15c].
Remote [BLM +07, BM07c, Bor90w, Bor90x, BJ12]. renorming [BF93c, BV95b].
replace [BB16o]. Report [BBC+14a, JWDS+14, BBL+13]. reported
[BB14k]. reporting [BB12f]. reports [Bor03g]. representation [BMS99a].
representations [BC00]. Representative [EB08]. Reproducibility
[BBL+13, BBS16b, BBRR16, JWDS+14, JWDS+14]. Reproducible
[BB13a, BBL+13, SBB13, Bor13-29, Bor15m]. Res [Za86]. Research
[BB13i, Bor90o, Bor12n, Cam16, SBB13, Bor95u, Bor95v, Bor97w, Bor07q,
Bor13a, Bor13c, Bor14a, Bor16g, RZ15]. researchers [BBW97]. Researching
[Bor11g, Bor11-36]. Resolution [BB09]. Resources [Bor98j].
Respect [Bor77c, Bor74]. Response [BaO12]. restoration [WM07]. Result
[Mil99, FK00, Mil90]. Results [ABT13b, ABT14a, BL93c, Bor96f, Bor96g,
Bor96h, Bor97-28, Bor97-29, Bor07-31, BB14p, ABT13c, ABT14c,
BB13f, BB13t, BLN95, BB96b, BB97d, BW97b, BK01, Bor07-27, Bor12j,
Bor12k, BY12d, BY14b, Hon85]. retires [Jac09]. retraction [Bor15c]. Retro
[BM07a]. Retro-enhancement [BM07a]. Retrospective [Bor08s]. Reuben
[BB11b]. Review
[Abb00, Ask88, Bai91, Ban10, Ber88, Bor90b, Bor92c, BB93g, BC96, Bor06o,
BS14a, Cas99, Coh15, HF05, Hoa05, How14, Lor90, Lor09, Od11, Rob06,
Sha05, Wim88, BB91d, Bor09b, Bor11-37, BO11b, BS14b, Tod03]. Reviews
[Zei05]. Revisited [BLM97, Bor08s, BCM09, BY12f, KFS16]. Revivals
[Bor96j]. Revolution [R+05]. Richard [BB12q]. Riemann
[BB06b, BBC98, BC00, BB05c, Bor07g, BBS15b]. risk
[BB11c, BB13e, Cam16]. Robert [BB91d]. Rocha [Ban10]. Rock
[Bor14u, Bor14v]. Rockafellar [Ano15, BB+07]. Rodrigues [Ban10].
Rogoff [BB13m]. Roland [Sha05, Zei05]. Role [Bor021, Bor02m, Bor05a].
root [BB13g], Roots [BB12s, BB16f, BR84, BS14a, BS14b]. Rossi [BB16i].
Rotund [BGV02]. rotundity [BL94b]. routes [Ade11]. Rule
[BY06, BM98a]. rules [BM97e].

