
Overview of recent supercomputers

Aad J. van der Steen
Computational Physics
Utrecht University

P.O. Box 80000, 3508 TA Utrecht
Email: steen@fys.ruu.nl

Publication of the NCF

Stichting Nationale Computer Faciliteiten Seventh revised edition
P.O. Box 93120
2509 AC 's-Gravenhage
The Netherlands January 1997

Abstract

In this report we give an overview of parallel and vector computers which are currently available or will become available

within a short time frame from vendors; no attempt is made to list all machines that are still in the research phase.

The machines are described according to their architectural class. Shared and distributed memory SIMD and MIMD

machines are discerned. The information about each machine is kept as compact as possible. Moreover, no attempt is

made to quote prices as these are often even more elusive than the performance of a system.

This document reects the technical state of the supercomputer arena as accurately as possible. However, the author

nor NCF take any responsibility for errors or mistakes in this document. We encourage anyone who has comments or

remarks on the contents to inform us, so we can improve this work.

NCF, the National Computing Facilities Foundation, supports and furthers the advancement of technical and
scienti�c research with and into advanced computing facilities and prepares for the Netherlands national su-
percomputing policy. Advanced computing facilities are multi-processor vectorcomputers, massively parallel
computing systems of various architectures and concepts and advanced networking facilities.

Contents

1 Introduction and account 3

2 Architecture of high performance computers 5

2.1 The main architectural classes . 5
2.2 Shared-memory SIMD machines . 6
2.3 Distributed-memory SIMD machines . 7
2.4 Shared-memory MIMD machines . 9
2.5 Distributed-memory MIMD machines . 11

3 Recount of the (almost) available systems 13

3.1 Shared-memory SIMD systems . 13
3.1.1 The Hitachi S3600 series. 13

3.2 Distributed-memory SIMD systems . 15
3.2.1 The Alenia Quadrics. 15
3.2.2 The Cambridge Parallel Processing Gamma II. 16
3.2.3 The MasPar MP-1. 17
3.2.4 The MasPar MP-2. 18

3.3 Shared-memory MIMD systems . 19
3.3.1 The Cray Research Inc. Cray J90-series, T90 series. 19
3.3.2 The Digital Equipment Corp. AlphaServer. 20
3.3.3 The Hitachi S3800 series. 21
3.3.4 The HP/Convex C4600 series. 21
3.3.5 The NEC SX-4. 22
3.3.6 The Tera MTA . 23

3.4 Distributed-memory MIMD systems . 25
3.4.1 The Avalon A12. 25
3.4.2 AxilSCC system . 26
3.4.3 The C-DAC PARAM 9000/SS. 26
3.4.4 The Cray Research Inc. T3E. 27
3.4.5 The Fujitsu AP3000. 28
3.4.6 The Fujitsu VPP series. 29
3.4.7 The Hitachi SR2201 system. 30
3.4.8 The HP/Convex Exemplar SPP-2000 series. 31
3.4.9 The IBM 9076 SP2 . 32
3.4.10 The Intel Paragon XP. 33
3.4.11 The Kongsberg Informasjonskontroll SCALI system 34
3.4.12 The Matsushita ADENART. 34
3.4.13 The Meiko Computing Surface 2. 35
3.4.14 The nCUBE 2S. 36
3.4.15 The NEC Cenju-3. 37
3.4.16 The Parsys TA9000. 38
3.4.17 The Parsytec GC/Power Plus. 39
3.4.18 The Silicon Graphics Origin series . 40

4 Systems disappeared from the list 41

5 Systems under development 45

5.1 The Hitachi/CP-PACS system . 45
5.2 Machines in the ASCI program . 45

5.2.1 The Intel ASCI Option Red system . 45
5.2.2 The IBM Blue Paci�c Blue system . 46
5.2.3 The SGI-Cray Mountain Blue system . 46

Acknowledgments 46

Bibliography 47

1 Introduction and account

This is the seventh edition of a report in which we attempt to give an overview of parallel and vector systems
that are commercially available or are expected to become available within a short time frame (typically a
few months to half a year). We choose the expression \attempt" deliberately because the market of parallel-
and vector machines is highly evasive: the rate with which systems are introduced | and disappear again
| is very high and therefore the information will probably be only approximately valid. Nevertheless, we
think that such an overview is useful for those who want to obtain a general idea about the various means
by which these systems strive at high performance, especially when it is updated on a regular basis.

We will try to be as up-to-date and compact as possible and on these grounds we think there is a place for
this report. Like last year, the present report will be somewhat shorter than earlier ones: at this moment
systems are disappearing at a faster rate than new ones replace them. The reasons for this seem to be
threefold:

{ The competition is very �erce and only companies that can o�er up-to-date systems, both hardware
and software wise can keep in business.

{ Generally, less money is available worldwide for purchasing new high performance systems oriented to
scienti�c and technical computing. This makes life more di�cult for both existing companies and for
potential starters.

{ Because of price/performance considerations the number of companies o�ering systems with custom-
made processors is decreasing because they cannot capitalise on large volume sales as is the case with
RISC processor based systems.

These e�ects make the high performance computing scene somewhat more clear (and also somewhat less
adventurous). Still, the supercomputer market is very dynamic and we cannot hope to give a complete
report for the reason already mentioned above: the speed with which companies and systems appear and
disappear makes this almost impossible. However, by updating the report we can at least follow the main
trends in popular and emerging architectures.

The rules for including systems in this report are as follows: they should be either available commercially
at the time of appearance of this report, or within 6 months thereafter. This excludes interesting research
systems like the Intel ASCI Option Read system at Sandia National Laboratory (with a measured per-
formance just over 1 Top/s), the CP-PACS at the University of Tsukuba (measured performance of 368
Gop/s), and the Numerical Windtunnel at the National Aeroscape Lab. in Japan (230 Gop/s), because
they are not marketed and only available at the institutes mentioned and therefore of not much bene�t to
the supercomputer user community at large.

The rule that systems should be available within a timespan of 6 months is to avoid confusion by describing
systems that are announced much too early, just for marketing reasons and that will not be available to
general users within a reasonable time. We also have to refrain from including all generations of a system
that are still in use. Therefore, for instance, we do not include the Convex C3000 series, the Cray Y-MP
series, or the Thinking Machines CM-5 anymore although these systems are still used widely. Generally
speaking, we include machines that are still marketed or will be marketed within 6 months. To add to the
information given in this report, we quote the Web addresses of the vendors because the information found
there may be more recent than what can be provided here. On the other hand, such pages should be read
with care because it will not always be clear what the status is of the products described there.

Some vendors o�er systems that are identical in all respects except in the clock cycle of the nodes
(examples are the Digital Alphaserver and the Fujitsu AP3000). In these cases we always only mention the
models with the fastest clock as it will be always possible to get the slower systems and we presume that
the reader is primarily interested in the highest possible speeds that can be reached with these systems.

We order the systems by their various architectural classes, which should facilitate to �nd the information
of systems that belong to a certain class. We also omit the price information which in most cases is next to
useless. If available, we will give some information about performances of systems based on user experiences
instead of only giving theoretical peak performances. Here we have adhered to the following policy: We
try to quote best measured performances, if available, thus providing a more realistic upper bound than the
theoretical peak performance. We hardly have to say that the speed range of supercomputers is enormous, so
the best measured performance will not always reect the performance of the reader's favourite application.

When we give performance information, it is not always possible to quote all sources and in any case if this
information seems (or is) biased, this is entirely the responsibility of the author of this report. He is quite
willing to be corrected or to receive additional information from anyone who is in the position to do so.

Before giving a recount of the systems proper, we �rst de�ne the architectural classes and some other terms
in section 2 which will be used in section 3 in the description of the machines. In section 4 some systems are
listed that disappeared from the market and in section 5 we present some systems that are under development
and have a fair chance to appear on the market.

The overview given in this report concentrates on the computational capabilities of the systems discussed. To
do full justice to all assets of present days high-performance computers one should list their I/O performance
and their connectivity possibilities as well. However, the possible permutations of con�gurations even for
one model of a certain system often are so large that they would multiply the volume of this report, which
we tried to limit for greater clarity. So, not all features of the systems discussed will be present. Still we
think (and certainly hope) that the impressions obtained from the entries of the individual machines may
be useful to many. We also omitted some systems that may be characterised as \high-performance" in
the �elds of database management, real-time computing, or visualisation. Therefore, as we try to give an
overview for the area of general scienti�c and technical computing, systems that are primarily meant for
database retrieval like the AT&T GIS systems or concentrate exclusively on the real-time user community,
like Concurrent Computing Systems, are not discussed in this report.

Although most terms will be familiar to many readers, we still think it is worthwhile to give some of the
de�nitions in section 2 because some authors tend to give a meaning that may slightly di�er from the idea
the reader already may have acquired.

Lastly, we should point out that also a WWW version is available. The URLs are:
www.netlib.org/utk/papers/advanced-computers/paper.html (USA)
www.sara.nl/nwo/ncf/ (Europe)

2 Architecture of high performance computers

Before going on to the descriptions of the machines themselves, it is important to consider some mechanisms
that are or have been used to increase the performance. The hardware structure or architecture determines
to a large extent what the possibilities and impossibilities are in speeding up a computer system beyond the
performance of a single CPU. Another important factor that is considered in combination with the hardware
is the capability of compilers to generate e�cient code to be executed on the given hardware platform. In
many cases it is hard to distinguish between hardware and software inuences and one has to be careful in
the interpretation of results when ascribing certain e�ects to hardware or software peculiarities or both. In
this chapter we will give most emphasis to the hardware architecture. For a description of machines that can
be considered to be classi�ed as \high-performance" one is referred to [20] and, for more recently available
systems, [19].

2.1 The main architectural classes

Since many years the taxonomy of Flynn [6] has proven to be useful for the classi�cation of high-performance
computers. This classi�cation is based on the way of manipulating of instruction and data streams and
comprises four main architectural classes. We will �rst briey sketch these classes and afterwards �ll in some
details when each of the classes is described.

{ SISDmachines: These are the conventional systems that contain one CPU and hence can accommodate
one instruction stream that is executed serially. Nowadays many large mainframes may have more than
one CPU but each of these execute instruction streams that are unrelated. Therefore, such systems
still should be regarded as (a couple of) SISD machines acting on di�erent data spaces. Examples
of SISD machines are for instance most workstations like those of DEC, Hewlett-Packard, and Sun
Microsystems. The de�nition of SISD machines is given here for completeness' sake. We will not
discuss this type of machines in this report.

{ SIMD machines: Such systems often have a large number of processing units, ranging from 1,024 to
16,384 that all may execute the same instruction on di�erent data in lock-step. So, a single instruction
manipulates many data items in parallel. Examples of SIMD machines in this class are the CPP DAP
Gamma and the MasPar MP-2.

Another subclass of the SIMD systems are the vectorprocessors. Vectorprocessors act on vectors of
similar data rather than on single data items using specially structured CPUs. When data can be
manipulated by the vector units contained in these CPUs, results can be delivered with a rate of one,
two and | in special cases | of three per clock cycle (a clock cycle being de�ned as the basic internal
unit of time for the system). So, vectorprocessors execute on their data in an almost parallel way but
only when executing in vector mode. In this case they are several times faster than when executing in
conventional scalar mode. For practical purposes vectorprocessors with one CPU are therefore mostly
regarded as SIMD machines. Examples of such systems are for instance the Convex C410, and the
Hitachi S3600.

{ MISD machines: Theoretically in these type of machines multiple instructions should act on a single
stream of data. As yet no practical machine in this class has been constructed nor are such systems
easily to conceive. We will disregard them in the following discussions.

{ MIMD machines: These machines execute several instruction streams in parallel on di�erent data.
The di�erence with the multi-processor SISD machines mentioned above lies in the fact that the
instructions and data are related because they represent di�erent parts of the same task to be executed.
So, MIMD systems may run many sub-tasks in parallel in order to shorten the time-to-solution for the
main task to be executed. There is a large variety of MIMD systems and especially in this class the
Flynn taxonomy proves to be not fully adequate for the classi�cation of systems. Systems that behave
very di�erently like a four-processor Cray Y-MP T94 and a thousand processor nCUBE 2S fall both
in this class. In the following we will make another important distinction between classes of systems
and treat them accordingly.

{ Shared memory systems: Shared memory systems have multiple CPUs all of which share the same
address space. This means that the knowledge of where data is stored is of no concern to the user
as there is only one memory accessed by all CPUs on an equal basis. Shared memory systems can
be both SIMD or MIMD. Single-CPU vector processors can be regarded as an example of the former,
while the multi-CPU models of these machines are examples of the latter. We will sometimes use the
abbreviations SM-SIMD and SM-MIMD for the two subclasses.

{ Distributed memory systems: In this case each CPU has its own associated memory. The CPUs are
connected by some network and may exchange data between their respective memories when required.
In contrast to shared memory machines the user must be aware of the location of the data in the local
memories and will have to move or distribute these data explicitly when needed. Again, distributed
memory systems may be either SIMD or MIMD. The �rst class of SIMD systems mentioned which
operate in lock step, all have distributed memories associated to the processors. For the distributed
memory MIMD systems again a subdivision is possible: those in which the processors are connected
in a �xed topology and those in which the topology is exible and may vary from task to task. For
the distributed memory systems we will sometimes use DM-SIMD and DM-MIMD to indicate the two
subclasses.

Although the di�erence between shared- and distributed memory machines seems clear cut, this is not always
entirely the case from user's point of view. For instance, the late Kendall Square Research systems employed
the idea of \virtual shared memory" on a hardware level. Virtual shared memory can also be simulated at
the programming level: A speci�cation of High Performance Fortran (HPF) was published in 1993 [11] which
by means of compiler directives distributes the data over the available processors. Therefore, the system on
which HPF is implemented in this case will look like a shared memory machine to the user. Other vendors
of Massively Parallel Processing systems (the buzz-word MPP systems is fashionable here), like Convex
and Cray, also support proprietary virtual shared-memory programming models which means that these
physically distributed memory systems, by virtue of the programming model, logically will behave as shared
memory systems. In addition, packages like TreadMarks ([1]) provide a virtual shared memory environment
for networks of workstations.

Another trend that has come up in the last few years is distributed processing. This takes the DM-MIMD
concept one step further: instead of many integrated processors in one or several frames, workstations,
mainframes, etc., are connected by standard network protocols like Ethernet, FDDI, or otherwise and set
to work concurrently on tasks in the same program. Conceptually, this is not di�erent from DM-MIMD
computing, but the communication between processors is often orders of magnitude slower. Many packages
to realise distributed computing, commercial, and non-commercial are available. Examples of these are PVM
(standing for Parallel Virtual Machine) [7], and MPI (Message Passing Interface, [8, 15]). PVM and MPI
have been adopted for instance by Convex, Cray, IBM and Intel for the transition stage between distributed
computing and MPP on the clusters of their favorite processors and they are available on a large amount of
distributed memory MIMD systems and even on shared memory MIMD systems for compatibility reasons.
In addition there is a tendency to cluster shared memory systems, for instance by HIPPI channels, to obtain
systems with a very high computational power. E.g., the Intel Paragon with the MP (Multi Processor)
nodes, the NEC SX-4, and the Convex Exemplar SPP-2000X have this structure. In addition, the latter
system has a software environment that allows virtual shared memory addressing.

2.2 Shared-memory SIMD machines

This subclass of machines is practically equivalent to the single-processor vectorprocessors, although other
interesting machines in this subclass have existed (viz., VLIW machines [16]). In the block diagram in Figure
1 we depict a generic model of a vector architecture. The single-processor vector machine will have only
one of the VPUs depicted and the system may even have its scalar oating-point capability shared with the
vector processor (as is the case in Cray systems). It may be noted that the VPU does not show a cache.
Vectorprocessors do not employ a cache anymore. In many cases the vector unit cannot take advantage of
it and execution speed may even be unfavourably a�ected because of frequent cache overow.

Although vectorprocessors have existed that loaded their operands directly from memory and stored the
results again immediately in memory (CDC Cyber 205, ETA-10), all present-day vectorprocessors use vector
registers. This usually does not lower the speed of operations while providing much more exibility in

registers

Peripherals

IP/ALU FPU VPU

IOP

Memory

VectorInstr/Data

cache

Data

cache

IP/ALU: Integer processor

FPU : Scalar floating -point unit

VPU : Vector processing unit

IOP : I/O processor

Figure 1: Block diagram of a vector processor.

gathering operands and manipulation with intermediate results.

