
DRAFT

Toward a Proposal for a set of Parallel Basic Linear Algebra

Subprograms

BLAS Technical Forum�

February 25, 1997

Abstract

This (draft) document aims at identifying a number of issues to be discussed in order to

formulate a proposal for a set of Parallel Basic Linear Algebra Subprograms. This collection

of subprograms is targeted at elementary distributed dense and sparse linear algebra opera-

tions. These subprograms can in turn be used to develop parallel libraries for a large variety of

distributed memory concurrent computers.

�Edited by Antoine Petitet

1

DRAFT

Contents

1 Introduction 3

2 Notation 3

2.1 Operands . 3

2.2 Elementary Operations . 4

2.2.1 Addition . 4

2.2.2 Multiplication . 4

2.2.3 Indexes . 4

3 Parallel Basic Linear Algebra Operations 4

4 Data Distributions 5

5 Inter-Intra Context Operations 5

6 Parallel Basic Linear Algebra Algorithms 6

7 Alignment Restriction - Redistribution 6

8 Replication { Persistent Objects 6

9 Divide and Conquer { Task Scheduling 7

10 I/O { Data Generation 7

11 The Dense Case: The ScaLAPACK Experience 7

12 Rationale 8

2

DRAFT

1 Introduction

This (draft) document aims at identifying a number of issues to be discussed in order to formulate

a comprehensive or limited proposal for a set of Parallel Basic Linear Algebra Subprograms. The

ultimate goal of this e�ort is to provide speci�cations of distributed kernels suitable for their

implementation as well as their use in higher level software components. Functionality, e�ciency

and
exibility are the three essential concepts in
uencing this proposal. Functionality and e�ciency

are motivated by obvious usefulness reasons. Flexibility is often considered as less important, even

though, it is likely to be the most essential criterion for the acceptance of this proposal by a large

user community. It is our hope that this proposal will initiate discussions among the computer

science community so that this project will best re
ect its needs.

2 Notation

2.1 Operands

In this document, six main operands are considered:

� Indexes (i, j),

� Scalars (�, � and
),

� Multi-indexes (I, J),

� Multi-scalars (� and �),

� Vectors (x, y and z),

� Multi-vectors (X, Y and Z),

� Matrices (A, B, C and T).

All these objects can be regarded as arrays of numbers. Indexes or scalars are just one by one arrays.

Multi-indexes, multi-scalars and vectors are one dimensional arrays. Multi-vectors and matrices

are two-dimensional arrays of numbers. A multi-vector can be regarded as either a collection of

column vectors or a collection of row vectors. Vectors, multi-vectors, matrices may be dense or

sparse. Matrices can in addition be diagonal, symmetric, hermitian triangular, orthogonal, banded

or any meaningful combinations of those.

The above notation identify mathematical objects without assuming any particular kind of data

distribution. It is considered that the distribution of these di�erent objects is inherently part

of them and does not impact the operations described in this proposal, but only their eventual

implementation. Indexes, multi-indexes multi-scalars and multi-vectors mainly arise in the sparse

context.

3

DRAFT

2.2 Elementary Operations

This section aims at de�ning the elementary addition and multiplication operations that can be

performed between the di�erent operands de�ned above; that is, for example, the meaning of adding

a scalar to a multiscalar.

2.2.1 Addition

Adding two operands of the same type, say two scalars, produces an operand of the same type.

Similarly, one can de�ne say the addition of a scalar to a multi-scalar by �rst expanding the scalar

to a multi-scalar, and then adding two operands of the same type.

2.2.2 Multiplication

Multiplication is harder to de�ne, but it can be done in a similar fashion as presented for the

addition. For instance, consider the multiplication of a multi-scalar by a vector. In this case, the

vector should be �rst expanded to a row or column multi-vector. It is then easy to multiply a multi-

scalar by a multi-vector by using multiple instances of the usual scalar by a vector multiplication.

Other instances of multiplication can similarly be de�ned. It is important to note that when such

an expansion occur the result might be of a di�erent type. For example, multiplying a vector by a

multi-scalar produces a multi-vector. Consequently, speci�c care must be taken in the speci�cation

and creation of such output operands. In addition, one may as well declare some of the operations

involving di�erent types of operands as unde�ned. For example, it is not obvious what kind of

operand should be produced by the multiplication of a multi-scalar by a matrix, if not a \multi-

matrix".

