Towards Efficient, Dynamic Parallelism for GPUs

Duane Merrill
Andrew Grimshaw

University of Virginia
GPU Stream Machine Model

• Many, many concurrent threads of execution
 – All threads run the same program (*kernel*)
 • SIMD + SMT
 – Explicit control over memory storage hierarchy
 • Registers, fast local shared per core, global DRAM

• Report card**:
 – *Excels at*:
 • Flat data-parallelism (i.e., data-independent and statically-known data dependences)
 – *Needs work*:
 • Dynamic, irregular, and nested parallelism

**Lee et al. *Debunking the 100X GPU vs. CPU myth: an evaluation of throughput computing on CPU and GPU*. SIGARCH 2010.
Report Card: CPU Territory

Algorithm Examples

- Sort, computational geometry, finance
 - Modest control flow
 - Sparse/ Irregular data structures
 - Irregular communication between elements
- CPU Territory
 - General purpose features vital for software efficiency
 - Latency sensitive applications

All dates, figures and product plans are preliminary and are subject to change without notice. Copyright © Intel Corporation 2006
Integer (32-bit) Sorting Rates

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>KEY-VALUE RATE</th>
<th>KEYS-ONLY RATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(10^6 pairs / sec)</td>
<td>(10^6 keys / sec)</td>
</tr>
<tr>
<td>Name</td>
<td>CUDPP Radix</td>
<td>Our SRTS Radix speedup</td>
</tr>
<tr>
<td>NVIDIA GTX 480</td>
<td>134</td>
<td>490 (3.7x)</td>
</tr>
<tr>
<td>NVIDIA Tesla C2050</td>
<td>117</td>
<td>490 (3.8x)</td>
</tr>
<tr>
<td>NVIDIA GTX 285</td>
<td>111</td>
<td>490 (3.7x)</td>
</tr>
<tr>
<td>NVIDIA GTX 280</td>
<td>111</td>
<td>490 (3.8x)</td>
</tr>
<tr>
<td>NVIDIA Tesla C1060</td>
<td>111</td>
<td>490 (3.7x)</td>
</tr>
<tr>
<td>NVIDIA 9800 GTX+</td>
<td>82</td>
<td>189 (2.0x)</td>
</tr>
<tr>
<td>NVIDIA 8800 GT</td>
<td>63</td>
<td>129 (2.1x)</td>
</tr>
<tr>
<td>NVIDIA Quadro FX5600</td>
<td>55</td>
<td>110 (2.0x)</td>
</tr>
</tbody>
</table>

Satish et al., "Fast Sort on CPUs, GPUs and Intel MIC Architectures," Tech Report 2010.
Integer (32-bit) Sorting Rates

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>KEY-VALUE RATE</th>
<th>KEYS-ONLY RATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(10⁶ pairs/sec)</td>
<td>(10⁶ keys/sec)</td>
</tr>
<tr>
<td>Name</td>
<td>CUDPP Radix</td>
<td>Our SRTS Radix (speedup)</td>
</tr>
<tr>
<td>NVIDIA GTX 480</td>
<td>775</td>
<td>1005</td>
</tr>
<tr>
<td>NVIDIA Tesla C2050</td>
<td>581</td>
<td>742</td>
</tr>
<tr>
<td>NVIDIA GTX 285</td>
<td>134</td>
<td>490</td>
</tr>
<tr>
<td>NVIDIA GTX 280</td>
<td>117</td>
<td>449</td>
</tr>
<tr>
<td>NVIDIA Tesla C1060</td>
<td>111</td>
<td>333</td>
</tr>
<tr>
<td>NVIDIA 9800 GTX+</td>
<td>82</td>
<td>189</td>
</tr>
<tr>
<td>NVIDIA 8800 GT</td>
<td>63</td>
<td>129</td>
</tr>
<tr>
<td>NVIDIA Quadro FX5600</td>
<td>55</td>
<td>110</td>
</tr>
<tr>
<td>Intel Knight’s Ferry MIC 32-core**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intel Core i7 quad-core **</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intel Core-2 quad-core**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Satish et al., "Fast Sort on CPUs, GPUs and Intel MIC Architectures," Tech Report 2010.
Integer (32-bit) Sorting Rates