S [Tod03, Ano15]. S. [Bor91n, Bor91o, Bor93m, Bor81a]. saddle [HD07].
Salamin [Borxx]. salt [BF06a]. same [BB99b, BW97a]. sample
[BBLZ14, KJR16]. Sampler [BG16a, BG15a]. San [BC96]. Sandwich
[Bor80b, BT92, Bor98o, Bor81d]. sandwiched [BF01]. Sank
[Bor11-35, BBS12]. Santalo [BBFG01]. Satire [Bor07c]. Scale
[JWDS+14, DF05, Ray97, WM07, XH08]. scales [PHBH13]. scaling
[WsdSY15]. sceptics [BB12d]. Schaible [Bor90b]. Scheme [BT13a, BT14c].
Schemes [BB08d, Bor06j, Bor06k]. scholars [Bor03g]. School
[BB12m, BW97]. Science [BB13p, BB13r, BB15g, BBRR16, Bor95u,
Bor95v, RZ15, Sel16, SBB13, BB12f, BB12j, BB12x, BB13f, BB13l, BB13o,
Tangency [Bor99x]. Tangent [BO76, Bor78c, Bor78a, AL10, BB84f]. Tangential [BS85]. Tanh [BY06]. Taylor [Nim15]. teacher [Bor03g]. teachers [BWB97]. Teaching [Bor11g, Bor11-36]. Technical [Bor16u]. Techniques [BZ05, Bor94o, BZ99a, GS02]. Technology [Bor98e, Bor99e, Bor99f, Bor99d, Bor00n, Bor07f, Sel16, BS99]. Telco [Bor10-32]. telelearning [Bor00w]. Telstra [Bor10-32]. Ten [BBKW06, Bor05b, Bor09-29, Bor09-27, Bor09-30, Bor09-28, Bor09z]. tentative [BB12x]. ternary [Ade10]. Terry [Ano15]. Tertiary [Bor11g, Bor11-36]. test [BB12g, BBdPZ16, BB12l]. Testing [BBLZ13]. Texas [BB13l]. textbook [BB13l]. Texts [Ber88]. th [BB84d, Cra12]. Their [BCLM16, Bor88m, Bor88n, Bor89d, Bor95p, Bor95q, Bor14d, RZ15]. Theorem [BBWY11a, Bor80b, TB80, Art07, BBWY12a, BO11a, Bor79f, Bor80e, Bor81e, Bor81d, BZ86, Bor88g, Bor88h, Bor88i, Bor90q, Bor90m, Bor90n, WB98, BD03, Bor14y, Bor16-28, Dev9x, Koh01, MW12, OBB+96, Rei02, Bor79b, Bor13g]. théorème [Dev9x]. Theorems [Bor99-28, Bor00u, Bor12-30, Bor12-31, Bor14g, Bor14h, Bor14i, Bor14j, Bor14k, Bor14l, Bor14m, Bor15h, Bor16-29, BB99a, Bor77b, Bor79a, Bor81c, Bor85c, Bor87m, BT92, BG95, Bor98o, BY13a, BY14c]. Theoretical [Ba02]. theories [BBG95b]. Theory [BB15e, Bor88, BB78d, BD02a, BM07b, Bor90a, Bor95p, Bor95q, Bor95v, Bor97u, Bor97v, Bor98a, AL10, BB84f]. Three [Bor93p, Bor97u, Bor97v, Bor98q, Bor03-34, Bor07-31, BS13, BB93d]. Three-Step [BSW13]. Thresholding [WSL16, XC11]. Time [WG16, BB16d, PHBH13]. time-scales [PHBH13]. times [Bor05b]. Timothy [Bor09b]. Tipsy [BR13a]. TMA [BZ02b]. Together [JWDS+14]. tomographic [MTCB99]. tomography [MTCB99]. Tony [Bor15d]. tool [BWB97]. Tools [Bor00v, Bor05-42, Bor05-43, Bor05-44, Bor06d, Bor11g, Bor11-36, MTB16, BB15b, BB15i, BBS+15a, BC99, BMPR02, Bor05-45]. topics [BS84b]. Topological [BG16d, BG15c]. topology [Pea07]. Tornheim [BBC14b, BB15a, BB16a, BB16b, BB16c, Bor12r, BBB15, Bor12e, Bor12f]. tottering [BR13a]. Trademarked [BB14d]. trademarking [BB14b]. train [Bor15c]. transform [War01]. transitivity [Hon85]. Treasury [Fer91]. treated [Bor84a]. trenches [BS97b, Bor97n, Bor06-36]. Tribute [BB13c]. triggers [BB12k]. Trigonometric [BB94b, LPB01]. trilogarithm [Ade10]. trinomial [War03]. triple [BG96]. troubling [BB14b]. trustworthiness [Fab89]. Tsallis [ABBS12]. tuned [BB14n]. Turing [BB12g, BB12l]. turn
Turns [BB15f, BB15p]. Tutorial [BM97c, Bor92k]. twenty [BBxxc]. twenty-two [BBxxc]. Two [BB88a, Bor79f, BN84, BB05g, Bor10-33, Bor10-32, BB06b, BB93a, BB94a, BS97b, Bor97n, BBxxc, BB05d, Bor06-32, BB06c, Bor07x, Cam16]. two-dimensional [AAW06]. Two-Point [BB88a]. Type [Ade14a, Ade14b, Bor01o, AL10, Ade11, Ade12, Ade13, BB88a, BB99b, BBWY11c, BMWY11, BBWY12c, BB88c, Bor91g, Bor92e, BB93d, Bor93e, BH94, BV01, BB04, Bor05f, BB08, BL08, BEY11, BY12a, BY12f, BY13a, BY14a, BY14c, HLZ14, HL15a, NIm15, Wei15, ZS12, Zha13, ZZ14]. typical [BW01].

U.S. [BB12z, BB12-28]. UK [BF06b]. ultraproducts [BS15a]. uncertain [BB12c]. unconstrained [AP16, DHSHZ06, NWY10, Ray97, WdSY15, XSW12]. uncovers [Cam16]. Underdetermined [BL94a, BGL93]. Undergraduate [Bor99, Bor00s, BS00]. Understand [BB15i]. Understanding [WG16]. Unholy [BB13r]. unified [Bor77a]. Uniform [BH94, BC09, Bor10-31, Bor11-32, BY96c, BS9W11, BSV12, BSV15, BSV16]. Uniformly [BGHV09, BV12]. Union [Bor01n, Bor01m, Bor02n]. units [BJCW13]. Universe [Bor11-30, BB14a]. University [BB93g, BBJC97, Bor06c, Bor09b, BB11b, BS15a, IEE08, KG04, SBW14, BWW97]. Unknown [Bor02j, Bor02k]. Unsolved [BB87c]. unsymmetric [DLL05]. untitled [Bor08v, Bor10-34, Bor12-29, Bor15s]. Update [BB15d, SD15]. upon [BB12z, BB12-28, BB14j]. US$29.95 [BO11b]. uscos [BFK91, BK04]. Use [Bor12-30, Bor12-31, Bor00w]. useful [Bor85b]. User [Bor06c]. uses [BWW97]. Using [Bai88, BHP14, BFG87, Bor91g, Bor92e, BZ92, Bor94i, BLN95, Bor95n, Bor95o, BLLN95, BLN96, BRS11, PBB14].

