
PARKBENCH:

Methodology,
Relations and Results

Jack J. Dongarra

University of Tennessee, Knoxville

Tony Hey

University of Southampton

Erich Strohmaier

University of Tennessee, Knoxville

e-mail: parkbench-comments@cs.utk.edu

HPCN Europe 1996

Brussels

16.-18. April 1996

ParkBench

(PARallel Kernels and BENCHmarks)

� Founded at a special session of SC'92,

convened by Dongarra & Hey

� Membership open to all - voting rights

acquired by attendance at meetings

� Six monthly meetings with interim email

discussion

- Mail re
ector - parkbench-comm@cs.utk.edu

� Supported by most benchmarking groups

� Supported by computer vendors - Cray

Research, Intel, IBM, SGI, Meiko, Sun,...

ParkBench Objectives

� To establish a comprehensive set of paral-

lel benchmarks that is generally accepted

by both users and vendors of parallel sys-

tems.

� To provide a focus for parallel benchmark

activities and avoid unnecessary duplica-

tion of e�ort and proliferation of bench-

marks.

� To set standards for benchmarking method-

ology and result-reporting together with a

control database/repository for both bench-

marks and the results.

� To make the benchmarks and their results

freely available in the public domain.

ParkBench Motivation

� Lack of distributed memory message pass-

ing benchmarks that were generally ac-

ceptable to both users and system vendors

ParkBench Outputs

� First release of Low-level and Kernel bench-

mark suite assembled Compromises codes

from Genesis, LAPACK & NAS Based on

Fortran 77 + PVM for message-passing.

� Email discussion group in use since 1993

- parkbench-comm@cs.utk.edu

� Performance Database Server in use on

Xnetlib and the WWW via Mosaic

provides access to benchmarks results and

literature.

� Proposed applications areas and procedure

for submission of further compact applica-

tions identi�ed

ParkBench Outputs - cont'd

� ParkBench Report: Describes philosophy,

methodology, current benchmark suite, pro-

cedure for submission of compact applica-

tions.

{ R.W. Hockney and M.W. Berry, \Pub-

lic International Benchmarks for Par-

allel Computers", PARKBENCH Com-

mittee report number 1, Scienti�c Pro-

gramming 3(2), 101-146, 1994.

� Second release of ParkBench including Low-

level, Kernel and Compact Applications

benchmark suite assembled. All Codes

available as Fortran 77 with PVM and MPI

for message passing.

Structure of Version 2

� Low-Level section for measuring basic

system parameters

� Kernel section for solver routines and

building blocks of programs

� Compact Application section to test

performance of real world application pro-

grams

� All Benchmarks are available in Fortran77

with PVM and MPI

Directory Structure of Version 2

Comp_Apps/

Kernels/

Low_Level/

Makefile

NPB2.1/

Results/

Submission/

bin/

conf/

include/

lib/

Info.PVM.dependencies

README

make.local.def

pvmhostfile

runrules.draft6

Low Level Directory

Makefile

ReadMe

comms1/

comms2/

comms3/

poly1/

poly2/

poly3/

rinf1/

synch1/

tick1/

tick2/

comms1 Directory

Makefile

ReadMe

comms1.dat

src_mpi/

src_pvm/

Kernel Directory

FT/

LU_solver/

MATMUL/

MG/

Makefile

QR/

ReadMe

TRANS/

TRD/

Compact Applications Directory

BT/

LU/

Makefile

PSTSWM/

SP/

lib Directory

BLACS/

BLACS.MPI/

BLAS/

Low_Level/

MPI2PVM/

Makefile

PBLAS/

SCALAPACK/

TOOLS/

Low Level lib Directory

ADDLEN.f CHECK.f

DCOPY.f DUMMY.f

ESTOV.f GETLEN.f

GETOPT.f HEADER.f

INLIST.f INSERT.f

LSTSQ.f SATIME.f

TOVER.f

launch.f

time.c time_mpi.f

Makefile

README

conf Directory

Makefile

make.def.ALPHA

make.def.CM5

make.def.CSPP.x

make.def.Generic

make.def.HPPA

make.def.PGON.x

make.def.RS6K

make.def.SGI5

make.def.SP2MPI

make.def.SUN4

makeconf*

pvmgetarch*

Major Make�le Targets

make conf

make all

make all.pvm

make all.mpi

make Low_Level[,seq,mpi,pvm]

