
Integrated PVM Framework Supports

Heterogeneous Network Computing

Jack J. Dongarra

Oak Ridge National Laboratory and University of Tennessee

G. A. Geist

Oak Ridge National Laboratory

Robert Manchek

University of Tennessee

V. S. Sunderam

Emory University

January 3, 1993

Abstract

The Parallel Virtual Machine (PVM), an integrated framework for

heterogeneous network computing, lets scientists exploit collections of

networked machines when carrying out complex scienti�c computa-

tions. Under PVM, a user-de�ned grouping of serial, parallel, and

vector computers appears as one large distributed-memory machine.

Con�guring a personal parallel virtual computer involves simply listing

the names of the machines in a �le that is read when PVM is started.

Applications can be written in Fortran 77 or C and parallelized by use

of message-passing constructs common to most distributed-memory

computers. With the use of messages sent over the network, multiple

tasks of an application can cooperate to solve a problem in parallel.

This article discusses components of PVM, including the programs

and library of interface routines. It summarizes the characteristics of

appropriate applications and discusses the current status and availabil-

ity of PVM. In addition, the article introduces a recent extension to

PVM known as the Heterogeneous Network Computing Environment

(HeNCE).

1

1 Introduction

Two developments promise to revolutionize scienti�c problem solving. The

�rst is the development of massively parallel computers. Massively par-

allel systems o�er the enormous computational power needed for solving

Grand Challenge problems. Unfortunately, software development has not

kept pace with hardware advances. In order to fully exploit the power of

these massively parallel machines, new programming paradigms, languages,

scheduling and partitioning techniques, and algorithms are needed.

The second major development a�ecting scienti�c problem solving is

distributed computing. Many scientists are discovering that their compu-

tational requirements are best served not by a single, monolithic machine

but by a variety of distributed computing resources, linked by high-speed

networks.

Heterogeneous network computing o�ers several advantages: By using

existing hardware the cost of this computing can be very low. Performance

can be optimized by assigning each individual task to the most appropriate

architecture. Network computing also o�ers the potential for partitioning a

computing task along lines of service functions. Typically, networked com-

puting environments possess a variety of capabilities; the ability to execute

subtasks of a computation on the processor most suited to a particular

function both enhances performance and improves utilization. Another ad-

vantage in network-based concurrent computing is the ready availability of

development and debugging tools, and the potential fault tolerance of the

network(s) and the processing elements. Typically, systems that operate on

loosely coupled networks permit the direct use of editors, compilers, and

debuggers that are available on individual machines. These individual ma-

chines are quite stable, and substantial expertise in their use is readily avail-

able. These factors translate into reduced development and debugging time

and e�ort for the user, and reduced contention for resources and possibly

more e�ective implementations of the application. Yet another attractive

feature of loosely coupled computing environments is the potential for user-

level or program-level fault tolerance that can be implemented with little

e�ort either in the application or in the underlying operating system. Most

multiprocessors do not support such a facility; hardware or software failures

in one of the processing elements often lead to a complete crash.

Despite the advantages of heterogeneous network computing, however,

many issues remain to be addressed. Of especial importance are issues re-

lating to the user interface, e�ciency, compatibility, and administration. In

some cases, individual researchers have attempted to address these issues

by developing ad hoc approaches to the implementation of concurrent ap-

plications. Recognizing the growing need for a more systematic approach,

several research groups have recently attempted to develop programming

paradigms, languages, scheduling and partitioning techniques, and algo-

rithms.

Our approach is more pragmatic. We discuss the development of an inte-

grated framework for heterogeneous network computing, in which a collection

of interrelated components provides a coherent high-performance computing

environment. In particular, we analyze several of the design features of the

PVM (Parallel Virtual Machine) system. Figure 1 gives an overview of the

system.

The paper is organized as follows. In Section 2, we give a brief look at the

general �eld of heterogeneous network computing and discuss some of the

research issues remaining before network-based heterogeneous computing

is truly e�ective. In Section 3, we focuses on the PVM system, which is

designed to help scientists write programs for such heterogeneous systems.

In Section 4, we discuss a recent extension of PVM that further aids in the

implementation of concurrent applications.

2 Connecting Heterogeneous Computers

In the past, researchers have conducted experiments linking workstations

that provide on the order of 1 to 10 MIPS. Such experiments have included

remote execution, computer farms, and migration of computations.

More recently, experiments have focused on linking higher-performance

workstations (those providing on the order of 10 to 100 MFLOPS) together

with multiprocessors and conventional supercomputers.