Because of the generic nature of Fig. 1 no details of the interconnection between the VPU and the memory
are shown. Still, these details are very important for the e�ective speed of a vector operation: when the
bandwidth between memory and the VPU is too small it is not possible to take full advantage of the VPU
because it has to wait for operands and/or has to wait before it can store results. When the ratio of arithmetic
to load/store operations is not high enough to compensate for such situations, severe performance losses may
be incurred. The inuence of the number of load/store paths for the dyadic vector operation c = a+ b (a, b,
and c vectors) is depicted in Figure 2. Because of the high costs of implementing these data paths between
memory and the VPU, often compromises are sought and the number of systems that have the full required
bandwidth (i.e., two load operations and one store operation at the same time) is limited.

The VPUs are shown as single blocks in Fig. 1. Yet, again there is a considerable diversity in the structure
of VPUs. Every VPU consists of a number of vector functional units, or \pipes" that ful�ll one or several
functions in the VPU. Every VPU will have pipes that are designated to perform memory access functions,
thus assuring the timely delivery of operands to the arithmetic pipes and of storing the results in memory
again. Usually there will be several arithmetic functional units for integer/logical arithmetic, for oating-
point addition, for multiplication and sometimes a combination of both, a so-called compound operation.
Division is performed by an iterative procedure, table look-up, or a combination of both using the add and
multiply pipe. In addition, there will almost always be a mask pipe to enable operation on a selected subset
of elements in a vector of operands. Lastly, such sets of vector pipes can be replicated within one VPU (2-
and 4-fold replication are common). Ideally, this will increase the performance per VPU by the same factor
provided the bandwidth to memory is adequate.

2.3 Distributed-memory SIMD machines

Machines of this type are sometimes also known as processor-array machines [9]. Because the processors
of these machines operate in lock-step, i.e., all processors execute the same instruction at the same time
(but on di�erent data items), no synchronisation between processors is required. This greatly simpli�es the

store c

load a

load b

c=a+b

store c

load a

c=a+b

load b

(a)

(b)

time

Figure 2: Schematic diagram of a vector addition. Case (a) when two load- and one store pipe are available;

case (b) when two load/store pipes are available.

design of such systems. A control processor issues the instructions that are to be executed by the processors
in the processor array. All currently available DM-SIMD machines use a front-end processor to which they
are connected by a data path to the control processor. Operations that cannot be executed by the processor
array or by the control processor are o�-loaded to the front-end system. For instance, I/O may be through
the front-end system, by the processor array machine itself or both. Figure 3 shows a generic model of a
DM-SIMD machine of which actual models will deviate to some degree. Figure 3 might suggest that all
processors in such systems are connected in a 2-D grid and indeed, the interconnection topology of this type
of machines always includes the 2-D grid. As opposing ends of each grid line are also always connected the
topology is rather that of a torus. For several machines this is not the only interconnection scheme: They
might also be connected in 3-D, diagonally, or more complex structures.

It is possible to exclude processors in the array from executing an instruction on certain logical conditions,
but this means that for the time of this instruction these processors are idle (a direct consequence of the
SIMD type operation) which immediately lowers the performance. Another factor that may adversely a�ect
the speed occurs when data required by processor i resides in the memory of processor j (in fact, as this
occurs for all processors at the same time this e�ectively means that data will have to be permuted across
the processors). To access the data in processor j, the data will have to be fetched by this processor and
then send through the routing network to processor i. This may be fairly time consuming. For both rea-
sons mentioned DM-SIMD machines are rather specialised in their use when one wants to employ their full
parallelism. They perform excellently on many digital signal and image processing applications. They also
are well suited for certain types of Monte Carlo simulations. In general, when virtually no data exchange
between processors is required and the same type of operations is done on massive datasets, these machines
can be very e�ective.

The control processor as shown in Figure 3 may be more or less intelligent. It issues the instruction sequence
that will be executed by the processor array. In the worst case (that means a less autonomous control
processor) when an instruction cannot be executed on the processor array (e.g., a simple print instruction)
it might be o�-loaded to the front-end processor which may be much slower than execution on the control
processor. In case of a more autonomous control processor this can be avoided thus saving processing in-
terrupts both on the front-end and the control processor. Most DM-SIMD systems have the possibility to

Register Plane
Interconnection Network

Data Movement Plane

Memory

front-end and I/O processor

Data lines to
front-end

To/from

Processor Array

Processor

Control

Figure 3: A generic block diagram of a distributed memory SIMD machine.

handle I/O independently from the front-end processors. This is not only favourable because the communi-
cation between the front-end system and processor-array machine is avoided. The (specialised) I/O devices
for the processor-array system are generally much more e�cient in providing the necessary data directly
to the memory of the processor array. Especially for very data-intensive applications like radar and image
processing such I/O systems are very important.

A feature that is peculiar to this type of machines is that the processors sometimes are of a very simple
bit-serial type, i.e., the processors operate on the data items bitwise, irrespective of their type. So, e.g.,
operations on integers are produced by software routines on these simple bit-serial processors which takes
at least as many cycles as the operands are long. So, a 32-bit integer result will be produced two times
faster than a 64-bit result. For oating-point operations a similar situation holds, be it that the number of
cycles required is a multiple of that needed for an integer operation. As the number of processors in this
type of systems is mostly large (1024 or larger, the Alenia Quadrics is a notable exception, however), the
slower operation on oating-point numbers can be often compensated for by their number, while the cost per
processor is quite low as compared to full oating-point processors. In some cases, however, oating-point
coprocessors are added to the processor-array. Their number is 8{16 times lower than that of the bit-serial
processors because of the cost argument. An advantage of bit-serial processors is that they may operate
on operands of any length. This is particularly advantageous for random number generation (which often
boils down to logical manipulation of bits) and for signal processing because in both cases operands of only
1{8 bits are abundant. As the execution time for bit-serial machines is proportional to the length of the
operands, this may result in signi�cant speedups.

2.4 Shared-memory MIMD machines

Figure 1 shows one subclass of this type of machines, viz., the multi-processor vector processor. The �gure
shows that more than one FPU and/or VPU may be possible in one system.

The main problem one is confronted with in shared-memory systems is that of the connection of the CPUs
to each other and to the memory. As more CPUs are added, the collective bandwidth to the memory ideally
should increase linearly with the number of processors, while each processor should preferably communicate
directly with all others without the much slower alternative of going via the memory. Unfortunately, full
interconnection is quite costly, growing with O(n2) while increasing the number of processors with O(n). So,

various alternatives have been tried. Figure 4 shows some of the interconnection structures that are (and
have been) used.

As can be seen from the �gure, a crossbar uses n2 connections, an
-network uses n log
2
n connections while,

with the central bus, there is only one connection. This is reected in the use of each connection path for
the di�erent types of interconnections: for a crossbar each datapath is direct and does not have to be shared
with other elements. In case of the
-network there are log

2
n switching stages and as many data items may

have to compete for any path. For the central databus all data have to share the same bus, so n data items
may compete at any time.

The bus connection is the least expensive solution, but it has the obvious drawback that bus contention

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

n
I

(b)

(a)

(c)(a): Crossbar (b): -network (c): Central Databus

Out

Ω

CPU CPU CPU

Network

Memory

Shared Memory System

0

4

5

6

2

7

1

3

0

1

2

3

5

6

7

0 1 2 3 4 5 6

0

1

2

3

4

4

5

6

7

7

Figure 4: Some examples of interconnection structures used in shared-memory MIMD systems.

may occur thus slowing down the computations. Various intricate strategies have been devised using caches
associated with the CPUs to minimise the bus tra�c. This leads however to a more complicated bus
structure which raises the costs. In practice it has proved to be very hard to design buses that are fast
enough, especially since the speed of the processors is still increasing very quickly. It imposes an upper
bound on the number of processors that can be connected by a bus. This number appears in practice not to
exceed 10{20. In 1992, a new standard (IEEE P896) for a fast bus has been de�ned. The bus may connect
either components within a system or systems with each other. This bus, called the Scalable Coherent
Interface (SCI) should provide a point-to-point bandwidth of 200{1,000 Mbyte/s. It is in fact used in the
HP/Convex SPP-2000, but could also be used within a network of workstations. The SCI is much more
than a simple bus and it can act as the physical network layer for distributed computing, see [12].

The
-network is a structure which is situated somewhere in between a bus and a crossbar which respect to
potential capacity and costs. At this moment commercially available machines like the IBM SP2, the Meiko
CS-2, and the NEC Cenju-3 use this network structure, but a number of experimental machines also have used
the same or a similar kind of interconnection. The BBN TC2000, that behaved like a virtual shared-memory
MIMD system, used an analogous type of network (a Buttery-network) and it is quite conceivable that new
machines may use it, especially as the number of processors grows. For a large number of processors the
n log

2
n connections become quickly more attractive than the n2 used in crossbars. Of course, the switches

at the intermediate levels should be su�ciently fast to cope with the bandwidth required. Obviously, not

only the structure but also the width of the links between the processors is important: a network using
16-bit parallel links will have a bandwidth which is 16 times higher than a network with the same topology
implemented with serial links.

In all present-day multi-processor vectorprocessors crossbars are used. This is still feasible because the
maximum number of processors in a system is still rather small (32 at most presently). When the number of
processors would increase, however, technological problems might arise. Not only it becomes harder to build
a crossbar of su�cient bandwidth for the larger numbers of processors, the processors themselves generally
also increase in speed individually, doubling the problems of making the bandwidth of the crossbar match
that of the bandwidth required by the processors.

Whichever network is used, any type of processor (scalar or vector) in principle could be employed for any
topology. In practice, however, bus structured machines do not employ vectorprocessors as the bandwidths
of these would grossly mismatch with any bus that could be constructed at reasonable costs. All available
bus-oriented systems use RISC processors. The local caches of the processors can sometimes alleviate the
bandwidth problem if the data access can be satis�ed by the caches thus avoiding references to the memory.

The systems discussed in this subsection are of the MIMD type and therefore di�erent tasks may run on
di�erent processors simultaneously. In many cases synchronisation between tasks is required and again
the interconnection structure is here very important. Most vectorprocessors employ special communication
registers within the CPUs by which they can communicate directly with the other CPUs they have to
synchronise with. A minority of systems synchronise via the shared memory. Generally, this is much slower
but it may still be acceptable when the synchronisation occurs relatively seldom. Of course in bus-based
systems synchronisation also has to be done via a bus. To assure a maximum speed for the synchronisation
often a separate bus is employed to this end.

2.5 Distributed-memory MIMD machines

The class of DM-MIMD machines is undoubtly the fastest growing part in the family of high-performance
computers. This type of machines is more di�cult to deal with than shared-memory machines and DM-
SIMD machines. The latter type of machines are processor-array systems in which the data structures that
are candidates for parallelisation are vectors and multi-dimensional arrays that are laid out automatically on
the processor array by the system software. For shared-memory systems the data distribution is completely
transparant to the user. This is quite di�erent for DM-MIMD systems where the user has to distribute the
data over the processors and also the data exchange between processors has to be performed explicitely. The
initial reluctance to use DM-MIMD machines seems to have been decreased. Partly this is due to the now
existing standard software for communication ([7, 15]) and partly because, at least theoretically, this class
of systems is able to outperform all other types of machines.

The advantages of DM-MIMD systems are clear: the bandwidth problem between CPU and memory that
haunts shared-memory systems is avoided because the bandwidth scales up automatically with the number
of processors. Furthermore, the speed of the memory which is another critical issue with shared-memory
systems (to get a peak performance that is comparable to that of DM-MIMD systems, the processors
of the shared-memory machines should be very fast and the speed of the memory should match it) is
less important for the DM-MIMD machines, because more processors can be con�gured without the afore
mentioned bandwidth problems.

Of course, DM-MIMD systems also have their disadvantages: The communication between processors is
much slower than in SM-MIMD systems (typically 100{1000 times), and so, the synchronisation overhead
in case of communicating tasks is generally orders of magnitude higher than in shared-memory machines.
Moreover, data that is not residing in the local memory belonging to a particular processor has to be obtained
from non-local memory (or memories). This is again on most systems a very slow process as compared to
local data access. When the structure of a problem dictates a frequent exchange of data between processors
and/or requires many processor synchronisations, it may well be that only a very small fraction of the
theoretical peak speed can be obtained. As already mentioned, the data- and task decomposition are factors
that mostly have to be dealt with explicitly, which may be far from trivial.

It will be clear from the paragraph above that also for DM-MIMD machines both the topology and the

bandwidth of the data paths are of crucial importance for the practical usefulness of a system. Again, as
in section 2.4, the richness1 of the interconnection structure has to be balanced against the costs. Of the
many conceivable interconnection structures only a few are used in practice. One of these is the so-called
hypercube topology as depicted in Figure 5.

d = 4

d = 1

d = 2

d = 3

Figure 5: 1-, 2-, 3-, and 4-dimensional hypercube connections.

A nice feature of the hypercube topology is that for a hypercube with 2d nodes the number of communication
steps to be taken between any two nodes is at most d. So, the dimension of the network grows only
logarithmically with the number of nodes. In addition, theoretically, it is possible to simulate any other
topology on a hypercube: trees, rings, complete and incomplete 2-D and 3-D meshes, etc. In practice, the
exact topology for hypercubes does not matter too much because all systems in the market today employ
what is called \wormhole routing". This means that when node i wants to communicate with node j a
header message is sent from i to j resulting in a direct connection between these nodes. This is called a
virtual channel or connection. As soon as this connection is established, the data proper is sent through this
connection without disturbing the operation of the intermediate nodes. Except for a small amount of time
in setting up the connection between nodes, the communication time has become virtually independent of
the distance between the nodes. Of course, when several messages in a busy network have to compete for
the same paths, waiting times are incurred as in any network that does not directly connect any processor
to all others and often rerouting strategies are employed to circumvent busy links.

Many of the newly introduced massively parallel DM-MIMD systems seem to favour a 2- or 3-D mesh (torus)
structure. The rationale for this seems to be that many simulations of large-scale physical phenomena can
be mapped e�ciently on this topology and that a richer interconnection structure hardly pays o�. However,
some systems maintain (an) additional network(s) besides the mesh to handle certain bottlenecks in data
distribution and retrieval [10].

A large fraction of systems in the DM-MIMD class employs crossbars. For relatively small amounts of
processors (in the order of 64) this may be a direct or 1-stage crossbar. To connect larger numbers of nodes
multi-stage crossbars are used, i.e., the connections of a crossbar at level 1 connect to a crossbar at level
2, etc., instead of directly to nodes at more remote distances in the topology. In this way it is possible to
connect in the order of a few thousands of nodes through only a few switching stages. Buttery-,
-, or
shu�e-exchange networks are often employed in such systems.

As with SM-MIMD machines, a node may in principle contain any type of processor (scalar or vector) for
computation or transaction processing together with local memory (with or without cache) and, in almost
all cases, a separate communication processor with links to connect the node to its neighbours. Nowadays,
the node processors are mostly o�-the-shelf RISC processors sometimes enhanced by vector processors. A
problem that is peculiar to this DM-MIMD systems is the mismatch of communication vs. computation speed
that may occur when the node processors are upgraded, without also speeding up the intercommunication. In
many cases this may result in turning computational-bound problems into communication-bound problems.

1
By the \richness" of the interconnection structure we mean the number of links that connects each node to its neighbours.

So, in a 2-D grid the interconnection is less rich than in a crossbar where any processor is a neighbour to all others.

3 Recount of the (almost) available systems

In this section we give a recount of all types of systems as discussed in the former section. When of a
certain system various models are available, we will discuss them all at once. So, for instance, we will discuss
Convex systems under one entry, SM-MIMD systems, even if a one-processor model of such a system strictly
should be discussed under the SM-SIMD heading. We rather regard such systems a special cases of a general
product line.

3.1 Shared-memory SIMD systems

In this class only one system is still actively marketed demonstrating the fact that this type of machines
is only interesting for a rather small (but not unimportant) group of customers that have to do high-speed
production work with well vectorised codes.

3.1.1 The Hitachi S3600 series.

Machine type: Vectorprocessor.
Models: S3600/120, S3600/140, S3600/160, S3600/180.
Operating system: VOS3/HAP/ES (IBM MVS compatible) and OSF/1.
Compilers: FORT77/HAP vectorising Fortran 77.