make Kernels[,mpi,pvm]

make Comp_Apps[,mpi,pvm]

make NPB[,mpi,pvm]

make clean

make clobber

De�nitions in make.local.def

PVM_ROOT = /src/icl/pvm/pvm3

MPICH_ROOT = /src/icl/MPI/mpich

or

MPI_INCDIR = $(MPI_ROOT)/include

MPI_LIB = -L$(MPI_ROOT)/lib/$(MPI_ARCH)/$(MPIdev) -lmpi

LIBS_TO_MAKE = BLAS BLACS.pvm PBLAS SCALAPACK TOOLS

BLAS = $(ParkBench_libdir)/blas_subset.a

SCALAPACK = $(ParkBench_libdir)/scalapack_subset.a

PBLAS = $(ParkBench_libdir)/pblas_subset.a

TOOLS = $(ParkBench_libdir)/tools_subset.a

PVM_BLACSdir = $(ParkBench_home)/lib/BLACS/LIB

MPI_BLACSdir = $(ParkBench_home)/lib/BLACS.MPI/LIB

TOTMEM = 24000000

Low Level Benchmarks

Benchmark Measures Parameter Imple

SINGLE PROCESSOR:

TICK1 Timer resolution clock tick

TICK2 Timer value wall-clock

RINF1 Basic arith. ops. (r1,n1

2

)

POLY1 Cache bottleneck (r̂1,f1
2

)

POLY2 Memory bottleneck (r̂1,f1
2

)

MULTIPROCESSOR:

COMMS1 Basic message perf. (r1,n1

2

) MPI

COMMS2 Message exch. perf. (r1,n1

2

) MPI

COMMS3 Saturation bandwidth (r1,n1

2

) MPI

POLY3 Comms. bottleneck (r̂1,f1
2

) MPI

SYNCH1 Barrier synch. barr/s MPI

Kernel Benchmarks

Benchmark Algorithm Implemen

LINALG:

MATMUL Matrix Multiply BLAC

TRANS Transpose BLAC

LU solver Dense LU factorization BLAC

QR QR decomposition BLAC

TRD Matrix tridiagonalization BLAC

NPB:

EP Embarrassingly parallel (nya) MPI MP

IS Integer sort (nya) MPI MP

CG Conjugate gradient (nya) MPI MP

MG Multigrid solver MPI MP

FT 3D FFT MPI MP

Compact Applications

Benchmarks

Benchmark Algorithm Implementati

NPB CFD Codes:

LU SSOR solver MPI MPI2PV

SP scalar pentadiag. system MPI MPI2PV

BT block-tridiagonal MPI MPI2PV

PSTSWM Shallow water model PICL

Low-Level Benchmarks

Low-Level benchmarks measure basic machine

parameters for computation as well as

communication.

Single Processor Benchmarks

TICK1 Measurement of clock resolution

TICK2 Measurement of clock correctness

RINF1 Measurement of vectorization

parameters r1 and n1=2
POLY1 In-cache memory bottleneck

POLY2 Out-of-cache memory bottleneck

Two Processor Benchmarks

POLY3 Communications-bottleneck

COMMS1 Unidirectional single message transfer

(`pingpong' benchmark)

COMMS2 Bidirectional exchange of two

messages (`pingping' benchmark)

Multi Processor Benchmarks

COMMS3 Saturation Bandwidth

SYNCH1 Barrier synchronization cost

Kernel Benchmarks

Linear Algebra Kernels (ScaLAPACK/BLACS)

MATMUL Dense matrix multiply

TRANS Transpose

LU solver Dense LU factorization

with partial pivoting

QR QR Decomposition

TRD Matrix tridiagonalization

NPB Kernels - Version 2.1

FT 3-D FFT

MG Multigrid

EP Embarrassingly Parallel (nya)

IS Large Integer Sort (nya)

CG Conjugate Gradient (nya)

