
1

Overview of PVM and MPI

Jack Dongarra

Computer Science Department

University of Tennessee

and

Mathematical Sciences Section

Oak Ridge National Laboratory

(http://www.netlib.org/utk/people/JackDongarra.html)

2

Outline

� Motivation for MPI

� The process that produced MPI

� What is di�erent about MPI?

{ the \usual" send/receive

{ the MPI send/receive

{ simple collective operations

� New in MPI: Not in MPI

� Some simple complete examples, in Fortran and C

� Communication modes, more on collective operations

� Implementation status

� MPICH - a free, portable implementation

� MPI resources on the Net

� MPI-2

3

What is SPMD?

2 Single Program, Multiple Data

2 Same program runs everywhere.

2 Restriction on the general message-passing model.

2 Some vendors only support SPMD parallel programs.

2 General message-passing model can be emulated.

4

Messages

2 Messages are packets of data moving between sub-programs.

2 The message passing system has to be told the

following information:

{ Sending processor

{ Source location

{ Data type

{ Data length

{ Receiving processor(s)

{ Destination location

{ Destination size



5

Access

2 A sub-program needs to be connected to a message passing

system.

2 A message passing system is similar to:

{ Mail box

{ Phone line

{ fax machine

{ etc.

6

Point-to-Point Communication

2 Simplest form of message passing.

2 One process sends a message to another

2 Di�erent types of point-to point communication

7

Synchronous Sends

Provide information about the completion of the
message. 

"Beep"

8

Asynchronous Sends

Only know when the message has left.

?



9

Blocking Operations

2 Relate to when the operation has completed.

2 Only return from the subroutine call when the

operation has completed.

10

Non−Blocking Operations
Return straight away and allow the sub−program to
continue to perform other work.  At some later time
the sub−program can TEST or WAIT for the 
completion of the non−blocking operation.  

11

Barriers
Synchronise processes.

Barrier

Barrier

Barrier

12

Broadcast
A one−to−many communication.



13

Reduction Operations
Combine data from several processes to produce a
single result.

    STRIKE

14

Parallelization { Getting Started

� Starting with a large serial application

{ Look at the Physics {

Is problem inherently parallel?

{ Examine loop structures {

Are any independent? Moderately so?

Tools like Forge90 can be helpful

{ Look for the core linear algebra routines {

Replace with parallelized versions

� Already been done. (check survey)

15

Popular Distributed Programming Schemes

� Master / Slave

Master task starts all slave tasks and coordinates their work and I/O

� SPMD (hostless)

Same program executes on di�erent pieces of the problem

� Functional

Several programs are written; each performs a di�erent function in the

application.

16

Parallel Programming Considerations

� Granularity of tasks

Key measure is communication/computation ratio of the machine: Num-

ber of bytes sent divided by number of 
ops performed. Larger granu-

larity gives higher speedups but often lower parallelism.

� Number of messages

Desirable to keep the number of messages low but depending on the al-

gorithm it can be more e�cient to break large messages up and pipeline

the data when this increases parallelism.

� Functional vs. Data parallelism

Which better suits the application? PVM allows either or both to be

used.



17

Network Programming Considerations

� Message latency

Network latency can be high. Algorithms should be designed to account

for this (f.e. send data before it is needed).

� Di�erent Machine Powers

Virtual machines may be composed of computers whose performance

varies over orders of magnitude. Algorithm must be able to handle this.

� Fluctuating machine and network loads

Multiple users and other competing PVM tasks cause the machine and

network loads to change dynamically. Load balancing is important.

18

Load Balancing Methods

� Static load balancing

Problem is divided up and tasks are assigned to processors only once.

The number or size of tasks may be varied to account for di�erent

computational powers of machines.

� Dynamic load balancing by pool of tasks

Typically used with master/slave scheme. The master keeps a queue

of tasks and sends them to idle slaves until the queue is empty. Faster

machines end up getting more tasks naturally. (see xep example in

PVM distribution)

� Dynamic load balancing by coordination

Typically used in SPMD scheme. All the tasks synchronize and redis-

tribute their work either at �xed times or if some condition occurs (f.e.

load imbalance exceeds some limit)

19

Communication Tips

� Limit size, number of outstanding messages

{ Can load imbalance cause too many outstanding messages?

{ May have to send very large data in parts

Sending
Task

Pvmd

Receiving
Task

� Complex communication patterns

{ Network is deadlock-free, shouldn't hang

{ Still have to consider

� Correct data distribution

� Bottlenecks

{ Consider using a library

� ScaLAPACK: LAPACK for distributed-memory machines

� BLACS: Communication primitives

� Oriented towards linear algebra

� Matrix distribution w/ no send-recv

� Used by ScaLAPACK

20

Bag of Tasks

� Components

{ Job pool

{ Worker pool

{ Scheduler

State of each job

Unstarted

Running

Finished

Idle

Busy

A

B

AB

State of each worker

Figure 1: Bag of tasks state machines

� Possible improvements

{ Adjust size of jobs

� To speed of workers

� To turnaround time (granularity)

{ Start bigger jobs before smaller ones

{ Allow workers to communicate

(more complex scheduling)



21

PVM Is

PVM is a software package that allows a collection of serial, parallel and

vector computers on a network to be managed as one large computing

resource.

� Poor man's supercomputer

{ High performance from network of workstations

{ O�-hours crunching

� Metacomputer linking multiple supercomputers

{ Very high performance

{ Computing elements adapted to subproblems

{ Visualization

� Educational tool

{ Simple to install

{ Simple to learn

{ Available

{ Can be modi�ed

22

Physical and Logical Views of PVM

Pvmd (host)

Multiprocessor
host

Tasks

Console(s)

IP Network (routers, bridges, ...)

Host

Physical

Logical

23

Parts of the PVM System

� PVM daemon (pvmd)

{ One manages each host of virtual machine

{ Mainly a message router, also has kernel-like functions

{ Has message entry points where tasks request service

{ Inter-host point of contact

{ Authentication

{ Creates processes

{ Collects output printed by processes

{ Fault detection of processes, network

{ More robust than application components

� Interface library (libpvm)

{ Linked with each application component

{ 1. Functions to compose, send, receive messages

{ 2. PVM syscalls that send requests to pvmd

{ Machine-dependent communication part can be replaced

{ Kept as simple as possible

� PVM Console

{ Interactive control of virtual machine

{ Kind of like a shell

{ Normal PVM task, several can be attached, to any host

24

Programming in PVM

� A simple message-passing environment

{ Hosts, Tasks, Messages

{ No enforced topology

{ Virtual machine can be composed of any mix of machine types

� Process Control

{ Tasks can be spawned/killed anywhere in the virtual machine

� Communication

{ Any task can communicate with any other

{ Data conversion is handled by PVM

� Dynamic Process Groups

{ Tasks can join/leave one or more groups at any time

� Fault Tolerance

{ Task can request noti�cation of lost/gained resources

� Underlying operating system (usually Unix) is visible

� Supports C, C++ and Fortran

� Can use other languages (must be able to link with C)



25

Hellos World

� Program hello1.c, the main program:

#include <stdio.h>

#include "pvm3.h"

main()

{

int tid; /* tid of child */

char buf[100];

printf("I'm t%x\n", pvm_mytid());

pvm_spawn("hello2", (char**)0, 0, "", 1, &tid);

pvm_recv(-1, -1);

pvm_bufinfo(cc, (int*)0, (int*)0, &tid);

pvm_upkstr(buf);

printf("Message from t%x: %s\n", tid, buf);

pvm_exit();

exit(0);

}

� Program hello2.c, the slave program:

#include "pvm3.h"

main()

{

int ptid; /* tid of parent */

char buf[100];

ptid = pvm_parent();

strcpy(buf, "hello, world from ");

gethostname(buf + strlen(buf), 64);

pvm_initsend(PvmDataDefault);

pvm_pkstr(buf);

pvm_send(ptid, 1);

pvm_exit();

exit(0);

}

26

Unique Features of PVM

� Software is highly portable

� Allows fully heterogeneous virtual machine (hosts, network)

� Dynamic process, machine con�guration

� Support for fault tolerant programs

� System can be customized

� Large existing user base

� Some comparable systems

{ Portable message-passing

� MPI

� p4

� Express

� PICL

{ One-of-a-kind

� NX

� CMMD

{ Other types of communication

� AM

� Linda

� Also DOSs, Languages, ...