2.2.3 Indexes

Indexes and multi-indexes are \passive" operands in the sense that they usually do not interact

on each other. Consequently, the addition or multiplication of indexes or multi-indexes are not

de�ned.

3 Parallel Basic Linear Algebra Operations

The parallel basic linear algebra operations have equivalents in single and double precision arith-

metic. In addition, the operands may be real or complex. However, it is also useful to consider

some mixed real and complex operations such as scaling a complex vector by a real scalar. Finally,

in the complex case one should also consider operating on a transposed operand as opposed to a

conjugate transposed operand. Similarly, it is also worth considering to operate on the conjugated

operand.

4

DRAFT

Operations involving multivectors have vector equivalents. Multivectors can be operated on with

scalars, multiscalars, multivectors or matrices. It is relatively straightforward to produce a list of

operations comparable to the BLAS ones or their extension. Operations involving matrices and

multi-vectors are of use to the dense and sparse contexts. Matrix-matrix operations are almost

uniquely of interest in a dense setting.

In a parallel setting, it is meaningful to consider performing multiple operations on a single data.

For example, one may be willing to generate and apply di�erent plane rotations on a unique matrix.

These operations are relatively di�cult to specify. However, they should be considered.

4 Data Distributions

A large number of data distribution schemes have been devised and studied in the context of

parallel linear algebra operations. It is probable that more schemes may be invented or de�ned in

the future. This is particularly true when considering the current machine architecture evolution.

Obviously, this changing state of a�air does not simplify the task of this committee. Consequently,

it is wise to con�ne the data distribution details to the operands themselves as opposed to the

operations. Still, the data distribution schemes that may be retained for some implementation

must be parametrized to allow for e�ciency on machines featuring highly di�erent communication

and computation rates. Whether a parallel basic linear algebra operation should require all its

operands to be distributed according to the same scheme is unclear.

5 Inter-Intra Context Operations

Each operand is to be distributed on a subset of processes. This subset of processes constitutes

a communication space where the communication operations are performed. The speci�cation

of an operation involving at least two operands must then specify if the operands belong to the

same communication space (intra-context operations) or if the operands may belong to distinct

communication spaces (inter-context operations).

Inter-context operations are more general, and thus more
exible. They also require a synchro-

nization phase between the communication contexts, so they are slightly less e�cient than intra

context operations. In both kinds of operations, to a di�erent extent though, data re-alignment is

an issue to be considered for obvious
exibility reasons.

Inter- and intra-context operations require each operand to be bound to at least one communication

context. It does not seem reasonable to support operands that could belong simultaneously to

multiple communication contexts.

5

DRAFT

6 Parallel Basic Linear Algebra Algorithms

A very large variety of algorithms are available to perform parallel basic linear algebra operations. A

good example of this is given by the matrix-matrix multiplication. Similarly as in the serial case, one

may consider to provide di�erent variants for e�ciency reasons. Memory usage is usually a limiting

factor, that may justify the selection of a particular algorithm. Indeed, memory greedy algorithms

a�ect their ease-of-use. For example, Strassen's method among others are worth considering for its

computational savings. This applies indirectly to other block-operations that may use internally

such a matrix-matrix multiply. This section can be generalized to other operations such as \fast

triangular solves (fan-in)".

7 Alignment Restriction - Redistribution

Alignment restrictions signi�cantly a�ect the ease-of-use of a parallel library. First, the documenta-

tion needs to re
ect these complicated conditions. Second, from a user point of view it considerably

limit the use of essential kernels. This aspect of things should be taken into account within the

speci�cations of each kernel. Obviously this has an impact on the interface of an eventual model

implementation. It is recommended to specify whenever possible operations that do not require

any alignment conditions to be satis�ed.

8 Replication { Persistent Objects

Replication is a shy attempt to support persistent objects. Replication means that an operation

should be able to take advantage of the duplication of certain operands in certain process subsets.

This information may be carried out by the operand itself. Another way of proceeding is to consider

a set of speci�c operations for replicated operations.

Replicated scalars, vectors or multi-vectors often occur. They are usually tight to another operand.

A good example is the pivot vector in the LU factorization. Depending on your data distribution

and/or algorithms, you may �nd useful to replicate this pivot vector in each process column.