Compact Applications

� NPB Version 2.1 - CFD codes

{ BT - block-tridiagonal

{ SP - scalar pentadiag. system

{ LU - CFD code - SSOR solver

{ Native MPI codes

{ PVM version by usage of MPI2PVM

wrapper Library

� PSTSWM

{ Parallel Spectral Transform Shallow Wa-

ter Model from ORNL

{ PVM and MPI versions available

New in Version 2

� Full Integration of Kernel and Compact

Application Benchmarks

� All Benchmarks are Fortran 77 based and

available with MPI and PVM

� Integration of all necessary Libraries

� New 'orthogonal' Make�le Structure

� New Set of Run Rules is available

� More e�cient NPB Benchmarks included

� Maximal message sizes extended to 10MB

Run Rules - Baseline Runs

� Code modi�cations are not allowed

� Run the codes \as is",

must get the correct solution.

� Compiler or loader
ags which are sup-

ported and documented by the supplier

are allowed.

� Linking to optimized versions of the

following libraries is allowed:

BLACS, BLAS, LAPACK, MPI, PVM,

ScaLaPack.

Run Rules - Optimized Runs

� Compiler directives and Code modi�ca-

tions are allowed

� Limitations of Optimizations

{ Optimized assembly modules should be

disclosed

{ The calculation should be carried out

in full precision.

{ Exchanged mathematical algorithm must

be as robust as the baseline algorithm.

{ Using the knowledge of the solution is

not permitted.

{ Code to circumvent the actual compu-

tation is not permitted.

Run Rules

� Baseline Runs

� Optimized Runs

� We reserve the right to verify the results

of the benchmarks.

� Results should be sent to

parkbench-comments@cs.utk.edu

Low Level: rinf1 Benchmark

� Measures Basic Arithmetic Operations

� It uses 17 common Fortran DO-loops

� Analyses their time of execution in terms

of the two parameters (r1,n1

2

).

� Timing equations used:

t = q �

(n+ n1

2

)

r1
(1)

Parameters used:

t time of execution

q
oating-point operations per iteration

n loop (or vector) length n

r1 asymptotic performance rate in M
op/s

n1

2

the half-performance length

Low Level: rinf1 Benchmark

Used DO-loops:

1 Contiguous Dyads: A(I)=B(I)*C(I)

2 DYADS, Stride=8: A(I)=B(I)*C(I)

3 Contiguous Triads: A(I)=B(I)*C(I)+D(I)

4 Triads, Stride=8: A(I)=B(I)*C(I)+D(I)

5 Random Scatter/Gather:

6 Contiguous 4-OP: A(I)=B(I)*C(I)+D(I)*E(I)+F(I)

7 Inner Product: S=S+B(I)*C(I)

8 1. Order Recurrence: A(I)=B(I)*A(I-1)+D(I)

9 Charge Assignment: A(J(I))=A(J(I))+S

10 Transposition: B(I,J)=A(J,I)

11 Matrix Mult by Inner Product

12 Matrix Mult by Middle Product

13 Matrix Mult by Outer Product

14 Dyads, Stride=128: A(I)=B(I)*C(I)

15 Dyads, Stride=1024: A(I)=B(I)*C(I)

16 Contiguous DAXPY: A(I)=S*B(I)+C(I)

17 Indirect DAXPY: A(J(I))=S*B(K(I))+C(L(I))

Low Level: rinf1 Benchmark

Loop 3: Contiguous Triads

0

10

20

30

40

50

60

70

1 10 100 1000 10000 100000

T
ra

ns
fe

r
R

at
e

/ (
M

B
yt

e/
s)

Message Length / Byte

RINF1 (KERNEL3)

EXEMPLAR-1200 29.NOV.95
EXEMPLAR-1200 29.NOV.95 OPT

RS6000-590 07.SEP.94
SP2 JUN.95

Indigo2XL SEP.94
SPARCstation20 13.SEP.94

Low Level: rinf1 Benchmark

Loop 4: TRIADS, STRIDE=8

0

10

20

30

40

50

60

70

1 10 100 1000 10000

T
ra

ns
fe

r
R

at
e

/ (
M

B
yt

e/
s)

Message Length / Byte

RINF1 (KERNEL4)

EXEMPLAR-1200 29.NOV.95
EXEMPLAR-1200 29.NOV.95 OPT

RS6000-590 07.SEP.94
SP2 JUN.95

Indigo2XL SEP.94
SPARCstation20 13.SEP.94

Low Level: comms2 Benchmark

� Two Processor Communication

� Uses simultaneously messages exchange

� Analyses their time of execution in terms

of the two parameters (r1,n1

2

).