27

Portability

� Con�gurations include

803/486 (BSDI, NetBSD, FreeBSD) Alliant FX/8
803/486 (Linux) BBN Butter
y TC2000
DEC Alpha(OSF-1), Mips, uVAX Convex C2, CSPP
DG Aviion Cray T-3D, YMP, 2, C90 (Unicos)
HP 68000, PA-Risc Encore Multimax
IBM RS-6000, RT Fujitsu 780(UXP/M)
Mips IBM Power-4
NeXT Intel Paragon, iPSC/860, iPSC/2
Silicon Graphics Kendall Square
Sun 3, 4x (SunOS, Solaris) Maspar

NEC SX-3
Sequent

Stardent Titan
Thinking Machines CM-2, CM-5

� Very portable across Unix machines, usually just pick options

� Multiprocessors:

{ Distributed-memory: T-3D, iPSC/860, Paragon, CM-5, SP-2/MPI

{ Shared-memory: Convex/HP, SGI, Alpha, Sun, KSR, Symmetry

{ Source code largely shared with generic (80%)

� PVM is portable to non-Unix machines

{ VMS port has been done

{ OS/2 port has been done

{ Windows/NT port in progress

� PVM di�erences are almost transparent to programmer

{ Some options may not be supported

{ Program runs in di�erent environment

28

How to Get PVM

� PVM home page URL (Oak Ridge) is

http://www/epm/ornl/gov/pvm/pvm home.html

� PVM source code, user's guide, examples and related material are pub-

lished on Netlib, a software repository with several sites around the

world.

{ To get started, send email to netlib:

% mail netlib@ornl.gov

Subject: send index from pvm3

A list of �les and instructions will be automatically mailed back

{ Using xnetlib: select directory pvm3

� FTP: host netlib2.cs.utk.edu, login anonymous, directory /pvm3

� URL: http://www.netlib.org/pvm3/index.html

� Bug reports, comments, questions can be mailed to:

pvm@msr.epm.ornl.gov

� Usenet newsgroup for discussion and support:

comp.parallel.pvm

� Book:

PVM: Parallel Virtual Machine

A Users' Guide and Tutorial for Networked Parallel Computing

MIT press 1994.



29

Installing PVM

� Package requires a few MB of disk + a few MB / architecture

� Don't need root privelege

� Libraries and executables can be shared between users

� PVM chooses machine architecture name for you

more than 60 currently de�ned

� Environment variable PVM ROOT points to installed path

{ E.g. /usr/local/pvm3.3.4 or $HOME/pvm3

{ If you use csh, add to your .cshrc:

setenv PVM ROOT /usr/local/pvm3

{ If you use sh or ksh, add to your .profile:

PVM ROOT=/usr/local/pvm3

PVM DPATH=$PVM ROOT/lib/pvmd

export PVM ROOT PVM DPATH

� Important directories below $PVM ROOT

include Header �les

man Manual pages

lib Scripts

lib/ARCH System executables

bin/ARCH System tasks

30

Building PVM Package

� Software comes with con�gurations for most Unix machines

� Installation is easy

� After package is extracted

{ cd $PVM ROOT

{ make

� Software automatically

{ Determines architecture type

{ Creates necessary subdirectories

{ Builds pvmd, console, libraries, group server and library

{ Installs executables and libraries in lib and bin

31

Starting PVM

� Three ways to start PVM

� pvm [-ddebugmask] [-nhostname] [host�le]

PVM console starts pvmd, or connects to one already running

� xpvm

Graphical console, same as above

� pvmd [-ddebugmask] [-nhostname] [host�le]

Manual start, used mainly for debugging or when necessary to enter

passwords

� Some common error messages

{ Can't start pvmd

Check PVM ROOT is set, .rhosts correct, no garbage in .cshrc

{ Can't contact local daemon

PVM crashed previously; socket �le left over

{ Version mismatch

Mixed versions of PVM installed or stale executables

{ No such host

Can't resolve IP address

{ Duplicate host

Host already in virtual machine or shared /tmp directory

{ failed to start group server

Group option not built or ep= not correct

{ shmget: ... No space left on device

Stale segments left from crash or not enough are con�gured

32

XPVM

� Graphical interface for PVM

{ Performs console-like functions

{ Real-time graphical monitor with

� View of virtual machine con�guration, activity

� Space-time plot of task status

� Host utilization plot

� Call level debugger, showing last libpvm call by each task

� Writes SDDF format trace �les

� Can be used for post-mortem analysis

� Built on top of PVM using

{ Group library

{ Libpvm trace system

{ Output collection system



33

Programming Interface

About 80 functions

Message bu�er manipulation Create, destroy bu�ers

Pack, unpack data

Message passing Send, receive

Multicast

Process control Create, destroy tasks

Query task tables

Find own tid, parent tid

Dynamic process groups With optional group library

Join, leave group

Map group members ! tids

Broadcast

Global reduce

Machine con�guration Add, remove hosts

Query host status

Start, halt virtual machine

Miscellaneous Get, set options

Request noti�cation

Register special tasks

Get host timeofday clock o�sets

34

Process Control

� pvm spawn(file, argv, flags, where, ntask, tids)

Start new tasks

{ Placement options
PvmTaskDefault Round-robin
PvmTaskHost Named host ("." is local)
PvmTaskArch Named architecture class

{ Other 
ags

PvmHostCompl Complements host set
PvmMppFront Start on MPP service node
PvmTaskDebug Enable debugging (dbx)
PvmTaskTrace Enable tracing

{ Spawn can return partial success

� pvm mytid()

Find my task id / enroll as a task

� pvm parent()

Find parent's task id

� pvm exit()

Disconnect from PVM

� pvm kill(tid)

Terminate another PVM task

� pvm pstat(tid)

Query status of another PVM task

35

Basic PVM Communication

� Three-step send method

{ pvm initsend(encoding)

Initialize send bu�er, clearing current one

Encoding can be

PvmDataDefault

PvmDataRaw

PvmDataInPlace

{ pvm pktype(data, num items, stride)

...

Pack bu�er with various data

{ pvm send(dest, tag)

pvm mcast(dests, count, tag)

Sends bu�er to other task(s), returns when safe to clear bu�er

� To receive

{ pvm recv(source, tag)

pvm nrecv(source, tag)

Blocking or non-blocking receive

{ pvm upktype(data, num items, stride)

Unpack message into user variables

� Can also pvm probe(source, tag) for a message

� Another receive primitive: pvm trecv(source, tag, timeout)

Equivalent to pvm nrecv if timeout set to zero

Equivalent to pvm recv if timeout set to null

36

Higher Performance Communication

� Two matched calls for high-speed low-latency messages

{ pvm psend(dest, tag, data, num items, data type)

{ pvm precv(source, tag, data, num items, data type,

asource, atag, alength)

� Pack and send a contiguous, single-typed data bu�er

� As fast as native calls on multiprocessor machines



37

Collective Communication

� Collective functions operate across all members of a group

{ pvm barrier(group, count)

Synchronize all tasks in a group

{ pvm bcast(group, tag)

Broadcast message to all tasks in a group

{ pvm scatter(result, data, num items, data type,

msgtag, rootinst, group)

pvm gather(result, data, num items, data type,

msgtag, rootinst, group)

Distribute and collect arrays across task groups

{ pvm reduce((*func)(), data, num items, data type,

msgtag, group, rootinst)

Reduce distributed arrays. Prede�ned functions are

� PvmMax

� PvmMin

� PvmSum

� PvmProduct

38

Virtual Machine Control

� pvm addhosts(hosts, num hosts, tids)

Add hosts to virtual machine

� pvm config(nhosts, narch, hosts)

Get current VM con�guration

� pvm delhosts(hosts, num hosts, results)

Remove hosts from virtual machine

� pvm halt()

Stop all pvmds and tasks (shutdown)

� pvm mstat(host)

Query status of host

� pvm start pvmd(argc, argv, block)

Start new master pvmd

39

PVM Examples in Distribution

� Examples illustrate usage and serve as templates

� Examples include
hello, hello other Hello world

master, slave Master/slave program

spmd SPMD program

gexample Group and collective operations

timing, timing slave Tests communication performance

hitc, hitc slave Dynamic load balance example

xep, mtile Interactive X-Window example

� Examples come with Make�le.aimk �les

� Both C and Fortrans versions for some examples

40

Compiling Applications

� Header �les

{ C programs should include
<pvm3.h> Always
<pvmtev.h> To manipulate trace masks
<pvmsdpro.h> For resource manager interface

{ Specify include directory: cc -I$PVM ROOT/include ...