![Graph showing sorting rates for different GPU models](image)

- GTX 480
- C2050 (no ECC)
- GTX 285
- GTX 280
- C1060
- 9800 GTX+

Table:

<table>
<thead>
<tr>
<th>Problem Size (millions)</th>
<th>GTX 480</th>
<th>C2050 (no ECC)</th>
<th>GTX 285</th>
<th>GTX 280</th>
<th>C1060</th>
<th>9800 GTX+</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>144</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>176</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>208</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>224</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>256</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>272</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Presentation Overview

- Performance Strategies
 - Design patterns and idioms for program composition

- Challenges for the Programming Model
 - Burdens these techniques place upon the programming model / toolkit
Our Problem Scope:

Thread decompositions with variable and dynamic output production
(a) **Single input dependence**

- Each output has a dependence upon a single input element
 - Threads are decomposed by output element
 - Input and output indices are static functions of thread-id
- E.g., scalar operations
(b) Neighborhood input dependences

Each output has dependences upon a bounded subset of the input

- Threads are decomposed by output element
- The output (and at least one input) index is a static function of thread-id

- E.g., matrix / vector multiply
(c) **Global input dependences**

- Each output element has dependences upon any / all input elements
- E.g., sorting, reduction, compaction, duplicate removal, histogram generation, etc.
Composing global transformations

- The GPU machine model is designed for (a) **local** and (b) **neighborhood** transformations
 - (c) **globally-dependent** transformations must be constructed from multiple passes of Neighborhood transformations

- The “straightforward” thread decomposition:
 - Threads are decomposed by output element
 - Repeatedly iterate over recycled input streams
 - Output stream size is statically known before each pass
Sometimes facilitates work-optimal methods

- E.g., reduction
 - $O(n)$ global work from passes of pairwise-neighbor-reduction
 - Static dependences, uniform output
- E.g., Fast Fourier transform
Problem: Sometimes only facilitates work-inefficient methods

- E.g., sorting networks
 - Repeated, deterministic pairwise compare-smem
 - Bubble sort is $O(n^2)$
 - Bitonic sort is $O(n \log^2 n)$
 - Want $O(n \log n)$ comparison or $O(kn)$ radix sorting
 - Need partitioning: dynamic, cooperative allocation

- E.g., graph traversal
 - Repeatedly check each vertex or edge
 - Such breadth-first search is $O(V^2)$
 - Want $O(V + E)$ BFS
 - Need queue: dynamic, cooperative allocation
Problem: Sometimes is completely insufficient

- E.g., parallel search space exploration
 - Variable output per thread
 - Need dynamic, cooperative allocation
Problem: Sometimes is completely insufficient

- E.g., parallel search space exploration
 - Variable output per thread
 - Need dynamic, cooperative allocation
Problem: Sometimes is completely insufficient

- E.g., parallel search space exploration
 - Variable output per thread
 - Need dynamic, cooperative allocation
Problem: Sometimes is completely insufficient

- E.g., parallel search space exploration
 - Variable output per thread
 - Need dynamic, cooperative allocation
Problem: Sometimes is completely insufficient

- E.g., parallel search space exploration
 - Variable output per thread
 - Need dynamic, cooperative allocation
Problem: Sometimes is completely insufficient

- E.g., parallel search space exploration
 - Variable output per thread
 - Need dynamic, cooperative allocation
Dynamic, irregular, and nested parallelism

- What we want:
 1. Work-optimal implementations for problems with dynamic dependences...
 2. ...that fit the machine model well

- Use alternative thread decomposition strategy:
 - Input-centric decomposition
 - Input indices are a static function of thread-id, but output indices are completely dynamic
 - A generalized allocation problem
 - “I may write zero or more output items, and I need to cooperate with everyone to figure out where they go”
 - Need efficient means of reservation/allocation
 - Parallel prefix scan (and relaxations / generalizations)
Prefix Scan

- Each output index is computed to be the sum of the previous input indices
 - \(O(n) \) work
 - For allocation: use scan results as a scattering vector
 - Origins in adder circuitry, popularized as a parallel primitive by Blelloch et al. in the ‘90s

- Fits the GPU machine model well
Prefix Scan

- Each output index is computed to be the sum of the previous input indices
 - $O(n)$ work
 - For allocation: use scan results as a scattering vector
 - Origins in adder circuitry, popularized as a parallel primitive by Blelloch et al. in the ‘90s

- Fits the GPU machine model well
Interactive portion of the talk
(Show of hands please)

- Taken (or taught) an OS course?
- Had a unit on process synchronization?
- Covered multiple producers and consumers?
- Learned how to protect the queue with locks and mutexes?
- Learned how to protect the queue with prefix-sum and barriers?

