Outline

¢ Motivation for MPI
Overview of PVM and MPI e The process that produced MPI

e What is different about MPI?

— the “usual” send/receive
— the MPI send/receive
— simple collective operations

Computer Science Department o New in MPI: Not in MPI
University of Tennessee

Jack Dongarra

e Some simple complete examples, in Fortran and C
and ¢ Communication modes, more on collective operations
Mathematical Sciences Section e Implementation status

Oak Ridge National Laboratory ¢ MPICH - a free, portable implementation
e MPI resources on the Net

¢ MPI-2

(http://www.netlib.org/utk/people/JackDongarra.html)

What is SPMD? Messages

O Single Program, Multiple Data O Messages are packets of data moving between sub-programs.

O Same program runs everywhere. O The message passing system has to be told the

o . following information:
O Restriction on the general message-passing model. i
— Sending processor

O Some vendors only support SPMD parallel programs. _ Source location

O General message-passing model can be emulated. - Data type

— Data length
Receiving processor(s)

— Destination location

— Destination size

Access

O A sub-program needs to be connected to a message passing
system.

O A message passing system is similar to:
— Mail box
— Phone line
fax machine

— etc.

Point-to-Point Communication
O Simplest form of message passing.
O One process sends a message to another

O Different types of point-to point communication

Synchronous Sends

O Provide information about the completion of the
message.

} =

B =

"Beep”
\

= =

Asynchronous Sends

QO Only know when the message has left.

ta =
18 b
18

Blocking Operations
O Relate to when the operation has completed.

O Only return from the subroutine call when the
operation has completed.

Non-Blocking Operations

O Return straight away and allow the sub—program to
continue to perform other work. At some later time
the sub—program can TEST or WAIT for the
completion of the non-blocking operation.

&I; =

J = ===
@I‘ =

Barriers

O Synchronise processes.

@

Barrier

Broadcast

O A one-to—many communication.

Reduction Operations

[d Combine data from several processes to produce a

single result.

STRIKE

o

Parallelization — Getting Started
e Starting with a large serial application
— Look at the Physics

Is problem inherently parallel?

— Examine loop structures
Are any independent? Moderately so?
Tools like Forge90 can be helpful

— Look for the core linear algebra routines
Replace with parallelized versions

e Already been done. (check survey)

15

Popular Distributed Programming Schemes
e Master / Slave
Master task starts all slave tasks and coordinates their work and I/O
e SPMD (hostless)
Same program executes on different pieces of the problem

e Functional

Several programs are written; each performs a different function in the
application.

Parallel Programming Considerations

e Granularity of tasks
Key measure is communication/computation ratio of the machine: Num-
ber of bytes sent divided by number of flops performed. Larger granu-
larity gives higher speedups but often lower parallelism.

e Number of messages
Desirable to keep the number of messages low but depending on the al-
gorithm it can be more efficient to break large messages up and pipeline
the data when this increases parallelism.

e Functional vs. Data parallelism
‘Which better suits the application? PVM allows either or both to be
used.

Network Programming Considerations

Message latency

Network latency can be high. Algorithms should be designed to account
for this (f.e. send data before it is needed).

Different Machine Powers

Virtual machines may be composed of computers whose performance
varies over orders of magnitude. Algorithm must be able to handle this.

Fluctuating machine and network loads

Multiple users and other competing PVM tasks cause the machine and
network loads to change dynamically. Load balancing is important.

Load Balancing Methods

e Static load balancing
Problem is divided up and tasks are assigned to processors only once.
The number or size of tasks may be varied to account for different
computational powers of machines.

Dynamic load balancing by pool of tasks
Typically used with master/slave scheme. The master keeps a queue
of tasks and sends them to idle slaves until the queue is empty. Faster

machines end up getting more tasks naturally. (see zep example in
PVM distribution)

Dynamic load balancing by coordination

Typically used in SPMD scheme. All the tasks synchronize and redis-
tribute their work either at fixed times or if some condition occurs (f.e.
load imbalance exceeds some limit)

Communication Tips
o Limit size, number of outstanding messages

— Can load imbalance cause too many outstanding messages?

— May have to send very large data in parts

Sending
Task

Pvmd

\
Receiving
Task

e Complex communication patterns

— Network is deadlock-free, shouldn’t hang
— Still have to consider
% Correct data distribution
* Bottlenecks
— Counsider using a library
% ScaLAPACK: LAPACK for distributed-memory machines
* BLACS: Communication primitives
- Oriented towards linear algebra
- Matrix distribution w/ no send-recv

- Used by ScaLAPACK

20

Bag of Tasks

e Components

— Job pool

— Worker pool

— Scheduler
State of each job State of each worker
Unstarted
O Idle
A
Running B A
B O susy
Finished

Figure 1: Bag of tasks state machines

e Possible improvements

— Adjust size of jobs
% To speed of workers
% To turnaround time (granularity)
— Start bigger jobs before smaller ones
— Allow workers to communicate
(more complex scheduling)

21

PVM Is

PVM is a software package that allows a collection of serial, parallel and
vector computers on a network to be managed as one large computing
resource.

e Poor man’s supercomputer

— High performance from network of workstations
Off-hours crunching
o Metacomputer linking multiple supercomputers
— Very high performance
— Computing elements adapted to subproblems
— Visualization
e Educational tool
— Simple to install
— Simple to learn
— Available

— Can be modified

Physical and Logical Views of PVM
Physical

IP Network (routers, bridges, ...)
@)

ﬁ ﬁ ﬁ Host J
_/
\/

Logical

Multiprocessor
host

Pvmd (host)

Tasks S

[

Console(s)

22

23

Parts of the PVM System

e PVM daemon (pvmd)

— One manages each host of virtual machine
— Mainly a message router, also has kernel-like functions
— Has message entry points where tasks request service
— Inter-host point of contact
— Authentication
— Creates processes
— Collects output printed by processes
— Fault detection of processes, network
— More robust than application components
e Interface library (libpvm)
— Linked with each application component
— 1. Functions to compose, send, receive messages
— 2. PVM syscalls that send requests to pvid
— Machine-dependent communication part can be replaced
— Kept as simple as possible
o PVM Console

— Interactive control of virtual machine
— Kind of like a shell

— Normal PVM task, several can be attached, to any host

Programming in PVM

e A simple message-passing environment

— Hosts, Tasks, Messages

— No enforced topology

— Virtual machine can be composed of any mix of machine types
e Process Control

— Tasks can be spawned/killed anywhere in the virtual machine
o Communication

— Any task can communicate with any other

— Data conversion is handled by PVM
e Dynamic Process Groups

— Tasks can join/leave one or more groups at any time
e Fault Tolerance

— Task can request notification of lost/gained resources
o Underlying operating system (usually Unix) is visible
e Supports C, C++ and Fortran

e Can use other languages (must be able to link with C)

24

26
Hellos World Unique Features of PVM
e Program hellol.c, the main program: e Software is highly portable
#include <stdio.h> o Allows fully heterogeneous virtual machine (hosts, network)
#include "pvm3.h" . . .
e Dynamic process, machine configuration
main()
¢ e Support for fault tolerant programs
int tid; /* tid of child */ .
char buf [100] ; e System can be customized
printf("I'm tix\n", pvm_mytid(); e Large existing user base
pvm_spawn("hello2", (chars#)0, 0, ", 1, 2tid); e Some comparable systems
pvm_recv(-1, =1);)) .
pvm_bufinfo(cc, (int#)0, (int*)0, &tid); — Portable message-passing
pvm_upkstr (buf) ; * MPI
printf ("Message from tfx: %s\n", tid, buf);
pvm_exit(); * pd
exit(0); * Express
¥
* PICL
e Program hello2.c, the slave program: — One-of-a-kind
* NX
#include "pvm3.h"
* CMMD
main() — Other types of communication
int ptid; /* tid of parent */ x AM
char buf [100]; % Linda
ptid = pvm_parent(); e Also DOSs, Languages, ...
strepy (buf, "hello, world from ");
gethostname (buf + strlen(buf), 64);
pum_initsend(PvmDataDefault);
pvm_pkstr(buf);
pvm_send(ptid, 1);
pvm_exit();
exit(0);
i
27 28