{ Fortran: INCLUDE '/usr/local/pvm3/include/fpvm3.h'

� Compiling and linking

{ C programs must be linked with
libpvm3.a Always
libgpvm3.a If using group library functions
possibly other libraries (for socket or XDR functions)

{ Fortran programs must additionally be linked with libfpvm3.a



41

Compiling Applications, Cont'd

� Aimk

{ Shares single make�le between architectures

{ Builds for di�erent architectures in separate directories

{ Determines PVM architecture

{ Runs make, passing it PVM ARCH

{ Does one of three things

� If $PVM ARCH/[Mm]akefile exists:

Runs make in subdirectory, using make�le

� Else if Makefile.aimk exists:

Creates subdirectory, runs make using Makefile.aimk

� Otherwise:

Runs make in current directory

42

Load Balancing

� Important for application performance

� Not done automatically (yet?)

� Static { Assignment of work or placement of tasks

{ Must predict algorithm time

{ May have di�erent processor speeds

{ Externally imposed (static) machine loads

� Dynamic { Adapting to changing conditions

{ Make simple scheduler: E.g. Bag of Tasks

� Simple, often works well

� Divide work into small jobs

� Given to processors as they become idle

� PVM comes with examples

� C { xep

� Fortran { hitc

� Can include some fault tolerance

{ Work migration: Cancel / forward job

� Poll for cancel message from master

� Can interrupt with pvm sendsig

� Kill worker (expensive)

{ Task migration: Not in PVM yet

� Even with load balancing, expect performance to be variable

43

Six Examples

� Circular messaging

� Inner product

� Matrix vector multiply (row distribution)

� Matrix vector multiply (column distribution)

� Integration to evaluate �

� Solve 1-D heat equation

44

Circular Messaging

A vector circulates among the processors

Each processor �lls in a part of the vector

P1

P2

P3 P4

P5

Solution:

� SPMD

� Uses the following PVM features:

{ spawn

{ group

{ barrier

{ send-recv

{ pack-unpack



45

program spmd1

include '/src/icl/pvm/pvm3/include/fpvm3.h'

PARAMETER( NPROC=4 )

integer rank, left, right, i, j, ierr

integer tids(NPROC-1)

integer data(NPROC)

C Group Creation

call pvmfjoingroup( 'foo', rank )

if( rank .eq. 0 ) then

call pvmfspawn('spmd1',PVMDEFAULT,'*',NPROC-1,tids(1),ierr)

endif

call pvmfbarrier( 'foo', NPROC, ierr )

C compute the neighbours IDs

call pvmfgettid( 'foo', MOD(rank+NPROC-1,NPROC), left )

call pvmfgettid( 'foo', MOD(rank+1,NPROC), right)

if( rank .eq. 0 ) then

C I am the first process

do 10 i=1,NPROC

10 data(i) = 0

call pvmfinitsend( PVMDEFAULT, ierr )

call pvmfpack( INTEGER4, data, NPROC, 1, ierr )

call pvmfsend( right, 1 , ierr )

call pvmfrecv( left, 1, ierr)

call pvmfunpack( INTEGER4, data, NPROC, 1, ierr)

write(*,*) ' Results received :'

write(*,*) (data(j),j=1,NPROC)

else

C I am an intermediate process

call pvmfrecv( left, 1, ierr )

call pvmfunpack( INTEGER4, data, NPROC, 1, ierr )

data(rank+1) = rank

call pvmfinitsend(PVMDEFAULT, ierr)

call pvmfpack( INTEGER4, data, NPROC, 1, ierr)

call pvmfsend( right, 1, ierr)

endif

call pvmflvgroup( 'foo', ierr )

call pvmfexit(ierr)

stop

end

46

Inner Product

Problem: In parallel compute

s =
nX

i=1

xTy

X

Y

DdotPartial

Solution:

� Master - Slave

� Uses the following PVM features:

{ spawn

{ group

{ barrier

{ send-recv

{ pack-unpack

� Master sends out data, collects the partial solutions and computes the

sum.

� Slaves receive data, compute partial inner product and send the results

to master.

47

Inner Product - Pseudo code

� Master

Ddot = 0

for i = 1 to <number of slaves>

send ith part of X to the ith slave

send ith part of Y to the ith slave

end for

Ddot = Ddot + Ddot(remaining part of X and Y)

for i = 1 to <number of slaves>

receive a partial result

Ddot = Ddot + partial result

end for

� Slave

Receive a part of X

Receive a part of Y

partial = Ddot(part of X and part of Y)

send partial to the master

48

program inner

include '/src/icl/pvm/pvm3/include/fpvm3.h'

PARAMETER( NPROC=7 )

PARAMETER( N = 100)

double precision ddot

external ddot

integer remain, nb

integer rank, i, ierr, bufid

integer tids(NPROC-1), slave, master

double precision x(N),y(N)

double precision result,partial

remain = MOD(N,NPROC-1)

nb = (N-remain)/(NPROC-1)

call pvmfjoingroup( 'foo', rank )

if( rank .eq. 0 ) then

call pvmfspawn('inner',PVMDEFAULT,'*',NPROC-1,tids,ierr)

endif

call pvmfbarrier( 'foo', NPROC, ierr )

call pvmfgettid( 'foo', 0, master )

C MASTER

if( rank .eq. 0 ) then

C Set the values

do 10 i=1,N

x(i) = 1.0d0

10 y(i) = 1.0d0

C Send the data

count = 1

do 20 i=1,NPROC-1

call pvmfinitsend( PVMDEFAULT, ierr )

call pvmfpack( REAL8, x(count), nb, 1, ierr )

call pvmfpack( REAL8, y(count), nb, 1, ierr )

call pvmfgettid( 'foo', i, slave)

call pvmfsend( slave, 1, ierr )

count = count + nb

20 continue



49

result = 0.d0

C Add the remainding part

partial = ddot(remain,x(N-remain+1),1,y(N-remain+1),1)

result = result + partial

C Get the result

do 30 i =1,NPROC-1

call pvmfrecv(-1,1,bufid)

call pvmfunpack( REAL8, partial, 1, 1, ierr)

result = result + partial

30 continue

print *, ' The ddot = ', result

C SLAVE

else

C Receive the data

call pvmfrecv( -1, 1, bufid )

call pvmfunpack( REAL8, x, nb, 1, ierr )

call pvmfunpack( REAL8, y, nb, 1, ierr )

C Compute the partial product

partial = ddot(nb,x(1),1,y(1),1)

C Send back the result

call pvmfinitsend( PVMDEFAULT, ierr)

call pvmfpack( REAL8, partial, 1, 1, ierr)

call pvmfsend( master, 1, ierr)

endif

call pvmflvgroup( 'foo', ierr )

call pvmfexit(ierr)

stop

end

50

Matrix - Vector Product
(Row Distribution)

Problem: In parallel compute y = y + Ax, where y is of length m, x is of

length n and A is an m� n matrix.

Solution:

� Master - Slave

� Uses the following PVM features:

{ spawn

{ group

{ barrier

{ send-recv

{ pack-unpack

m

n

A X Y

P1

P2

P3

P4

Y

51

Matrix - Vector Product

(Row Distribution)
Pseudo Code

� Master

for i = 1 to <number of slaves>

send X to the ith slave

send Y to the ith slave

end for

for i = 1 to <number of slaves>

receive a partial result from a slave

update the corresponding part of Y

end for

� Slave

Receive X

Receive Y

Compute my part of the product

and Update my part of Y

Send back my part of Y

52

program matvec_row

include '/src/icl/pvm/pvm3/include/fpvm3.h'

C

C y <--- y + A * x

C

C A : MxN (visible only on the slaves)

C X : N

C Y : M

C

PARAMETER( NPROC = 4)

PARAMETER( M = 9, N = 6)

PARAMETER( NBY = INT(M/(NPROC)+1))

double precision X(N), Y(M)

integer tids(NPROC)

integer mytid, rank, i, ierr, from

call pvmfmytid( mytid )

call pvmfjoingroup( 'foo', rank )

if( rank .eq. 0 ) then

call pvmfspawn('matvecslv_row',PVMDEFAULT,'*',NPROC,tids,ierr)

endif

call pvmfbarrier( 'foo', NPROC+1, ierr )