System parameters:

Model S3600/120 S3600/140 S3600/160 S3600/180
Clock cycle VPU 4 ns 4 ns 4 ns 4 ns
Clock cycle scal. proc. 8 ns 8 ns 8 ns 8 ns

Theor. peak performance 0.25 Gop/s 0.5 Gop/s 1.0 Gop/s 2 Gop/s

Main memory 128{256MB 256{512MB 256{512MB 512{1024MB
Extended memory �6GB �16GB �16GB �16GB

Remarks:
The speed di�erences between the di�erent models stem from replication of the multiply/add pipe in the
models S3600/120{180. The /160 and /180 models have respectively two- and four-fold sets of a separate
add- and a multifunctional multiply/add vector pipes. This should lead to a maximum of 3 results per clock
cycle per pipe set. So, contrary to the information given by the vendor, the maximum performance of, e.g.,
the /180 should in some situations be 3 Gop/s instead of 2.
Note that the clock cycle of the scalar processor is twice that of the VPU. The memory bandwidth from the
memory from/to the CPU is 2 operands per clock cycle via 1 load and 1 load/store pipe per arithmetic pipe
set, which is somewhat less than optimal. It is not possible to load two operands and store one result in one
cycle. The /120 model lacks a separate load pipe, only a load/store pipe is present.
A unique feature of the S3600, as in its direct predecessor the S-820, is that all machines of the series are
air cooled. All other machines in this class relied at least on water cooling.
Unlike the S-820 series, the S3600 series is also marketed worldwide, not only in Japan. This is also the case
for the S3800 SM-MIMD machines 3.3.3.

Measured performances:
In [4] a speed of 851 Mop/s for the solution of a full linear system of order 1000 is reported for the S3600/160.
The S3600/180 attains a performance of 1672 Mop/s on the same problem.

3.2 Distributed-memory SIMD systems

3.2.1 The Alenia Quadrics.

Machine type: Processor array.
Models: Quadrics Qx, QHx, x = 1; 16.
Front-end: Almost any Unix workstation.
Operating system: Internal OS transparent to the user, Unix on front-end
Connection structure: 3-D mesh, (see remarks).
Compilers: TAO: a Fortran 77 compiler with some Fortran 90 and some proprietary array extensions.
Vendors information Web page: www.sede.enea.it/ hpcn/moshpce/quadr01e.html

System parameters:

Model Qx QHx
Clock cycle 40 ns 40 ns

Theor. peak performance
Per Proc. (32-bits) 50 Mop/s 50 Mop/s
Maximal (32-bits) 6.4 Gop/s 100 Gop/s

Memory �2 GB �32 GB

No. of processors 8{128 128{2048

Communication bandwidth
Per Proc. 50 MB/s 50 MB/s
Aggregate local �6 GB/s �96 GB/s
Aggregate non-local �1.5 GB/s �24 GB/s

Remarks:
The Quadrics is a commercial spin-o� of the APE-100 project of the Italian National Institute for Nuclear
Physics. Systems are available in multiples of 8 processor nodes in the Q-model where up to 16 boards can
be �tted into one create or in multiples of 128 nodes in the QH-model by adding up to 15 crates to the
minimal 1-crate system. The interconnection topology of the Quadrics is a 3-D grid with interconnections to
the opposite sides (so, in e�ect a 3-D torus). The 8-node oating-point boards (FPBs) are plugged into the
crate backplane which provides point-to-point communication and global control distribution. The FPBs
are con�gured as 23 cubes that are connected to the other boards appropriately to arrive at the 3-D grid
structure.
The basic oating-point processor, the so-called MAD chip, contains a register �le of 128 registers. Of these
registers the �rst two hold permanently the values 0 and 1 to be able to express any addition or multipli-
cation as a \normal operation", i.e., a combined multiply-add operation, where an addition is of the form,
a � 1 + b and a multiplication is a� b+ 0. In favourable circumstances the processor can therefore deliver
two oating-point operations per cycle. Instructions are centrally issued by the controller at a rate of one
instruction every two clock cycles.
Communication is controlled by the Memory Controller and the Communication Controller which are both
housed on the backplane of a crate. When the Memory Controller generates an address it is decoded by the
Communication Controller. In case non-local access is desired, the Communication Controller will provide
the necessary data transmission. The memory bandwidth per processor is 50 MB/s which means that every
2 cycles an operand can be shipped in or out a processor. The bandwidth for non-local communication turns
out to be only four times smaller than local memory access.
The Quadrics communicates with the front-end system via a T805 transputer-based interface system, called
the Local Asynchronous Interface (LAI). The interface can write and read the memories of the nodes and the
Controller. Presently, the bandwidth of the interface to the front-end processor is not very large (1 MB/s).
It is expected that this can be improved by about a factor of 30 in the near future. I/O has to be performed
via the front-end system and will therefore be relatively slow.
The TAO language has several extensions to employ the SIMD features of the Quadrics. Firstly, oating-
point variables are assumed to be local to the processor that owns them, while integer variables are assumed

to be global. Local variables can be promoted to global variables. Other extensions are the ANY, ALL, and
WHERE/END WHERE keywords that can be used for global testing and control. Processors that not meet a
global condition e�ectively skip the operation(s) that are associated with it. For easy referencing nearest-
neighbour locations special constants LEFT, RIGHT, UP, DOWN, FRONT, and BACK are provided. In addition,
new data types and operators on these data types are supported together with overloading of operators.
This enables very concise code for certain types of calculations.

Measured performances:
As yet, no performance �gures are available for the Quadrics systems.

3.2.2 The Cambridge Parallel Processing Gamma II.

Machine type: Processor array.
Models: Gamma II 1000, Gamma II 4000.
Front-end: Sun of HP; stand-alone for dedicated applications.
Operating system: Internal OS transparent to the user, Unix on front-end
Connection structure: 2-D mesh, row- and column datapaths (see remarks).
Compilers: FORTRAN-PLUS (a Fortran 77 compiler with some Fortran 90 and some proprietary array
extensions), C++.
Vendors information Web page: www.TechCentral.com.

System parameters:

Model Gamma II 1000 Gamma II 4000
Clock cycle 33 ns 33 ns
No. of processors 1024 4096

Theor. peak performance
Per Proc. (Mop/s) 1.2 1.2
1-bit Gop/s 30.7 122.8
8-bit Gop/s 30.7 122.8
Gop/s (32-bit) total 1.2 4.8

Program memory � 4 MB � 4 MB
Data memory � 32 MB � 128 MB

Int. comm. speed
Across row, column 120 MB/s 480 MB/s
Memory to PE 3.84 GB/s 15.4 GB/s

Remarks:
In November 1995 the new Gamma II models has been announced by CPP. In essence there is not much
di�erence with its predecessor the DAP Gamma. However, the clock cycle has tripled to 33 ns with an
equivalent rise in the peak performance of the systems.
The Gamma II is presented as the fourth generation of this type of machine. Indeed, the macro architecture
of the systems has hardly changed since the �rst ICL DAP (the �rst generation of this system) was conceived.
As in the ICL DAP in the Gamma 1000 models the 1024 processors are ordered in a 32 � 32 array, while
the Gamma 4000 has 4096 processors arranged in a 64� 64 square.
The systems are able to operate byte parallel on appropriate operands to speed up oating-point operations,
however, for logical operations bit-wise operations are possible, which makes the machines quite fast in this
respect. As the byte parallel code consists of separate sequences of microcode instructions, the bit processor
plane and the byte processor plane are in fact independent and can work in parallel. This is also the case
for I/O operations. Also character-handling can be done very e�ciently. This is the reason why Gamma
systems are often used for full text searches.
As in all processor-array machines, the control processor (called the Master Control Unit (MCU) in the
DAP) has a separate memory to hold program instructions while the data are held in the data memory
associated with each Processing Element (PE) in the processor array. So, for a Gamma 1000 with 32 MB
of data memory each PE has 32 KB of data memory directly associated to it. To access data in other PE's

memories these must be brought up to the data routing plane and shifted to the appropriate processor.

As already mentioned under the heading of the connection structure, there are two ways of connecting
the PEs. One is the 2-D mesh that connects each element to its North-, East-, West-, and South neighbour.
In addition there are row- and column data paths that enable the fast broadcast of a row or column to
an entire matrix by replication. Conversely, they can be used for row- or column wise reduction of matrix
objects into a column- or row vector of results from, e.g., a summing- or maximum operation.
Separate I/O processors and disk systems can be attached to the Gamma directly thus not burdening the
front-end machine (and the connection between front-end and DAP) with I/O operations and unnecessary
data transport. One of these I/O devices is the GIOC that can transport data to the data memory at a
sustained rate of 80 MB/s transposing the data to the vertical storage mode of the data memory on the y.
Also, a direct video interface is available to operate a frame bu�er.
A nice (non-standard) feature of the FORTRAN-PLUS compiler is the possibility to use logical matrices as
indexing objects for computational matrix objects. This enables a very compact notation for conditional
execution on the processor array. In addition, recently C++ is available.

Measured Performances:
In [5] the speed of matrix multiplication on various DAP models (precursors of the Gamma systems) is
analyzed. The documentation states 32-bit oating-point add speed of 1.68 Gop/s on 4096 PEs, while a
32-bit 1,024 complex FFT would attain 2.49 Gop/s. No independent performance �gures for the Gamma
II systems are available.

3.2.3 The MasPar MP-1.

Machine type: Processor array.
Models: MP1101, MP1102, MP1104, MP1208, MP1216.
Front-end: DECstation 5000 or DEC VAX.
Operating system: Internal OS transparent to the user, Ultrix or VMS on front-end.
Connection structure: 2-D mesh, crossbar (see remarks).
Compilers: MPL: (C with extensions), MPF: (Fortran 90-like with extensions).

System parameters:

Model MP1101 MP1102 MP1104 MP1208 MP1216
Clock cycle 83 ns 83 ns 83 ns 83 ns 83 ns
No. of processors 1024 2048 4096 8192 16384

Theor. peak performance
Per proc. (Mop/s) 0.034 0.034 0.034 0.034 0.034
Mop/s (32-bit) 1600 3200 6400 13000 26000
Mop/s (64-bit) 800 1600 3200 6400 13000
Mop/s (32-bit) 75 150 300 600 1200
Mop/s (64-bit) 34 69 138 275 550

Program memory 1{4MB 1{4MB 1{4MB 1{4MB 1{4MB
Data memory 16{64MB 32{128MB 64{256MB 128{512MB 256{1GB

Int. comm. speed
Via Xnet (n. neighbour) 1.4 GB/s 2.8 GB/s 5.7 GB/s 11.5 GB/s 23.0 GB/s
Via global router 80 MB/s 160 MB/s 320 MB/s 640 MB/s 1.28 GB/s

Remarks:
The Processing Elements (PEs) of the MP-1 are more intricate than those from the DAP Gamma II (3.2.2).
Each PE contains a 4-bit parallel Arithmetic/Logic Unit together with a 1-bit functional unit, a 16-bit
exponent unit and a 64-bit mantissa unit. These units may be operated separately or in concord (e.g., for
oating-point calculations). Because of the hardware implementation of the PEs, only 1-, 8-, 16-, 32-, and
64-bit data types are allowed.
Unlike on the DAP Gamma II, on the MP-1 it is possible to address data items in the data memories indi-

rectly. This greatly facilitates manipulation of matrix objects indexed through an index matrix.
One type of interconnection of the PEs is a 2-D rectangular mesh (with wrap-around). This is however
implemented by connecting the PEs diagonally via 3-way switches. As the setting of the switches only takes
1 cycle, this means that every PE can reach it 8 surrounding neighbours in 1 cycle. For more general routing
schemes a Global Router is available. This acts, in principle, as a three-stage crossbar. PEs are arranged
in clusters of 4 � 4, which connect to other clusters through the �rst level of the crossbar. All clusters
connect via an intermediate stage to the target stage (again at cluster level). The ports from the clusters
are multiplexed to the individual PEs within a cluster. As this type of communication is fairly intricate, it
is much slower than via the Xnet (see system parameter list above). As with the DAP Gamma II, there are
provisions for connecting a frame bu�er and/or disks directly to the MP-1. Also like the DAP, the MP-1 is
essentially a single-user machine, that is, only one user at a time can have a task on the MP-1. Of course,
tasks can be scheduled via a multi-user interface on the front-end system.
The MP-1 features a very nice X-window based programming environment, MPPE, which integrates an
interactive source debugger, a pro�ler, and output windows in one environment.

Measured Performances:
In [4] the solution of a full linear system was reported on a 16384 PE machine with a speed of 440 Mop/s.
The same report estimated the peak performance to be 580 Mop/s in 64-bit precision.

3.2.4 The MasPar MP-2.

Machine type: Processor array.
Models: MP2201, MP2202, MP2204, MP2208, MP2216.
Front-end: DECstation 5000 or DEC VAX.
Operating system: Internal OS transparent to the user, Ultrix or VMS on front-end.
Connection structure: 2-D mesh, crossbar (see remarks).
Compilers: MPL: (C with extensions), MPF: (Fortran 90-like with extensions).

System parameters:

Model MP2201 MP2202 MP2204 MP2208 MP2216
Clock cycle 80 ns 80 ns 80 ns 80 ns 80 ns
No. of processors 1024 2048 4096 8192 16384

Theor. peak performance
Per proc. (Mop/s) 0.15 0.15 0.15 0.15 0.15
Mop/s (32-bit) 4250 8500 17000 34000 68000
Mop/s (64-bit) 2100 4250 8500 17000 34000
Mop/s (32-bit) 400 800 1600 3200 6300
Mop/s (64-bit) 150 300 600 1200 2400

Program memory 1{4MB 1{4MB 1{4MB 1{4MB 1{4MB
Data memory 64MB 128MB 256MB 512MB 1GB

Int. comm. speed
Via Xnet (n. neighbour) 1.25 GB/s 2.5 GB/s 5.0 GB/s 10.0 GB/s 20.0 GB/s
Via global router 80 MB/s 160 MB/s 320 MB/s 640 MB/s 1.28 GB/s

Remarks:
Apart from being roughly 2.5 times faster than the MasPar MP-1 (3.2.4), there is little di�erence between
the MP-2 and the MP-1. The gain in speed relative to the MP-1 is accomplished by using a processor with
a higher degree of bit-parallelism. This resulted in a higher performance at the expense of the number of
data formats: only 32-bit and 64-bit data are allowed on the MP-2.
MasPar will market both the MP-1 and MP-2. In the view of the company there is a market for both. With
a �xed budget one can make a choice for a system with larger memory, but slower or a faster system with a
smaller memory. Software and tools are exactly the same for both types of machines.

Measured Performances:
[4] reports a speed of 1.6 Gop/s to solve a 11,264 order linear system on 16,384 processors.

3.3 Shared-memory MIMD systems

For some systems in this category it will not always be possible to discuss all models of a particular product
line because the number of con�gurations is simply too large. However, we attempt to give the representative
con�gurations for such systems. In addition, when single-processor versions of a certain machine are available,
this is regarded as a special case of a multi-processor version and the one-processor versions are omitted
from section 3.2 where they could have been treated.

Furthermore, we have included systems here that have a shared-memory model as a basis but that may
be extended by coupling several of these systems together in a distributed memory way. The distinction
is not always very clear when looking at the end product: a multi-frame DEC AlhpaServer (3.3.2) and
an HP/Convex SPP-2000(3.4.8) look very much alike. The di�erence lies in the integration. In the latter
machine the distributed memory extension of multi-CPU nodes was a basis for the architecture while in the
former DEC system it is more like an added feature.

3.3.1 The Cray Research Inc. Cray J90-series, T90 series.

Machine type: Shared-memory multi-vectorprocessor.
Models: Cray J90, T90.
Operating system: UNICOS (Cray Unix variant).
Compilers: Fortran, C, C++, Pascal, ADA.
Vendor information Web page: www.cray.com.