V [BSW82, Odll11]. Value [Bor99-28, Bor00u, BW98, Bor98p, Bor99z, Bor99-27]. valued [BBP03, BZ88, Zho12, Bor92c]. Values [BZ87, BB96b, BBBL99, BBK00, BK05, Bor10-27, BZ11, BS11d, BS11e, BBBL98a, BBBL98b, BBK01, BBBL01, BB05c, BC10]. Vanderwerff [How14]. variable [BBM02, KJR16]. Variant [YS00, LS00]. variants [Bor79f]. Variational [Aho15, BZ97, BMS99b, Bor99v, Bor00v, Bor03-32, Bor04-31, BZ05, Bor06c, Bor06c, Bor06t, Bor06t, BZ06, Bor07n, Bor08i, Bor08j, Bor09-29, Bor09-27, Bor09-30, Bor09-29, Bor09z, Bor13-33, Bor13-34, Bor13-32, BZ13, Bor16-27, Geo05, YS00, Bor86g, BP87, Bor87b, Bor87h, Bor87i, Bor90m, Bor90n, Bor97o, Bor98l, Bor98m, BZT99, Bor99u, BCFR04, Bor09l, Bor10r, Bor13-30, BZ16, Fab89, KPS16, LS00, QR07]. Variations [Bor05c, BB05d, Bor10b, Bor10-33, BB06c]. various [BB97, Bor92h, Bor92i, Bor93f, Bor93g]. vector [BBP03, BY84, BN84, BZ91, BZ93, JN03]. vector-valued [BBP03]. Vectors [BSxx, BL92a]. Vera [BO11b]. Verifiable [BZ88]. version [BB97, Koh01]. versus [BB12p]. vertex [KMY00]. very [BB83, Bor14y, Bor16-28]. via [Bor87k, BBT92, BG97b, BV97, BCM03, Bor06-30, BBC08a, EB08, TB80].
REFERENCES

[B12-29, B13n]. York [Ber88, BB91d, BB93g, Tod03]. Young [Bor98g].

you're [BB13c].

Zang [Bor90b]. Zeidler [Bor06o]. zero [BBY12, BBY14]. ZETA [Bor97p, BB96b, BBC98, BBK00, Bor05w, Bor07g, Bor08k, Bor09m, Bor10-27, BZ11, BD16, BB15c, BB16, BB18a, BBBL98b, BB98b, BB98c, BBC00, BBK01, BB05c, Bor06h, BC10, BDT16]. Zeta-Function [Bor08k]. Zhai [Coh15].

References

Alladi:2012:PRA

Alaca:2006:TDT

AragonArtacho:2012:GCN

AragonArtacho:2013:GCN

Adiga:2015:RGT

Abbott:2000:BRP

AragonArtacho:2013:WRN

Amdeberhan:2012:FEC

Asperti:2003:MKM

AragonArtacho:2013:ACA
REFERENCES

Adegoke:2014:GRF

Adegoke:2014:NBB

Almkvist:1999:BBA

Asic:1986:PSS

Adler:1986:PSS

Adegoke:2010:HDI

Asic:1983:PSE

Miroslav D. Asic, Phil Novinger, Daniel Oberlin, Irving Adler, Clark Kimberling, J. D. Shallit, and P. Erdős. Problems and so-
REFERENCES

Anonymous:2015:IJB

Arzani:2016:NNF

Adly:2013:NMS

Artacho:2007:NSC

Askey:1988:BRP

Adamchik:1997:SF

Bailey, Borwein, and Plouffe, [BBP97], done in 1995, but only just published, that discovered an amazing formula for \(\pi \) as is a power series in \(16^{-k} \), enabling any base-16 digit of \(\pi \) to be computed without knowledge of any prior digits. In this paper, Mathematica is used to find several simpler formulas having powers of \(4^{-k} \). They also note that it has been proven that their methods cannot be used to exhibit similar formulas in powers of \(10^{-k} \).