C Data initialize for my part of the data

do 10 i = 1,N

x(i) = 1.d0

10 continue

do 15 i = 1,M

y(i) = 1.d0

15 continue

C Send X and Y to the slaves

call pvmfinitsend( PVMDEFAULT, ierr )

call pvmfpack(REAL8, X, N, 1, ierr)

call pvmfpack(REAL8, Y, M, 1, ierr)

call pvmfbcast('foo', 1, ierr)



53

C I get the results

do 20 i = 1, NPROC

call pvmfrecv(-1, 1, ierr)

call pvmfunpack( INTEGER4, from, 1, ierr)

if (from .EQ. NPROC) then

call pvmfunpack( REAL8, Y((from-1)*NBY+1),

$ M-NBY*(NPROC-1), 1, ierr)

else

call pvmfunpack( REAL8, Y((from-1)*NBY+1),

$ NBY, 1, ierr)

endif

20 continue

write(*,*) 'Results received'

do 30 i=1,M

write(*,*) 'Y(',i,') = ',Y(i)

30 continue

call pvmflvgroup( 'foo', ierr )

call pvmfexit(ierr)

stop

end

54

program matvecslv_row

include '/src/icl/pvm/pvm3/include/fpvm3.h'

C

C y <--- y + A * x

C A : MxN (visible only on the slaves)

C X : N

C Y : M

C

PARAMETER( NPROC = 4)

PARAMETER( M = 9, N = 6)

PARAMETER( NBY = INT(M/NPROC)+1)

double precision A(NBY,N)

double precision X(N), Y(M)

integer rank, i, ierr, to

external dgemv

call pvmfjoingroup( 'foo', rank )

call pvmfbarrier( 'foo', NPROC+1, ierr )

C Data initialize for my part of the data

do 10 j = 1,N

do 20 i = 1,NBY

A(i,j) = 1.d0

20 continue

10 continue

C I receive X and Y

call pvmfrecv( -1, 1, ierr )

call pvmfunpack(REAL8, X, N, 1, ierr)

call pvmfunpack(REAL8, Y, M, 1, ierr)

C I compute my part

if (rank .NE. NPROC) then

call dgemv('N', NBY, N, 1.d0, A, NBY,

$ X, 1, 1.d0, Y((rank-1)*NBY+1),1)

else

call dgemv('N', M-NBY*(NPROC-1), N, 1.d0, A, NBY,

$ X, 1, 1.d0, Y((NPROC-1)*NBY+1), 1)

endif

55

C I send back my part of Y

call pvmfinitsend(PVMDEFAULT, ierr)

call pvmfpack( INTEGER4, rank, 1, 1, ierr)

if (rank .NE. NPROC) then

call pvmfpack( REAL8, Y((rank-1)*NBY+1),NBY, 1, ierr)

else

call pvmfpack( REAL8, Y((rank-1)*NBY+1),M-NBY*(NPROC-1),1,ierr)

endif

call pvmfgettid('foo',0,to)

call pvmfsend(to, 1, ierr)

C done

call pvmflvgroup( 'foo', ierr )

call pvmfexit(ierr)

stop

end

56

Matrix - Vector Product
(Column Distribution)

Problem: In parallel compute y = y + Ax, where y is of length m, x is of

length n and A is an m� n matrix.

Solution:

� Master - Slave

� Uses the following PVM features:

{ spawn

{ group

{ barrier

{ reduce

{ send-recv

{ pack-unpack

m

n

A X

P1 P2 P3 P4

Y



57

Matrix - Vector Product

(Column Distribution)
Pseudo Code

� Master

for i = 1 to <number of slaves>

send X to the ith slave

end for

Global Sum on Y (root)

� Slave

Receive X

Compute my Contribution to Y

Global Sum on Y (leaf)

58

program matvec_col

include '/src/icl/pvm/pvm3/include/fpvm3.h'

C

C y <--- y + A * x

C

C A : MxN (visible only on the slaves)

C X : N

C Y : M

C

PARAMETER( NPROC = 4)

PARAMETER( M = 9, N = 6)

double precision X(N), Y(M)

external PVMSUM

integer tids(NPROC)

integer mytid, rank, i, ierr

call pvmfmytid( mytid )

call pvmfjoingroup( 'foo', rank )

if( rank .eq. 0 ) then

call pvmfspawn('matvecslv_col',PVMDEFAULT,'*',NPROC,tids,ierr)

endif

call pvmfbarrier( 'foo', NPROC+1, ierr )

C Data initialize for my part of the data

do 10 i = 1,N

x(i) = 1.d0

10 continue

do 15 i = 1,M

y(i) = 1.d0

15 continue

59

C Send X

call pvmfinitsend( PVMDEFAULT, ierr )

call pvmfpack(REAL8, X, N, 1, ierr)

call pvmfbcast('foo', 1, ierr)

C I get the results

call pvmfreduce(PVMSUM,Y,M,REAL8,1,'foo',0,ierr)

write(*,*) 'Results received'

do 30 i=1,M

write(*,*) 'Y(',i,') = ',Y(i)

30 continue

call pvmflvgroup( 'foo', ierr )

call pvmfexit(ierr)

stop

end

60

program matvecslv_col

include '/src/icl/pvm/pvm3/include/fpvm3.h'

C

C y <--- y + A * x

C A : MxN (visible only on the slaves)

C X : N

C Y : M

C

PARAMETER( NPROC = 4)

PARAMETER( M = 9, N = 6)

PARAMETER( NBX = INT(N/NPROC)+1)

external PVMSUM

double precision A(M,NBX)

double precision X(N), Y(M)

integer rank, i, ierr

external dgemv

call pvmfjoingroup( 'foo', rank )

call pvmfbarrier( 'foo', NPROC+1, ierr )

C Data initialize for my part of the data

do 10 j = 1,NBX

do 20 i = 1,M

A(i,j) = 1.d0

20 continue

10 continue

C I receive X

call pvmfrecv( -1, 1, ierr )

call pvmfunpack(REAL8, X, N, 1, ierr)



61

C I compute my part

if (rank .NE. NPROC) then

call dgemv('N', M, NBX, 1.d0, A, M,

$ X((rank-1)*NBX+1), 1, 1.d0, Y,1)

else

call dgemv('N', M,N-NBX*(NPROC-1), 1.d0, A, M,

$ X((NPROC-1)*NBX+1), 1, 1.d0, Y, 1)

endif

C I send back my part of Y

call pvmfreduce(PVMSUM,Y,M,REAL8,1,'foo',0,ierr)

C done

call pvmflvgroup( 'foo', ierr )

call pvmfexit(ierr)

stop

end

62

Integration to evaluate �

Computer approximations to � by using numerical integration

Know

tan(450) = 1;

same as

tan
�

4
= 1;

So that;

4 � tan�11 = �

From the integral tables we can �nd

tan�1x =
Z 1

1 + x2
dx

or

tan�11 =
Z 1

0

1

1 + x2
dx

Using the mid-point rule with panels of

uniform length h = 1=n, for various values of n.

Evaluate the function at the midpoints of

each subinterval (xi�1, xi).

i � h � h=2 is the midpoint.

Formula for the integral is

x =
nX

i=1

f(h � (i� 1=2))

� = h � x

where

f(x) =
4

1 + x2

63

Integration to evaluate � (continued)

Number of ways to divide up the problem.

Each part of the sum is independent.

� Divide the interval into more or less equal parts and give each process

a part.

� Let each processor take the pth part.

� Compute part of integral.

� Sum pieces.