Portability

e Configurations include

803/486 (BSDI, NetBSD, FreeBSD) Alliant FX/8
803/486 (Linux) BBN Butterfly TC2000
DEC Alpha(OSF-1), Mips, uVAX Convex (2, CSPP
DG Aviion Cray T-3D, YMP, 2, C90 (Unicos)
HP 68000, PA-Risc Encore Multimax
IBM RS 6000, RT Fujitsu 780(UXP /M)
Mips IBM Power-4
NeXT Intel Paragon, iPSC/860, iPSC/2
Silicon Graphics Kendall Square
Sun 3, 4x (SunOS, Solaris) Maspar
NEC SX-3

Sequent

Stardent Titan

Thinking Machines CM-2, CM-5

e Very portable across Unix machines, usually just pick options

o Multiprocessors:
— Distributed-memory: T-3D, iPSC/SGO‘ Paragon, CM-5, SP-Z/MPI
— Shared-memory: Convex/HP, SGI, Alpha, Sun, KSR, Symmetry

Source code largely shared with generic (80%)
e PVM is portable to non-Unix machines
— VMS port has been done
— 0S/2 port has been done
— Windows/NT port in progress
o PVM differences are almost transparent to programmer

— Some options may not be supported

— Program runs in different environment

How to Get PVM
e PVM home page URL (Oak Ridge) is
http://www/epm/ornl/gov/pvm/pvm_home .html

o PVM source code, user’s guide, examples and related material are pub-
lished on Netlib, a software repository with several sites around the
world.

To get started, send email to netlib:

% mail netlibGornl.gov
Subject: send index from pvm3

A list of files and instructions will be automatically mailed back

— Using xnetlib: select directory pvm3
o FTP: host netlib2.cs.utk.edu, login anonymous. directory /pvm3
e URL: http://www.netlib.org/pvm3/index . .html

e Bug reports, comments, questions can be mailed to:
pvmlmsr.epm.ornl.gov

o Usenet newsgroup for discussion and support:
comp.parallel.pvm

e Book:
PVM: Parallel Virtual Machine
A Users’ Guide and Tutorial for Networked Parallel Computing
MIT press 1994.

29 30
Installing PVM Building PVM Package
o Package requires a few MB of disk + a few MB / architecture e Software comes with configurations for most Unix machines
e Don’t need root privelege e Installation is easy
e Libraries and executables can be shared between users o After package is extracted
e PVM chooses machine architecture name for you — cd $PVM_ROOT
more than 60 currently defined _ make
e Environment variable PVM_ROOT points to installed path o Software automatically
— E.g. /usr/local/pvm3.3.4 or $HOME/pvm3 — Determines architecture type
— If you use csh, add to your .cshrec: — Creates necessary subdirectories
setenv PVM_ROOT /usr/local/pvm3 Builds pvmd, console, libraries, group server and library
— If you use sh or ksh, add to your .profile: — Installs executables and libraries in 1ib and bin
PVM_R0O0T=/usr/local/pvm3
PVM_DPATH=$PVM_ROOT/1ib/pvmd
export PVM_ROOT PVM_DPATH
o Important directories below $PVM_ROOT
include Header files
man Manual pages
1lib Seripts
1ib/ARCH | System executables
bin/ARCH | System tasks
31 32

Starting PVM

e Three ways to start PVM

o pvm [-ddebugmask] [-nhostname] [hostfile]

PVM console starts pvind, or connects to one already running

® xpvm

Graphical console, same as above

o pvnd [-ddebugmask] [-nhostnamel [hostfile]
Manual start, used mainly for debugging or when necessary to enter
passwords
e Sowme common error messages
— Can’t start pvmd
Check PVM_ROOT is set, .rhosts correct, no garbage in .cshrc
— Can’t contact local daemon
PVM crashed previously; socket file left over
— Version mismatch
Mized versions of PVM installed or stale executables
— No such host
Can't resolve IP address
— Duplicate host
Host already in virtual machine or shared /tmp directory
— failed to start group server
Group option not built or ep= not correct
— shmget: ... No space left on device
Stale segments left from crash or not enough are configured

XPVM

e Graphical interface for PVM

— Performs console-like functions
— Real-time graphical monitor with
% View of virtual machine configuration, activity
% Space-time plot of task status
% Host utilization plot
% Call level debugger, showing last libpvm call by each task

e Writes SDDF format trace files
e Can be used for post-mortem analysis
e Built on top of PVM using

— Group library

— Libpvm trace system

— Output collection system

33 34
Programming Interface Process Control
About 80 functions e pvm spawn(file, argv, flags, where, ntask, tids)
Start new tasks

Message buffer manipulation Create, destroy buffers PvmTaskDefault | Round-robin

Pack, unpack data — Placement options | PvnTaskHost Named host (7.7 is local)
Message passing Send. receive PvmTaskArch Named architecture class
: Multicast PvmHostCompl | Complements host seh

= - _ .. | PvmMppFront | Start on MPP service node
Process control Create, destroy tasks Other flags PvmTaskDebug | Enable debugging (dbz)

Query task tables PvmTaskTrace | Enable tracing

Find own tid, parent tid — Spawn can return partial success
Dynamic process groups }/V:I.ﬂl, loptwn,al group library o pvmmytid()

Jou, leave group . Find my task id / enroll as a task

Map group members —— tids

Broadcast e pvm_parent ()

Global reduce Find parent’s task id
Machine configuration Add, remove hosts .

e pvm_exit ()

Query host S'tatus i Disconnect from PVM

Start, halt virtual machine
Miscellaneous Get, set options M pvm_k.111(1:1d)

Request notification Terminate another PVM task

Register special tasks o pvm_pstat (tid)

Get host timeofday clock offsets Query status of another PVM task

35 36

Basic PVM Communication
e Three-step send method

— pvm_initsend(encoding)
Initialize send buffer, clearing current one
PvmDataDefault
Encoding can be PvmDataRaw
PvmDataInPlace

— pvm_pktype(data, num items, stride)

Pack buffer with various data
— pvm_send(dest, tag)
pvm mcast(dests, count, tag)
Sends buffer to other task(s), returns when safe to clear buffer

e To receive

pvm_recv(source, tag)
pvm_nrecv(source, tag)
Blocking or non-blocking receive

— pvm_upktype(data, num_items, stride)
Unpack message into user variables

e Can also pvm_probe (source, tag) for a message

o Another receive primitive: pvm_trecv(source, tag, timeout)
Equivalent to pvin_nrecv if timeout set to zero
Equivalent to pvm_recv if timeout set to null

Higher Performance Communication
e Two matched calls for high-speed low-latency messages

— pvm_psend(dest, tag, data, num_items, data_type)

— pvm_precv(source, tag, data, num_items, data_type,
asource, atag, alength)

o Pack and send a contiguous, single-typed data buffer

e As fast as native calls on multiprocessor machines

37 38
Collective Communication Virtual Machine Control
e Collective functions operate across all members of a group e pvm addhosts(hosts, num hosts, tids)
. Add hosts to virtual machine
— pvm_barrier(group, count)
Synchronize all tasks in a group e pvm_config(nhosts, narch, hosts)
pvm_bcast (group, tag) Get current VM configuration
Broadcast message to all tasks in a group e pvm_delhosts (hosts, num hosts, results)
— pvm_scatter(result, data, num items, data_ type, Remove hosts from virtual machine
msgtag, rootinst, group)
gtag group . e pvm halt()
pvm,gather(result, data, num_items, data_type,
. Stop all pymds and tasks (shutdown)
msgtag, rootinst, group)
Distribute and collect arrays across task groups e pvm mstat (host)
— pvm_reduce ((*func) (), data, num items, data type, Query status of host
msgtag, group, rootinst) . e pvm_start_pvmd(argc, argv, block)
Reduce distributed arrays. Predefined functions are Start new master pomd
* PvmMax
* PvmMin
* PvmSum
* PvmProduct
39 10

PVM Examples in Distribution

o Examples illustrate usage and serve as templates

e Examples include
hello, hello_other Hello world
master, slave

Master/slave program

spmd SPMD program

gexample Group and collective operations
timing, timing slave | Tests communication performance
hite, hite_slave Dynamic load balance example
xep, mtile Interactive X-Window example

e Examples come with Makefile.aimk files

e Both C and Fortrans versions for some examples

Compiling Applications
o Header files

— C programs should include
<pvm3.h> Always
<pvmtev.h> To manipulate trace masks
<pvmsdpro.h> For resource manager interface

— Specify include directory: cc -~I$PVM_ROOT/include
— Fortran: INCLUDE ’/usr/local/pvm3/include/fpvm3.h’

e Compiling and linking

— C programs must be linked with
libpvm3.a Always
libgpvm3.a If using group library functions
possibly other libraries (for socket or XDR functions)

— Fortran programs must additionally be linked with 1ibfpvm3.