REFERENCES

REFERENCES

Borwein:1990:SSH

Borwein:1990:DRN

Borowski:1991:HDM

Borwein:1991:FPI

Borwein:1991:CCJ

Borwein:1991:SGB

REFERENCES

REFERENCES

Borwein:1993:GFI

Borwein:1993:ICM

Borwein:1993:MMB

Bauschke:1994:DAP

Borwein:1994:STE

REFERENCES

50

REFERENCES

[Bbxxb] J. M. Borwein and P. B. Borwein. On the mean iteration \((a, b) \leftarrow ((a + 3b)/4, (\sqrt{ab} + b)/2)\). Report, Department of Mathematics,
REFERENCES

[BoundingBox] Jonathan M. Borwein and Peter B. Borwein. Challenges in mathematical computing. Computing in Science and En-
REFERENCES

Borwein:2001:RP

Borowski:2002:MCD

Borwein:2004:AGMa

Borwein:2004:MEP

Bailey:2005:FPC

Bailey:2005:EME

[Bborwein:2005:SSA]

[Bborwein:2005:TTG]

[Bborwein:2005:ADL]
Jonathan M. Borwein and John Ball. Access to the digitized literature. MSRI Workshop on Digitizing Mathematics, April 15-17, Berkeley, CA, USA., April 15, 2005.

[Bborwein:2005:EDA]

[Bborwein:2005:TFI]

[Bbailey:2006:EBE]
REFERENCES

REFERENCES

REFERENCES

BAILEY:2009:SMPb

BORWEIN:2009:HPH

BAILEY:2010:ECO

BAILEY:2010:SMP

BORWEIN:2010:ECM

BACAK:2011:DCL

BAILEY:2011:HPN

REFERENCES

Bailey:2011:DDW

Bailey:2011:HFE

Bailey:2011:MNC

Bailey:2011:WTD

Bailey:2011:WED

Bailey:2011:EEC
REFERENCES

[Borwein:2011:PSE] D. Borwein and Jonathan M. Borwein. Proof of some experimentally conjectured formulas for \(\pi \). Preprint, Department of Mathematics, University of Western Ontario and Centre for Computer-assisted Research Mathematics and its Applications (CARMA), School of Mathematical and Physical Sciences, University of Newcastle, London, ON, Canada and Callaghan, NSW 2308, Australia, December 4, 2011.

REFERENCES

Condensed and revised version appears in [BB12i].

David Bailey and Jonathan Borwein. Person or computer: could you pass the Turing Test? The Conversation, ??

REFERENCES

REFERENCES

REFERENCES

Bailey:2013:PDU

Bailey:2013:PMT

Bailey:2013:RRE

Bailey:2013:SFS

Bailey:2013:SDO

Bailey:2013:SMD

Bailey:2013:SSF

[BB13q] David H. Bailey and Jonathan M. Borwein. Stupid science funding decisions? Australia’s not the only dunce. The Conversation,
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Bailey:2015:EAM

Bailey:2015:ECO

Bailey:2015:HPA

Bailey:2015:HMP

Bailey:2015:HWD

Bailey:2015:LFC

REFERENCES

[BB16g] David H. Bailey and Jonathan M. Borwein. Are humans or computers better at mathematics? Blog posting, November 27, 2016. This article was co-authored with Jonathan M. Borwein before his death on 2 August 2016. A condensed version of this article appeared in [BB16o].

[BB16i] David H. Bailey and Jonathan M. Borwein. Interview with Andrea Rossi, LENR energy pioneer. Huffington Post, ??(??):
REFERENCES

Bailey:2016:PD

Bailey:2016:PNG

Bailey:2016:SEF

Bailey:2016:SPP

See research papers [Via16, CKM+16].

Bailey:2016:WMM

Bailey:2016:WCR

REFERENCES

[BBB00b] J. M. Borwein, P. B. Borwein, and D. H. Bailey. Ramanujan, modular equations, and approximations to pi or how to compute one
REFERENCES

REFERENCES

Bailey:2015:ELG

Borwein:2016:RME

Bailey:2007:HFI

Borwein:1996:GCP

Bailey:2008:EIE

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[BBCM07b] D. Borwein, J. Borwein, R. Crandall, and R. Mayer. On the dynamics of certain recurrence relations. The Ramanujan Jour-
Bailey:2004:BEA

Bailey:2013:EFS

Bailey:2013:LSA

Borwein:1997:PEN

REFERENCES

Borwein:2000:PEN

Borwein:2004:PEN

Borwein:2016:PEN

Bailey:2016:PBT

Bacak:2010:ICL

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[BBMW11] David H. Bailey, Jonathan M. Borwein, Andrew Mattingly, and Glenn Wightwick. The computation of previously inaccessible digits of π² and Catalan’s constant. Report, Lawrence Berkeley National Laboratory; Centre for Computer Assisted Research Mathematics and its Applications (CARMA), University of Newcastle; IBM Australia, Berkeley, CA, USA; Callaghan, NSW 2308, Australia; St. Leonards, NSW 2065, Australia; Pyrmont,
REFERENCES