The example given let's each processor take the pth part. Uses the following

PVM features:

� spawn

� group

� barrier

� bcast

� reduce

64

program spmd2

include '/src/icl/pvm/pvm3/include/fpvm3.h'

PARAMETER( NPROC=3 )

EXTERNAL PVMSUM

integer mytid, rank, i, ierr

integer tids(0:NPROC-1)

double precision PI25DT

parameter (PI25DT = 3.141592653589793238462643d0)

double precision mypi,pi,h,sum,x,f,a

C function to integrate

f(a) = 4.d0 / (1.d0 + a*a)

call pvmfmytid( mytid )

call pvmfjoingroup( 'foo', rank )

10 if( rank .eq. 0 ) then

call pvmfspawn('spmd2',PVMDEFAULT,'*',NPROC-1,tids(1),ierr)

endif

call pvmfbarrier( 'foo', NPROC, ierr )

if( rank .eq. 0 ) then

write(6,98)

98 format('Enter the number of intervals: (0 quits)')

read(5,99)n

99 format(i10)

if (n .GT. 100000) then

print *, 'Too large value of pi'

print *, 'Using 100000 instead'

n = 100000

endif

call pvmfinitsend( PVMDEFAULT, ierr)

call pvmfpack( INTEGER4, n, 1, 1, ierr)

call pvmfbcast('foo',0,ierr)

endif

if(rank .ne. 0) then

call pvmfrecv(-1,-1,ierr)

call pvmfunpack(INTEGER4, n, 1, 1, ierr)

endif



65

C check for quit signal

if (n .le. 0) goto 30

C calculate the interval size

h = 1.0d0/n

sum = 0.0d0

do 20 i = rank+1, n, NPROC

x = h * (dble(i) - 0.5d0)

sum = sum + f(x)

20 continue

mypi = h * sum

C collect all the partial sums

print *,' reduce'

call pvmfreduce(PVMSUM,mypi,1,REAL8,0,'foo',0,ierr)

C node 0 prints the number

if (rank .eq. 0) then

pi = mypi

write(6,97) pi, abs(pi - PI25DT)

97 format(' pi is approximatively: ',F18.16,

+ ' Error is: ',F18.16)

goto 10

endif

30 call pvmflvgroup( 'foo', ierr )

call pvmfexit(ierr)

stop

end

66

1-D Heat Equation

Problem: Calculating heat di�usion through a wire.

The one-dimensional heat equation on a thin wire is :

@A

@t
=

@2A

@x2

and a discretization of the form :

Ai+1;j �Ai;j

�t
=

Ai;j+1 � 2Ai;j + Ai;j�1

�x2

giving the explicit formula :

Ai+1;j = Ai;j +
�t

�x2
(Ai;j+1 � 2Ai;j + Ai;j�1)

initial and boundary conditions:

A(t; 0) = 0; A(t; 1) = 0 for all t

A(0; x) = sin(�x) for 0 � x � 1

67

1-D Heat Equation
Continuation

P1 P2 P4P3

Boundaries

Solution:

� Master Slave

� Slaves communicate their boundaries values

� Uses the following PVM features:

{ spawn

{ group

{ barrier

{ send-recv

{ pack-unpack

68

1-D Heat Equation
Pseudo Code

� Master

Set the initial temperatures

for i = 1 to <number of slaves>

send the ith part of the initial

temperatures to the ith slave

end for

for i = 1 to <number of slaves>

receive results from ith slave

update my data

end for

� Slave

Receive my part of the initial values

for i = 1 to <number of time iterations>

send my left bound to my left neighbor

send my right bound to my right neighbor

receive my left neighbor's left bound

receive my right neighbor's right bound

compute the new temperatures

end for

send back my result to the master



69

C

C Use PVM to solve a simple heat diffusion differential equation,

C using 1 master program and 5 slaves.

C

C The master program sets up the data, communicates it to the slaves

C and waits for the results to be sent from the slaves.

C Produces xgraph ready files of the results.

C

program heat

include '/src/icl/pvm/pvm3/include/fpvm3.h'

integer NPROC, TIMESTEP, PLOTINC, SIZE

double precision PI

PARAMETER(PI = 3.14159265358979323846)

PARAMETER(NPROC = 3)

PARAMETER(TIMESTEP = 10)

PARAMETER(PLOTINC = 1)

PARAMETER(SIZE = 100)

PARAMETER(SLAVENAME = 'heatslv')

integer num_data

integer mytid, task_ids(NPROC), i, j

integer left, right, k, l

integer step

integer ierr

external wh

integer wh

double precision init(SIZE)

double precision result(TIMESTEP*SIZE/NPROC)

double precision solution(TIMESTEP,SIZE)

character*20 filename(4)

double precision deltat(4), deltax2

real etime

real t0(2)

real eltime(4)

step = TIMESTEP

num_data = INT(SIZE/NPROC)

filename(1) = 'graph1'

filename(2) = 'graph2'

filename(3) = 'graph3'

filename(4) = 'graph4'

deltat(1) = 5.0E-1

deltat(2) = 5.0E-3

deltat(3) = 5.0E-6

deltat(4) = 5.0E-9

70

C enroll in pvm

call pvmfmytid( mytid)

C spawn the slave tasks

call pvmfspawn('heatslv',PVMDEFAULT,'*',NPROC,task_ids,ierr)

C create the initial data set

do 10 i = 1,SIZE

init(i) = SIN(PI * DBLE(i-1) / DBLE(SIZE-1))

10 continue

init(1) = 0.d0

init(SIZE) = 0.d0

C run the problem 4 times for different values of delta t

do 20 l=1,4

deltax2 = (deltat(l)/((1.0/(DBLE(SIZE)))**(2.0)))

C start timing for this run

eltime(l) = etime(t0)

C send the initial data to the slaves.

C include neighbor info for exchanging boundary data

do 30 i =1,NPROC

call pvmfinitsend(PVMDEFAULT,ierr)

IF (i .EQ. 1) THEN

left = 0

ELSE

left = task_ids(i-1)

ENDIF

call pvmfpack(INTEGER4, left, 1, 1, ierr)

IF (i .EQ. NPROC) THEN

right = 0

ELSE

right = task_ids(i+1)

ENDIF

call pvmfpack(INTEGER4, right, 1, 1, ierr)

call pvmfpack(INTEGER4, INT(step), 1, 1, ierr)

call pvmfpack(REAL8, deltax2, 1, 1, ierr)

call pvmfpack(INTEGER4, INT(num_data), 1, 1, ierr)

call pvmfpack(REAL8, init(num_data*(i-1)+1),num_data,1,ierr)

call pvmfsend(task_ids(i), 4, ierr)

30 continue

C wait for the results

do 40 i = 1,NPROC

call pvmfrecv(task_ids(i), 7, ierr)

call pvmfunpack(REAL8, result, num_data*TIMESTEP, 1, ierr)

71

C update the solution

do 50 j = 1, TIMESTEP

do 60 k = 1, num_data

solution(j,num_data*(i-1)+1+(k-1)) =

$ result(wh(j-1,k-1,num_data)+1)

60 continue

50 continue

40 continue

C stop timing

eltime(l) = etime(t0) - eltime(l)

C produce the output

write(*,*) 'Writing output to file ',filename(l)

open(23, FILE = filename(l))

write(23,*) 'TitleText: Wire Heat over Delta Time: ',deltat(l)

write(23,*) 'XUnitText: Distance'

write(23,*) 'YUnitText: Heat'

do 70 i=1,TIMESTEP,PLOTINC

write(23,*) '"Time index: ',i-1

do 80 j = 1,SIZE

write(23,*) j-1,REAL(solution(i,j))

81 FORMAT(I5,F10.4)

80 continue

write(23,*) ''

70 continue

endfile 23

close(UNIT = 23, STATUS = 'KEEP')

20 continue

write(*,*) 'Problem size: ', SIZE

do 90 i = 1,4

write(*,*) 'Time for run ',i-1,': ',eltime(i),' sec.'

90 continue

C kill the slave processes

do 100 i = 1,NPROC

call pvmfkill(task_ids(i),ierr)

100 continue

call pvmfexit(ierr)

END

integer FUNCTION wh(x,y,z)

integer x,y,z

wh = x * z + y

RETURN

END

72

C

C The slaves receive the initial data from the host,

C exchange boundary information with neighbors,

C and calculate the heat change in the wire.

C This is done for a number of iterations, sent by the master.