System parameters:

Model Cray J90 Cray T90
Clock cycle 10 ns 2.2 ns

Theor. peak performance
Per processor 200 Mop/s 1.8 Gop/s
Maximal 6.4 Gop/s 58Gop/s

Main memory �4 GB �8 GB

Memory bandwidth
Single proc. bandwidth 1.6 GB/s 24 GB/s

No. of processors 4{32 1{32

Remarks:
Cray Research Inc. (CRI) has recently been taken over by Silicon Graphics (SGI) but for the next few years
Cray will maintain separate product lines from SGI. Here we discuss the Cray-inherited vector systems.
Cray supports at this moment 3 product lines (apart from the SuperSparc-based CS6400 which is targeted to
the commercial market and is not discussed in this report). Two of these are multi-headed vector processors
which are discussed here. The third is the T3E, a DM-MIMD machine that will be described in section
3.4.4.
The Cray J90 series is the entry level model announced in September 1994. The J90 series is based on
CMOS technology which has a low power consumption (all J90s are air cooled) and low production costs.
The machine is binary compatible with the high-end systems. It has one multiply and add vector pipe set per
CPU at a clock cycle of 10 ns which results in a theoretical peak performance of 200 Mop/s. Furthermore,
a cache has been added to speed up scalar processing (as in the Convex C4 series, see 3.3.4). It is interesting
to note that the strategy of using more (four) multi-functional pipes as in the predecessor, the Y-MP EL
has been left again to return to the classic two-pipe/CPU design.
The Cray T90 series is built in ECL logic and has therefore a much lower clock cycle (2.2 ns) and corre-
spondingly faster SRAM memory. As its direct predecessor, the Cray C90, every CPU contains two vector
add and multiply pipes. This gives rise to a maximum of 4 oating-point results/clock cycle/CPU equivalent
to a theoretical peak performance of 1.8 Gop/s per CPU or 58 Gop/s for a maximal system.
The Cray T90 machines are at this moment the only ones with a memory bandwidth as seems optimal for
vector processors: two operands can be loaded and one result can be stored in one cycle for each pipe set.
For the T90 this meant that the relative bandwidth has to be 48 bytes/cycle/CPU. This has indeed been

accomplished and observed results indicate that for the T90 the performance scales up with the clock cycle
and the number of functional units (see measured performances below). For the J90 series the bandwidth is
lower: 16 bytes/cycle. This is regrettably less than was available in its predecessors, the Y-MP EL machines,
and it might adversely a�ect the e�ciency.
Another property that is unique for the Cray T90 systems is that they do not have a separate scalar processor
but that scalar- and vector code have to share the same functional units. However, a small scalar cache is
added to speed up scalar calculations. The Cray J90 series has separate scalar processors. Theoretically,
the absence of separate scalar processors might impair the throughput speed (Hitachi (3.3.3) even adds an
extra scalar processor in the S-3800 series to combat excessive context switching). However, in practice the
drawbacks seem rather limited.
Contrary to earlier high-end Cray systems, the T90 now features compatibility with the IEEE 754 oating-
point standard. Formerly, Cray-speci�c oating-point arithmetic was employed which could give rise to
problems in data exchange with other systems and in di�erent computational results due to the di�erence
in arithmetic.

Measured Performances:
On the T90 in [4] a speed of 29.4 Gop/s was found on a 32 processor machine for the solution of an order
1000 dense linear system. For a J90 series machine with 32 processors a speed of 4.486 Gop/s was observed
for the same problem, which amounts to e�ciencies of 51 and 70% for the T90 and the J90, respectively.

3.3.2 The Digital Equipment Corp. AlphaServer.

Machine type: RISC-based distributed-memory multi-processor.
Models: AlphaServer 8200 5/440, 8400 5/440, 8400 Cluster.
Operating system: Digital Unix (DEC's avour of Unix).
Connection structure: Crossbar (see remarks).
Compilers: Fortran 77, HPF, C, C++.
Vendors information Web page: www.digital.com:80/info/hpc.

System parameters:

Model 8200/440 8400/440 Cluster
Clock cycle 2.3 ns 2.3 ns 2.3 ns

Theor. peak performance
Per proc. (64-bit) 875 Mop/s 875 Mop/s 875 Mop/s
Maximal (64-bit) 5.25 Gop/s 10.5 Gop/s 84 Mop/s

Main memory �6 GB �14 GB �36 GB

Memory bandwidth
Processor/memory 1.6 GB/s 1.6 GB/s 1.6 GB/s
Between cluster nodes | | 100 MB/s

No. of processors 6 12 96

Remarks:
The AlphaServers are symmetric multi-processing systems which are based on the Alpha 21164A processor.
The 8200 model is a somewhat smaller copy of the 8400 model: in the 8200 a maximum of 6 CPUs can be
accomodated while this number is 12 for the 8400 model. Also, there is room for at most 6 GB of memory in
the 8200 while the 8400 can house 14 GB. However, the amount of CPUs and memory is not independent.
For instance, the 8400 has 9 system slots. One of these is reserved for I/O and one will have to contain at
least one CPU module which can contain 1 or 2 CPUs. From the remaining slots 6 can be used either for
memory or for a CPU module. So, one has to choose for either higher computational power or for more
memory. This can potentially be a problem for large applications that require both.
AlphaServers can be clustered using PCI-Memory Channel link cables that are connected to a hub. The
systems need not be of the same model. The bandwidth of this interconnect is slightly over 100 MB/s. Up
to eight systems can be coupled in this way. To support this kind of cluster computing, HPF and optimised
versions of PVM and MPI are available.

Measured Performances:
As yet, only single system results for the AlphaServer 8400 are available. No cluster results are known. In
[4] a speed of 6.7 Gop/s for an 12-processor system are reported for the solution of a dense linear system
of order 9548.

3.3.3 The Hitachi S3800 series.

Machine type:Vectorprocessor.
Models: S3800/x60, S3800/y8z; x = 1; 2 y = 1; 2; 4 z = 0; 2.
Operating system: VOS3/HAP/ES (IBM MVS compatible) and OSF/1.
Compilers: FORT77/HAP vectorising Fortran 77.

System parameters:

Model S3800/x60 S3800/y8z
Clock cycle VPU 2 ns 2 ns
Clock cycle scal. proc. 6 ns 6 ns

Theor. peak performance 4{8 Gop/s 8{32 Gop/s

No. of processors
Scalar 1{2 1{4
Vector 1{2 1{4

Main memory 256{1024MB 512{2048MB
Extended memory �16GB �32GB

Remarks:
The S3800 is the current top-end system of Hitachi's S-3000 series. Five di�erent models are o�ered: The
160 and the 260 in which the 260 is simply the 2-CPU version of the 160. Furthermore, there is a sub-series
180, 280, and 480, of which the 280 and 480 are again 2-CPU and 4-CPU versions of the 180. However, in
addition, there is a model 182 with 2 scalar processors and 1 vector processor as is o�ered in the former
Fujitsu VPX200 series and for the same reason: context switching delay between jobs should be reduced
by this scheme. The smallest model, the S-3800/160 has 4 multi-functional multiply/add pipes which may
deliver up to 8 results per clock cycle. This is equivalent to 4 Gop/s. In the /180 the number of pipes is
doubled to 8 with a corresponding peak performance of 8 Gop/s. All models feature one or more separate
divide pipes. As the multi-headed systems can work in parallel, the top model, the S-3800/480, may theo-
retically attain a speed of 32 Gop/s.
Hitachi now delivers an auto-parallelising compiler, which features parallelising compiler directives similar
to those of Cray and NEC. The OSF/1 system can be run under the MVS-like VOS3/HAP/ES, but it can
also be run as a native operating system.

Measured Performances:
The �rst S3000 system, a S3800/480, was installed in January 1993 at the University of Tokyo. Tests with
the EuroBen benchmark were done on this system in July-September 1993. During these tests a speed of 5.7

Gop/s was observed for the evaluation of a 9th degree polynomial on a single processor. In matrix-vector
multiplication, speeds of 6.5 Gop/s on one processor were measured (see [17, 18]). In [4] a speed of 28.4
Gop/s on 4 processors is reported for the solution of an order 15,500 dense linear system. The e�ciency is
here 89%.

3.3.4 The HP/Convex C4600 series.

Machine type: Shared-memory multi-vectorprocessor.
Models: C46x0, x = 1; : : : ; 4
Operating system: ConvexOS (Convex's Unix variant).
Compilers: Fortran, C, C++, ADA, Lisp.
Vendors Information Web page: www.convex.com/prod serv/prod serv.html.

System parameters:

Model C4600
Clock cycle 7.41 ns

Theor. peak performance

Per proc. (64-bit prec.) 810 Mop/s
Per proc. (32-bit prec.) 1620 Mop/s
Maximal, 64-bit precision 3240 Mop/s
Maximal, 32-bit precision 6480 Mop/s

No. of processors 1{4

Main memory �4GB

Memory bandwidth

Single proc. bandwidth 1080 MB/s

Remarks:
In November 1995 Convex Computer Corp. has become a subsidiary of Hewlett Packard. This has, at least
for the moment no impact on the products that are marketed by HP/Convex. Both the vectorprocessors and
the Exemplar SPP series (see section 3.4) will stay on the market. The C4600 series is the fourth generation
of vectorprocessors from Convex. Unlike in the former C3800 series, with a maximum of 8 processors, the
highest number of processors is four in the C4640 model. A major di�erence with the former generations is
that more functional unit sets per CPU are present: six general purpose functional units. This brings the
number of oating-point results per cycle to 6 in the ideal case. Because the oating-point units are general
the opportunities for linking or independent processing are increased with respect to specialised multiply
and add pipes which increases the scheduling density of operations. In addition, some logical operations can
be done in the functional units which enables 32-bit convolutions to be done in excess of 1 Gop/s (this is
called the \extended architecture" in Convex jargon).
As in the former C3400 and C3800 GaAs components are used to arrive at the cycle time of 7.41 ns. Also
like in these former models, there is di�erence in speed of a factor of two between single precision (32 bits)
and double precision (64 bits) calculations.
As for the Convex Exemplar SPP-2000 (see 3.4.8) an "application compiler" is available that is capable
of interprocedural analysis. This can greatly enhance the vectorisability of some codes and in general is
bene�cial in optimising large codes.

Measured performances:
Traditionally, Convex systems are able to obtain a signi�cant fraction of their theoretical peak performance.
The C4600 proves to be no exception: on one processor the solution of a dense linear system of order
N = 1000 shows a speed of 683 Mop/s on one processor for 64-bits precision and of 1320 Mop/s on a
C4620. At 32-bits precision speeds of resp. 1227 and 2252 Mop/s were found on the C4610 and the C4620.
In [4] a speed 1.933 Gop/s out of 3.24 Gop/s at maximum is reported.

3.3.5 The NEC SX-4.

Machine type: Distributed-memory multi-vector processor.
Models: SX-4C, SX-4.
Operating system: EWS-UX/V (Unix variant based on Unix System V.4).
Connection structure: Multi-stage crossbar (see Remarks).
Compilers: Fortran 77, Fortran 90, HPF, ANSI C, C++.
Vendors information Web page: www.nec.co.jp/english/product/computer/sx.

System parameters:

Model SX-4Ce SX-4C SX-4
Clock cycle 8 ns 8 ns 8 ns

Theor. peak performance
Per Proc. (64 bits) 1 Gop/s 2 Gop/s 2 Gop/s
Single frame:
Maximal (64 bits) 1 Gop/s 8 Gop/s 64 Gop/s
Multi frame: Maximal (64 bits) | | 1 Top/s

Main memory < 2 GB < 2 GB < 128 GB

Communication bandwidth
(see Remarks) | | |

No. of processors 1 1{4 4{512

Remarks:
The SX-4 series is comprised of a large range of machine sizes. The smallest of these is the SX-4Ce. This
machine has one CPU housing 4 vector pipe sets. As the clock cycle is 8 ns and each pipe set is able to
deliver 2 oating-point results per cycle, the total maximum performance is 1 Gop/s for this system. In all
other systems the replication factor of the pipe sets is 8 which doubles the speed per CPU to a maximum
of 2 Gop/s. The bandwidth from memory to the CPUs is 16 64-bit words per cycle per CPU. With a
replication factor of 8 this is enough to provide two operands per pipe set but it is not su�cient to transport
the results back to the memory at the same time. So, some trade-o�s with the re-use of operands have to
be made to attain the peak performance.
The technology used is CMOS. This lowers the fabrication costs and the power consumption appreciably
(the same approach is being used in the Fujitsu VPP700, (see 3.4.6) and all models are air cooled. This
enables the placement of up to 32 CPUs in one frame (for the SX-4 model). Beyond this maximum single
frame system, it is possible to couple up to 16 frames together to form a distributed memory system. This is
equivalent to the AlphaServer cluster idea (see 3.3.2). There are two ways to couple the SX-4 frames: NEC
provides a full crossbar, the so-called IXS crossbar, to connect the various frames together at a speed of
16 GB/s for point-to-point out-of-frame communication (128 GB/s bi-sectional bandwidth for a maximum
con�guration). In addition, a HiPPI interface is available for interframe communication at lower cost and
speed.
For distributed computing there is an HPF compiler and for message passing an optimised MPI (MPI/SX) is
available. The SX-4 is the only system that supports three oating-point number systems: IBM-compatible,
Cray-compatible, and the IEEE 754 standard.

Measured Performances:
In [4] a speed of 60.7 Gop/s was reported for the solution of a full linear system of order 10000 on a
32-processor con�guration.

3.3.6 The Tera MTA

Machine type: Distributed-memory multi-processor.
Models: MTA.
Operating system: Unix BSD4.4 + proprietary micro kernel.
Compilers: Fortran 77 (Fortran 90 extensions), HPF, C, C++.
Vendors information Web page: www.tera.com.

System parameters:

Model MTA-xC
Clock cycle < 3 ns

Theor. peak performance
Per proc. (64-bit) 1 Gop/s
Maximal (64-bit) 256 Gop/s

Main memory �512 GB

Memory bandwidth
CPU-to-memory > 8 GB/s
Bisectional (256 proc.) 1747 GB/s

No. of processors 16{256

Remarks:
Although the memory in the MTA is physically distributed, the system is emphatically presented as a shared
memory machine (with non-uniform access time). The latency incurred in memory references is hidden by
multi-threading, i.e., usually many concurrent program threads (instruction streams) may be active at any
time. Therefore, when for instance a load instruction cannot be satis�ed because of memory latency the
thread requesting this operation is stalled and another thread of which an operation can be done is switched
into execution. This switching between program threads only takes 1 cycle. As there may be up to 128
instruction streams and 8 memory references can be issued without waiting for preceding ones, a latency of
1024 cycles can be tolerated. References that are stalled are retried from a retry pool. A construction that
worked out similarly was found in the Stern Computing Systems SSP machines (see 4).

The connection network connects a 3-D cube of p processors with sides of p
1

3 of which alternately the x-
or y axes are connected. Therefore, all nodes connect to four out of six neighbours. Furthermore, there is
an I/O port at every node. Each network port is capable of sending and receiving a 64-bit word per cycle
which amounts to a bandwidth of 22.6 GB/s per port. In case of detected failures, ports in the network can
be bypassed without interrupting operations of the system.
Although the MTA should be able to run \dusty-deck" Fortran programs because parallelism is automati-
cally exploited as soon as an opportunity is detected for multi-threading, it may be (and often is) worthwhile
to explicitly control the parallelism in the program and to take advantage of known data locality occur-
rences. MTA provides handles for this in the form of library routines, including synchronisation, barrier,
and reduction operations on de�ned groups of threads. Controlled and uncontrolled parallelism approaches
may be freely mixed. HPF will also be supported for SPMD-style programming.
A �rst system has been ordered by the University of California at San Diego for evaluation.

Measured Performances:
A prototype Tera system is evaluated now but no independent performance information is available presently.

3.4 Distributed-memory MIMD systems

In particular for this class of systems we cannot claim completeness of this overview. This has two reasons:
First, at present this is the most dynamic area of development of new machines and it is quite probable that
already new systems appear on the market while this report goes to print. This in no way implies that the
systems not mentioned here should be in any way inferior to the ones that appear in this section. It is rather
felt that many of these systems are in some sense equivalent and listing (almost) all of the systems would
be counterproductive in the sense that the descriptions of the systems might lead to confusion.