Obviously, this is not mandatory, but saves communication operations during the solve phase. This

last example brings up another issue. Since this pivot vector is inherently tied to the factorized

matrix, it would be useful to be able to express such a relationship between two di�erent data

objects.

Replication seems an interesting feature to consider especially in an homogeneous setting. Indeed,

it allows for redundant computations as well as communication savings. In an heterogeneous

environment, maintaining the coherency of such replicated operands is a challenge that should be

addressed.

Persistent objects are ultimately more powerful than data replication. However, the software ma-

chinery to support them is also more complicated. Still, they should be considered as possible

operands.

6

DRAFT

9 Divide and Conquer { Task Scheduling

In dense or sparse applications, it is often the case that multiple problems arise in processes that

are already busy when other are idle. Tools for creating, scheduling and distributing tasks across

processes are necessary for a number of parallel algorithms. Such a functionality seems suitable to

be introduced at the PBLAS level for its own use as well as higher level software components.

10 I/O { Data Generation

From a user perspective, it is important to provide elementary tools to generate or retrieve from

disk the distributed data to be operated on. Portability is a critical issue for I/O operations. Such

tools are also responsible for distributing the data if necessary.

11 The Dense Case: The ScaLAPACK Experience

In its current form, the dense part of the ScaLAPACK library contains a set of Parallel Basic Linear

Algebra Subprograms for dense kernels. These subprograms provide a comparable functionality to

the sequential BLAS equivalent. Their interface has been designed to simplify and enable the re-use

of the sequential LAPACK software library.

These subprograms operate on operands distributed in a block-cyclic manner. Block cyclic dis-

tribution is bene�cial because of its scalability load balance and communication properties. The

block-partitioned computation of higher level components then proceeds in consecutive order just

like a conventional serial algorithm. This essential property of the block cyclic data layout explains

why the ScaLAPACK design has been able to reuse the numerical and software expertise of the

sequential LAPACK library.

A descriptor is associated with each operand. It is assumed that all operands are distributed on the

same process grid. In other words, only intra-context operations are supported. This descriptor

is a simple array of integers describing the block-cyclic layout of the distributed matrices. Each

operand, i.e., a subvector or a submatrix, is globally speci�ed by its global size and and starting

indexes as well as its descriptor. This operand speci�cation is very similar to the array notation and

allow for extensive code reusability. This is illustrated by the following conceptual example. The

call to the sequential routine DGEXXX is easily translated into its parallel equivalent. DESCA is

the descriptor associated to the \distributed matrix" A, one for good at the beginning of the user's

program.

CALL DGEXXX(M, N, A(IA, JA), LDA)

#

CALL PDGEXXX(M, N, A, IA, JA, DESCA)

The �rst entry of the descriptor identi�es its type. This feature allows one to provide another

set of PBLAS routines for a di�erent data distribution without modifying higher level software

7

DRAFT

components. This interface uses a very simple data structure, namely an integer array. This

simplicity allow this software to be easily used by programs written in other programming languages

such as C++ or HPF.

The algorithms currently implemented in the current version of the matrix-matrix operations are

shaped-adaptive procedures. This means that depending on the operands' shapes, di�erent algo-

rithms are selected depending on their respective e�ciency. This set of dense parallel basic linear

algebra subprograms has been shown to deliver high performance as well as an e�cient tool for

the scalable implementation of classic matrix factorizations and reductions. In addition, these

same kernels have been shown to be useful for the implementation of the out-of-core linear solvers

currently available in the ScaLAPACK software library.

12 Rationale

This present document aims at identifying issues that impact the speci�cation of parallel dense

and sparse basic linear algebra subprograms. It is in its current form largely incomplete. The large

number of distributed data objects that are of interest in a parallel setting magnify the speci�cation

task of this committee. By limiting the number of possible operands, and distribution schemes, it

has been shown feasible by many research groups to provide su�cient functionality for a restricted

application domain. This is particularly true for the dense case or even some sparse applications,

even if the software volume becomes rapidly large and thus non trivial to maintain. This practical

consideration should in
uence the work of this committee.

In its current form, this document aims at clearly identifying the main issues that should be

considered towards the formal speci�cation of a (maybe restricted) set of parallel basic linear

algebra subprograms.

8