To fully exploit these multiple computer con�gurations, researchers have

developed various software packages that enable scientists to write truly het-

erogeneous programs. Examples of such software packages include Express,

P4, Linda, and PVM. Each package is layered over the native operating sys-

tems, exploits distributed concurrent processing, and is exible and general-

purpose; all exhibit comparable performance. Their di�erences lie in their

programming model, their implementation schemes, and their e�ciency.

Recent conferences as well as informal discussion media seem to indi-

cate that most attention is focused on the four systems mentioned above{

Express, P4, Linda, and PVM{in terms of use by the high performance sci-

enti�c computing community. In the remainder of this section, we present

brief outlines of each of the �rst three, with a detailed description of PVM

following in Section 3. We wish to emphasize however, (1) that these sys-

tems are by no means the only software packages in existence; and (2) the

descriptions that follow are not detailed and formal critiques, but rather

brief synopses abstracted from our understanding of the systems and the

developers' own articles or communications.

2.1 The Linda Model and System

Linda [9] is a concurrent programming model that has evolved from a Yale

University research project. The primary concept in Linda is that of a

\tuple-space", an abstraction via which cooperating processes communicate.

This central theme of Linda has been proposed as an alternative paradigm to

the two traditional methods of parallel processing, viz. that based on shared

memory, and on message passing. The tuple-space concept is essentially an

abstraction of distributed shared memory, with one important di�erence

(tuple-spaces are associative), and several minor distinctions (destructive

and non-destructive reads, and di�erent coherency semantics are possible).

Applications use the Linda model by embedding explicitly, within cooperat-

ing sequential programs, constructs that manipulate (insert/retrieve tuples)

the tuple space.

From the application point of view Linda [4] is a set of programming

language extensions for facilitating parallel programming. The Linda model

is a scheme built upon an associative memory referred to as tuple-space It

provides a shared memory abstraction for process communication without

requiring the underlying hardware to physically share memory. The model

is illustrated in Figure 2 [9].

Tuples are collections of �elds logically \welded" to form persistent stor-

age items. They are the basic tuple-space storage units. Parallel processes

exchange data by generating, reading, and consuming them. To update

a tuple, the tuple is removed from tuple-space, modi�ed, and returned to

tuple-space. Restricting tuple-space modi�cation in this manner creates an

implicit locking mechanism ensuring proper synchronization of multiple ac-

cesses.

The following are the four basic operations or primitives which are added

to a language to produce a Linda dialect. Figure 2 depicts the operational

environment when using Linda.

(1) rd(t) performs a non-destructive read from tuple-space. If the desired

tuple, \t", is not found, the invoking process is suspended until an

appropriate tuple is created by another process.

(2) in(t) behaves in a fashion similar to rd(), except the read is destructive

and the tuple is consumed.

(3) out(t) writes a tuple \t" to tuple-space.

(4) eval(expression) writes a tuple to tuple-space after arguments in the

expression are evaluated by creating new processes which perform their

tasks independently.

Tuples are selected by the rd() or in() primitives on the basis of their �eld

values. There are no tuple addresses in an associative memory. Consider

the following tuple:

out(\a string", 15.01, 17, \another string")

A variety of access routes to this tuple are possible, e.g., any one of the

following operations su�ces:

rd(\a string", ?fval, ?ival, ?strval)

rd(?strval, 15.01, ?ival, \another string")

rd(?strval-1, ?fval, 17, ?strval-2)

The \?" operator designates a value returned from a matching tuple.

Fields marked by the operator do not participate in the (associative memory)

matching process. Any of the three example rd() operations results in a non-

destructive reading of the original tuple. If the operation were an in(), the

tuple would be removed from tuple-space.

To illustrate the eval() primitive, consider the following:

eval("roots",sqrt(4),sqrt(16))

Using Linda terminology, this creates a live tuple. The square-root opera-

tions are performed independent of the originating process, with the (two)

numeric results combined to form a three element tuple saved in tuple-

space. The eval() primitive is a mechanism capable of creating �ne grain

parallelism.

The \Linda System" usually refers to a speci�c (sometimes portable) im-

plementation of software that supports the Linda programming model. Sys-

tem software is provided that establishes and maintains tuple spaces, that is

used in conjunction with libraries that appropriately interpret and execute

Linda primitives. Depending on the environment (shared memory multi-

processors, message passing parallel computers, networks of workstations

etc), the tuple space mechanism is implemented using di�erent techniques,

and with varying degrees of e�ciency. Recently, a new system technique has

been proposed, at least nominally related to the Linda project. This scheme,

termed \Pirhana" proposes a proactive approach to concurrent computing {

the idea being that computational resources (viewed as active agents) seize

computational tasks from a well known location based on availability and

suitability. Again, this scheme may be implemented on multiple platforms,

and manifested as a \Pirhana system" or \Linda{Pirhana system".