[Bailey:2013:CPI]

[Benoist:2003:CQV]

[Borwein:1989:ACL]

REFERENCES

REFERENCES

Borwein:2015:MCR

REFERENCES

Borwein:1987:ESE

Borwein:1988:ESE

Borwein:1985:CLS

Borwein:1992:SEC

Bauschke:2000:BLR

Borwein:1996:ASC
REFERENCES

REFERENCES

REFERENCES

[BC15b] Jonathan M. Borwein and Scott T. Chapman. I prefer pi: Ad-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

114

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Borwein:1993:CDS

Borwein:1993:PFP

Borwein:1993:SCR

Borwein:1994:UMP

Borwein:1994:SRO

Borwein:1999:IAM

Borwein:2000:CAN

[BL00a] Jonathan M. Borwein and Adrian S. Lewis. *Convex Analysis and Nonlinear Optimization*. CMS Books in Mathematics/Ouvrages
REFERENCES

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borwein:2015:CRA</td>
<td>J. M. Borwein, G. Li, and M. K. Tam. Convergence rate analysis for averaged fixed point iterations in the presence of hölder reg-</td>
</tr>
</tbody>
</table>

Borwein:2016:CRA

Borwein:2013:ACR

Borwein:2014:ACR

Borwein:2001:CSF

Borwein:1997:LMF

REFERENCES

REFERENCES

126

Borwein:2006:DLP

Borwein:2007:REM

Borwein:2007:NAA

Borwein:2007:CNS

Borwein:2007:CSR

Borwein:2009:SCC

Borwein:2010:SCC

Jonathan M. Borwein and Warren B. Moors. Stability of closedness of convex cones under linear mappings II.
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[Bor78a] J. Borwein. Weak tangent cones and optimization in a Banach space. *SIAM Journal on Control and Optimization*, 16(3):512–
REFERENCES

[Bor79e] J. M. Borwein. On convex decompositions. Accepted for publication in Nanta Mathematica, but the journal ceased publi-

REFERENCES

Borwein:1980:SDT

Borwein:1981:SRP

Borwein:1981:CRO

Borwein:1981:DTS

Borwein:1981:LMT

Borwein:1981:LLC

REFERENCES

REFERENCES

REFERENCES

[Bor87k] Jonathan M. Borwein. Spectral analysis via convex programming. Charnes’ 70th birthday conference, IC2, University of Texas at Austin, Austin, TX, USA., October 15, 1987.

REFERENCES

REFERENCES

[Bor89a] Jonathan M. Borwein. Quadratic mean iterations. Carleton University/Université d’Ottawa joint Colloquium, Carleton University, Ottawa, ON, Canada., March 4, 1989.

binatorics and Optimization, Waterloo, Waterloo, ON, Canada., November 21, 1990.

[Bor90g] Jonathan M. Borwein. Differentiability properties of convex, Lipschitz and semicontinuous functions. Ontario Math Meetings #88, Brock University, St. Catharines, ON, Canada., April 21, 1990.

REFERENCES

[Bor90m] Jonathan M. Borwein. Ekeland’s theorem and the smooth variational principle. Conference on Topological Methods, Brock University, St. Catharines, ON, Canada, April 20, 1990.

[Bor90s] Jonathan M. Borwein. The history of the computation of pi. APICS Lecture, Memorial University, St John’s, NL, Canada, March 31, 1990.

[Bor90t] Jonathan M. Borwein. The history of the computation of pi. APICS Lecture, Université de Moncton, Moncton, NB, Canada, April 5, 1990.

REFERENCES

[Bor90w] Jonathan M. Borwein. The history of the computation of pi. APICS Lecture, Memorial University, St John's, NL, Canada., March 31, 1990.

[Bor90x] Jonathan M. Borwein. The history of the computation of pi. APICS Lecture, Université de Moncton, Moncton, NB, Canada., April 5, 1990.

REFERENCES

Borwein:1990:SDPb

Borwein:1990:SDPc

Borwein:1990:SDPd

Borwein:1990:SDPe

Borwein:1991:MCS

Borwein:1991:CPCa

Borwein:1991:CPCb

Borwein:1991:DAOa

[Bor91h] Jonathan M. Borwein. Euler, Mahler, Ramanujan and a little pi: Discovering analytic objects by computer. One of two invited talks at the Festkolloquium for Dr. A. Peyerimhoff’s 65th birthday, Ulm, Germany., April 25, 1991.

REFERENCES

REFERENCES

[Bor92g] Jonathan M. Borwein. Euler, Mahler, Ramanujan: Discovering analytic objects by computer. Seminar, Department of Mathematics, University of Michigan, Ann Arbor, MI, USA., February 20, 1992.