C

C

program heatslv

include '/src/icl/pvm/pvm3/include/fpvm3.h'

PARAMETER(MAX1 = 1000)

PARAMETER(MAX2 = 100000)

integer mytid, left, right, i, j, master

integer timestep

external wh

integer wh

double precision init(MAX1), A(MAX2)

double precision leftdata, rightdata

double precision delta, leftside, rightside

C enroll in pvm

call pvmfmytid(mytid)

call pvmfparent(master)

C receive my data from the master program

10 continue

call pvmfrecv(master,4,ierr)

call pvmfunpack(INTEGER4, left, 1, 1, ierr)

call pvmfunpack(INTEGER4, right, 1, 1, ierr)

call pvmfunpack(INTEGER4, timestep, 1, 1, ierr)

call pvmfunpack(REAL8, delta, 1, 1, ierr)

call pvmfunpack(INTEGER4, num_data, 1, 1, ierr)

call pvmfunpack(REAL8, init, num_data, 1, ierr)

C copy the initial data into my working array

do 20 i = 1, num_data

A(i) = init(i)

20 continue

do 22 i = num_data+1, num_data*timestep

A(i) = 0

22 continue



73

C perform the calculation

do 30 i = 1, timestep-1

C trade boundary info with my neighbors

C send left, receive right

IF (left .NE. 0) THEN

call pvmfinitsend(PVMDEFAULT, ierr)

call pvmfpack(REAL8, A(wh((i-1),0,num_data)+1), 1, 1, ierr)

call pvmfsend( left, 5, ierr)

ENDIF

IF (right .NE. 0) THEN

call pvmfrecv( right, 5, ierr)

call pvmfunpack(REAL8, rightdata, 1, 1, ierr)

call pvmfinitsend(PVMDEFAULT, ierr)

call pvmfpack(REAL8, A(wh((i-1), num_data-1,num_data)+1),

$ 1, 1, ierr)

call pvmfsend(right, 6, ierr)

ENDIF

IF (left .NE. 0) THEN

call pvmfrecv(left, 6, ierr)

call pvmfunpack(REAL8, leftdata, 1, 1, ierr)

ENDIF

C do the calculations for this iteration

do 40 j = 1, num_data

IF (j .EQ. 1) THEN

leftside = leftdata

ELSE

leftside = A(wh(i-1,j-2,num_data)+1)

ENDIF

IF (j .EQ. num_data) THEN

rightside = rightdata

ELSE

rightside = A(wh(i-1,j,num_data)+1)

ENDIF

IF ((j. EQ. 1) .AND. (left. EQ. 0)) THEN

A(wh(i,j-1,num_data)+1) = 0.d0

ELSE IF ((j .EQ. num_data) .AND. (right .EQ. 0)) THEN

A(wh(i,j-1,num_data)+1) = 0.d0

ELSE

A(wh(i,j-1,num_data)+1) = A(wh(i-1,j-1,num_data)+1) +

$ delta*(rightside - 2*A(wh(i-1,j-1,num_data)+1)+leftside)

ENDIF

40 continue

30 continue

74

C send the results back to the master program

call pvmfinitsend(PVMDEFAULT, ierr)

call pvmfpack(REAL8, A, num_data*timestep, 1, ierr)

call pvmfsend(master, 7, ierr)

goto 10

C just for good measure

call pvmfexit(ierr)

END

integer FUNCTION wh(x,y,z)

integer x,y,z

wh = x*z + y

RETURN

END

75

Motivation for a New Design

� Message Passing now mature as programming paradigm

{ well understood

{ e�cient match to hardware

{ many applications

� Vendor systems not portable

� Portable systems are mostly research projects

{ incomplete

{ lack vendor support

{ not at most e�cient level

76

Motivation (cont.)
Few systems o�er the full range of desired features.

� modularity (for libraries)

� access to peak performance

� portability

� heterogeneity

� subgroups

� topologies

� performance measurement tools



77

The MPI Process

� Began at Williamsburg Workshop in April, 1992

� Organized at Supercomputing '92 (November)

� Followed HPF format and process

� Met every six weeks for two days

� Extensive, open email discussions

� Drafts, readings, votes

� Pre-�nal draft distributed at Supercomputing '93

� Two-month public comment period

� Final version of draft in May, 1994

� Widely available now on the Web, ftp sites, netlib

( http://www.netlib.org/mpi/index.html)

� Public implementations available

� Vendor implementations coming soon

78

MPI Lacks...

� Mechanisms for process creation

� One sided communication (put, get, active messages)

� Language binding for Fortran 90 anc C++

There are a �xed number of processes from start to �nish of an applicaiton.

Many features were considered and not included

� Time constraint

� Not enough experience

� Concern that additional features would delay the appearance of imple-

mentations

79

Who Designed MPI?

� Broad participation

� Vendors

{ IBM, Intel, TMC, Meiko, Cray, Convex, Ncube

� Library writers

{ PVM, p4, Zipcode, TCGMSG, Chameleon, Express, Linda

� Application specialists and consultants

Companies Laboratories Universities

ARCO ANL UC Santa Barbara

Convex GMD Syracuse U

Cray Res LANL Michigan State U

IBM LLNL Oregon Grad Inst

Intel NOAA U of New Mexico

KAI NSF Miss. State U.

Meiko ORNL U of Southampton

NAG PNL U of Colorado

nCUBE Sandia Yale U

ParaSoft SDSC U of Tennessee

Shell SRC U of Maryland

TMC Western Mich U

U of Edinburgh

Cornell U.

Rice U.

U of San Francisco

80

What is MPI?

� A message-passing library speci�cation

{ message-passing model

{ not a compiler speci�cation

{ not a speci�c product

� For parallel computers, clusters, and heterogeneous networks

� Full-featured

� Designed to permit (unleash?) the development of parallel software

libraries

� Designed to provide access to advanced parallel hardware for

{ end users

{ library writers

{ tool developers



81

New Features of MPI

� General

{ Communicators combine context and group for message security

{ Thread safety

� Point-to-point communication

{ Structured bu�ers and derived datatypes, heterogeneity

{ Modes: normal (blocking and non-blocking), synchronous, ready

(to allow access to fast protocols), bu�ered

� Collective

{ Both built-in and user-de�ned collective operations

{ Large number of data movement routines

{ Subgroups de�ned directly or by topology

82

New Features of MPI (cont.)

� Application-oriented process topologies

{ Built-in support for grids and graphs (uses groups)

� Pro�ling

{ Hooks allow users to intercept MPI calls to install their own tools

� Environmental

{ inquiry

{ error control

83

Features not in MPI

� Non-message-passing concepts not included:

{ process management

{ remote memory transfers

{ active messages

{ threads

{ virtual shared memory

� MPI does not address these issues, but has tried to remain compatible

with these ideas (e.g. thread safety as a goal, intercommunicators)

84

Is MPI Large or Small?

� MPI is large (125 functions)

{ MPI's extensive functionality requires many functions

{ Number of functions not necessarily a measure of complexity

� MPI is small (6 functions)

{ Many parallel programs can be written with just 6 basic functions.

� MPI is just right

{ One can access 
exibility when it is required.

{ One need not master all parts of MPI to use it.



85

Header �les

2 C

#include <mpi.h>

2 Fortran

include `mpif.h'

86

MPI Function Format

2 C:

error = MPI xxxxx(parameter, ...);

MPI xxxxx(parameter, ...);

2 Fortran:

CALL MPI XXXXX(parameter, ..., IERROR)

87

Initializing MPI

2 C

int MPI Init(int *argc, char ***argv)

2 Fortran

MPI INIT(IERROR)

INTEGER IERROR

2 Must be �rst routine called.

88

MPI_COMM_WORLD
communicator

    MPI_COMM_WORLD

10

2 3
4

5
6



89

Rank

2 How do you identify di�erent processes?

MPI Comm rank(MPI Comm comm, int *rank)

MPI COMM RANK(COMM, RANK, IERROR)

INTEGER COMM, RANK, IERROR

90

Size

2 How many processes are contained within a

communicator?

MPI Comm size(MPI Comm comm, int *size)

MPI COMM SIZE(COMM, SIZE, IERROR)

INTEGER COMM, SIZE, IERROR

91

Exiting MPI

2 C

int MPI Finalize()

2 Fortran

MPI FINALIZE(IERROR)

INTEGER IERROR

2 Must be called last by all processes.

92

Messages

2 A message contains a number of elements of some particular

datatype.

2 MPI datatypes:

{ Basic types.

{ Derived types.

2 Derived types can be built up from basic types.

2 C types are di�erent from Fortran types.



93

MPI Basic Datatypes - C

MPI Datatype C datatype

MPI CHAR signed char

MPI SHORT signed short int

MPI INT signed int

MPI LONG signed long int

MPI UNSIGNED CHAR unsigned char

MPI UNSIGNED SHORT unsigned short int

MPI UNSIGNED unsigned int

MPI UNSIGNED LONG unsigned long int

MPI FLOAT 
oat

MPI DOUBLE double

MPI LONG DOUBLE long double

MPI BYTE

MPI PACKED

94

MPI Basic Datatypes - Fortran

MPI Datatype Fortran Datatype

MPI INTEGER INTEGER

MPI REAL REAL

MPI DOUBLE PRECISION DOUBLE PRECISION

MPI COMPLEX COMPLEX

MPI LOGICAL LOGICAL

MPI CHARACTER CHARACTER(1)

MPI BYTE

MPI PACKED

95

Point−to−Point Communication

1

0

2
3

4

5

source

dest

communicator

Communication between two processes.