2.2 P4 and Parmacs

P4 is a library of macros and subroutines developed at Argonne National

Laboratory for programming a variety of parallel machines. The P4 sys-

tem supports both the shared-memory model (based on monitors) and the

distributed-memory model (using message-passing). For the shared-memory

model of parallel computation, P4 provides a set of primitives from which

monitors can be constructed, as well as a set of useful monitors. For the

distributed-memory model, P4 provides typed send and receive operations,

and creation of processes according to a text �le describing group and pro-

cess structure. P4 is intended to be portable, simple to install and use, and

e�cient. It can be used to program networks of workstations, advanced par-

allel supercomputers like the Intel Touchstone Delta and the Alliant Cam-

pus HiPPI-based system, and single shared-memory multiprocessors. It has

currently been installed on most uniprocessor workstations, shared memory

multiprocessors, and several high-performance parallel machines.

Process management in the P4 system is based on a con�guration �le

that speci�es the host pool, the object �le to be executed on each machine,

the number of processes to be started on each host (intended primarily for

multiprocessor systems) and other auxiliary information. An example of a

con�guration �le is

start one slave on each of sun2 and sun3

local 0

sun2 1 /home/mylogin/p4pgms/sr_test

sun3 1 /home/mylogin/p4pgms/sr_test

Two issues are noteworthy in regard to the process management mech-

anism in P4. First, there is the notion a \master" process and \slave"

processes, and multilevel hierarchies may be formed to implement what is

termed a cluster model of computation. Second, the primary mode of pro-

cess creation is static, via the con�guration �le; dynamic process creation is

possible only by a statically created process that must invoke a special P4

function that spawns a new process on the local machine. However, despite

these restrictions, a variety of application paradigms may be implemented

in the P4 system in a fairly straightforward manner.

Message Passing in the P4 system is achieved through the use of tra-

ditional send and recv primitives, parameterized almost exactly as other

message passing systems. Several variants are provided for semantics such as

heterogeneous exchange, and blocking or nonblocking transfer. A signi�cant

proportion of the burden of bu�er allocation and management however, is

left to the user. Apart from basic message passing, P4 also o�ers a variety

of global operations, including broadcast, global maxima and minima, and

barrier synchronization.

Shared Memory support via monitors is a facility that distinguishes P4

from other systems. However, this feature is not distributed shared memory;

but rather, a portable mechanism for shared address space programming in

true shared memory multiprocessors. The abstraction provided by P4 for

managing data in shared memory is monitors. The speci�c approach taken

by P4 is described in [3]. P4 provides several useful monitors (p4 barrier t,

p4 getsub monitor t, p4 askfor monitor t) as well as a general monitor

type to help the user in constructing his own monitors (p4 monitor t).

P4 also supports a variety of auxiliary and support functions, for timing

purposes and for debugging. The latter set of functions are essentially print-

ing facilities that identify the source of a debugging message, and \levels" of

debugging are provided so that the user may control the volume of debugging

information that is printed. Finally, the P4 system also contains a package

(ALOG) for creating logs of time-stamped events, that is of general utility,

outside of P4. The timestamps are obtained from various microsecond-level

resolution timers on various machines. These log �les are primarily intended

for use with a separate tool termed Upshot [5] that visually depicts events

and their ordering from a P4 application run.

Parmacs is a project that is closely related to the P4 e�ort. Essentially,

Parmacs is a set of macro extensions to the P4 system developed at GMD

[6]. It originated in an e�ort to provide Fortran interfaces to the P4 sys-

tem, but is now a signi�cantly enhanced package that provides a variety

of high-level abstractions, mostly dealing with global operations. Parmacs

provides macros for logically con�guring a set of P4 processes; for example,

the macro torus produces a suitable con�guration �le for use by P4 that

results in a logical process con�guration corresponding to a 3-d torus. Other

logical topologies, including general graphs may also be implemented, and

Parmacs provides macros used in conjunction with send and recv to achieve

topology-speci�c communications within executing programs.

2.3 Express

In contrast to the other parallel processing systems described in this sec-

tion, Express toolkit is a collection of tools that individually address various

aspects of concurrent computation. The toolkit is developed and marketed

commercially by ParaSoft Corporation, a company that was started by some

members of the Caltech concurrent computation project. A second distinc-

tion is support for PC's that Express provides, in addition to the usual high

performance computing platforms and workstations.