For distributed-memory MIMD machines obviously the internode bandwidth and latency are very important
system parameters. Unfortunately, it is very hard to come by reliable �gures for these parameters. Therefore,
we only can state the internode bandwidth point-to-point for the majority of systems, not for all. Where
we do not have these �gures we give the aggregate bandwidth which is less informative but better than
nothing. We were not able to give latency �gures for the systems for two reasons: manufacturers mostly
state hardware latencies which, regrettably, does not say very much about the actual latency, except that
the hardware latency is a guaranteed lower bound. The second reason is that the actual (software) latency,
even if known at some point in time, decreases very fast, as better implementation of the communication
software occurs continuously. Therefore, stating �gures for this system parameter is next to useless at the
moment even when very much desired.

3.4.1 The Avalon A12.

Machine type: RISC-based distributed-memory multi-processor.
Models: Avalon A12.
Operating system: AVALON micro kernel based Unix (Image compatible with Digital Unix).
Connection structure: Multistage variable (see remarks).
Compilers: Fortran 77, Fortran 90, HPF, ANSI C.
Vendors information Web page: www.Teraflop.com
System parameters:

Model A12
Clock cycle 3.3 ns

Theor. peak performance
Per proc. (64-bit) 600 Mop/s
Maximal (64-bit) |

Memory/node |
Memory (maximal) |

Communication bandwidth
Point-to-point 128{400 MB/s
Bisectional (full system) |

No. of processors |

Remarks:
The Avalon technical documentation is not entirely helpful in providing complete information with regard
to system con�gurations. Therefore the list of system parameters above is somewhat incomplete. The A12
will be based on the DEC Alpha 21164 RISC procesor. This processor has a clock cycle of 3.3 ns. Because
the Alpha 21164 has dual oating-point arithmetic pipes it will deliver a theoretical peak performance of 600
Mop/s. The total performance of the system, however, cannot be speci�ed because the maximum number
of processors is not given. In addition to the usual �rst and second level cache that reside on chip, a 1 MB
third level cache is provided on each A12 CPU card. The bandwidth to/from the �rst level cache is su�cient
to transport two operands to the CPU and to ship one result back in one cycle. The second level cache has
two-thirds of is bandwidth, while the third level cache has the capability of providing an 64-bit word every
two cycles. The bandwidth to/from memory is 400 MB/s or one 64-bit word every 6 cycles. The memory
has two-way interleaved banks but the size of the memory is not speci�ed in the documentation.
Each CPU card contains a Alpha 21164 processor, the third level or B cache and the local memory for
that node. Twelve CPU cards can be housed in a crate which has a full crossbar backplane. This yields

a internode bandwidth of slightly under 400 MB/s between the cards within one crate. Apart from the 12
slots for CPU cards, there are two extra dual channel slots that can accomodate communication cards that
provide the connections with other crates. For the in-crate crossbar CMOS technology is used. However,
for the intercrate connections ECL logic is employed. The actual connections between crates are made by
coaxial cables. This way of connection provides a large exibility in the overall interconnection topology:
one could build trees or toruses or a secondary level crossbar (is the last case, one crate should be �lled
entirely with communication cards to build a 144-processor system). The communication speed between
crates is less fast (but still respectable): 128 MB/s.
I/O can be con�gured in various ways: It is possible to put 32-bit or 64-bit PCI expansion cards on each CPU
card to obtain what Avalon calls \Type 1 I/O nodes". Also, a direct switch connection via a variant of the
communication card can be made to the outside world. Depending on the number of cards the bandwidth is
400 or 800 MB/s for this type 3 I/O node. The type 2 I/O node is in fact a dedicated TCP/IP connection
as needed for the control workstation as required by the system.

Measured Performances:
A A12 was said to be sold by the end of 1996 although Avalon was not willing to reaveal its customer, nor
were any performance �gures available.

3.4.2 AxilSCC system

This system is identical to the Kongsberg Informasjonskontroll SCALI system. The reader is referred to
section 3.4.11

3.4.3 The C-DAC PARAM 9000/SS.

Machine type: RISC-based distributed-memory multi-processor.
Models: P9S/4{P9S/200.
Operating system: PARAS 9000/SS (Mach-like micro-kernel).
Connection structure: Multistage crossbar.
Compilers: Fortran 77, Fortran 90, HPF, ANSI C, C++.

System parameters:

Model P9S
Clock cycle 16.6 ns

Theor. peak performance
Per proc. (64-bit) 60 Mop/s
Maximal (64-bit) 12 Gop/s

Memory/node �128 MB
Memory (maximal) �25.6 GB

Communication bandwidth
Point-to-point 10{40 MB/s
Bisectional (full system) 3.2 GB/s

No. of processors 4{200

Remarks:
The PARAM 9000/SS is the third generation of systems that is produced by C-DAC, the Centre for Devel-
opment of Advanced Computing, an institute in India that has as its mission to develop and manufacture
\state-of-the-art open architecture supercomputers". This system, however, is the �rst one to be marketed
abroad. The machine is based on the Sun SuperSparC II as a processing node. The nodes are connected by
a multistage crossbar with dynamically adaptive wormhole routing which is highly useful in terms of fault-
tolerance. The point-to-point bandwidth is 10 MB/s per link. With a maximum of 4 links this bandwidth
can be scaled up to 40 MB/s. The bisectional bandwidth for a full 200-node system is a very respectable
3.2 GB/s. For every four compute nodes one I/O node can be con�gured for distributed I/O.
The amount of available software shows that the PARAM 9000/SS is not a �rst-generation system. Apart

from Fortran 77, Fortran 90, HPF, and C++, the CORE, MPI, and PVM message passing interfaces are
available. There is a parallel debugger, a proprietary performance evaluation tool called AIDE, while TO-
TALVIEW can be delivered at request.
In addition, a library of parallel routines, PARUL, is available. This library contains PVM versions of dense
linear algebra routines, eigenvalue routines, and FFTs.

Measured Performances:
No measured performances of the PARAM 9000/SS are available. The performance of the computing node
is rather optimistically estimated to be 60 Mop/s for a 60 MHz processor. It is not very likely that the
processing node will attain even half of this performance in practice. Even then, the system could be quite
interesting in terms of price/performance.

3.4.4 The Cray Research Inc. T3E.

Machine type: RISC-based distributed-memory multi-processor.
Models: T3E.
Operating system: UNICOS MAX (micro-kernel Unix).
Connection structure: 3-D Torus.
Compilers: CFT77 M (Fortran 77 with extensions), C.
Vendors information Web page: www.cray.com/PUBLIC/T3E/.
System parameters:

Model T3E T3E-900

Clock cycle 3.3 ns 2.2 ns

Theor. peak performance
Per proc. (64-bit) 600 Mop/s 900 Mop/s
Maximal (64-bit) 1229 Gop/s 1843 Gop/s

Main memory �4096 GB �4096 GB
Memory/node � 2 GB � 2 GB

Communication bandwidth 300 MB/s 300 MB/s

No. of processors 16{2048 6{2048

Remarks:
The T3E is the second generation of DM-MIMD systems from CRI. Lexically, it follows in name after its
predecessor T3D which name referred to its connection structure: a 3-D torus. In this respect it has still
the same interconnection structure as the T3D. In many other respects, however, there are quite some dif-
ferences. A �rst and important di�erence is that no front-end system is required anymore (although it is
still possible to connect to a Cray T90). The systems up to 128 processors are air-cooled. The larger ones,
from 256{2,048 processors, are liquid cooled.
The T3E uses the DEC Alpha 21164 RISC processor for the T3E and the 21164A processor for the T3E-
900 for its computational tasks just like the Avalon A12. Cray stresses, however, that the processors are
encapsulated in such a way that they can be exchanged easily for any other (faster) processor as soon as
this would be available without a�ecting the macro-architecture of the system.
Each node in the system contains one processing element (PE) which in turn contains a CPU, memory, and
a communication engine that takes care of communication between PEs. The bandwidth between nodes is
quite high: 300 MB/s. Like the T3D, the T3E has hardware support for fast synchronisation. E.g., barrier
synchronisation takes only one cycle per check.
In the microarchitecture most changes have taken place with the transition from the T3D to the T3E. First,
there is only one CPU per node instead of two, which removes a source of asymmetry between processors.
Second, the new node processor has a 96 KB 3-way set-associative secondary cache which may relieve some
of the problems of data fetching that were present in the T3D where only a primary cache was present.
Third, the Block Transfer Engine has been replaced by a set of E-registers that are believed to be much
more exible and at least removes some odd restrictions on the size of shared arrays and the number of
processes when using Cray-speci�c PVM. An interesting additional feature is the availability of 32 contexts
per processor which opens the door for multiprocessing.

In the T3D all I/O had to be handled by the front-end, a system at least from the Cray Y-MP/E class. In the
T3E distributed I/O is present. For every 8 PEs an I/O channel can be con�gured in the air-cooled systems
and 1 I/O channel per 16 nodes in the liquid-cooled systems. The maximum bandwidth for a channel is
about 1 GB/s, the actual speed will be in the order of 700 MB/s.
The T3E supports various programming models. Apart from PVM 3.x and MPI for message passing and
HPF for data distribution, a Cray proprietary work sharing model, called CRAFT, can be employed. Cray
views HPF and Fortran 90 array syntax as subsets of the CRAFT model. Within this model data can be
exchanged implicitly, thus looking e�ectively as a shared-memory system to the user. As several other ven-
dors, Cray has extended/altered the implementation of PVM to enhance the communication performance.
For small messages this can give an improvement of a factor 3 (20{25 �s instead of 70{80 �s). For SPMD
programs channel send/receive functions can be used which reduces the communication time to 4{5 �s.

Measured Performances:
In [4] a speed of 93.2 Gop/s is quoted for solving a dense linear system of size 53,644 on 256 processors.

3.4.5 The Fujitsu AP3000.

Machine type: RISC-based distributed-memory multi-processor.
Models: AP3000.
Operating system: Solaris 2.5.1 (Sun's Unix variant).
Connection structure: 2-D torus.
Compilers: Parallel Fortran/AP, Fortran 90, HPF, C, C++.
Vendors information Web page:
www.fujitsu.co.jp/hypertext/newss/1996/Mar7-e.html

System parameters:

Model AP3000
Clock cycle 5 ns

Theor. peak performance
Per proc. (64-bit) 400 Mop/s
Maximal (64-bit) 81.9 Gop/s

Main memory �2 TB
Memory/node �2 GB

Communication bandwidth
Point-to-point 200 MB/s
(bi-directional)

No. of processors 4{2048

Remarks:
The AP3000 is the succesor of the earlier AP1000 system. Although the name could suggest otherwise, few
characteristics of the AP1000 have been retained except that Sun Sparc processors are used in the nodes.
No front-end processor is required anymore as in the former system.
Also the communication network has been simpli�ed considerably with respect to that in the earlier model:
where three di�erent networks were present in the AP1000 (see [10]), in the AP3000 the nodes are connected
in a 2-D torus structure with a bi-directional bandwidth of 200 MB/s. The maximum amount of memory is
huge: as every node can harbour 2 GB of main memory, a full 1024 node system can accomodate 2 TB.
Another di�erence with the AP1000 system is that the fastest nodes (the (U200 nodes decribed here) can
have either 1 or 2 CPUs as opposed to only one CPU in the AP1000. The two CPUs share the on-board
memory.
The available software for the AP3000 is extensive: Parallel Fortran/AP is a Fortran 77 with extensions
that o�ers a shared memory-like programming model for the system. In addition, HPF is available and the
machine can also be used with a message passing model as customised MPI/AP and PVM/AP are o�ered.
As sequential languages to be used with the message passing libraries Fortran 90, C and C++ are available.

Measured Performances:
The system has been announced in March 1996 but as yet no performance �gures are known.

3.4.6 The Fujitsu VPP series.

Machine type: Distributed-memory vector multi-processor.
Models: VX, VPP300, VPP700.
Operating system: UXP/V (a V5.4 based variant of Unix).
Connection structure: Distributed crossbar.
Compilers: Fortran 90/VP (Fortran 90 Vector compiler), Fortran 90/VPP (Fortran 90 Vector Parallel
compiler),C/VP (C Vector compiler), C, C++.
Vendors information Web page:
www.fujitsu.co.jp/hypertext/Products/Info process/hpc/vx-e/.

System parameters:

Model VX VPP300 VPP700
Clock cycle 7 ns 7 ns 7 ns

Theor. peak performance
Per proc. (64-bit) 2.28 Gop/s 2.28 Gop/s 2.28 Gop/s
Maximal (64-bit) 9.2 Gop/s 36.5 Gop/s 583.6 Gop/s

Main memory �8 GB �32 GB �512 GB
Memory/node �2 GB �2 GB �2 GB

Memory bandwidth
Memory banwidth/proc. 18.2 GB/s 18.2 GB/s 18.2 GB/s
Communication bandwidth Point-to-point 570 MB/s 570 MB/s 570 MB/s

No. of processors 1{4 1{16 8{256

Remarks:
The VPP300 is a sucessor to the earlier VPP500. It is a much cheaper CMOS implementation of its prede-
cessor with some important di�erences. First, no VPX200 front-end system is required anymore. Second, the
crossbar that is used to connect the vector nodes is distributed. Therefore, the cost of a system is scalable:
one does not need to buy a complete enclosure with the full crossbar for only a few nodes. The VX series is
in fact a smaller version of the VPP300 with a maximum of 4 processors. Both the VX machines and the
larger VPP300 systems are air-cooled.
The architecture of the VPP300 nodes is almost identical to that of the VPP500: Each node, called a Pro-
cessing Element (PE) in the system is a powerful (2.28 Gop/s peak speed with a 7 ns clock) vector processor
in its own right. The vector processor is complemented by a RISC scalar processor with a peak speed of
285 Mop/s dependent. The scalar instruction format is 64 bits wide and may cause the execution of three
operations in parallel. Each PE has a memory of up to 2 GB while a PE communicates with its fellow PEs
at a point-to-point speed of 570 MB/s. This communication is cared for by separate Data Transfer Units
(DTUs). To enhance the communication e�ciency, the DTU has various transfer modes like contiguous,
stride, sub array, and indirect access. Also translation of logical to physical PE-ids and from Logical in-PE
address to real address are handled by the DTUs. When synchronisation is required each PE can set its
corresponding bit in the SR. The value of the SR is broadcast to all PEs and synchronisation has occurred
if the SR has all its bits set for the relevant PEs. This method is comparable to the use of synchronisation
registers in shared-memory vector processors and much faster than synchronising via memory.
The VPP700 is a logical extension of the Fujitsu VPP300. While the processors in the latter machine are
connected by a full crossbar, the maximum con�guration of a VPP700 consists of 16 clusters of 16 processors
connected by a level-2 crossbar. So, a fully con�gured VPP700 consists in fact of 16 full VPP300s. Because
the diameter of the network is 2 (for the larger con�gurations) instead of 1 as in the VPP300, the communi-
cation time between processors will be slightly larger. At the moment this worst case increase is not exactly
known to the author.
The Fortran compiler that comes with the VPP300/700 has extensions that enable data decomposition by
compiler directives. This evades in many cases restructuring of the code. The directives are di�erent from
those as de�ned in the High Performance Fortran Proposal but it should be easy to adapt them. Further-
more, it is possible to de�ne parallel regions, barriers, etc., via directives, while there are several intrinsic

functions to enquire about the number of processors and to execute POST/WAIT commands. Furthermore,
also a message passing programming style is possible by using the PVM or PARMACS communication li-
braries that are available.
Of course the software for the VPP700 and the VPP300 is exactly the same and the systems can run each
others executables.

Measured performances:
In [4] results for the VX, the VPP300, and the VPP700 are given. The speed for solving dense linear system
of sizes 28,800 59,200, and 100,820 was 8.6, 34.1, and 94.3 Gop/s on a 4 proc. VX, a 16 proc VPP300, and
a 46 proc. VPP700 respectively.

3.4.7 The Hitachi SR2201 system.

Machine type: RISC-based distributed memory multi-processor.
Models: SR2201.
Operating system: HI-UX/MPP (Micro kernel Mach 3.0).
Connection structure: Hyper crossbar.
Compilers: Fortran 77, Fortran 90, Parallel Fortran, HPF, C, C++.
Vendors information Web page: www.hitachi.co.jp/Prod/comp/hpc/index.html.