Source process sends message to destination process.

Communication takes place within a communicator.

Destination process is identified by its rank in the
communicator.

96

Simple Fortran example

program main

include 'mpif.h'

integer rank, size, to, from, tag, count, i, ierr

integer src, dest

integer st_source, st_tag, st_count

integer status(MPI_STATUS_SIZE)

double precision data(100)

call MPI_INIT( ierr )

call MPI_COMM_RANK( MPI_COMM_WORLD, rank, ierr )

call MPI_COMM_SIZE( MPI_COMM_WORLD, size, ierr )

print *, 'Process ', rank, ' of ', size, ' is alive'

dest = size - 1

src = 0

C

if (rank .eq. src) then

to = dest

count = 10

tag = 2001

do 10 i=1, 10

10 data(i) = i

call MPI_SEND( data, count, MPI_DOUBLE_PRECISION, to,

+ tag, MPI_COMM_WORLD, ierr )

else if (rank .eq. dest) then

tag = MPI_ANY_TAG

count = 10

from = MPI_ANY_SOURCE

call MPI_RECV(data, count, MPI_DOUBLE_PRECISION, from,

+ tag, MPI_COMM_WORLD, status, ierr )



97

Simple Fortran example (cont.)

call MPI_GET_COUNT( status, MPI_DOUBLE_PRECISION,

+ st_count, ierr )

st_source = status(MPI_SOURCE)

st_tag = status(MPI_TAG)

C

print *, 'Status info: source = ', st_source,

+ ' tag = ', st_tag, ' count = ', st_count

print *, rank, ' received', (data(i),i=1,10)

endif

call MPI_FINALIZE( ierr )

end

98

Fortran example

program main

include "mpif.h"

double precision PI25DT

parameter (PI25DT = 3.141592653589793238462643d0)

double precision mypi, pi, h, sum, x, f, a

integer n, myid, numprocs, i, rc

c function to integrate

f(a) = 4.d0 / (1.d0 + a*a)

call MPI_INIT( ierr )

call MPI_COMM_RANK( MPI_COMM_WORLD, myid, ierr )

call MPI_COMM_SIZE( MPI_COMM_WORLD, numprocs, ierr )

10 if ( myid .eq. 0 ) then

write(6,98)

98 format('Enter the number of intervals: (0 quits)')

read(5,99) n

99 format(i10)

endif

call MPI_BCAST(n,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr)

99

Fortran example (cont.)

c check for quit signal

if ( n .le. 0 ) goto 30

c calculate the interval size

h = 1.0d0/n

sum = 0.0d0

do 20 i = myid+1, n, numprocs

x = h * (dble(i) - 0.5d0)

sum = sum + f(x)

20 continue

mypi = h * sum

c collect all the partial sums

call MPI_REDUCE(mypi,pi,1,MPI_DOUBLE_PRECISION,MPI_SUM,0,

$ MPI_COMM_WORLD,ierr)

c node 0 prints the answer.

if (myid .eq. 0) then

write(6, 97) pi, abs(pi - PI25DT)

97 format(' pi is approximately: ', F18.16,

+ ' Error is: ', F18.16)

endif

goto 10

30 call MPI_FINALIZE(rc)

stop

end

100

C example

#include "mpi.h"

#include <math.h>

int main(argc,argv)

int argc;

char *argv[];

{

int done = 0, n, myid, numprocs, i, rc;

double PI25DT = 3.141592653589793238462643;

double mypi, pi, h, sum, x, a;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

MPI_Comm_rank(MPI_COMM_WORLD,&myid);



101

C example (cont.)

while (!done)

{

if (myid == 0) {

printf("Enter the number of intervals: (0 quits) ");

scanf("%d",&n);

}

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

if (n == 0) break;

h = 1.0 / (double) n;

sum = 0.0;

for (i = myid + 1; i <= n; i += numprocs) {

x = h * ((double)i - 0.5);

sum += 4.0 / (1.0 + x*x);

}

mypi = h * sum;

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,

MPI_COMM_WORLD);

if (myid == 0)

printf("pi is approximately %.16f, Error is %.16f\n",

pi, fabs(pi - PI25DT));

}

MPI_Finalize();

}

102

Communication modes
Sender mode Notes

Synchronous send Only completes when the receive has

started.

Bu�ered send Always completes (unless an error

occurs), irrespective of receiver.

Standard send Either synchronous or bu�ered.

Ready send Always completes (unless an error

occurs), irrespective of whether the

receive has completed.

Receive Completes when a message has

arrived.

103

MPI Sender Modes
OPERATION MPI CALL

Standard send MPI SEND

Synchronous send MPI SSEND

Bu�ered send MPI BSEND

Ready send MPI RSEND

Receive MPI RECV

104

Sending a message

2 C:

intMPI Ssend(void *buf, int count, MPI Datatype datatype,

int dest, int tag, MPI Comm comm)

2 Fortran:

MPI SSEND(BUF, COUNT, DATATYPE, DEST, TAG,

COMM, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG INTE-

GER COMM, IERROR



105

Receiving a message

2 C:

intMPI Recv(void *buf, int count, MPI Datatype datatype,

int source, int tag, MPI Comm comm, MPI Status *sta-

tus)

2 Fortran:

MPI RECV(BUF, COUNT, DATATYPE,

SOURCE, TAG, COMM, STATUS, IERROR)

<type> BUF(*) INTEGER COUNT,

DATATYPE, SOURCE, TAG, COMM,

STATUS(MPI STATUS SIZE), IERROR

106

Synchronous Blocking

Message-Passing

2 Processes synchronize.

2 Sender process speci�es the synchronous mode.

2 Blocking - both processes wait until the transaction has com-

pleted.

107

For a communication to

succeed:

2 Sender must specify a valid destination rank.

2 Receiver must specify a valid source rank.

2 The communicator must be the same.

2 Tags must match.

2 Message types must match.

2 Receiver's bu�er must be large enough.

108

148 Chapter 4

A0 A1 A2 A3 A4 A5 scatter

gather

A0

A1

A2

A3

A4

A5

A0 A1 A2 A3 A4 A5

B0 B1 B2 B3 B4 B5

C0 C1 C2 C3 C4 C5

D0 D1 D2 D3 D4 D5

E0 E1 E2 E3 E4 E5

F0 F1 F2 F3 F4 F5

A0 B0 C0 D0 E0 F0

A1 B1 C1 D1 E1 F1

A2 B2 C2 D2 E2 F2

A3 B3 C3 D3 E3 F3

A4 B4 C4 D4 E4 F4

A5 B5 C5 D5 E5 F5

alltoall

A0

B0

C0

D0

E0

F0

allgather

A0 B0 C0 D0 E0 F0

A0 B0 C0 D0 E0 F0

A0 B0 C0 D0 E0 F0

A0 B0 C0 D0 E0 F0

A0 B0 C0 D0 E0 F0

A0 B0 C0 D0 E0 F0

A0

data

broadcast

pr
oc

es
se

s

A0

A0

A0

A0

A0

A0

Figure 4 1



109

Wildcarding

2 Receiver can wildcard.

2 To receive from any source - MPI ANY SOURCE

2 To receive with any tag - MPI ANY TAG

2 Actual source and tag are returned in the receiver's status

parameter.

110

Message Order Preservation

1

0

2

3

4

5

communicator

Messages do not overtake each other.

This is true even for non−synchronous sends.

111

Non-Blocking Communications

2 Separate communication into three phases:

2 Initiate non-blocking communication.

2 Do some work (perhaps involving other

communications?)

2 Wait for non-blocking communication to complete.

112

1

0

2

3

4

5

  Non−Blocking Send

out

 in

communicator



113

1

0

2

3

4

5

out

 in

communicator

  Non−Blocking Receive

114

Non-blocking Synchronous

Send

2 C:

MPI Issend(buf, count, datatype, dest, tag, comm, han-

dle)

MPI Wait(handle, status)

2 Fortran:

MPI ISSEND(buf, count, datatype, dest, tag, comm, han-

dle, ierror)

MPI WAIT(handle, status, ierror)

115

Non-blocking Receive

2 C:

MPI Irecv(buf, count, datatype, src, tag, comm, handle)

MPI Wait(handle, status)

2 Fortran:

MPI IRECV(buf, count, datatype, src, tag, comm, handle,

ierror)

MPI WAIT(handle, status, ierror)

116

Blocking and Non-Blocking

2 Send and receive can be blocking or non-blocking.

2 A blocking send can be used with a non-blocking receive, and

vice-versa.