� Timing equations used:

t =

(n+ n1

2

)

r1
(2)

Parameters used:

t time of execution

n message length n

r1 asymptotic bandwidth in MB/s

n1

2

the half-performance message length

Low Level: comms2 Benchmark

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

0 5000 10000 15000 20000 25000 30000 35000 40000

T
ra

ns
fe

r
R

at
e

/ (
B

yt
e/

s)

Message Length / Byte

COMMS2

EXEMPLAR-1200 29.NOV.95 OPT
EXEMPLAR-1200 29.NOV.95

SP2 JUN.95

Kernel: IS - Class B

10

100

1000

10000

1 10 100 1000 10000

P
er

fo
rm

an
ce

 /
(M

flo
p/

s)

Number of processors

LARGE INTEGER SORT

Exemplar.SPP1000 NAS 1 Mar.95 CLASS B
T3D NAS 1 Feb.95 CLASS B
T916 NAS 1 Jul.95 CLASS B

VPP500 NAS 1 Apr.94 CLASS B
RS6000.SP.Wide-node1-67MHz NAS 1 Mar.95 CLASS B

Paragon-OSF1.2 NAS 1 Mar.94 CLASS B
CM-500 NAS 1 Sep.95 CLASS B

Kernel: CG - Class B

10

100

1000

10000

1 10 100 1000 10000

P
er

fo
rm

an
ce

 /
(M

flo
p/

s)

Number of processors

CONJUGATE GRADIENT

Exemplar.SPP1000 NAS 1 Mar.95 CLASS B
T3D NAS 1 Feb.95 CLASS B
T916 NAS 1 Jul.95 CLASS B

VPP500 NAS 1 Aug.94 CLASS B
RS6000.SP.Wide-node1-67MHz NAS 1 Mar.94 CLASS B

Paragon-OSF1.2 NAS 1 Mar.94 CLASS B
CM-500 NAS 1 Sep.95 CLASS B

Compact Applications: PSTSWM

- small

1

10

100

1000

10000

1 10 100 1000

P
er

fo
rm

an
ce

 /
(M

flo
p/

s)

Number of processors

PSTSWM

T3D NOV.95 OPT 0 T42L16
SP2 NOV.95 OPT 0 T42L16
SP2 NOV.95 OPT 1 T42L16

Paragon-XPS150 NOV.95 OPT 0 T42L16
Paragon-XPS150 NOV.95 OPT 1 T42L16

Compact Applications: PSTSWM

- large

100

1000

10000

10 100 1000 10000

P
er

fo
rm

an
ce

 /
(M

flo
p/

s)

Number of processors

PSTSWM

T3D NOV.95 OPT 0 T170L32
SP2 NOV.95 OPT 0 T170L32

Paragon-XPS150 NOV.95 OPT 0 T170L32

ParkBench Availability

� ParkBench Home page

{ http://www.netlib.org/parkbench/html/

� PDS

{ http://performance.netlib.org/performance/html/

PDStop.html

� GBIS

{ http://hpcc.soton.ac.uk/RandD/gbis/ papiani-

new-gbis-top.html

http://www.netlib.org/parkbench/gbis/html/gbis.html

� National HPCC Software Exchange (NHSE)

{ http://www.netlib.org/nhse/home.html

Conclusions

� The ParkBench benchmark suite comprises

software that ranges from low-level bench-

marks measuring basic machine parame-

ters, through important application

kernels, to compact research applications.

� With version 2 of the ParkBench suite

a complete set of codes implemented in

PVM and MPI is available, allowing for the

�rst time a detailed comparison of these

di�erent message-passing standards with

real applications.

� The next ParkBench workshop will take

place in Knoxville at the 25. April.

For Informations see:

http://www.netlib.org/parkbench