System parameters:

Model SR2201
Clock cycle 6.7 ns

Theor. peak performance
Per proc. (64-bit) 300 Mop/s
Maximal (64-bit) 307 Gop/s

Main memory �256 GB
Memory/node �256 MB

Communication bandwidth
Point-to-point 300 MB/s

No. of processors 32{1024

Remarks:
The SR2201 is the second generation of distributed memory parallel systems of Hitachi. The basic node
processor is again an Hitachi implementation of the PA-RISC architecture of HP running at a clock cycle
of 6.7 ns. However, in contrast with its predecessor, the SR2001, in the SR2201 the node processors are
somewhat modi�ed to allow for \pseudo vector processing" (both hardware and instructions). This means
that for operations on long vectors one does not have to care about the detrimental e�ects of cache misses
that often ruin the performance of RISC processors unless code is carefully blocked and unrolled. First
experiments have shown that this idea seems to work quite well. The system supports distributed I/O with
a possibility to connect disks to every node.
As in the earlier SR2001, the connection structure is a hyper (3-D) crossbar which connects all nodes directly
at high speed (300 MB/s point-to-point). In February 1996 two 1024-node systems have been installed at
the Universities of Tokyo and Tsukuba respectively.
Like in some other systems like the Cray T3E (3.4.4), the Meiko CS-2 (3.4.13), and the NEC Cenju-3 (3.4.15),
one is able to directly access the memories of remote processors. Together with the very fast hardware-based
barrier synchronisation this should allow for writing distributed programs with very low parallelisation over-
head.
The following software products will be supported in addition to those already mentioned above: PVM,
MPI, PARMACS, Linda, Express, FORGE90, and PARALLELWARE. In addition, numerical libraries (MA-
TRIX/MPP, MATRIX/MPP/SSS) are o�ered. These libraries support basic linear algebra operations with
dense and band matrices, Fast Fourier Transformations, and skyline solvers.

Measured performances:
In [4] a speed of 220.4 Gop/s is reported for solving a dense linear system of size 138,240 on a 1,024
processor system. Some not yet o�cially certi�ed results of class A NAS parallel benchmarks show that the
SR2201 runs at about 1.3 Gop/s on 16 processors for the MG benchmarks and about 700 Mop/s for the
CG benchmark also on 16 processors ([3]).

3.4.8 The HP/Convex Exemplar SPP-2000 series.

Machine type: RISC-based distributed-memory multi-processor.
Models: SPP-2000K, SPP-2000S, SPP-2000X.
Operating system: SPP-UX, based on OSF/1 AD microkernel.
Connection structure: Crossbar; Ring (see remarks).
Compilers: Fortran, C, C++.
Vendors information Web page: www.hp.com/go/techservers.

System parameters:

Model SPP-2000K SPP-2000S SPP-2000X
Clock cycle 5.55 ns 5.55 ns 5.55 ns

Theor. peak performance:
Per proc. (64-bit) 720 Mop/s 720 Mop/s 720 Mop/s
Maximal (64-bit) 2.9 Gop/s 11.5 Gop/s 46.8 Gop/s

Memory/node �1 GB �1 GB �1 GB
Main memory �4 GB �16 GB �64 GB

Communication bandwidth:
aggregate (see remarks) 3.84 GB/s 15.4 GB/s 15.4/3.84 GB/s
No. of processors 1{4 4{16 16{64

Remarks:
The SPP-2000 systems form the family of successors of the SPP-1200/1600. There are signi�cant di�erences
with respect to the preceding SPP-1200 generation. The SPP-2000K and S are shared memory machines
connecting their maximally 4 and 16 PA-RISC 8000 processors, respectively, by a crossbar. Each processor
has a peak performance of 720 Mop/s and because the processors feature out-of-order execution of instruc-
tions it may be expected that memory latency e�ects can be evaded or diminished in a good many cases.
This should make the impact of cache misses much less severe. Data and instruction caches are large (1 MB
both) which also will help in minimising cache misses.
One SPP-2000S can be viewed as the successor of a hypernode in the earlier SPP-1200/SPP-1600 systems.
As such the number of processors within a hypernode has doubled. Also the amount of memory per system
has increased 8-fold from 8�256 MB to 16�1 GB. The internal aggregate bandwidth is 15.36 GB/s for the
2000S and 3.84 GB/s for the 2000K. I/O can be done at an aggregate rate of 960 MB/s.
As in the earlier SPP-1200/1600 systems, the hypernodes are connected by uni-directional SCI rings with
an aggregate bandwidth of 3.84 GB/s. This makes the SPP-2000X a NUMA machine when operared in a
shared memory fashion.
The Exemplar programming environment as was available for the SPP-1200/1600 carries over to the SPP-
2000K/S/X without changes. This environment includes a message passing programming model (PVM) and
a virtual shared memory model which allows the user to have a shared-memory view of the system. Of course
the shared memory model is not surprising for a symmetrical multiprocessor machine like the SPP-2000S
but it is still valid in the SPP-2000X systems which e�ectively clusters four SPP-2000S systems.

Measured Performances:
Results are available for the SPP-2000S: In [4] a speed of 7.8 Gop/s is reported for a 16 proc. system when
solving a 13,320-order dense linear system. For the EuroBen mod2a matrix-vector multiplication benchmark
a speed of 417 Mop/s is found on 16 processors. This is however for straight Fortran 77 code with PVM
and without the use of library routines.

3.4.9 The IBM 9076 SP2

Machine type: RISC-based distributed-memory multi-processor cluster.
Models: IBM9076 SP2.
Operating system: AIX (IBMs Unix variant).
Connection structure: Dependent on type of connection (see remarks).
Compilers: XL Fortran, XL C, XL C++.
Vendors information Web page: ibm.tc.cornell.edu/ibm/pps/sp2/sp2.html.

System parameters:

Model 9076 SP2
Clock cycle 7.5 ns

Theor. peak performance
Per Proc. (64-bit) 533 Mop/s
Maximal (64-bit) 273 Gop/s

Memory/node 64{512/2048 MB (see remarks)

Communication bandwidth
Point-to-point 20+ MB/s
Bisectional 25 GB/s

No. of processors 8{512

Remarks:
As a basis for the computational nodes in the SP2 RS/6000 processors with a clock cycle of 7.5 ns are used.
This amounts to a peak performance of 266 Mop/s per node because the oating-point units of the SP2
processors can deliver up to 4 results/cycle. The SP2 con�gurations are housed in columns that each can
contain 8{16 processor nodes. This depends on the type of node employed: there are two types, thin nodes
and wide nodes. Although the processors in these nodes are basically the same there are some di�erences.
Wide nodes have the double amount of microchannel slots (8 instead of 4) as compared to the thin nodes.
Furthermore, the maximum memory of a wide node can be 2 GB whereas the maximum for thin nodes is
512 MB. More important in terms of performance is the fact that the data cache of a wide node is four times
larger than that of a thin node (256 KB instead of 64 KB) and that the memory bus is two times wider than
that of a thin node (8 instead of 4 words/cycle). The latter di�erences explain than a performance gain of a
factor 1.5 has been observed for wide nodes over the thin nodes. However, the newer Thin-node2 is except
with regard to the number of micro-channel slots almost identical to a wide node. Also the performance
is very simlar to that of a wide node (see Measured performances). IBM envisions the wide node more or
less as server for a column and recommends con�gurations of one wide node packaged with 14 thin nodes
per column (although this may di�er with the needs of the user). The SP2 is accessed through a front-end
control workstation that also monitors system failures. Failing nodes can be taken o� line and exchanged
without interrupting service. In addition, �leservers can be connected to the system while every node can
have up to 2 GB. This can greatly speed up applications with signi�cant I/O requirements.
There is a choice in the way communication is done: Ethernet, Token Ring, FDDI, etc., are all possible.
However, it is also possible to connect the processors by an optional high-speed switch with a speed of 40
MB/s. Therefore, depending on the communication type the speed can range from 1{40 MB/s. The high-
speed switch has some redundancy built into it for greater reliability. The structure is that of a multi-stage
crossbar (
-switch).
Applications can be run using PVM or Express. FORGE 90 MIMDizer can be used to assist in parallelising
the code by generating the necessary calls to PVM or Express communication routines. Under Express
Fortran 77 or 90, C, and C++ can be used. Also High Performance Fortran is supported. IBM uses its
own PVM version from which the data format converter XDR has been stripped. This results in a lower
overhead at the cost of generality. Recently an optimised version of MPI has also become available.

Measured Performances:
In [4] a performance of 88.4 Gop/s in solving a dense linear system of orderN =73,500 with 512 Thin-node2
nodes was reported. These nodes, however, have a clock cycle of 15 ns, two times slower than for the fastest
nodes in the system parameter list given above. In [14] it appears that at 128 nodes the Thin-node2 is

consistently slower than the Wide-node1. The di�erences range from 4-20% with an average of about 9%.
The Wide-node1 times for the Class B problems EP, MG, CG, FT, IS, LU, SP, and BT are 4.99, 2.46, 25.44,
14.52, 1.98, 47.8, 54.8, and 67.0 seconds, respectively. In [4] also a result is given for a 64 node system with
the 8.3 ns clock POWER2 Superchip. In solving a 27,400 order system a speed of 22.6 Gop/s is attained.

3.4.10 The Intel Paragon XP.

Machine type: RISC-based distributed-memory multi-processor.
Models: Paragon XP/S (MP), XP/E
Operating system: OSF/1, SunMos.
Connection structure: 2-D mesh (torus).
Compilers: Fortran 77, ADA.
Vendors information Web page: www.ssd.intel.com/pubs.html.

System parameters:

Model Paragon XP/S Paragon XP/E
Clock cycle 20 ns 20 ns

Theor. peak performance
Per Proc. (64-bits) 75 Mop/s 75 Mop/s
64-bits precision 300 Gop/s 2.1 Gop/s

Main memory �128 GB �4.5 GB
Memory/node �128 MB �128 MB

Communication bandwidth 200 MB/s 200 MB/s

No. of processors 64{4000 4{32

Remarks:
The Paragon is a commercialised o�spring of the experimental Touchstone Delta system. The latter ma-
chine was built for the Concurrent Supercomputing Consortium at CalTech. The Delta system used i860
processors as computational elements in its nodes arranged in a 2-D grid (for many physical simulation
phenomena, as well as for the solution of linear systems this is a quite natural topology). The Delta system
proved to be quite fast for a variety of problems (a speed of 11.9 Gop/s was reported for an order 20,000
full linear system). The Paragon machine should do better because of the faster i860/XP processor that is
used in the nodes. In addition, the i860/XP has processor communication hardware on-chip which makes
the communication bandwidth higher.
In November 1993 the Paragon XP/E was introduced. This is an entry-level system with the same char-
acteristics as the XP/S and up to 32 processors. The maximal con�guration of the XP/E, the XP/E-28N
has 32 nodes of which 28 are compute nodes. The others are used for assisting the routing, I/O, and other
operating system tasks.
The Paragons retain compatibility with the former iPSC/860 systems, an Intel hypercube system preceding
them. In particular the transparent parallel Distributed File System can be used in applications migrated
from the iPSC/860. The Paragon has its own parallel �le system.
In 1995 the MP (Multi Processor) node was introduced. In such an MP node 3 i860/XP processors reside on
one board and the processors share one address space. Fortran and C compilers take care of the automatic
parallelisation within a MP node. The Intel-provided information claims a better performance than with
single processor nodes. Until now this seems consistently but not spectacularly true (see Measured Perfor-
mances).

Measured Performances:
As on many systems results are available for the solution of a large dense linear system. In [3] a speed of
281.1 Gop/s is reported for a system of size 128,600 on a 6768-node ensemble of XP/S MP systems. No
actual systems of this size are in operation. Results as quoted above are obtained by systems that are put
together for the occasion. In [15] results for the class B EP, MG, and FT benchmarks, the times obtained
on 512 processors were 3.98, 7.01, and 16.17 seconds for the single-node XP, while on the MP-node XP of
the same size these times were 2.98, 6.72, and 12.4 seconds, respectively.

3.4.11 The Kongsberg Informasjonskontroll SCALI system

Machine type: RISC-based distributed-memory multi-processor.
Models: SCALI.
Operating system: SunOS (Suns Unix variant).
Connection structure: SMP-nodes connected by ring (see remarks).
Compilers: Applied Parallel Research's Fortran 77/90, C, and C++ compilers.

System parameters:

Model SCALI
Clock cycle 6.7 ns

Theor. peak performance
Per Proc. (64 bits) 150 Mop/s
Maximal (64 bits) 76.8 Gop/s

Main memory �0.5 GB
Memory/node � 1 GB

Communication bandwidth
Point-to-point 1.2/1 GB/s
(see remarks)

No. of processors 1{512

Remarks:
The SCALI system is a non-uniform access system: it consists of SMP nodes that can contain up to 4 pro-
cessors. The con�guration discussed here uses HyperSparc 6.7 ns cycle processors but also HyperSparcs of
lower speed or SuperSparc-II processors could be used, showing that the architecture is essentially processor-
independent. The SMP nodes are connected by Internode Communication Channel (ICC) links based on
SCI, with a bandwidth of 1 GB/s. This is hardly less than the internal bandwidth of 1.2 GB/s of the SMP
nodes.
The connection between SMP nodes may be a single ring but richer connection structures, like a ring of
rings, a multi-level crossbar are possible for those willing to pay for it.
The available compilers provided by Applied Parallel Research are: Fortran 77 and Fortran 90, C, and C++,
with facilities for automatic parallelisation. Kongsberg Informasjonskontroll provides a proprietary MPI
implementation, MPI-I, for its systems. In addition the KAP preprocessor is available.
In the USA the same system is marketed under the name AxilSCC by Axil.

Measured Performances:
The SCALI system is very new. No performance �gures are available at this moment.

3.4.12 The Matsushita ADENART.

Machine type: RISC-based distributed-memory multi-processor.
Models: ADENART64, ADENART256.
Operating system: Internal OS transparent to the user, SunOS (Suns Unix variant) on the front-end
system.
Connection structure: HX-net (see remarks).
Compilers: ADETRAN, an extended Fortran 77.

System parameters:

Model ADENART64 ADENART256
Clock cycle 50 ns 50 ns

Theor. peak performance
Per Proc. (64 bits) 10 Mop/s 10 Mop/s
Maximal (64 bits) 0.64 Gop/s 2.56 Gop/s

Main memory 0.5GB 0.5GB
Memory/node 8MB 2MB

Communication bandwidth 20 MB/s 20MB/s

No. of processors 64 256

Remarks:
The ADENART has an interesting interconnection structure that is somewhere halfway between a crossbar
and a grid. The processors are organised in planes, where for each plane all processors are connected by
a crossbar. Between planes there is a connection structure that connects each crossbar node in a plane
directly with its corresponding counterpart on all other planes. So, for a processor (i; j) in plane j data
that are required by processor (k; j) in the same plane can be transported by simply shifting it through the
in-plane crossbar which can be accomplished in one step. For processors in di�erent planes the number of
steps is at most two. In the �rst step the data is routed to the right crossbar node in one plane and after
being sent to the plane where the target processor resides, sent there from the corresponding crossbar node
to the processor that requires them. The connection structure is called HX-net by Matsushita. Because of
the connection structure the number of processors is constrained to be of the form 22n and presently in the
two model numbers available n is 3 or 4 (a machine with 1024 processors, n = 5, is being considered). As
remarked, the complexity of the network is lower than that of a crossbar: O(n3=2) instead of O(n2) while
the e�ciency is half of that of a crossbar: a maximum of 2 steps instead of 1.
The processors consist of a proprietary RISC processor with a peak speed of 20 Mop/s in perfect pipeline
mode, however, a \sustained speed" of 10 Mop/s is quoted by Matsushita to arrive at the peak perfor-
mance given in the system parameters list above. The inter-processor bandwidth is 20 MB/s, which is quite
reasonable with respect to the processor speed. At this moment nothing is known about the message setup
overhead however. Curiously enough, the amount of memory per node is 4 times larger for the ADENART64
than for the 256-processor model (8MB against 2MB per node). The latter memory size seems fairly small
for a processor node that is meant to process large amounts of data. The front-end machine that hosts the
ADENART is a Solbourne (Sun 4 compatible) workstation.

Measured Performances:
In [13] a speed of 475 Mop/s for a PDE solver using a Splitting-up Conjugate Gradient algorithm was
reported for an ADENART256. Also, results for some Livermore kernels were given of which the highest
reported speed was 520.1 Mop/s. In the article there are some complaints about the rigidness of existing
benchmark codes which should be a disadvantage for massively parallel computers. It could of course also be
argued that massively parallel machines are too rigid to run general codes well. In [14] some class A results
for the 256 are quoted: EP, FT, IS, SP, and BT times are 32.9, 72.7, 46.6, 209.9, 314.1 seconds respectively.