The philosophy behind computing with Express is based on beginning

with a sequential version of an application and following a recommended

development life cycle culminating in a parallel version that is tuned for

optimality. Typical development cycles begin with the use of VTOOL, a

graphical program that allows the progress of sequential algorithms to be

displayed in a dynamic manner. Updates and references to individual data

structures can be displayed to explicitly demonstrate algorithm structure

and provide the detailed knowledge necessary for parallelization. Related to

the above is FTOOL, which provides in-depth analysis of a program includ-

ing variable use analysis, ow structure and feedback regarding potential

parallelization. FTOOL operates on both sequential and parallel versions

of an application. A third tool called ASPAR is then used; this is an auto-

mated parallelizer that converts sequential C and FORTRAN programs for

parallel or distributed execution using the Express programming models.

The core of the Express system is a set of libraries for communication,

IO, and parallel graphics. The communication primitives are akin to those

found in other systems, and include a variety of global operations and data

distribution primitives. Extended IO routines enable parallel input and

output, and a similar set of routines are provided for graphical displays

from multiple concurrent processes. Express also contains the NDB tool, a

parallel debugger that used commands which are based on the popular \dbx"

interface. These debugging commands can be issued to single processors or

groups of nodes simultaneously.

Express �nally contains a set of `back-end" tools intended to assist per-

formance monitoring and tuning. CTOOL analyzes high level overhead

issues such as the relative amount of time spent computing, performing

IO and in interprocessor communication. ETOOL shows the relationships

between various computing elements and may be used to understand over-

heads, and cause and e�ect relationships between actions in di�erent pro-

cessors. XTOOL pro�les CPU usage on a per-processor basis, and may be

used at di�erent levels of granularity.

2.4 Ongoing Trends

In the next section of this paper, we focus on the basic features of PVM and

discuss our experiences with that system. PVM as well as the systems de-

scribed above have evolved over the past several years, but none of them can

be considered fully mature. The �eld of network based concurrent comput-

ing is relatively young, and research on various aspects is ongoing. Although

basic infrastructures have been developed, many of the re�nements that are

necessary are still evolving. Some of the ongoing research projects related

to heterogeneous network-based computing are briey outlined here.

Standalone systems delivering several tens of millions of operations per

second are commonplace, and continuing increases in power are predicted.

For network computing systems, this presents many challenges. One aspect

concerns scaling to hundreds and perhaps thousands of independent ma-

chines; it is conjectured that functionality and performance equivalent to

massively parallel machines can be supported on cluster environments. A

project at Fermilab has demonstrated the feasibility of scaling to hundreds

of processors for some classes of problems. Research in protocols to support

scaling and other system issues are currently under investigation. Further,

under the right circumstances, the network based approach can be e�ective

in coupling several similar multiprocessors, resulting in a con�guration that

might be economically and technically di�cult to achieve with hardware.

Applications with large execution times will bene�t greatly from mech-

anisms that make them resilient to failures. Currently few platforms (espe-

cially among multiprocessors) support application level fault tolerance. In a

network based computing environment application resilience to failures can

be supported without specialized enhancements to hardware or operating

systems. Research is in progress to investigate and develop strategies for

enabling applications to run to completion, in the presence of hardware,

system software, or network faults. Approaches based on checkpointing,

shadow execution, and process migration are being investigated.

The performance and e�ectiveness of network based concurrent comput-

ing environments depends to a large extent on the e�ciency of the support

software, and on minimization of overheads. Experiences with the PVM

system have identi�ed several key factors in the system that are being fur-

ther analyzed and improved to increase overall e�ciency. E�cient protocols

to support high level concurrency primitives is a subgoal of work in this

area. Particular attention is being given to exploiting the full potential of

imminent �ber optic connections, using an experimental �ber network that

is available. In preliminary experiments with a �ber optic network, several

important issues have been identi�ed. For example, the operating system

interfaces to �ber networks, its reliability characteristics, and factors such

as maximum packet size are signi�cantly di�erent from those for Ethernet.

When the concurrent computing environment is executed on a combination

of both types of networks, the system algorithms have to be modi�ed to cater

to these di�erences, in an optimal manner and with minimized overheads.