11 42
Compiling Applications, Cont’d Load Balancing
o Aimk e Important for application performance
— Shares single makefile between architectures o Not done automatically (yet?)
— Builds for different architectures in separate directories o Static — Assignment of work or placement of tasks
— Determines PVM architecture . . .
L — Must predict algorithm time
— Runs make, passing it PUM_ARCH .
— May have different processor speeds
— Does one of three things . . .
— Externally imposed (static) machine loads
% If $PVM_ARCH/ [Mm] akefile exists:
Runs make in subdirectory, using makefile ¢ Dynamic Adapting to changing conditions
Else if Makefile.aimk exists: — Make simple scheduler: E.g. Bag of Tasks
Creates subdirectory, runs make using Makefile.aimk . Si SR
. % Simple, often works well
% Otherwise:)] % Divide work into small jobs
Runs make in current directory . .
: % Given to processors as they become idle
* PVM comes with examples
-C xep
- Fortran hitc
% Can include some fault tolerance
— Work migration: Cancel / forward job
% Poll for cancel message from master
Can interrupt with pvm_sendsig
% Kill worker (expensive)
— Task migration: Not in PVM yet
e Even with load balancing, expect performance to be variable
13 14

Six Examples

o Circular messaging

o Inner product

o Matrix vector multiply (row distribution)

o Matrix vector multiply (column distribution)
o Integration to evaluate m

o Solve 1-D heat equation

Circular Messaging

A vector circulates among the processors
Each processor fills in a part of the vector

Solution:
e SPMD
o Uses the following PVM features:
— spawn
— group
— barrier
— send-recv

— pack-unpack

progran spudi
include */src/icl/pvm/pvn3/include/fpvn3.h’

PARAMETER (NPROC=4)

integer rank, left, right, i, j, ierr
integer tids(NPROC-1)

integer data(NPROC)

c Group Creation

call pvnfjoingroup(foo’, rank)
if(rank .eq. 0) then

call pvmfspawn(’spmdl’ ,PVMDEFAULT, ' ,NPROC-1,tids(1),ierr)
endif

call punfbarrier('foo’, NPROC, ierr)
c compute the neighbours IDs

call punfgettid(*foo’, HOD(rank+NPROC-1,NPROC), left)
call pvmfgettid(*foo’, MOD(rank+1,NPROC), right)

if(rank .eq. 0) then
c T an the first process

do 10 i=1,NPROC
10 data(i) = 0
call pvnfinitsend(PVMDEFAULT, ierr)
call pvnfpack(INTEGER4, data, NPROC, 1, ierr)
call pvnfsend(right, 1 , ierr)
call pvnfrecv(left, 1, ierr)
call pvnfunpack(INTEGER4, data, NPROC, 1, ierr)
write(*,*) ' Results received :’
write(x,*) (data(j),j=1,NPROC)
else
¢ I an an internediate process

call pvnfrecv(left, 1, ierr)
call pvnfunpack(INTEGER4, data, NPROC, 1, ierr)
data(rank+1) = rank
call pvnfinitsend(PVMDEFAULT, ierr)
call pvnfpack(INTEGER4, data, NPROC, 1, ierr)
call pvnfsend(right, 1, ierr)

endif

call pvnflvgroup('foo’, ierr)
call pvnfexit(ierr)

stop

end

Inner Product

Problem: In parallel compute

BT X —>E+0

X Partial Ddot

Solution:
o Master - Slave

o Uses the following PVM features:

— spawn
— group
— barrier
— send-recv
— pack-unpack
e Master sends out data, collects the partial solutions and computes the
sum.
o Slaves receive data, compute partial inner product and send the results

to master.

Inner Product - Pseudo code

o Master

Ddot = 0
for i = 1 to <number of slaves>
send ith part of X to the ith slave
send ith part of Y to the ith slave
end for
Ddot = Ddot + Ddot(remaining part of X and Y)
for i = 1 to <number of slaves>
receive a partial result
Ddot = Ddot + partial result
end for

e Slave

Receive a part of X

Receive a part of Y

partial = Ddot(part of X and part of Y)
send partial to the master

progran inner
include '/src/icl/pvn/pvn3/include/fpvm3.h’

PARAMETER(NPROC=7)

PARAMETER(N = 100)

double precision ddot

external ddot

integer remain, nb

integer rank, i, ierr, bufid
integer tids(NPROC-1), slave, master
double precision x(N),y(N)

double precision result,partial

remain = MOD(N,NPROC-1)
nb = (N-remain)/(NPROC-1)

call pvnfjoingroup('foo’, rank)
if(rank .eq. 0) then
call punfspawn(’ inner’ ,PVMDEFAULT,’ * NPROC-1,tids,ierr)
endif
call pvnfbarrier(*foo’, NPROC, ierr)

call pvnfgettid('foo’, 0, master)

c MASTER
if(rank .eq. 0) then
c Set the values
do 10 i=1,N
x(i) = 1.0d0
10 y(i) = 1.0d0
c Send the data
count = 1

do 20 i=1,NPROC-1
call pvnfinitsend(PVMDEFAULT, ierr)
call pvnfpack(REAL8, x(count), mb, 1, ierr)
call pvnfpack(REAL8, y(count), mb, 1, ierr)
call pvnfgettid('foo’, i, slave)
call pvnfsend(slave, 1, ierr)
count = count + nb

20 continue

result = 0.d0

c Add the remainding part
partial = ddot (remain,x(N-remain+1),1,y(N-remain+1),1)
result = result + partial

c Get the result
do 30 i =1,NPROC-1
call punfrecv(-1,1,bufid)
call pvnfunpack(REALS, partial, 1, 1, ierr)
result = result + partial

30 continue
print ¥, ' The ddot = ’, result
C SLAVE
else
c Receive the data

call pvnfrecv(-1, 1, bufid)
call pvnfunpack(REALS, x, mb, 1, ierr)
call pvnfunpack(REALS, y, mb, 1, ierr)
c Compute the partial product
partial = ddot (nb,x(1),1,y(1),1)
c Send back the result
call pvnfinitsend(PYMDEFAULT, ierr)
call pvnfpack(REALS, partial, 1, 1, ierr)
call pvnfsend(master, 1, ierr)

endif

call pvnflvgroup('foo’, ierr)
call pvnfexit(ierr)

stop

end

Matrix - Vector Product
(Row Distribution)

Problem: In parallel compute y = y + Az, where y is of length m, x is of

length n and A is an m X n matrix.
Solution:
o Master - Slave
o Uses the following PVM features:
— spawn
— group
— barrier
— send-recv

— pack-unpack

P3

P4

Matrix - Vector Product

(Row Distribution)
Pseudo Code

o Master

for i = 1 to <number of slaves>
send X to the ith slave
send Y to the ith slave
end for
for i = 1 to <number of slaves>
receive a partial result from a slave
update the corresponding part of Y
end for

e Slave

Receive X

Receive Y

Compute my part of the product
and Update my part of Y

Send back my part of Y

Pprogram matvec_row
include '/src/icl/pvn/pvm3/include/fpvm3.h’
c
c ymytAex
c
c A : Mxll (visible only on the slaves)
c :
c Yiu
c
PARAMETER(NPROC = 4)
PARAMETER(M = 9, N = 6)
PARAMETER(NBY = INT(M/(NPROC)+1))
double precision X(N), Y(M)
integer tids(IPROC)
integer mytid, rank, i, ierr, from
call pvnfnytid(mytid)
call pvnfjoingroup('foo’, rank)
if(rank .eq. 0) then
call punfspawn(’matvecslv_rou’ ,PVMDEFAULT,’*’ NPROC, tids, ierr)
endif
call pvnfbarrier(’foo’, NPROC+1, ierr)
c Data initialize for my part of the data
d0 10 i = 1,8
x(i) = 1.d0
10 continue
do 15 i = 1,0
y@) = 1.d0
15 continue
c Send X and Y to the slaves
call pvnfinitsend(PVMDEFAULT, ierr)
call pvnfpack(REALS, X, N, 1, ierr)
call pvnfpack(REALS, Y, M, 1, ierr)
call pnfbcast('foo’, 1, ierr)