[Bor92i] Jonathan M. Borwein. First and second order differentiability of convex functions on various Banach spaces. Variational Analysis
REFERENCES

and Related Topics, First World Congress of Nonlinear Analysts, Tampa, FL, USA., August 20, 1992.

[Bor93a] J. M. Borwein. Asplund spaces are sequentially reflexive. Accepted for publication in the Canadian Journal of Mathematics, but withdrawn and merged with another paper. Jon Borwein recorded that as publication number 121, but because the article
numbers changed with each update of his CV, that number has long been incorrect., 1993.

REFERENCES

[Bor94e] Jonathan M. Borwein. Experimental mathematics, promises and pitfalls. Colloquium, Department of Mathematics, Indiana University, Bloomington, IN, USA., November 18, 1994.

REFERENCES

[Bor94i] Jonathan M. Borwein. Maximization entropy methods (using
derivative information) and infinite dimensional convex program-
ming. XV International Mathematical Programming Symposium,
Ann Arbor, MI, USA., August 18, 1994.

[Bor94j] Jonathan M. Borwein. Nonsmooth analysis in smooth Banach
spaces. Colloquium, Department of Mathematics, University of

[Bor94k] Jonathan M. Borwein. Nonsmooth analysis in smooth Banach
spaces. Analysis Seminar, University of California, Santa Barbara,

spaces. Colloquium, University of Victoria, Victoria, BC,

[Bor94m] Jonathan M. Borwein. Nonsmooth analysis in smooth Banach
spaces. Colloquium, University of Limoges, Limoges, France., July

[Bor94n] Jonathan M. Borwein. Viscosity derivatives: theory and applica-
tions. XV International Mathematical Programming Symposium,
Ann Arbor, MI, USA., August 18, 1994.

[Bor94o] Jonathan M. Borwein. The vision: how do we integrate . . . mature
computation techniques. Maple Summer Workshop and Sympo-

[Bor94p] Jonathan M. Borwein. Ways of thinking about duality. Student
Session, XV International Mathematical Programming Sympo-
sium, Ann Arbor, MI, USA., August 16, 1994.

[Bor94q] Jonathan M. Borwein. What is experimental mathematics? Col-
loquium, University of California, Santa Barbara, Santa Barbara,
REFERENCES

REFERENCES

[Bor95m] Jonathan M. Borwein. Experimental mathematics, promises and pitfalls. Colloquium, Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, SK, Canada., November 9, 1995.

REFERENCES

[Bor95o] Jonathan M. Borwein. Maximum entropy methods (using derivative information) and infinite dimensional convex programming. Pure Mathematics Seminar, University of Western Australia, Crawley, WA 6009, Australia., August 1, 1995.

Jonathan M. Borwein. Experimental mathematics, promises and pitfalls. Colloquium & MAA Visiting Lecture, Department of Mathematics, Western Washington University, Bellingham, WA 98225, USA., February 6, 1996.

REFERENCES

REFERENCES

[Bor97k] Jonathan M. Borwein. Maximum entropy methods an introduction. VHHSC Medical Imaging Group Open House, Vancouver
REFERENCES

Hospital and Health Science Centre, Vancouver, BC, Canada., March 4, 1997.

[Bor97s] Jonathan M. Borwein. Talking about pi. Colloquium, School of Mathematical Sciences, Lakehead University, Thunder Bay, ON P7B 5E1, Canada., September 22, 1997.

Jonathan M. Borwein. Three adventures: Symbolically discovered identities for $\zeta(4n + 3)$ and like matters. Joint CS/C&O Colloquium, University of Waterloo, Waterloo, ON, Canada., October 9, 1997.

Jonathan Borwein. Talking about pi. The original URL is no longer found, but the archive URL worked on 26-Apr-2011., January 20, 1998.

Jonathan M. Borwein. Brainstorming: views of the future. Presentation, First Workshop of the IMU Committee on Electronic
REFERENCES

[165]

[Bor98k] Jonathan M. Borwein. Multifunctional and functional analytic methods in nonsmooth analysis. Four Lectures, NATO Advanced
REFERENCES

Study Institute on Analyse non linéaire, équations différentielles et contrôle, Université de Montréal, Montréal, QC, Canada, July 27–Aug 7., August 3–7, 1998.

REFERENCES

[Bor99e] Jonathan M. Borwein. The doing of mathematics in the presence of technology. Canadian Mathematics Education Study Group (CMESG), First Plenary, Brock University, St. Catharines, ON, Canada, June 4–8., June 4, 1999.

REFERENCES

[Bor99m] Jonathan M. Borwein. Generic behaviour of generalized gradients. Special Session on Nonlinear Analysis, Canadian Mathematical Society Summer Meeting, Memorial University, St John’s, NL, Canada., May 29, 1999.