Another issue to be addressed concerns data conversions that are neces-

sary in networked heterogeneous systems. Heuristics to perform conversions

only when necessary and minimizing overheads have been developed and

their e�ectiveness is being evaluated. Recent experiences with a Cray-2

have also identi�ed the need to handle di�erences in wordsize and precision,

when operating in a heterogeneous environment; general mechanisms to deal

with arbitrary precision arithmetic (when desired by applications) are also

being developed. A third aspect concerns the e�cient implementation of

inherently expensive parallel computing operations such as barrier synchro-

nization. Particularly in an irregular environment (where interconnections

within hardware multiprocessors are much faster than network channels),

such operations can cause bottlenecks and severe load imbalances. Other

distributed primitives for which algorithm development and implementation

strategies are being investigated include polling, distributed fetch-and-add,

global operations, automatic data decomposition and distribution, and mu-

tual exclusion.

3 PVM

PVM [2] was produced by the Heterogeneous Network Project|a collabora-

tive e�ort by researchers at Oak Ridge National Laboratory, the University

of Tennessee, and Emory University speci�cally to facilitate heterogeneous

parallel computing. PVM was one of the �rst software systems to enable

machines with widely di�erent architectures and oating-point representa-

tions to work together on a single computational task. It can be used on its

own or as a foundation upon which other heterogeneous network software

can be built.

The PVM package is small (about than 1 Mbytes of C source code) and

easy to install. It needs to be installed only once on each machine to be

accessible to all users. Moreover, the installation does not require special

privileges on any of the machines and thus can be done by any user.

The PVM user-interface requires that all message data be explicitly

typed. PVMperforms machine-independent data conversions when required,

thus allowing machines with di�erent integer and oating-point representa-

tions to pass data.

3.1 Various Levels of Heterogeneity

PVM supports heterogeneity at the application, machine, and network level.

At the application level, subtasks can exploit the architecture best suited

to the their solution. At the machine level, computers with di�erent data

formats are supported as well as di�erent serial, vector, and parallel ar-

chitectures. At the network level, di�erent network types can make up a

Parallel Virtual Machine, for example, Ethernet, FDDI, token ring, etc.

Under PVM, a user-de�ned collection of serial, parallel, and vector com-

puters appears as one large distributed-memory computer; we use the term

virtual machine to designate this logical distributed-memory computer. The

hardware that composes the user's personal PVM may be any Unix-based

machine on which the user has a valid login and that is accessible over some

network.

Using PVM, users can also con�gure their own parallel virtual machine,

which can overlap with other users' virtual machines. Con�guring a personal

parallel virtual machine involves simply listing the names of the machines in

a �le that is read when PVM is started. Applications, which can be written

in Fortran 77 or C, can be parallelized by using message-passing constructs

common to most distributed-memory computers. By sending and receiving

messages, multiple tasks of an application can cooperate to solve a problem

in parallel.

PVM supplies the functions to automatically start up tasks on the virtual

machine and allows the tasks to communicate and synchronize with each

other. In particular, PVM handles all message conversion that may be

required if two computers use di�erent data representations. PVM also

includes many control and debugging features in its user-friendly interface.

For instance, PVM ensures that error messages generated on some remote

computer get displayed on the user's local screen.

3.2 Components of PVM

The PVM system is composed of two parts. The �rst part is a daemon,

called pvmd3, that resides on all the computers making up the virtual com-

puter. (An example of a daemon program is sendmail, which handles all the

incoming and outgoing electronic mail on a Unix system.) pvmd3 is designed

so that any user with a valid login can install this daemon on a machine.

When a user wishes to run a PVM application, he executes pvmd3 on one

of the computers which in turn starts up pvmd3 on each of the computers

making up the user-de�ned virtual machine. A PVM application can then

be started from a Unix prompt on any of these computers.

The second part of the system is a library of PVM interface routines.

This library contains user-callable routines for passing messages, spawning

processes, coordinating tasks, and modifying the virtual machine. Applica-

tion programs must be linked with this library to use PVM.

3.3 Applications

Application programs that use PVM are composed of subtasks at a mod-

erately high level of granularity. The subtasks can be generic serial codes,

or they can be speci�c to a particular machine. In PVM, resources may be

accessed at three di�erent levels: the transparent mode in which subtasks

are automatically located at the most appropriate sites, the architecture-

dependent mode in which the user may indicate speci�c architectures on

which particular subtasks are to execute, and the machine-speci�c mode in

which a particular machine may be speci�ed. Such exibility allows di�er-

ent subtasks of a heterogeneous application to exploit particular strengths

of individual machines on the network.

Applications access PVM resources via a library of standard interface

routines. These routines allow the initiation and termination of processes

across the network, as well as communication and synchronization between

processes. Communication constructs include those for the exchange of data

structures as well as high-level primitives such as broadcast, barrier synchro-

nization, and event synchronization.

Application programs under PVM may possess arbitrary control and

dependency structures. In other words, at any point in the execution of a

concurrent application, the processes in existence may have arbitrary rela-

tionships between each other; furthermore, any process may communicate

and/or synchronize with any other.