53 54
progran matvecsly.row
I get the results include /src/icl/pvn/pvn3/include/pvm3.h!
do 20 i = 1, NPROC c
call punfrecv(-1, 1, ierr) ¢ yemmythex
call pynfunpack(INTEGER4, from, 1, ierr) ¢ A : Mell (visible only on the slaves)
if (from .EQ. NPROC) then c XN
call pvmfunpack(REALS, ¥((from-1)+NBY+1), c YoM
M-NBY+ (NPROC-1), 1, ierr) c
else PARAMETER(NPROC = 4)
call pvmfunpack(REALS, Y((from-1)*NBY+1), PARAMETER(M = 9, N = 6)
NBY, 1, ierr) PARAMETER(NBY = INT(M/NPROC)+1)
endif
continue double precision A(NBY,N)
double precision X(N), Y(M)
write(*,*) 'Results received’
do 30 1=1,M integer rak, 1, ierr, to
write(*,*) 'Y(',1,’) = ?,¥(i)
continue external dgenv
call pvnflvgroup('foo’, ierr)
call pvnfexit(ierr) call pvnfjoingroup('foo’, rank)
stop call punfbarrier(*foo’, NPROCHL, ierr)
end
c Data initialize for my part of the data
do 10 j = 1,N
do 20 i = 1,NBY
AG,§) = 1.d0
20 continue
10 continue
c I receive X and ¥
call pvnfrecv(-1, 1, ierr)
call punfunpack(REALS, X, N, 1, ierr)
call punfunpack(REALS, Y, M, 1, ierr)
c I compute my part
if (rank .NE. NPROC) then
call dgemv('N', NBY, N, 1.d0, A, NBY,
X, 1, 1.d0, Y((rank-1)*NBY+1),1)
else
call dgenv('N', M-NBY*(NPROC-1), N, 1.d0, &, NBY,
X, 1, 1.d0, Y((NPROC-1)+NBY+1), 1)
endif
55 56
Matrix - Vector Product
Column Distribution)
I send back ny part of ¥ Problem: In parallel compute y = y + Az, where y is of length m, x is of
length n and A is an m X n matrix.
call punfinitsend (PMDEFAULT, ierr) .
call pynfpack(INTEGER4, rank, 1, 1, ierr) Solution:
if (rank .NE. NPROC) then
call punfpack(REALS, V((rank-1)*NBY+1) NBY, 1, ierr) o Master - Slave
else
call pumfpack(REALS, V((rank-1)sNBY+1) M-NBY*(NPROC-1),1,ierr) o Uses the following PVM features:
endif
call pvnfgettid('foo’,0,to) — spawn
call pvnfsend(to, 1, ierr)
— group
done K
— barrier
call pvnflvgroup('foo’, ierr) ced
call pvnfexit(ierr) — reduce
stop — send-recvy
end
— pack-unpack
n
m P2 P3 [P X[|— +

Matrix - Vector Product

(Column Distribution)
Pseudo Code

5

progran matvec_col
include '/src/icl/pvn/pvn3/include/fpvm3.h’

=

c
c ymytAex
c
c A : Mx (visible only on the slaves)
c XN
c You
o Master c
PARAMETER(NPROC = 4)
) PARAMETER(M = 9, N = 6)
for i = 1 to <number of slaves>
send X to the ith slave double precision X(N), Y(M)
end for external PVNSUM
Global Sum on Y (root)
integer tids(NPROC)
integer mytid, rank, i, ierr
e Slave ger
Receive X call pvnfnytid(mytid)
. : call pvnfjoingroup('foo’, rank)
Compute my Contribution to Y $£(rank .eq. 0) then
Global Sum on Y (leaf) call pvnfspawn(’matvecslv_col’ ,PVMDEFAULT, *’ NPROC,tids,ierr)
endif
call pvnfbarrier(*foo’, NPROC+L, ierr)
c Data initialize for my part of the data
do 10 i= 1,1
x(1) = 1.d0
10 continue
do 15 i = 1,0
y@) = 1.d0
15 continue
5 60
progran matvecslv_col
c Send X include '/src/icl/pvn/pvn3/include/fpvm3.h’
call pvnfinitsend(PVMDEFAULT, ierr) c
call punfpack(REALS, X, N, 1, ierr) c yo—-ythEx
call pvnfbeast(’foo’, 1, ierr) c A : Mx (visible only on the slaves)
c XN
c I get the results c Yiu
c
call pvnfreduce(PVHSUM,Y,H,REALS, 1, £00°,0,ierr) PARAMETER(NPROC = 4)
PARAMETER(M = 8, N = 6)
write(#,*) 'Results received’ PARAMETER(NBX = INT(N/NPROC)+1)
do 30 i=1,1
write(+,#) 'Y(*,1,%) = *,¥(d) external PVHSUM
30 continue
call pvnflygroup('foo’, ierr) double precision AH,NBX)
call pvnfexit(ierr) double precision X(N), Y(M)
stop
end integer rank, i, ierr
external dgenv
call pvnfjoingroup('foo’, rank)
call punfbarrier(*foo’, NPROCH, ierr)
c Data initialize for my part of the data
do 10 j = 1,NBX
4020 = 1,1
A(1,1) = 1.d0
20 continue
10 continue
c I receive X

call pvnfrecv(-1, 1, ierr)
call pvnfunpack(REAL8, X, N, 1, ierr)

61 62
.
Integration to evaluate =
4 T compute my part Computer approximations to 7 by using numerical integration
if (rank .NE. NPROC) then Know
call dgenv(’N’, M, NBX, 1.d0, A, M, 70’7(450) =1L
$ X((rank-1)*UBX+1), 1, 1.0, ¥,1)
else same as _
call dgemv(’N’, M,N-NBX*(NPROC-1), 1.d0, A, M, tan” = 1.
XC(NPROC-1)*NBK+1) , 1, 1.40, Y, 1) ang =1
endif
So that;
¢ T send back my part of Y dxtan =7
call pvnfreduce(PVHSUM,Y,H,REAL8,1, foo’ ,0,1err) From the integral tables we can find
¢ dome
1. 1 .
tan ‘x = (e
call pvnflvgroup('foo’, ierr) 1+
call punfexit(ierr) or
stop o1
end tan™'1 = / ——dx
014 a
Using the mid-point rule with panels of
uniform length h = 1/n, for various values of n.
Evaluate the function at the midpoints of
each subinterval (x;_y, x;).
i*h — h/2is the midpoint.
Formula for the integral is
n
o= flhx(i=1/2))
i=1
T=h=xux
where A
fla)=rrg
1+
63 64
. .
Integration to evaluate = (continued)
Number of ways to divide up the problem. progran spnd2
] .. include '/src/icl/pvn/pvm3/include/fpvm3.h’
Each part of the sum is independent.
PARAMETER(NPROC=3)
e Divide the interval into more or less equal parts and give each process EXTERNAL PUHSUM
a part. integer mytid, rank, i, ierr
" integer tids (0:NPROC-1)
e Let each processor take the p' part.
double precision PI25DT
e Compute part of integral. paraneter (PI25DT = 3.1415926535897932384626430)
double precision mypi,pi,h,sun,x,f,2
e Sum pieces.
¢ function to integrate

The example given let’s each processor take the p part. Uses the following
PVM features:

® spawn
e group
e barrier
e beast

e reduce

£(a) = 4.d0 / (1.d0 + a*a)
call pvnfmytid(mytid)
call pvnfjoingroup('foo’, rank)
10 if(rank .eq. 0) then
call punfspaun(’spnd2’ ,PVMDEFAULT, * NPROC-1,tids (1), ierr)
endif

call punfbarrier(*foo’, NPROC, ierr)

if(rank .eq. 0) then

write(6,98)