3.4.13 The Meiko Computing Surface 2.

Machine type: Distributed-memory multi-vectorprocessor.
Models: Computing Surface 2.
Operating system: Internal OS transparent to the user, SunOS (Sun's Unix variant) on the front-end
system.
Connection structure: Multistage crossbar.
Compilers: Extended Fortran 77, ANSI C.
Vendors information Web page: www.meiko.com.

System parameters:

Model Computing Surface 2
Clock cycle 20 ns

Theor. peak performance
Per Proc. (64 bits) 200, 40 Mop/s
Maximal (64 bits) 204.8 Gop/s

Main memory � 128 GB
Memory/node 32{128, 32{512MB

Communication bandwidth
Point-to-point 50MB/s
bi-directional

No. of processors 8{1024 PEs

Remarks:
The CS-2 features 8-1,024 processor elements (PEs) which can be either scalar or vector nodes. Apart from
a separate communications module, these PEs contain either a SuperSparc or a SuperSparc + 2 �VP vec-
torprocessors. The speed of a scalar PE is estimated to be 40 Mop/s (at a 20 ns clock) and 200 Mop/s
for the vector PEs for 64-bit precision. The �VP modules are manufactured by Fujitsu. The speed at 32-bit
precision is doubled with respect to 64-bit operation and, unlike the earlier Fujitsu VP products, use IEEE
754 oating-point format. The memory has 16 banks and to avoid memory bank conicts the CS-2 has
the interesting option to have scrambled allocation of addresses, thus guaranteeing good access at potential
problematic strides 2, 4, etc.
The point-to-point communication speed is 100 MB/s (50 MB/s in each direction). Because the commu-
nication happens through multi-level crossbars, called \layers" by Meiko, the aggregate bandwidth of the
system scales with the number of PEs, with a very respectable latency of 200 ns per layer. As the maximum
con�guration of the machine contains 1,024 PEs, the theoretical peak performance at 64-bit precision is 200
Gop/s. It is possible to connect each PE to its own I/O devices to have scalable parallel I/O with the
scaling of other resources.
The Portland Group which has won some renown for its excellent i860 compilers has developed the compilers
for the CS-2. These include Fortran 77 and ANSI C but also Fortran 90. The current compiler already o�ers
data distribution directives as proposed in [11].
In the USA the machine is marketed by Meiko. In 1996 Meiko has merged with Alenia, the same �rm that
also markets the Alenia Quadrics (3.2.1). Although the new marketing policy has not been made clear, it
may assumed that Alenia will market the system in Europe and the rest of the world.

Measured Performances:
In [4] a speed of 5.0 Gop/s on a 64 processor CS-2 is reported for the solution of an order 18,688 dense
linear system. From the NAS parallel benchmarks some results on a 128 processor machine are given for
class B problems: EP took 21.16 seconds while 6.52 seconds was measured for the MG problem.

3.4.14 The nCUBE 2S.

Machine type: Distributed-memory multi-processor.
Models: nCUBE 2S.
Operating system: Internal OS transparent to the user, SunOS (Sun's Unix variant) on the front-end
system.
Connection structure: Hypercube.
Compilers: Extended Fortran 77, ANSI C, C++.
Vendors information Web page: www.ncube.com/prod/ncube2.html.

System parameters:

Model nCUBE 2S
Clock cycle 40 ns

Theor. peak performance
Per Proc. (64-bits) 3.0 Mop/s
Maximal(64-bits) 19.7 Gop/s

Main memory �256 GB
Memory/node �64 MB

Communication bandwidth
Point-to-point 2.75 MB/s

No. of processors 8{8192

Remarks:
The nCUBE 2S is, apart from the SGI Origin 2000, presently the only commercially available machine with
a hypercube structure. The nCUBE uses in-house developed processors which have a performance of 4.1
Mop/s in 32-bit precision and of 3.0 Mop/s in 64-bit precision. The 2S model is virtually identical to
the former nCUBE 2 series, however, the clock cycle of the processor has been speeded up by 20%. The
communication speed is 2.75 MB/s and a wormhole routing technique is used that makes the communication
speed almost independent of the distance between nodes in the system. The maximum size of the nCUBE
2S is 8192 processors.
There are 14 outward connections per node of which 13 are used for inter-processor communication while
the fourteenth is used for the distributed I/O system which therefore has the nice property that it scales
with the number of nodes.
Within the hypercube sub-cubes can be allocated to accomodate more users. A queue of tasks is set up with
(sub)-cubes of the required size. Programs may be written to determine the sub-cube dimensions just before
execution.
Some years ago nCUBE had plans to develop a successor to the nCUBE 2S, the nCUBE 3. However, the
system was never built after repeated delays and the attempt to build it has been abandoned.

Measured Performances:
For a 1024-processor nCUBE 2 a speed of 1.9 Gop/s was observed for a 21,376-order linear system in 64-bit
precision ([4]), about 77% of the quoted peak performance.

3.4.15 The NEC Cenju-3.

Machine type: RISC-based distributed-memory multi-processor.
Models: Cenju-3S, Cenju-3.
Operating system: EWS-UX/V (Unix variant based on Unix System V.4).
Connection structure: Multi-stage crossbar.
Compilers: Fortran 77, ANSI C.

System parameters:

Model Cenju-3S Cenju-3
Clock cycle 20 ns 13.3 ns

Theor. peak performance
Per Proc. (64 bits) 33 Mop/s 50 Mop/s
Maximal (64 bits) 533 Mop/s 12.8 Gop/s

Main memory �1 GB �16 GB
Memory/node �64 MB �64 MB

Communication bandwidth 40 MB/s 40MB/s

No. of processors 8{16 16{ 256

Remarks:
The name Cenju-3 suggests that there have been predecessors, Cenju-1 and Cenju-2. This is indeed the case
but these systems have only been used internally by NEC for research purposes and were never o�cially
marketed. The Cenju-3 is based on the MIPS R4400 RISC processor. All processors have, apart from their
on-chip primary cache, a secondary cache of 1 MB to mitigate the problems that arise in the high data usage
of the CPU.
The interconnection type used in the Cenju is a multistage crossbar built from 4�4 modules that are
pipelined. So, in a full con�guration the maximal number of levels in the crossbar to be traversed is four.
The peak transfer rate of the crossbar is quoted as 40 MB/s irrespective of the data placement.
The system needs a front-end processor of the EWS4800 type (functionally equivalent to Silicon Graphics
workstations). The I/O requirements have to be ful�lled by the front-end system as the Cenju does not have
local (distributed) I/O capabilities.
There is some software support that should make the programmer's life somewhat easier. The library
PARALIB/CJ contains proprietary functions for forking processes, barrier synchronisation, remote procedure
calls, and block transfer of data. Like on the Cray T3E (3.4.4) and on the Meiko CS-2 (3.4.13) the programmer
has the possibility to write/read directly to/from non-local memories which avoids much message passing
overhead.

Measured Performances:
Delivery of the systems has started in the second quarter of 1994 but no performance �gures were ever
published for the Cenju-3.

3.4.16 The Parsys TA9000.

Machine type: Distributed-memory multi-processor.
Models: TA9800 (TA9400, TA9500).
Operating system: Idris (a real-time sub-Unix variant).
Connection structure: Multi-stage crossbar.
Compilers: Extended Fortran 77, ANSI C, Pascal, Modula 2.
Vendors information Web page: www.cache.demon.co.uk:80/home.htm

System parameters:

Model TA9800
Clock cycle 4.3 ns

Theor. peak performance
Per Proc. (32 bits) 233 Mop/s
Maximal (32 bits) 119.3 Gop/s

Main memory �32 GB
Memory/node �64 MB

Communication bandwidth 25 MB/s/link

No. of processors �512

Remarks:
The Parsys TransAlpha TA9000 series systems are the successors of the Parsys SN9000 machines. The latter
had the Thomson T9000 transputer as their basic processors. The new TA9000 systems use the DEC Alpha
21066 RISC processors for that purpose.
The TA9000 is roughly 10 times faster than its predecessor, the SN9000, which had a maximal speed of
roughly 25 Mop/s per node. However the communication speed has remained the same still using T9000
transputers for the internode communication. The use of the T9000 as a communication engine enables
employment of the fast C104 communication switch. The same multistage crossbar switch is also used in
the Meiko CS-2 (see 3.4.13) and allows for very good latency and bandwidth characteristics (although at
this stage no �gures are available to show how much of these are realised).
Apart from the largest model, the TA9800, there are smaller models, like the desktop models TA9400 and
TA9500. The latter houses up to 12 processors and can be driven either as a Sun Sparc back-end system

or as a network device via Ethernet. An optimised PVM library is available for standard message passing
programs.

Measured Performances:
Although the TransAlpha machines were announced and available from May 1995, until now no measured
performances are known to the author.

3.4.17 The Parsytec GC/Power Plus.

Machine type: RISC-based distributed-memory multi-processor.
Models: Parsytec GC/Power Plus.
Operating system: Unix on host processor, Parix (GC OS, transparent to the user).
Connection structure: 2-D grid.
Compilers: Fortran 77, ANSI C, Pascal, Modula-2.
Vendors information Web page: www.parsytec.de/products/gc1.html.

System parameters:

Model GC/Power Plus
Clock cycle 7.5 ns

Theor. peak performance
Per proc. (64-bits) 266 Mop/s
Maximum (64-bits) : : :Gop/s

Main memory : : : GB
Memory/node 16{128 MB

Communication bandwidth
Point-to-point 8.8 MB/s

No. of processors 8{: : :

Remarks:
The Parsytec GC Power Plus system (GC standing for Grand Challenge) is based on the IBM/Motorola
MC604 processor. Initially, the CG series was planned to be built around the T9000 transputer. However,
the T9000 is still not available in su�cient quantity and quality. Therefore, the MC601 was chosen to replace
the T9000. It is not clear what is the maximum con�guration for the Power Plus system. Therefore we
could not give maximum performance, memory capacity, etc.
Each \node" (the term node not used here in the usual sense) of a GC Power Plus system contains two MC601
processors and 4 T805 transputers which are responsible for the communication. Two nodes are placed on
one board, while 4 boards are interconnected with 16 C004 static routers to maintain the intercommunica-
tion within a so-called GC-cube. For every 4 nodes one redundant node is present for fault-tolerance. To
complement the computing power, a parallel I/O system, the Parallel Storage System is available to aid in
the handling of large-scale applications which require massive I/O.
The communication speed of the system is presently not particularly high with respect to the processor
speed (although Parsytec from its PowerStone project claims that the present choice of computational ver-
sus communication capacity is optimal from the viewpoint of cost-e�ectiveness). There are plans to use
T9000 transputers for communication instead of the present T805s and to replace the C004 routers by its
successor, the C104. This would speed up the communication by at least a factor of 10, making the compu-
tation/communication speeds more balanced.
In the Parsytec CC series, also equipped with the MC604 but with ATM HS links, the link speed is up to
about 75 MB/s. The CC series, however, is primarily directed to the embedded systems market.
The PARIX operating system is Unix-like. It allows to specify various virtual topologies onto the actual
2-D grid topology to match possible natural application topologies. Besides Parsytecs own communication
library, PVM and PARMACS are available. An MPI communication library is presently being developed.

Measured Performances:
Early experiments have been done on a 64-processor system. On 4 processors the solution of an order
N = 1000 dense linear system attained a speed of 141 Mop/s. For a scaled-up system on 32 processors a

speed of 1007 Mop/s was found, while for the NAS Embarassingly Parallel benchmark (see [14]) a speed of
2.8 Gop/s was observed on 64 processors.

3.4.18 The Silicon Graphics Origin series

Machine type: Distributed-memory multi-processor.
Models: Origin 200, Origin 2000.
Operating system: IRIX (SGI's Unix variant).
Connection structure: Crossbar, hypercube (see remarks).
Compilers: Fortran 77, Fortran 90, C, C++ , Pascal.
Vendors information Web page: www.sgi.com/Products/hardware/servers/index.html.

System parameters:

Model Origin 200 Origin 2000
Clock cycle 5 ns 5 ns

Theor. peak performance:
Per proc. (64-bit) 400 Mop/s 400 Mop/s
Maximal (64-bit) 1.6 Gop/s 51.2 Gop/s

Main memory 4 GB 256 GB

Memory bandwidth:
Aggregate peak 3.2 GB/s 102 GB/s
Bisectional 1.6 GB/s 82 GB/s

No. of processors 2{4 2{128

Remarks:
The Origin 2000 is the newest high-end parallel server marketed by SGI. The basic processor is the MIPS
R10000. A maximum of 128 processors can be con�gured in the system. The interconnection is somewhat
hybrid: 4 CPUs on two node cards can communicate directly with the memory partitions of each other via
the hub, a 4-ported non-blocking crossbar. Hubs can be coupled to other hubs in a hypercube fashion.
The structure of the machine makes it somewhat di�cult to classify: SGI prefers to call it a shared-memory
non-uniform memory architecture system. The memory is physically distributed over the node boards but
the system has one system image. Because of the structure of the system, the bisectional bandwidth of
the system remains constant from 4 processors on: 82 GB/s. This is a large improvement over the earlier
PowerChallenge systems which possessed a 1.2 GB/s bus.
The Origin 200 is a smaller con�guration, using the same crossbar as the Origin 2000 but without the need
for the hypercube connections used in the latter. E�ectively, it is a SMP system because of the uniform
access of the memory modules. Therefore, also the bisectional bandwidth is identical to the point-to-point
bandwidth: 1.6 GB/s.
Parallelisation is done either automatically by the (Fortran or C) compiler or explicitly by the user, mainly
through the use of directives. All synchronisation, etc., has to be done via memory. This may cause poten-
tially a fairly large parallelisation overhead. Also a message passing model is allowed on the Origin using
the optimised SGI versions of PVM and MPI. Programs implemented in this way will possibly run very
e�ciently on the system.
A nice feature of the new system is that it may migrate processes to nodes that should satisfy the data
requests of these processes. So, the overhead involved in transferring data across the machine are minimised
in this way. The technique is reminiscent of the late Kendall Square Systems although in these systems
the data were moved to the active process. SGI claims that the time for non-local memory references is on
average about 3 times longer than for local memory references.

Measured Performances:
In [4] a speed of 10.4 Gop/s was measured on a system with 32 processors and a clock cycle of 5.12 ns for
the solution of a dense linear system of size 22,000.

4 Systems disappeared from the list

As already stated in the introduction the list of systems is not complete. On one hand this is caused by the
sheer number of systems that are presented to the market and are often very similar to systems described
above (for instance, the Volvox system not listed is very similar but not equivalent to the listed C-DAC
system and there are numerous other examples). On the other hand there many systems that are still in
operation around the world, often in considerable quantities that for other reasons are excluded. The most
important reasons are:

{ The system is not marketed anymore. This is generally for one of two reasons:

1. The manufacturer is out of business.
2. The manufacturer has replaced the system by a newer model of the same type or even of a di�erent

type.

{ The system has become technologically obsolete in comparison to others of the same type. Therefore,
listing them is not sensible anymore.

Below we present a table of systems that fall into one of the categories mentioned above. We think this
may have some sense to those who come across machines that are still around but are not the latest in their
�elds. It may be interesting at least to have an indication how such systems compare to the newest ones
and to place them in context.

It is good to realise that although systems have disappeared from the list above they still may exist and are
actually sold. However, their removal stems in such cases mainly from the fact that they are not serious
candidates for high-performance computing anymore.

The table is, again, not complete and admittedly somewhat arbitrary. The data are in a highly condensed
form: the system name, system type, theoretical maximum performance of a fully con�gured system, and
the reason for their disappearance is given. The arbitrariness lies partly in the decision which systems are
still su�ciently of interest to include and which are not.

Machine: The Alex AVX 2.
Type: RISC-based distributed-memory multi-processor.
Theoretical Peak performance: 3.84 Gop/s.
Reason for disappearance: System is obsolete, there is no new system planned.

Machine: Alliant FX/2800.
Type: Shared memory vector-parallel, max. 28 processors.
Theoretical Peak performance: 1120 Mop/s.
Reason for disappearance: Manufacturer out of business.