3.4 Grand Challenge Application Experiences with PVM

Over the past few years a number of applications have been developed using

PVM. The table below list some of the applications.

Materials Science

Global Climate Modeling

Atmospheric, oceanic, and space studies

Meterorological forcasting

3-D groundwater modeling

Weather modeling

Superconductivity, molecular dynamics

Monte Carlo CFD application

2-D and 3-D seismic imaging

3-D underground ow �elds

Particle simulation

Distributed AVS ow visualization

These implementations have been done on various platforms.

During the last few years, ORNL material scientists and their collabora-

tors at the University of Cincinnati, SERC at Daresbury, and the University

of Bristol have been developing an algorithm for studying the physical prop-

erties of complex substitutionally disordered materials. A few important

examples of physical systems and situations in which substitutional disorder

plays a critical role in determining material properties include: high-strength

alloys, high-temperature superconductors, magnetic phase transitions, and

metal/insulator transitions. The algorithm being developed is an implemen-

tation of the Korringa, Kohn and Rostoker coherent potential approximation

(KKR-CPA) method for calculating the electronic properties, energetics and

other ground state properties of substitutionally disordered alloys [10]. The

KKR-CPA method extends the usual implementation of density functional

theory (LDA-DFT) [11] to substitutionally disordered materials [7]. In this

sense it is a completely �rst principles theory of the properties of substitu-

tionally disordered materials requiring as input only the atomic numbers of

the species making up the solid.

The KKR-CPA algorithm contains several locations where parallelism

can be exploited. These locations correspond to integrations in the KKR-

CPA algorithm. Evaluating integrals typically involves the independent eval-

uation of a function at di�erent locations and the merging of these data into

a �nal value. The integration over energy was parallelized. The parallel

implementation is based on a master/slave paradigm to reduce memory re-

quirements and synchronization overhead. In the implementation one pro-

cessor is responsible for reading the main input �le, which contains the

number of nodes to be used on each multiprocessor as well as the number

and type of workstations to include, the problem description, and the lo-

cation of relevant data �les. This master processor also manages dynamic

load balancing of the tasks through a simple pool-of-tasks scheme.

Using PVM the KKRCPA code is able to achieve over 200 Mops utiliz-

ing a network of ten IBM RS/6000 workstations. Given this capability, the

KKRCPA code is being used as a research code to solve important materials

science problems. Since its development the KKRCPA code has been used

to compare the electronic structure of two high temperature superconduc-

tors, Ba(Bi:3Pb:7)O3 and (Ba:6K:4)BiO3, to explain anomalous experimental

results from a high strength alloy, NiAl, and to study the e�ect of magnetic

multilayers in CrV and CrMo alloys for their possible use in magnetic storage

devices.

The goal of the groundwater modeling group is to develop state of the art

parallel models for today's high performance parallel computers, which will

enable researchers to model ow with higher resolution and greater accuracy

than ever before. As a �rst step researchers at ORNL have developed a

parallel 3-D �nite element code called PFEM that models water ow through

saturated-unsaturated media. PFEM solves the system of equations

F
@h

@t
= r � [KsKr(rh+rz)] + q;

where h is the pressure head, t is time, Ks is the saturated hydraulic con-

ductivity tensor, K
r
is the relative hydraulic conductivity or relative per-

meability, z is the potential head, q is the source/sink and F is the water

capacity (F = d�=dh, with � the moisture content) after neglecting the

compressibility of the water and of the media.

Parallelization was accomplished by partitioning the physical domain

and statically assigning subdomains to tasks. The present version uses only

static load-balancing and relies on the user to de�ne the partitioning. In each

step of the solution the boundary region of each subdomain is exchanged

with its neighboring regions.

Originally developed on an Intel iPSC/860 multiprocessor, a PVM ver-

sion of PFEM was straightforward to create requiring an undergraduate stu-

dent less than 3 weeks to complete. Presently, the PVM version of PFEM

has been delivered to several members of the groundwater modeling group

for validation testing using networks of workstations while they await the

availability of parallel supercomputers.

4 Current Status and Availability

PVM was publicly released in March 1991 and has gone through a num-

ber of updates. The present version of the software, Version 3.0, has been

tested with various combinations of the following machines: Sun 3, SPARC-

station, Microvax, DECstation, IBM RS/6000, HP-9000, Silicon Graphics

IRIS, NeXT, Sequent Symmetry, Alliant FX, IBM 3090, Intel iPSC/860,

Thinking Machines CM-2, KSR-1, Convex, and CRAY Y-MP. Figure 3 gives

a complete list of machines PVM has been ported to.