98 format ('Enter the number of intervals: (0 quits)’)
read(s,99)n

99 format (110)

if (o .GT. 100000) then
print %, 'Too large value of pi’
print *, 'Using 100000 instead’
n = 100000

endif

call pvmfinitsend(PVMDEFAULT, ierr)
call pvmfpack(INTEGER4, n, 1, 1, ierr)
call pvmfbcast('foo’,0,ierr)

endif

if(rank .ne. 0) then

call pvmfrecy(-1,-1,ierr)

call pvmfunpack(INTEGER4, n, 1, 1, ierr)
endif

65 66
.
1-D Heat Equation
¢ check for quit signal
if (n .le. 0) goto 30
¢ calculate the interval size
b = 1.040/n
sun = 0.0d0
do 20 1 = rank+t, n, NPROC Problem: Calculating heat diffusion through a wire.
x = h * (dble(i) - 0.5d0)
sum = sum + £(x)
20 continue
nypi = h * sun
¢ collect all the partial sums
print *#,’ reduce’ The one-dimensional heat equation on a thin wire is :
call pvnfreduce(PVHSUM,nypi, 1,REALS,0, 00,0, ierr)
¢ node 0 prints the number
if (rank .eq. 0) then dA O%2A
pi = mypi = = 53
write(6,97) pi, abs(pi - PI25DT) It ox
o7 fornat(’ pi is approximatively: ',F18.16,
+ ' Error is: *,F18.16) S
and a discretization of the form :
goto 10
endit A = Aij _ A =24+ Aijo
At Au?
30 call pvnflvgroup('foo’, ierr)
::i; punfexit (ierr) giving the explicit formula :
end
At
iy = A+ (i — 245+ Aijo1)
Ax
initial and boundary conditions:
A(t,0)=0,A(t,1) =0 for all ¢
A(0,2) = sin(mx) for 0 < a <1
67 68
. .
1-D Heat Equation 1-D Heat Equation
. .
Continuation Pseudo Code
e Master
P1 P3 P4
Set the initial temperatures
for i = 1 to <number of slaves>
A 7 send the ith part of the initial
temperatures to the ith slave
end for
Boundaries for i = 1 to <number of slaves>

Solution:
o Master Slave
e Slaves communicate their boundaries values
e Uses the following PVM features:
— spawn
— group
— barrier
— send-recv

— pack-unpack

receive results from ith slave
update my data
end for

e Slave

Receive my part of the initial values

for i = 1 to <number of time iterations>
send my left bound to my left neighbor
send my right bound to my right neighbor
receive my left neighbor’s left bound
receive my right neighbor’s right bound
compute the new temperatures

end for

send back my result to the master

70

69
c c enroll in pvm
C Use PVM to solve a simple heat diffusion differential equation, call pvmfnytid(mytid)
C using 1 master program and § slaves.
c c spawn the slave tasks
C The master program sets up the data, communicates it to the slaves call pvnfspaun(’heatslv’ ,PVMDEFAULT, *’ NPROC, task_ids,ierr)
C and waits for the results to be sent from the slaves.
C Produces xgraph ready files of the results. c create the initial data set
c do 10 i = 1,SIZE
init(i) = SIN(PI * DBLE(i-1) / DBLE(SIZE-1))
progran heat 10 continue
include '/src/icl/pvn/pvn3/include/fpvn3.h’ init(1) = 0.0
init(SIZE) = 0.d0
integer NPROC, TIMESTEP, PLUTINC, SIZE
double precision PI C run the problem 4 times for different values of delta t
PARAMETER (P = 3.14159265358979323846) do 20 1-1,4
PARAMETER (NPROC = 3)
PARAMETER (TIMESTEP = 10) deltax2 = (deltat(1)/((1.0/(DBLE(SIZE)))**(2.0)))
PARAMETER (PLOTINC = 1) c start tining for this run
PARAMETER (SIZE = 100)
PARAMETER (SLAVENAME = ’heatslv’) eltine(1) = etime(t0)
integer nun_data € send the initial data to the slaves.
integer mytid, task_ids(NPROC), i, j € include neighbor info for exchanging boundary data
integer left, right, k, 1 do 30 i =1,NPROC
integer step call pnfinitsend(PVHDEFAULT,ierr)
integer ierr IF (i .EQ. 1) THEN
external wh left = 0
integer wh ELSE
left = task_ids(i-1)
double precision init(SIZE) ENDIF
double precision result (TIMESTEP*SIZE/NPROC) call pvnfpack(INTEGER4, left, 1, 1, ierr)
double precision solution(TIMESTEP,SIZE) IF (i .EQ. NPROC) THEN
character+20 filenane(4) right = 0
double precision deltat(4), deltax2 ELSE
real etime right = task_ids(i+1)
real t0(2) ENDIF
real eltine(4) call pvnfpack(INTEGER4, right, 1, 1, ierr)
call pvnfpack(INTEGER4, INT(step), 1, 1, ierr)
step = TIMESTEP call pvnfpack(REALS, deltax2, 1, 1, ierr)
nun_data = INT(SIZE/NPROC) call pvnfpack(INTEGER4, INT(num_data), 1, 1, ierr)
call pvnfpack(REALS, init(nun_datas(i-1)+1),nun_data,1,ierr)
filename(1) = ’grapht’ call pvnfsend(task_ids(i), 4, ierr)
filename(2) = ’graph2’ 30 continue
filename(3) = ’graph3’
filename(4) = ’graph4’ C wait for the results
deltat(1) = 5.0E-1 do 40 i = 1,NPROC
deltat(2) = 5.0E-3 call pvnfrecv(task_ids(i), 7, ierr)
deltat(3) = 5.0E-6 call pvnfunpack(REALS, result, num_datasTIMESTEP, 1, ierr)
deltat(4) = 5.0E-9
71 72

¢ update the solution
do 50 j = 1, TIMESTEP
do 60 k = 1, num_data
solution(j,num_data*(i-1)+1+(k-1)) =

$ result(wh(j-1,k-1,nun_data)+1)
60 continue
50 continue
0 continue

¢ stop tining
eltime(1) = etime(t0) - eltime(1)
¢ produce the output

write(*,*) 'Writing output to file ’,filename(1)
open(23, FILE = filename(1))
write(23,%) 'TitleText: Wire Heat over Delta Time: ’,deltat(l)
write(23,*) 'XUnitText: Distance’
write(23,*) 'YUnitText: Heat’
do 70 i=1,TIHESTEP,PLOTING

write(23,%) '"Time index: ’,i-1

do 80 j = 1,SIZE

write(23,*) j-1,REAL(solution(i,j))
81 FORMAT(IS,F10.4)

80 continue
urite(23,%)
70 continue
endfile 23

close(UNIT = 23, STATUS = 'KEEP')
20 continue

write(s,%) 'Problem size: ’, SIZE
do 90 i=1,4
write(+,*) 'Tine for run ’,i-1,’: ’,eltine(i),’ sec.’
90 contimue

C kill the slave processes
do 100 i = 1,NPROC
call pvmfkill(task_ids(i),ierr)
100 continue
call pvnfexit (ierr)
END

integer FUNCTION wh(x,y,z)
integer x,y,z
wh=xxz+y

RETURN
END

The slaves receive the initial data from the host,
exchange boundary information with neighbors,

and calculate the heat change in the wire.