REFERENCES

REFERENCES

[Bor00e] Jonathan M. Borwein. Experimental mathematics and exact computation. Colloquium, University of Western Australia, Crawley, WA 6009, Australia., April 19, 2000.

[Bor00g] Jonathan M. Borwein. Experimental mathematics and exact computation. Ernst Schrödinger Lecture, Schrödinger Institute, University of Vienna, Vienna, Austria., October 5, 2000.

REFERENCES

[Bor01c] Jonathan M. Borwein. Aesthetics for the working mathematician. Mathematics Colloquium, Macquarie University, Sydney, NSW,
REFERENCES

REFERENCES

[Bor02c] Jonathan M. Borwein. The CEIC: The next four years. West Coast Optimization Fall Meeting, University of Washington, Seattle, WA, USA., November 2, 2002.

Borwein:2002:EMCa

Borwein:2002:EMCb

Borwein:2002:EMPa

Borwein:2002:EMPb

Borwein:2002:IMU

Borwein:2002:IWC

Jonathan M. Borwein. Introduction to the work of the CEIC. Electronic Information Afternoon at the ICM, Beijing, August 20–27, 2002., August 26, 2002.

Borwein:2002:MMF

[Bor02q] Jonathan M. Borwein. The next four years. Invited Lecture at

REFERENCES

Jonathan M. Borwein. The best teacher I ever had: personal reports from highly productive scholars. In A. Michalos, editor, Royal Society of Canada Volume, page ?? Althouse Press, ???.

REFERENCES

REFERENCES

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
REFERENCES

REFERENCES

REFERENCES

[Bor05b] Jonathan M. Borwein. (2 times) ten challenge problems. Third Clifford Lecture, Tulane University, New Orleans, LA, USA., April 1, 2005.

[Bor05d] Jonathan M. Borwein. Aarms. Presentation, Department of Math and Stats, Memorial University, St John’s, NL, Canada., November 17, 2005.

[Bor05h] Jonathan M. Borwein. The future is here? Presentation to National Educational Forum, Fields Institute, Toronto, ON M5T 3J1, Canada, May 6–8., May 6, 2005.

[Bor05z] Jonathan M. Borwein. Lists and challenges in mathematics? Colloquium, Mathematics Department, Rutgers, the State University of New Jersey., November 10, 2005.

REFERENCES

REFERENCES

Department, Dalhousie University, Halifax, NS, Canada., January 26, 2005.

REFERENCES

[Bor06g] Jonathan M. Borwein. Collaborative environments. Panel Discussion HPCS 06, Memorial University, St John’s, NL, Canada., May 17, 2006.

REFERENCES

[Bor06s] Jonathan M. Borwein. Four lectures on variational principles. II: Monotone operators as convex objects. Spring School on Analysis, Paseky, Czech Republic, April 25, 2006.

REFERENCES

REFERENCES

REFERENCES

[Bor07-27] Jonathan M. Borwein. Some convexity results a Jon or a Thompson might like. 65th Birthday Colloquium lecture for Jon Thompson, (Inter-Campus Seminar Day), University of New Brunswick, Moncton, NB, Canada., June 8, 2007.

[Bor08e]

[Bor08f]

[Bor08g]

Jonathan M. Borwein. Effective computation of Bessel functions. SIAM-AMS Special Session on Special Functions, Combined Membership Meetings, San Diego, CA, USA, Jan 6–9, 2008., January 6, 2008.

[Bor08h]

[Bor08i]

[Bor08j]

[Bor08k]

[Bor08g] Jonathan M. Borwein. The past 60 years in mathematics. Colloquium, Department of Mathematics, University of Auckland, Auckland, New Zealand., December 4, 2008.

[Bor08i] Jonathan M. Borwein. Proximality and Chebyshev sets. Analysis Seminar, University of Newcastle, Newcastle, NSW, Australia.,

REFERENCES

[Bor09s] Jonathan M. Borwein. Introduction to carma. Presentation to students from Dungog High School in CARMA., August 11, 2009.

REFERENCES

[Bor09-28] Jonathan M. Borwein. Ten lectures on variational approaches to minimization problems: Monotone and nonexpansive maps: algo-
rithms and convergence. IMA 2009 Summer Program for Graduate Students on The Mathematics of Inverse Problems, University of Delaware, Newark, DE, USA., July 2, 2009.

REFERENCES

REFERENCES

REFERENCES

Borwein:2011:PDNa

[134x692]REFERENCES

[Bor11g] Jonathan M. Borwein. Actually: Teaching and researching at the tertiary level with collaboration tools. CARMA Colloquium., November 3, 2011.