Version 3.0 has a number of improvements over the previous version

(2.4). A list of new features are itemize below.

� Runs on Multiprocessors - Paragon, CM-5, etc. using e�cient vendor

speci�c calls underneath

� Dynamic Process Groups - user de�ned grouping

� Dynamic Con�guration - able to add and delete hosts

� Multiple Message Bu�ers - for interface and library

� Improved Routines - receive by source or type automatic multiple

spawns with debug and trace options pack and unpack messages using

a stride

� Signal handling - PVM processes can pass and catch

� New naming convention for routines, (backwards compatability with

PVM2.4 is supplied).

PVM is available through netlib. To obtain a description of PVM's

features, such as a copy of the PVM User's Guide or source code, one simply

sends e-mail to netlib@ornl.gov with the message send index from pvm.

5 Future Directions

The Heterogeneous Network Project is currently building a second package,

called HeNCE (for Heterogeneous Network Computing Environment) [1], on

top of PVM.

HeNCE simpli�es the task of writing, compiling, running, debugging,

and analyzing programs on a heterogeneous network. The goal is (1) to

make network computing accessible to scientists and engineers without the

need for extensive training in parallel computing and (2) to enable them to

use resources best suited for a particular phase of the computation.

In HeNCE, the programmer is responsible for explicitly specifying par-

allelism by drawing graphs which express the dependencies and control ow

of a program. Figure 4 provides an example. HeNCE provides a class of

graphs as a usable yet exible way for the programmer to specify parallelism.

The user directly inputs the graph using a graph editor which is part of the

HeNCE environment. Each node in a HeNCE graph represents a subroutine

written in either Fortran or C. Arcs in the HeNCE graph represent depen-

dencies and control ow. An arc from one node to another represents the

fact that the tail node of the arc must run before the node at the head of

the arc. During the execution of a HeNCE graph, procedures are automati-

cally executed when their predecessors, as de�ned by dependency arcs, have

completed. Functions are mapped to machines based on a user de�ned cost

matrix.

The focus of this work is to provide a paradigm and graphical support

tool for programming a heterogeneous network of computers as a single re-

source. HeNCE is the graphical based parallel programming paradigm. In

HeNCE the programmer explicitly speci�es parallelism of a computation by

drawing graphs. The nodes in a graph represent user de�ned subroutines

and the edges indicate parallelism and control ow. The HeNCE program-

ming environment consists of a set of graphical modes which aid in the

creation, compilation, execution, and analysis of HeNCE programs. The

main components consist of a graph editor for writing HeNCE programs,

a build tool for creating executables, a con�gure tool for specifying which

machines to use, an executioner for invoking executables, and a trace tool

for analyzing and debugging a program run. These steps are integrated into

a window based programming environment as shown in Figure 5.

An initial version of HeNCE has recently been made available through

netlib. To obtain a description of its features, one should send e-mail to

netlib@ornl.gov with the message send index from hence.

Both PVM and HeNCE o�er researchers a powerful means for attacking

scienti�c computational problems through heterogeneous network comput-

ing. Continued research and development will ensure that this new area

meets the needs of scienti�c computing in the 1990s and beyond.

References

[1] A. Beguelin, J. Dongarra, G. Geist, R. Manchek, and V. Sunderam,

\Solving Computational Grand Challenges Using a Network of Super-

computers." Proceedings of the Fifth SIAM Conference on Parallel Pro-

cessing, Danny Sorensen, ed., SIAM, Philadelphia, 1991.

[2] A. Beguelin, J. J. Dongarra, G. A. Geist, R. Manchek, and V. S. Sun-

deram. A Users' Guide to PVM Parallel Virtual Machine. Technical

Report ORNL/TM-11826, Oak Ridge National Laboratory, July 1991.

[3] J. Boyle, et. al., Portable Programs for Parallel Processors. Holt, Rine-

hart, and Winston, 1987.

[4] D. Gelernter, \Domesticating Parallelism", IEEE Computer, 19(8):12-

16, August 1986.

[5] V. Herrarte and E. Lusk, Studying Parallel Program Behavior with

Upshot, Argonne National Laboratory, Technical Report ANL{91/15,

1991.

[6] R. Hempel The ANL/GMD MAcros (Parmacs) in Fortran for Portable

Parallel Programming Using Message Passing, GMD Technical Report,

November 1991.

[7] D. D. Johnson, D. M. Nicholson, F. J. Pinski, B. L. Gy�or�y, G. M.