This is done for a number of iterations, sent by the master.

aoaaaaa

progran heatslv
include '/src/icl/pvn/pvm3/include/fpvm3.h’

PARAMETER (MAX1 = 1000)
PARAMETER (MAX2 = 100000)

integer mytid, left, right, i, j, master
integer timestep

external wh
integer wh

double precision init(MAX1), A(MAX2)
double precision leftdata, rightdata
double precision delta, leftside, rightside

C enroll in pvn

call pvnfmytid(mytid)
call pvmfparent(master)

C receive my data fronm the master program
10 continue

call pvmfrecy(uaster,4,ierr)

call pvnfunpack(INTEGER4, left, 1, 1, ierr)
call pvnfunpack(INTEGER4, right, 1, 1, ierr)
call pvnfunpack(INTEGER4, timestep, 1, 1, ierr)
call pvmfunpack(REALS, delta, 1, 1, ierr)

call pvmfunpack(INTEGER4, num_data, 1, 1, ierr)
call pvmfunpack(REALS, init, num_data, 1, ierr)

C copy the initial data into my working array

do 20 i = 1, nun_data
A1) = init(i)

20 contimue
do 22 1 = nun_data+1, nun_data*tinestep
A1) =0
22 contimue

3

C perforn the calculation
do 30 i = 1, timestep-1

c trade boundary info with my neighbors
c send left, receive right

IF (left .NE. 0) THEN
call pvmfinitsend (PVMDEFAULT, ierr)
call pvmfpack (REALS, A(wh((i-1),0,num_data)+1), 1, 1, ierr)
call pvmfsend(left, 5, ierr)
ENDIF
IF (right .NE. 0) THEN
call pvmfrecv(right, 5, ierr)
call pvmfunpack(REALS, rightdata, 1, 1, ierr)
call pvmfinitsend (PVMDEFAULT, ierr)
call pvmfpack(REAL8, A(wh((i-1), num_data-1,num_data)+1),
$ 1, 1, ierr)
call pvmfsend(right, 6, ierr)
ENDIF
IF (left .NE. 0) THEN
call pvmfrecv(left, 6, ierr)
call pvmfunpack(REALS, leftdata, 1, 1, ierr)
ENDIF

C do the calculations for this iteration

do 40 j = 1, nun_data
IF (j .EQ. 1) THEN
leftside = leftdata
ELSE
leftside = A(wh(i-1,j-2,num_data)+1)
ENDIF

IF (j .EQ. nun_data) THEN

rightside = rightdata
ELSE

rightside = A(wh(i-1,j,nun_data)+1)
ENDIF

IF ((j. EQ. 1) .AND. (left. EQ. 0)) THEN
Auh(i,j-1,nun_data)+1) = 0.d0
ELSE IF ((j .EQ. num_data) .AND. (right .EQ. 0)) THEN
Auh(i,j-1,nun_data)+1) = 0.d0
ELSE
A(éh(i,j-1,nun_data)+1) = A(wh(i-1,j-1,nun_data)+1) +
$ deltax(rightside - 2+A(wh(i-1,j-1,nun_data)+1)+leftside)
ENDIF
40 continue
30 continue

C send the results back to the master program
call pvmfinitsend(PVMDEFAULT, ierr)
call pvmfpack(REALS, A, nun_data*timestep, 1, ierr)
call pvnfsend(naster, 7, ierr)

goto 10

C just for good measure
call pvmfexit (ierr)

END

integer FUNCTION wh(x,y,z)
integer x,y,z

wh = x#z +y

RETURN
END

Motivation for a New Design
o Message Passing now mature as programming paradigm
— well understood
— efficient match to hardware
— many applications
e Vendor systems not portable
e Portable systems are mostly research projects

— incomplete
— lack vendor support

— not at most efficient level

Motivation (cont.)

Few systems offer the full range of desired features.

e modularity (for libraries)

e access to peak performance
e portability

e heterogeneity

e subgroups

e topologies

L] performance measurement tools

76

The MPI Process
e Began at Williamsburg Workshop in April, 1992
e Organized at Supercomputing '92 (November)
e Followed HPF format and process
e Met every six weeks for two days
e Extensive, open email discussions
o Drafts, readings. votes
e Pre-final draft distributed at Supercomputing '93
e Two-month public comment period
e Final version of draft in May, 1994

o Widely available now on the Web, ftp sites, netlib
(http://www.netlib.org/mpi/index.html)

e Public implementations available

e Vendor implementations coming soon

MPI Lacks...

o Mechanisms for process creation
e Oune sided communication (put, get, active messages)

e Language binding for Fortran 90 anc C++

There are a fixed number of processes from start to finish of an applicaiton.
Many features were considered and not included

e Time constraint
e Not enough experience

e Concern that additional features would delay the appearance of imple-
mentations

Who Designed MPI?
e Broad participation
e Vendors
— IBM, Intel, TMC, Meiko, Cray, Convex, Ncube
e Library writers
— PVM, p4, Zipcode, TCGMSG, Chameleon, Express, Linda
e Application specialists and consultants

Companies Laboratories Universities

ARCO ANL TC Santa Barbara
Convex GMD Syracuse U
Cray Res LANL Michigan State U
IBM LLNL Oregon Grad Inst
Intel NOAA U of New Mexico
KAT NSF Miss. State U.
Meiko ORNL U of Southampton
NAG PNL U of Colorado
nCUBE Sandia Yale U
ParaSoft SDSC! U of Tennessee
Shell SRC U of Maryland
T™C Western Mich U
U of Edinburgh
Cornell U
Rice U.

U of San Francisco

M

80

What is MPI?
o A message-passing library specification
— message-passing model
— not a compiler specification
— not a specific product
e For parallel computers, clusters, and heterogeneous networks
e Full-featured

e Designed to permit (unleash?) the development of parallel software
libraries
e Designed to provide access to advanced parallel hardware for
— end users
— library writers

— tool developers

81

New Features of MPI
General
— Comumnunicators combine context and group for message security
— Thread safety
Point-to-point communication

— Structured buffers and derived datatypes, heterogeneity

— Modes: normal (blocking and non-blocking), synchronous, ready
(to allow access to fast protocols), buffered

82

New Features of MPI (cont.)
e Application-oriented process topologies
— Built-in support for grids and graphs (uses groups)
e Profiling
— Hooks allow users to intercept MPI calls to install their own tools
e Environmental
— inquiry

— error control

e Collective
— Both built-in and user-defined collective operations
Large number of data movement routines
— Subgroups defined directly or by topology
83 84
Features not in MPI Is MPI Large or Small?
o Non-message-passing concepts not included: o MPI is large (125 functions)

— process management

— remote memory transfers
— active messages

— threads

— virtual shared memory

MPI does not address these issues, but has tried to remain compatible
with these ideas (e.g. thread safety as a goal, intercommunicators)

— MPT's extensive functionality requires many functions

— Number of functions not necessarily a measure of complexity
e MPI is small (6 functions)

— Many parallel programs can be written with just 6 basic functions.
e MPI is just right

One can access flexibility when it is required.

— One need not master all parts of MPI to use it.

Header files

#include <mpi.h>
O Fortran

include ‘mpif.h’

MPI Function Format

o cC:
error = MPI_xxxxx(parameter, ...);
MPI_xxxxx(parameter, ...);

O Fortran:

CALL MPI_XXXXX/(parameter, ..., IERROR)

86

Initializing MPI

int MPI Init(int *argc, char ***argv)
0O Fortran

MPLINIT(IERROR)
INTEGER IERROR

O Must be first routine called.

MPI_COMM_WORLD
communicator

MPI_COMM_WORLD

88

Rank

O How do you identify different processes?

MPI_Comm rank(MPI_Comm comm, int *rank)

MPI.COMM _RANK(COMM, RANK, IERROR)
INTEGER COMM, RANK, IERROR

89

90

Size

O How many processes are contained within a
communicator?

MPI_Comm size(MPI_Comm comm, int *size)

MPI_.COMM_SIZE(COMM, SIZE, IERROR)
INTEGER COMM, SIZE, IERROR

Exiting MPI

int MPI_Finalize()
O Fortran

MPI_FINALIZE(IERROR)
INTEGER IERROR

O Must be called last by all processes.

91

92

Messages

O A message contains a number of elements of some particular
datatype.

O MPI datatypes:

— Basic types.
— Derived types.

O Derived types can be built up from basic types.

O C types are different from Fortran types.