2 Non-blocking sends can use any mode - synchronous, bu�ered,

standard, or ready.

2 Synchronous mode a�ects completion, not

initiation.



117

Communication Modes

NON-BLOCKING OPERATION MPI CALL

Standard send MPI ISEND

Synchronous send MPI ISSEND

Bu�ered send MPI IBSEND

Ready send MPI IRSEND

Receive MPI IRECV

118

Completion

2 Waiting versus Testing.

2 C:

MPI Wait(handle, status)

MPI Test(handle, 
ag, status)

2 Fortran:

MPI WAIT(handle, status, ierror)

MPI TEST(handle, 
ag, status, ierror)

119

Characteristics of Collective

Communication

2 Collective action over a communicator

2 All processes must communicate.

2 Synchronisation may or may not occur.

2 All collective operations are blocking.

2 No tags

2 Receive bu�ers must be exactly the right size.

120

Barrier Synchronization

2 C:

int MPI Barrier (MPI Comm comm)

2 Fortran:

MPI BARRIER (COMM, IERROR)

INTEGER COMM, IERROR



121

Broadcast

2 C:

int MPI Bcast (void *bu�er, int count, MPI datatype, int

root, MPI Comm comm)

2 Fortran:

MPI BCAST (BUFFER, COUNT, DATATYPE, ROOT,

COMM, IERROR)

<type> BUFFER(*)

INTEGER COUNT, DATATYPE, ROOT, COMM, IER-

ROR

122

  Scatter

A B C D E

A B C D E

A B C D E

123

A B C D E

A B C D E

  Gather

A B C D E

124

Global Reduction Operations

2 Used to compute a result involving data distributed over a

group of processes.

2 Examples:

{ global sum or product

{ global maximum or minimum

{ global user-de�ned operation



125

Example of Global Reduction
Integer global sum

2 C:

MPI Reduce(&x, &result, 1, MPI INT,

MPI SUM, 0, MPI COMM WORLD)

2 Fortran:

CALL MPI REDUCE(x, result, 1, MPI INTEGER,

MPI SUM, 0, MPI COMM WORLD, IERROR)

2 Sum of all the x values is placed in result

2 The result is only placed there on processor 0

126

Prede�ned Reduction

Operations
MPI Name Function

MPI MAX Maximum

MPI MIN Minimum

MPI SUM Sum

MPI PROD Product

MPI LAND Logical AND

MPI BAND Bitwise AND

MPI LOR Logical OR

MPI BOR Bitwise OR

MPI LXOR Logical exclusive OR

MPI BXOR Bitwise exclusive OR

MPI MAXLOC Maximum and location

MPI MINLOC Minimum and location

127

MPI_REDUCE

A B C DA B C D

RANK

MPI_REDUCE

ROOT
E F G H

I J K L

M N O P

Q R S T

E F G H

I J K L

M N O P

Q R S T

0

1

2

4

3

AoEoIoMoQ

128

User-De�ned Reduction

Operators

2 Reducing using an arbitrary operator,

2 C - function of type MPI User function:

void my operator ( void *invec, void *inoutvec, int *len,

MPI Datatype *datatype)

2 Fortran - function of type

FUNCTION MY OPERATOR (INVEC(*),

INOUTVEC(*), LEN, DATATYPE)

<type> INVEC(LEN), INOUTVEC(LEN)

INTEGER LEN, DATATYPE



129

MPI_SCAN

A B C DA B C D

RANK

E F G H

I J K L

M N O P

Q R S T

E F G H

I J K L

M N O P

Q R S T

0

1

2

4

3

AoEoIoMoQ

MPI_SCAN

    A

  AoE

AoEoI

AoEoIoM

130

Summary

We have covered

� Background and scope of MPI

� Some characteristic features of MPI (communicators, datatypes)

� Point-to-Point communication

{ blocking and non-blocking

{ multiple modes

� Collective communication

{ data movement

{ collective computation

131

Summary

� The parallel computing community has cooperated to develop

a full-featured standard message-passing library interface.

� Implementations abound

� Applications beginning to be developed or ported

� MPI-2 process beginning

� Lots of MPI material available

132

Current MPI Implementation E�orts

Vendor Implementations

IBM Research (MPI-F)

IBM Kingston

Intel SSD

Cray Research

Meiko, Inc.

SGI

Kendall Square Research

NEC

Fujitsu (AP1000)

Convex

Hughes Aircraft

Portable Implementations

Argonne{Mississippi State (MPICH)

Ohio supercomputer Center (LAM)

University of Edinburgh

Technical University of Munich

University of Illinois

Other interested groups: Sun, Hewlett-Packard, Myricom (mak-

ers of high-performance network switches) and PALLAS (a Ger-

man software company), Sandia National Laboratory (Intel Paragon

running SUNMOS)



133

MPI Implementation Projects

� Variety of implementations

{ Vendor proprietary

{ Free, portable

{ World wide

{ Real-time, embedded systems

{ All MPP's and networks

� Implementation strategies

{ Specialized

{ Abstract message-passing devices

{ Active-message devices

134

MPICH { A Freely-available Portable MPI Implementation

� Complete MPI implementation

� On MPP's: IBM SP1 and SP2, Intel IPSC860 and Paragon,

TMC CM-5, SGI, Meiko CS-2, NCube, KSR, Sequent Sym-

metry

� On workstation networks: Sun, Dec, HP, SGI, Linux, FreeBSD,

NetBSD

� Includes multiple pro�ling libraries for timing, event logging,

and animation of programs.

� Includes trace upshot visualization program, graphics library

� E�ciently implemented for shared-memory, high-speed switches,

and network environments

� Man pages

� Source included

� Available at ftp.mcs.anl.gov in pub/mpi/mpich.tar.Z

135

Sharable MPI Resources

� The Standard itself:

{ As a Technical report: U. of Tennessee. report

{ As postscript for ftp: at info.mcs.anl.gov in

pub/mpi/mpi-report.ps.

{ As hypertext on the World Wide Web:

http://www.mcs.anl.gov/mpi

{ As a journal article: in the Fall issue of the Journal of

Supercomputing Applications

� MPI Forum discussions

{ The MPI Forum email discussions and both current and

earlier versions of the Standard are available from netlib.

� Books:

{ Using MPI: Portable Parallel Programming with the Message-Passing

Interface, by Gropp, Lusk, and Skjellum, MIT Press, 1994

{ MPI Annotated Reference Manual, by Otto, Dongarra, Leder-

man, Snir, and Walker, MIT Press, 1995.

136

Sharable MPI Resources, continued

� Newsgroup:

{ comp.parallel.mpi

� Mailing lists:

{ mpi-comm@cs.utk.edu: the MPI Forum discussion list.

{ mpi-impl@mcs.anl.gov: the implementors' discussion list.

� Implementations available by ftp:

{ MPICH is available by anonymous ftp from

info.mcs.anl.gov in the directory pub/mpi/mpich, �le mpich.*.tar.Z.

{ LAM is available by anonymous ftp from tbag.osc.edu in

the directory pub/lam.

{ The CHIMP version of MPI is available by anonymous ftp

from ftp.epcc.ed.ac.uk in the directory pub/chimp/release.

� Test code repository (new):

{ ftp://info.mcs.anl.gov/pub/mpi-test



137

PVM and  MPI Future

PVM

System Process Control
Process Creation
...

MPI

Context
...

Active Messages

Context

System Process Control

Process Creation

Active Messages

Merging Features

Future

MPI available on:
 IBM SP
 Intel Paragon
 Cray T3D
 Meiko CS−2
 PVM/p4

138

MPI-2

� The MPI Forum (with old and new participants) has begun a

follow-on series of meetings.

� Goals

{ clarify existing draft

{ provide features users have requested

{ make extensions, not changes

� Major Topics being considered

{ dynamic process management

{ client/server

{ real-time extensions

{ \one-sided" communication (put/get, active messages)

{ portable access to MPI system state (for debuggers)

{ language bindings for C++ and Fortran-90

� Schedule

{ Dynamic processes, client/server by SC '95

{ MPI-2 complete by SC '96

139

Conclusions

� MPI being adopted worldwide

� Standard documentation is an adequate guide to implemen-

tation

� Implementations abound

� Implementation community working together