REFERENCES

[Bor11s] Jonathan M. Borwein. Exploratory experimentation and computation. AMS Special Session in Logic and Analysis, Combined
References

[Bor11t] Jonathan M. Borwein. Fractal geometry. Presentation to Year 7 students form Wallsend with Michael Rose to the NSW MEGS program (Making Educational Goals Sustainable), February 16, 2011.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Meeting, University of Sydney, Sydney, NSW, Australia., October 1, 2013.

REFERENCES

Jonathan M. Borwein. Seeing things in mathematics by walking on real numbers. Inaugural Möbius Lecture Series, Colloquium, Department of Mathematics, Baylor University, Waco, Texas., April 24, 2014.

Jonathan M. Borwein. Adventures with the oeis: Five sequences Tony may like. Tony Guttmann: Seventy and counting, December 7–8, Newcastle, NSW, Australia., December 7, 2015.

REFERENCES

REFERENCES

REFERENCES

[BRxx] J. M. Borwein and B. Richmond. When is a matrix a square? Research report 5, Department of Mathematics, Dalhousie University and Department of Combinatorics and Optimization, University of Waterloo, Halifax, NS, Canada and Waterloo, ON, Canada, 19xx. 22 pp.

REFERENCES

[Borwein:1984:NMB]

[Borwein:1985:TA]

[Borwein:1986:PAB]

[Borwein:1987:PAB]

[Borwein:1989:HC]

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Borwein:2015:CDR

Ben-Tal:1988:DAM

Borwein:1997:SAR

Borwein:1998:NCC

Borwein:1999:PSV

Borwein:1993:DKK

REFERENCES

REFERENCES

REFERENCES

REFERENCES

of Mathematics, Dalhousie University, Halifax, NS, Canada, July 1979. 54 pp.

REFERENCES

[BY12b] J. M. Borwein and L. Yao. Maximality of the sum of a maximally monotone linear relation and a maximally monotone oper-

REFERENCES

Borwein:2014:LTI

Borwein:2014:SRC

Borwein:2014:STMa

Borwein:2015:RPM

Borwein:1986:FMT

Borwein:1987:EIE

Borwein:1988:VNS

Borwein:1991:SEC

Borwein:1992:FEG

Borwein:1993:SEV

Borwein:1994:CPP

Borwein:1996:VSV

REFERENCES

REFERENCES

Special issue of JOTA on Nondifferentiable Optimization and Nonsmooth Analysis, dedicated to Vladimir Demyanov.

REFERENCES

[Cohn:2016:SPP]

[Casazza:2015:M]

[Cohen:2015:BRM]

[Crandall:2004:BIJ]

[Crandall:2012:GTB]

[Cvijovic:2010:PBB]

Yu-Hong Dai, William W. Hager, Klaus Schittkowski, and Hongchao Zhang. The cyclic Barzilai–Borwein method for un-

AMMYAE. ISSN 0002-9890 (print), 1930-0972 (electronic). See also [ANO+83].

[Fan14] Reinhard E. Ganz. The decimal expansion of π is not statistically random. *Experimental Mathematics*, 23(2):99–104, 2014. CODEN ????. ISSN 1058-6458 (print), 1944-950X (electronic). See the reproduction of results, and reanalysis, in [BBBR16], that reveals a flaw in the statistical analysis in this paper: Ganz used only
a single blocksize in sampling digits, and that blocksize produces anomalous statistics.

Gessel:1988:PSSb

Gao:2015:BBL

Georgiev:2005:PBP

Gourevitch:2007:CBS

Galvin:1997:PSP

Grippo:2002:NGT

Gold:2008:POD

Huang:2015:QRP

Han:2009:APB

Hoare:2005:BRM

REFERENCES

REFERENCES

Xiangli Li. Smoothing nonmonotone Barzilai–Borwein gradient method and its application to stochastic linear complemen-

REFERENCES

Lord:1990:BRD

Lord:2009:BRE

Lindqvist:2001:PSS

Li:2000:GEV

Lupas:2002:SBF

Li:2014:PBB

Marcos:1991:CPB

John Monaghan, Luc Trouche, and Jonathan M. Borwein. *Tools and Mathematics: Instruments for Learning*, volume 110 of *Math-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

(4):390, April 1987. CODEN AMMYAE. ISSN 0002-9890 (print), 1930-0972 (electronic). See also [Sch85].

REFERENCES

Takahashi:1997:IAC

Todd:2003:CAN

Tressider:2013:EDV

Viazovska:2016:SPP

Virosztek:2014:PBB

Warnaar:2001:GBC

Warnaar:2003:GBC

REFERENCES

Ward:1987:NCF

Wei:2015:SBT

Wuppuluri:2016:STL

Wimp:1988:BRP

Wang:2007:PBB

Wang:2015:BBS

Wu:2016:BBL

REFERENCES

REFERENCES