93 94
.
. -
MPI Basic Datatypes - C MPI Basic Datatypes - Fortran
‘ MPI Datatype Fortran Datatype
MPI Datatype C datatype MPLINTEGER INTEGER
MPI_CHAR signed char MPI:REAL REAL
MPI_SHORT signed short int MPI DOUBLE PRECISION | DOUBLE PRECISION
MPLINT signed int MPI_COMPLEX COMPLEX
MPI_LONG signed long int MPI LOGICAT, LOGICAL
MPI_UNSIGNED_CHAR | unsigned char MPLCHARACTER CHARACTER(1)
MPI_UNSIGNED _SHORT | unsigned short int MPLBYTE
MPI_UNSIGNED unsigned int MPI PACKED
MPI_UNSIGNED_LONG | unsigned long int
MPI_FLOAT float
MPI_DOUBLE double
MPI_LONG_DOUBLE long double
MPI_BYTE
MPI_PACKED
95 96

Point—-to—Point Communication

Communication between two processes.
Source process sends message to destination process.

Communication takes place within a communicator.

O00DO

Destination process is identified by its rank in the
communicator.

+

Simple Fortran example

program main
include 'mpif.h’

integer rank, size, to, from, tag, count, i, ierr
integer src, dest

integer st_source, st_tag, st_count

integer status(MPI_STATUS_SIZE)

double precision data(100)

call MPI_INIT(ierr)

call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)
print %, ’Process ’, ramk, ' of ’, size, ’ is alive’
dest = size - 1

src = 0

if (rank .eq. src) then

to = dest
count = 10
tag = 2001

do 10 i=1, 10
data(i) = i

call MPI_SEND(data, count, MPI_DOUBLE_PRECISION, to,

tag, MPI_COMM_WORLD, ierr)
else if (rank .eq. dest) then

tag = MPI_ANY_TAG

count = 10

from = MPI_ANY_SOURCE

call MPI_RECV(data, count, MPI_DOUBLE_PRECISION, from,
tag, MPI_COMM_WORLD, status, ierr)

97 98
Simple Fortran example (cont.) Fortran example
call MPI_GET_COUNT(status, MPI_DOUBLE_PRECISION, program main
+ st_count, ierr)
st_source = status(MPI_SOURCE) include "mpif.h"
st_tag = status(MPI_TAG)
double precision PI2SDT
print *, ’Status info: source = ’, st_source, parameter (PI2EDT = 3.141592663589793238462643d0)
+ ’ tag = ’, st_tag, ’ count = ’, st_count
print *, rank, ’ received’, (data(i),i=1,10) double precision mypi, pi, h, sum, x, £, a
endif integer n, myid, numprocs, i, rc
c function to integrate
call MPI_FINALIZE(ierr) £(a) = 4.d0 / (1.d0 + a*a)
end
call MPI_INIT(ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)
10 if (myid .eq. 0) then
write(6,98)
98 format (’Enter the number of intervals: (0 quits)’)
read(5,99) n
29 format (i10)
endif
call MPI_BCAST(n,1,MPI_INTEGER,0,MPI_COMM_WORLD, ierr)
99 100

$

97
+

Fortran example (cont.)

check for quit signal
if (n .le. 0) goto 30

calculate the interval size

1.0d0/n

sum = 0.0d0

do 20 i = myid+1, n, numprocs
x =h * (dble(i) - 0.5d0)
sum = sum + £(x)

continue

mypi = h * sum

collect all the partial sums
call MPI_REDUCE(mypi,pi,1,MPI_DOUBLE_PRECISION,MPI_SUM,0,
MPI_COMM_WORLD, ierr)

node O prints the answer.
if (myid .eq. 0) then
write(6, 97) pi, abs(pi - PI25DT)

format(’ pi is approximately: ’, F18.16,
' Error is: ’, F18.16)
endif
goto 10

call MPI_FINALIZE(rc)
stop
end

C example

#include "mpi.h"
#include <math.h>

int main(argc,argv)
int arge;
char *argv[];

int done = 0, n, myid, numprocs, i, rc;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, x, a;

MPI_Init(&argc,&argv);
MPI_Comm_size (MPI_COMM_WORLD,&numprocs) ;
MPI_Comm_rank(MPI_COMM_WORLD,&myid) ;

101 102
C example (cont.)
while (!done)
. .
it (ayid = 0) € Communication modes

printf("Enter the number of intervals: (0 quits) ");

scanf ("%d", &n); Sender mode Notes
MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD); Synchronous send | Only completes when the receive has
if (n == 0) break; started.

h =1.0 / (double) n; Buffered send Always completes (unless an error
sum = 0.0; i M i
for GG nwgid + 13§ <emi i += mumprocs) { oc.curs), irrespective of receiver.

x = h * ((double)i - 0.5); Standard send Either synchronous or buffered.
N 4.0/ (1.0 % x0); Ready send Always completes (unless an error
mypi = h * sum; occurs), irrespective of whether the
MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, O, receive has completed.

MPI_COMM_WORLD) ; Receive Completes when a message has
if (ayid == 0) arrived.
printf("pi is approximately %.16f, Error is %.16f\n",

pi, fabs(pi - PI25DT));

3

PI_Finalize();

¥
103 104

MPI Sender Modes

OPERATION MPI CALL
Standard send MPI_SEND
Synchronous send | MPI_SSEND
Buffered send MPI BSEND
Ready send MPI RSEND
Receive MPI_RECV

Sending a message
ocC:

int MPI_Ssend(void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

O Fortran:

MPI SSEND(BUF, COUNT, DATATYPE, DEST, TAG,
COMM, IERROR)
<type> BUF(¥*)
INTEGER COUNT, DATATYPE, DEST, TAG INTE-
GER COMM, IERROR

105

Receiving a message

106

Synchronous Blocking

oc: Message-Passing
int MPI_Recv(void *buf, int count, MPI_Datatype datatype, O Processes synchronize.
. . Kb
:;nt)source, int tag, MPI_Comm comm, MPI Status *sta O Sender process specifies the synchronous mode.
us
O Blocking - both processes wait until the transaction has com-
O Fortran: pleted.
MPI RECV(BUF, COUNT, DATATYPE,
SOURCE, TAG, COMM, STATUS, IERROR)
<type> BUF(*) INTEGER COUNT,
DATATYPE, SOURCE, TAG, COMM,
STATUS(MPI_STATUS_SIZE), IERROR
107 108
For a communication to
148 Chapter 1
succeed:
O Sender must specify a valid destination rank.
O Receiver must specify a valid source rank. ” data —
QA A,
O The communicator must be the same. ﬁ . AD
§ broadcast 0
O Tags must match. = "o
A,
0
O Message types must match. Ay
O Receiver’s buffer must be large enough. Ao
AU Al AZ Aa A4 AS scatter AO
—> b
A2
gather Ay
<= [a
A5
AU AO B0 CO DO EO FC
BU AO B0 CO DO ED FU
c allgather Ayl Byl Col Dol Eol F
0 0] "0l "ol "0] "0] 'O
o :> o[Bo| 0| Po| Eo| Fo
EU AQ BD CC' DO ED FU
FO AU BD CC' DD ED FU
AO Al AZ A3 A4 A5 A0 B0 C0 D0 EO FO
BU Bl BZ B3 84 BS alltoall A1 Bl C1 D1 El Fl
CD Cl CZ CS C4 CS AZ BZ CZ DZ EZ FZ
DO Dl DZ D3 D4 D5 A3 BS C3 D3 ES F3
EU El EZ Ea E4 ES A4 B4 C4 D4 E4 F4
FO Fl FZ FS F4 FS A5 B5 c5 DS E5 F5

109

Wildcarding

O Receiver can wildcard.
O To receive from any source - MPI_ANY_SOURCE
O To receive with any tag - MPI_.ANY_TAG

O Actual source and tag are returned in the receiver’s status
parameter.

110

Message Order Preservation

O Messages do not overtake each other.

[This is true even for non—-synchronous sends.

111

Non-Blocking Communications

O Separate communication into three phases:
O Initiate non-blocking communication.

0 Do some work (perhaps involving other
communications?)

O Wait for non-blocking communication to complete.

112

Non-Blocking Send

113

Non-Blocking Receive

114

Non-blocking Synchronous

Send

O C:
MPLIssend(buf, count, datatype, dest, tag, comm, han-
dle)
MPI Wait(handle, status)

O Fortran:
MPI_ISSEND (buf, count, datatype, dest, tag, comm, han-
dle, ierror)
MPI_WAIT(handle, status, ierror)

115 116
Non-blocking Receive Blocking and Non-Blocking
ocC: O Send and receive can be blocking or non-blocking.