Stocks, Total energy and pressure calculations for random substitutional

alloys, Phys. Rev. B, Vol. 41, 9701 (1990).

[8] A. Kolawa, \The Express Programming Environment", \The Express

Programming Environment", Workshop on Heterogeneous Network-

Based Concurrent Computing, Tallahassee, October 1991.

[9] L. Patterson, et. al., \Construction of a Fault-Tolerant Distributed

Tuple-Space", 1993 Symposium on Applied Computing, Indianapolis,

February 1993.

[10] G. M. Stocks, W. M. Temmerman, B. L. Gy�or�y Complete solution of

the Korringa-Kohn-Rostoker coherent potential approximation: Cu-Ni

alloys, Phys. Rev. Letter, Vol. 41, 339 (1978).

[11] Ulf von Barth Density Functional Theory for Solids, Electronic struc-

ture of complex systems, ed. Phariseau and Temmerman, NATO ASI

Series, Plenum Press, (1984).

SIDEBAR ON Message Passing Interface Forum

During the past year there has been quite a bit of activity in the community

to develop a standard interface for message passing [1]. The main advantages

of establishing a message passing standard are portability and ease-of-use.

In a distributed memory communication environment in which the higher

level routines and/or abstractions are built upon lower level message passing

routines the bene�ts of standardization are particularly apparent. Further-

more, the de�nition of a message passing standard provides vendors with a

clearly de�ned base set of routines that they can implement e�ciently, or

in some cases provide hardware support for, thereby enhancing scalability.

The standards activity goes by the name Message Passing Interface Forum

(MPI Forum) and is composed of the major hardware and software vendors,

as well as researchers from universities and laboratories around the world.

The goal of the Message Passing Interface simply stated is to develop

a standard for writing message-passing programs. As such the interface

should establishing a practical, portable, e�cient, and exible standard for

message passing.

A complete list of goals follow.

� Design an application programming interface (not necessarily for com-

pilers or a system implementation library).

� Allow e�cient communication: Avoid memory to memory copying

and allow overlap of computation and communication and o�oad to

communication coprocessor, where available.

� Allow (but no mandate) extensions for use in heterogeneous environ-

ment.

� Allow convenient C, Fortran 77, Fortran 90, and C++ bindings for

interface.

� Provide a reliable communication interface: User need not cope with

communication failures. Such failures are dealt by the underlying com-

munication subsystem.

� Focus on a proposal that can be agreed upon in 6 months.

� De�ne an interface that is not too di�erent from current practice, such

as PVM, Express, Parmacs, etc.

� De�ne an interface that can be quickly implemented on many vendor's

platforms, with no signi�cant changes in the underlying communica-

tion and system software.

� The interface should not contain more functions than are really nec-

essary.

This standard is intended for use by all those who want to write portable

message-passing programs in Fortran 77 and/or C. This includes individual

application programmers, developers of software designed to run on paral-

lel machines, and creators of higher-level programming languages, environ-

ments, and tools. In order to be attractive to this wide audience, the stan-

dard must provide a simple, easy-to-use interface for the basic user while

not semantically precluding the high-performance message-passing opera-

tions available on advanced machines.

The standard includes (this is temporarily as inclusive as possible):

� Point-to-point communication in a variety of modes, including modes

that allow fast communication and heterogeneous communication

� Collective operations

� Process groups

� Communication contexts

� A simple way to create processes for the SPMD model

� Bindings for both Fortran and C

� A model implementation

� A formal speci�cation.

One of the objectives of the activity is to have a de�nition completed

by the Summer 1993. If you are interested in �nding out more about the

MPI e�ort contact David Walker (walker@msr.epm.ornl.gov) at Oak Ridge

National Laboratory.

References

[1] Jack J. Dongarra, Rolf Hempel, Anthony J. G. Hey, and David W.

Walker. A Proposal for a User-Level, Message-Passing Interface in a

Distributed Memory Environment Technical Report ORNL/TM-??, Oak

Ridge National Laboratory, 1992.

Figure 1: Linda Environment

Linda Address Space

Notes:
Basic unit of storage is tuple.
Tuples are associatively addressed.
Tuples are persistent.
Duplicates permitted.

'
&

$
%

\a string"
15.01
17

\another string"

?

?

'
&

$
%

\roots"
2
4

Application Address Space

out(\a string",15.01,17,\another string")

6

rd(?strval1,?fval,17,?strval2)
Nondestructive Input

in(\a string",?fval,?ival,?strval2)
Destructive Input

eval(\roots",sqrt(4),sqrt(16))
Parallel computation

6

Notes:
Input waits if tuple unavailable.