Machine: BBN TC2000.
Type: Virtual shared memory parallel, max. 512 processors.
Theoretical Peak performance: 1 Gop/s.
Reason for disappearance: Manufacturer has discontinued marketing parallel computer systems.

Machine: Cambridge Parallel Processing DAP Gamma.
Type: Distributed memory processor array system.
Theoretical Peak performance: 1.6 Gop/s (32-bit)
Reason for disappearance: replaced by newer Gamma II series (see 3.2.2).

Machine: Convex C3200, C3400, C3800.
Type: Shared memory vector-parallel, max. 8 processors (C3880).
Theoretical Peak performance: 960 Mop/s.
Reason for disappearance: replaced by newer C4 series (see 3.3.4).

Machine: Convex Meta Series.
Type: Distributed memory network of workstations.

Theoretical Peak performance: 200 Mop/s per processor
Reason for disappearance: replaced by newer SPP-2000 series (see 3.4.8).

Machine: Convex SPP-1000/1200/1600.
Type: Distributed memory RISC based system, max. 128 processors.
Theoretical Peak performance: 25.6 Gop/s.
Reason for disappearance: replaced by newer SPP-2000 series (see 3.4.8).

Machine: Cray Computer Corporation Cray-2.
Type: Shared memory vector-parallel, max. 4 processors.
Theoretical Peak performance: 1.95 Gop/s.
Reason for disappearance: Manufacturer out of business.

Machine: Cray Computer Corporation Cray-3.
Type: Shared memory vector-parallel, max. 16 processors.
Theoretical Peak performance: 16 Gop/s.
Reason for disappearance: Manufacturer out of business.

Machine: Cray Research Inc. APP.
Type: Shared memory RISC based system, max. 84 processors.
Theoretical Peak performance: 6.7 Gop/s.
Reason for disappearance: Product line discontinued, gap �lled by the Cray J90 (see 3.3.1).

Machine: Cray T3D.
Type: Distributed memory RISC based system, max. 2048 processors.
Theoretical Peak performance: 307 Gop/s.
Reason for disappearance: replaced by newer T3E (see 3.4.4).

Machine: Cray Research Inc. Cray Y-MP, Cray Y-MP M90.
Type: Shared memory vector-parallel, max. 8 processors.
Theoretical Peak performance: 2.6 Gop/s.
Reason for disappearance: replaced by newer T90 (see 3.3.1).

Machine: Cray Y-MP C90.
Type: Shared memory vector-parallel, max. 16 processors.
Theoretical Peak performance: 16 Gop/s.
Reason for disappearance: replaced by newer T90 (see 3.3.1).

Machine: Digital Equipment Corp. Alpha farm.
Type: Distributed memory RISC based system, max. 4 processors.
Theoretical Peak performance: 0.8 Gop/s.
Reason for disappearance: replaced by newer AlphaServer clusters (see 3.3.2).

Machine: Fujitsu AP1000 series.
Type: Distributed memory RISC-based multi-processor system, max. 1024 processors.
Theoretical Peak performance: 12.8 Gop/s.
Reason for disappearance: replaced by the AP3000 system (see 3.4.5).

Machine: Fujitsu VPP500 series.
Type: Distributed memory multi-processor vectorprocessors, max. 222 processors.
Theoretical Peak performance: 355 Gop/s.
Reason for disappearance: replaced by the VPP300/700 series (see 3.4.6).

Machine: Fujitsu VPX200 series.
Type: Single-processor vectorprocessors.
Theoretical Peak performance: 5 Gop/s.
Reason for disappearance: replaced by the VPP300/700 series (see 3.4.6).

Machine: Hitachi SR2001 series.
Type: Distributed memory RISC based system, max. 128 processors.
Theoretical Peak performance: 23 Gop/s.
Reason for disappearance: Replaced by the newer SR2201 (3.4.7).

Machine: IBM ES/9000 series.
Type: Shared memory vector-parallel system, max. 6 processors.
Theoretical Peak performance: 2.67 Gop/s.
Reason for disappearance: IBM does not pursue high-performance computing by this product line any-
more.

Machine: IBM Power/4.
Type: Shared memory RISC based system, max. 4 processors.
Theoretical Peak performance: 336 Mop/s.
Reason for disappearance: Product line discontinued, gap be �lled by SP2 (see 3.4.9).

Machine: IBM SP1 series.
Type: Distributed memory RISC based system, max. 64 processors.
Theoretical Peak performance: 8 Gop/s.
Reason for disappearance: Replaced by the newer SP2 (see 3.4.9).

Machine: Intel iPSC/860.
Type: Distributed memory parallel hypercube, max. 128 processors.
Theoretical Peak performance: 7.7 Gop/s.
Reason for disappearance: replaced by newer Intel Paragon XP (MP) series (see 3.4.10).

Machine: Kendall Square Research KSR2.
Type: Virtually shared memory parallel, max. 1088 processors.
Theoretical Peak performance: 400 Gop/s.
Reason for disappearance: Kendall Square has terminated its business.

Machine: Meiko CS-1 series.
Type: Distributed memory RISC based system.
Theoretical Peak performance: 80 Mop/s per processor
Reason for disappearance: Replaced by the newer CS-2 (see 3.4.13).

Machine: nCUBE 3.
Type: Distributed memory system, max. 10244 processors.
Theoretical Peak performance: 1 Top/s.
Reason for disappearance: Was announced several times but was never �nished. Development has been
abandoned. nCUBE 2S is the available product (see 3.4.14).

Machine: NEC SX-2.
Type: Single-processor vector processors.
Theoretical Peak performance: 1.3 Gop/s.
Reason for disappearance: replaced by newer SX-4 series (see 3.3.5).

Machine: NEC SX-3R.
Type: Shared memory multi-processor vector processors, max. 4 processors.
Theoretical Peak performance: 25.6 Gop/s.
Reason for disappearance: replaced by newer SX-4 series (see 3.3.5).

Machine: Parsys SN9000 series.
Type: Distributed memory RISC based system, max. 2048.
Theoretical Peak performance: 51.2 Gop/s.
Reason for disappearance: Replaced by the newer TA9000 (see 3.4.16).

Machine: Siemens-Nixdorf VP2600 series.
Type: Single-processor vectorprocessors.
Theoretical Peak performance: 5 Gop/s.
Reason for disappearance: replaced by the VPP300/700 series (see 3.4.6).

Machine: Silicon Graphics PowerChallenge.
Type: Shared memory multi-processor, max. 36 processors.
Theoretical Peak performance: 14.4 Gop/s.
Reason for disappearance: Replaced by the SGI Origin 2000 (see 3.4.18).

Machine: Stern Computing Systems SSP.
Type: Shared memory multi-processor, max. 6 processors.
Theoretical Peak performance: 2 Gop/s.
Reason for disappearance: Vendor terminated its business just before delivering �rst systems.

Machine: Thinking Machine Corporation CM-2(00).
Type: SIMD parallel machine with hypercube structure, max. 64K processors.
Theoretical Peak performance: 31 Gop/s.
Reason for disappearance: was replaced by the newer CM-5 (but see below).

Machine: Thinking Machine Corporation CM-5.
Type: Distributed memory RISC based system, max. 16K processors.
Theoretical Peak performance: 2 Top/s.
Reason for disappearance: Thinking Machine Corporation has stopped manufacturing hardware.

Machine: Transtech Paramid series.
Type: Distributed memory RISC based system, max. 64 processors.
Theoretical Peak performance: 6.4 Gop/s.
Reason for disappearance: Transtech now mostly manufactures PC extension boards with IBM MC603
processors as performance boosters.

5 Systems under development

Although we wanted mainly to discuss real, marketable systems and no experimental, special purpose, or
even speculative machines, we want to include a section on systems that are in a far stage of development
and have a fair chance of reaching the market. For inclusion in section 3 we set the rule that the system
described there should be on the market within a period of 6 months from announcement. The systems
described in this section will in all probability appear within one year from the publication of this report.
However, there are vendors who do not want to disclose any speci�c data on their new machines until they
are actually beginning to ship them (an example is the SGI Origin 2000). We recognise the wishes of such
vendors (it is generally wise not to stretch the expectation of potential customers too long) and will not
disclose such information.

Below we discuss systems that may lead to commercial systems to be introduced on the market between
somewhat more than half a year to a year from now. The commercial systems that result from it will
sometimes deviate signi�cantly from the original research models depending on the way the development is
done (the approaches in Japan and the USA di�er considerably in this respect) and the user group with is
targeted.

5.1 The Hitachi/CP-PACS system

Strictly speaking this system is nor new, nor under development, nor will it be commercially available. In
fact, it is an existing system at the University of Tsukuba that has all characteristics of the Hitachi SR2201
(3.4.7), except that it has twice as much processors as the maximum available at the SR2201, viz. 2048.
We mention the system because it shows the close involvement of university application groups (in this case
the physics department) in the development of the future systems of a vendor. This kind of cooperation is
not limited only to Hitachi: similar examples were the development of the NEC SX-2 in cooperation with
the Institute of Laser Engineering at the University of Osaka, and of the Fujitsu VPP500 with the Japanese
National Aerospace Laboratory.
As said, the CP-PACS is almost identical to the SR2201 but the number of processors is two times larger:
2048. The machine features in [4] with a measured performance of 368.2 Gop/s for the solution of a
103,680 order linear system. The theoretical peak performance is 614 Gop/s. It is a fair guess that Hitachi
will pursue this line of architecture further: the 3-D crossbar in the SR2201 and the CP-PACS is a very
successful component and also the pseudo-vectorprocessing introduced with this generation of systems is
quite promissing. When this would be combined with the PA-RISC 8000 processors for the nodes a quite
interesting system would result.

5.2 Machines in the ASCI program

The Accelerated Strategic Computing Initiative (ASCI) [2] was started to ensure that the US would stay at
the fore-front of developing high performance computing systems. The initiative was taken by some of the
large DOE national laboratories: Sandia, Los Alamos, and Lawrence Livermore.
Three vendors have been awarded contracts to develop systems that should deliver speeds of 10{30 Top/s at
the application level by 1999{2001 and 100 Top/s by 2003{2004. One of the objectives is to use commercial
o�-the-shelve components for lower costs and an easier spin-o� to systems that can be commercialised.
We shortly describe each of the projects for sofar as the information provided by the parties involved has
substance.

5.2.1 The Intel ASCI Option Red system

The Intel ASCI Option Red system is the �rst one commisioned under the Accelerated Strategic Computing
Initiative. Therefore, of the three projects the most details are known and �rst performance numbers are
available.
The Option Red system will contain 9000 Pentium Pro processors in 4500 compute nodes with a theoretical
peak performance of 1.8 Top/s. At this moment a measured performance of 1.068 Top/s has been realised
out of 1.453 Top/s on 7264 processors [4] in the solving of a linear system of order 215,000. The system is
of the DM-MIMD type with a network that resembles that of the Intel Paragon XP (3.4.10) but at a higher
speed: the point-to-point bandwidth has a maximum of 400 MB/s and the bisectional bandwidth of the full

system should be 50 GB/s.
The system harbours two cooperating operating systems: the Paragon OS, as used in the present Paragon
machines and Light Weight Kernel system that should optimise task handling at the nodes.
It is not clear whether Intel will commericalise a variant of the Option Red system or indeed will stay in the
business of high performance computing alltogether. However, the project has demonstrated the potential
of the Intel approach sofar and other companies might take interest in producing similar systems if Intel
would abandon supercomputing.

5.2.2 The IBM Blue Paci�c Blue system

Recently Lawrence Livermore National Laboratory has installed a 512-node SP2 system (3.4.9) as an initial
step to a system that contains 512 nodes with 8 processors each that work in an SMP fashion. In an
intermediate stage 4-way SMP nodes will installed and tested. The individual processors will eventually
have a peak speed of � 800 Mop/s which brings the speed of the full con�guration at about 3.2 Top/s.
This year the �rst 4-way SMP nodes will be installed. The processors on these boards will be of the MC604
type at a 11.1 ns clock speed.

5.2.3 The SGI-Cray Mountain Blue system

SGI-Cray was the last company which was rewarded an ASCI contract from Los Alamos National Laboratory.
By December 1996 a 256 processor system, based on the technology of the Origin 2000 (3.4.18) should be
delivered. As the maximum con�guration of an Origin 2000 only contains 128 processors this �rst system is
already beyond the machines delivered in the commercial program.
The con�guration that should be installed in 1999 will contain 3072 processors. It has a planned theoretical
peak performance of 3 Top/s which is equivalent to a peak performance of 1 Gop/s per processor. This
means that the processor speed should increase by a factor of 2.5 over the current 400 Mop/s for the present
R10000 processors.

Acknowledgments

It is not possible to thank all people that have been contributing to this overview. Many vendors and people
interested in this project have been so kind to provide me with the vital information or to correct me when
necessary. Therefore, I will have to thank them here collectively but not less heartily for their support.

References

[1] C. Amza, A.L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, W. Zwaenepoel, Tread-
Marks: Shared Memory Computing on Networks of Workstations, to appear in IEEE Computer (draft
copy: www.cs.rice.edu/~willy/TreadMarks/papers.htm)

[2] ASCI Program Plan, www.llnl.gov/asci.

[3] D.H. Bailey, E. Barszcz, J.T. Barton, D.S. Browning, R.L. Carter, L. Dagum, R.A. Fahooti, P.O.
Frederickson, T.A. Lasinski, R.S. Schreiber, H.D. Simon, V. Venkatakrishnan, S.K. Weeratunga, The
NAS parallel benchmarks, Internat. J. Supercomputer Applications, 5, 3, (1991) 63{73.

[4] J.J. Dongarra, Performance of various computers using standard linear equations software, Computer
Science Technical Report CS-89-85, Univ. of Tennessee, December 1996.

[5] Flanders P., Matrix Multiplication on `C' series DAPs, AMT Document TR40, Jan. 1991.

[6] M.J. Flynn, Some computer organisations and their e�ectiveness, IEEE Trans. on Comp., Vol. C-21,
9, (1972) 948{960.

[7] A. Geist, A. Beguelin, J. Dongarra, R. Manchek, W. Jaing, and V. Sunderam, PVM: A Users' Guide

and Tutorial for Networked Parallel Computing, MIT Press, Boston, 1994.

[8] Gropp W., E. Lusk, A. Skjellum, Using MPI: Portable Parallel Programming with the Message-Passing

Interface, MIT Press, 1994.

[9] R. W. Hockney, C. R. Jesshope, Parallel Computers II, Adam Hilger, Bristol, UK, 1987.

[10] T. Horie, H. Ishihata, T. Shimizu, S. Kato, S. Inano, M. Ikesaka, AP1000 architecture and performance

of LU decomposition, Proc. Internat. Symp. on Supercomputing, Fukuoka, Nov. 1991, 46{55.

[11] High Performance Fortran Forum, High Performance Fortran Language Speci�cation, Scienti�c Pro-
gramming, 2, 13, (1993) 1{170.

[12] D.V. James, A.T. Laundrie, S. Gjessing, and G.S. Sohi, Scalable Coherent Interface, IEEE Computer,
23, 6, (1990) 74{77. See also:
Scalable Coherent Interface, http://sunrise.scu.edu/

[13] H. Kadota et al., Parallel Computer ADENART | Its Architecture and Application |, Proc. of the
ACM International Conference on Supercomputing, June 1991, Cologne, 1{8.

[14] S. Saini, D.H. Bailey, NAS Parallel Benchmark Results 12{95, NASA Technical Report NAS-95-021,
NASA Ames Research Center, Mo�ett Field, CA, Dec. 1995.

[15] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra, MPI: The Complete Reference, MIT
Press, Boston, 1996.

[16] A.J. van der Steen, Exploring VLIW: Benchmark tests on a Multiow TRACE 14/300, Academic
Computing Centre Utrecht, Technical Report TR-31, April 1990.

[17] A.J. van der Steen, The benchmark of the EuroBen Group, Parallel Computing, 17, (1991) 1211{1221.

[18] A.J. van der Steen, Benchmark results for the Hitachi S3800, Supercomputer, 10, 4/5, (1993) 32{45.

[19] A.J. van der Steen, ed., Aspects of Computational Science, NCF, The Hague, 1995.

[20] A. Trew, G. Wilson, Past, Present, Parallel: A Survey of Available Parallel Computer Systems, Hei-
delberg: Springer-Verlag, 1991.