MPI Irecv(buf, count, datatype, src, tag, comm, handle)
MPI_Wait(handle, status)

O Fortran:

MPI_IRECV (buf, count, datatype, src, tag, comm, handle,
ierror)

MPI_WAIT (handle, status, ierror)

[m]

A blocking send can be used with a non-blocking receive, and
vice-versa.

O Non-blocking sends can use any mode - synchronous, buffered,
standard, or ready.

O Synchronous mode affects completion, not
initiation.

Communication Modes

NON-BLOCKING OPERATION | MPI CALL

17

118

Completion

O Waiting versus Testing.

O o o o o o

Standard send MPLISEND oc:
Synchronous send MPIISSEND MPIL Wait (handle, status)
Buffered send MPI_IBSEND - ’
Ready send MPLIRSEND MPI_Test(handle, flag, status)
Receive MPIIRECV O Fortran:

MPI_WAIT(handle, status, ierror)

MPI_TEST(handle, flag, status, ierror)

119 120
Characteristics of Collective Barrier Synchronization
Communication - e

Collective action over a communicator
All processes must communicate.
Synchronisation may or may not occur.
All collective operations are blocking.
No tags

Receive buffers must be exactly the right size.

int MPI_Barrier (MPI_Comm comm)
O Fortran:

MPI_ BARRIER (COMM, IERROR)
INTEGER COMM, IERROR

121

Broadcast

acC:

int MPI_Bcast (void *buffer, int count, MPI_datatype, int
root, MPI_ Comm comm)

O Fortran:

MPI_BCAST (BUFFER, COUNT, DATATYPE, ROOT,
COMM, IERROR)
<type> BUFFER(*)
INTEGER COUNT, DATATYPE, ROOT, COMM, IER-
ROR

122

Scatter

9006
O

123

Gather

[A]B]CID[E]
@

124

Global Reduction Operations
O Used to compute a result involving data distributed over a
group of processes.
O Examples:

— global sum or product
— global maximum or minimum

— global user-defined operation

Example of Global Reduction

Integer global sum

acC:

MPI Reduce(&x, &result, 1, MPI_INT,
MPI_SUM, 0, MPI. COMM_WORLD)

O Fortran:

CALL MPI.REDUCE(x, result, 1, MPI_INTEGER,
MPI_SUM, 0, MPI_COMM_WORLD, IERROR)

O Sum of all the x values is placed in result

O The result is only placed there on processor 0

Predefined Reduction

Operations
‘ MPI Name Function ‘
MPI_ MAX Maximum
MPI_MIN Minimum
MPI SUM Sum
MPI_PROD Product
MPI_ LAND Logical AND

MPI_BAND Bitwise AND

MPI LOR Logical OR
MPI_BOR Bitwise OR
MPI_LXOR Logical exclusive OR
MPI_BXOR Bitwise exclusive OR

MPI_MAXLOC

Maximum and location

MPI_MINLOC

Minimum and location

126

127

MPI_REDUCE

MPI_REDUCE
/
7
/
/I
4]ﬂﬂ / [QIRTSTT]
/
/ N

128

User-Defined Reduction
Operators

O Reducing using an arbitrary operator,

O C - function of type MPI User_function:
void my_operator (void *invec, void *inoutvec, int *len,
MPI _Datatype *datatype)

O Fortran - function of type

FUNCTION MY_OPERATOR (INVEC(*),
INOUTVEC(*), LEN, DATATYPE)
<type> INVEC(LEN), INOUTVEC(LEN)
INTEGER LEN, DATATYPE

129

MPI_SCAN

RANK

130

Summary

‘We have covered

e Background and scope of MPI
o Some characteristic features of MPI (communicators, datatypes)
e Point-to-Point communication

— blocking and non-blocking

— multiple modes
e Collective communication

— data movement

— collective computation

131
Sullllllal'_\’
e The parallel computing community has cooperated to develop
a full-featured standard message-passing library interface.
e Implementations abound
e Applications beginning to be developed or ported
¢ MPI-2 process beginning
e Lots of MPI material available

132

Current MPI Implementation Efforts

Vendor Implementations
IBM Research (MPI-F)
IBM Kingston
Intel SSD
Cray Research
Meiko, Inc.
SGI
Kendall Square Research
NEC
Fujitsu (AP1000)
Convex
Hughes Aircraft
Portable Implementations
Argonne—Mississippi State (MPICH)
Ohio supercomputer Center (LAM)
University of Edinburgh
Technical University of Munich
University of Illinois

Other interested groups: Sun, Hewlett-Packard, Myricom (mak-
ers of high-performance network switches) and PALLAS (a Ger-
man software company), Sandia National Laboratory (Intel Paragon
running SUNMOS)

133
MPI Implementation Projects

e Variety of implementations

— Vendor proprietary

— Free, portable

— World wide

— Real-time, embedded systems
— All MPP’s and networks

e Implementation strategies
— Specialized
Abstract message-passing devices

— Active-message devices

134
MPICH — A Freely-available Portable MPI Implementation

¢ Complete MPI implementation

¢ On MPP’s: IBM SP1 and SP2, Intel IPSC860 and Paragon,
TMC CM-5, SGI, Meiko CS-2, NCube, KSR, Sequent Sym-
metry

e On workstation networks: Sun, Dec, HP, SGI, Linux, FreeBSD,
NetBSD

e Includes multiple profiling libraries for timing, event logging,
and animation of programs.

e Includes trace upshot visualization program, graphics library

¢ Efficiently implemented for shared-memory, high-speed switches,
and network environments

¢ Man pages
e Source included

e Available at ftp.mcs.anl.gov in pub/mpi/mpich.tar.Z

Sharable MPI Resources

e The Standard itself:

— As a Technical report: U. of Tennessee. report

— As postscript for ftp: at info.mcs.anl.gov in
pub/mpi/mpi-report.ps.

— As hypertext on the World Wide Web:
http://www.mcs.anl.gov/mpi
As a journal article: in the Fall issue of the Journal of
Supercomputing Applications

¢ MPI Forum discussions

— The MPI Forum email discussions and both current and
earlier versions of the Standard are available from netlib.

e Books:
— Using MPI: Portable Parallel Programming with the Message-Passing
Interface, by Gropp, Lusk, and Skjellum, MIT Press, 1994

— MPI Annotated Reference Manual, by Otto, Dongarra, Leder-
man, Snir, and Walker, MIT Press, 1995.

136
Sharable MPI Resources, continued

e Newsgroup:

— comp.parallel.mpi
e Mailing lists:

— mpi-comm@cs.utk.edu: the MPI Forum discussion list.

— mpi-impl@mcs.anl.gov: the implementors’ discussion list.
e Implementations available by ftp:

— MPICH is available by anonymous ftp from
info.mcs.anl.gov in the directory pub/mpi/mpich, file mpich.*.tar.Z.

— LAM is available by anonymous ftp from tbag.osc.edu in
the directory pub/lam.

— The CHIMP version of MPI is available by anonymous ftp
from ftp.epcc.ed.ac.uk in the directory pub/chimp/release.

¢ Test code repository (new):

— ftp://info.mcs.anl.gov/pub/mpi-test

PVM and MPI Future

PVM MPI
System Process Control Context
Process Creation
Future
Context Active Messages
Active Messages System Process Control

Process Creation

Merging Features
MPI available on:
IBM SP
Intel Paragon
Cray T3D

Meiko CS-2
PVM/p4

MPI-2

138

¢ The MPI Forum (with old and new participants) has begun a

follow-on series of meetings.
¢ Goals

— clarify existing draft
— provide features users have requested
— make extensions, not changes
e Major Topics being considered
— dynamic process management
— client /server
— real-time extensions
— “one-sided” communication (put/get, active messages)
— portable access to MPI system state (for debuggers)
— language bindings for C++ and Fortran-90
e Schedule

— Dynamic processes, client/server by SC 95
MPI-2 complete by SC 96

139
Conclusions

e MPI being adopted worldwide

e Standard documentation is an adequate guide to implemen-
tation

e Implementations abound

e Implementation community working together