- Mindset: *cooperation* ↔ *threads + locks*
Prefix Scan for Radix Sorting

- **Key sequence**
 - Flag vectors
 - Compacted flag vectors (relocation offsets)
 - Output key sequence

- **For radix sorting passes**
 - 0/1-flag each key as having a digit of 0,1,2,3, etc.
 - Scan flag vectors for radix r digits
 - Relocate keys into bins for each digit
Kernel Fusion
and the efficient prefix-scan “runtime”
Kernel Fusion

Un-fused

- Three concepts:
 1. Propagate live data between orthogonal steps in fast registers / smem
 2. Use scan (or variant) as a “runtime” for everything.
 3. Heavy SMT (over-threading) yields usable “bubbles” of free computation

Fused
1. Propagate live data between orthogonal steps in fast registers / smem
2. Use scan (or variant) as a “runtime” for everything.
3. Heavy SMT (over-threading) yields usable “bubbles” of free computation
Read + Write Kernel Memory Wall

GTX285 r+w memory wall
(17.8 instructions per input word)

FREE WORK BUBBLE
... after data movement instructions

![Graph showing data movement and memory wall](image)

- **Problem Size (millions)**
- **Thread-Instructions / 32-bit scan element**

- **FREE WORK BUBBLE**
- **Data Movement Skeleton**
- **GTX285 r+w memory wall (17.8)**
... after prefix-scan runtime
Know your kernel’s memory wall

- Being below the wall gives you flexibility…

- .. for doing more local work:
 - Better granularity (e.g., increase redundant computation, ghost cells, radix bits, etc.)
 - Orthogonal kernel fusion
...for radix sorting

- Partially-coalesced writes (key scattering) increase write overhead by ~2x

- Bubble helps to accommodate:
 - Decoding key digits
 - Additional local scatter step in shared memory before globally scattering keys
 - Bigger granularity: four total concurrent scan operations (radix 16)
Programming Model Challenges

• Poor functional abstraction
 – A single host-side procedure call launches a kernel that performs orthogonal program steps

 MyUberKernel<<<grid_size, num_threads>>>(d_device_storage);

• Barriers to code reuse
 – No existing public repositories of kernel “subroutines” for scavenging
• Fusion from higher-order kernel interfaces is limited
 – Callbacks, iterators, visitors, functors, etc.
 • E.g., ReduceKernel<<<grid_size, num_threads>>>(CountingIterator(100));
 – Can’t express complex subroutine compositions
 • E.g., fused kernel above can’t be composed using a callback-based functor/visitor pattern
Algorithm Serialization

Too much expressed parallelism is bad
Decomposing problems as if you had limitless CTAs

It’s one of CUDA’s biggest accessibility strengths…
 – Virtual processors abstract a diversity of hardware configurations

… and one if its biggest performance weaknesses
 – Leads to a host of inefficiencies

• Instead: Design kernels for a fixed grid-size
 – E.g., only several hundred CTAs
Example 1: Threadblock decomposition

Dynamic threadblock decomposition

\[\text{grid-size} = \left(\frac{N}{\text{tilesize}} \right) \text{CTAs} \]

Fixed threadblock decomposition

\[\text{grid-size} = 150 \text{ CTAs (or other small constant)} \]
Benefits are many:

- Common work gets hoisted and reused, e.g.:
 - Thread-dependent predicates
 - Setup and initialization code (notably for smem)
 - Offset calculations (notably for smem)

- No problem size limitations

- Grid size becomes a tuning parameter

- Increased register pressure
 - Common values are hoisted and kept live
Example 2: Recursive threadblock decomposition

- 2-level curries results in registers (or smem) between tiles. Elides:
 - $O(N/tilesize)$ gmem accesses
 - 2-4 instructions per access (offset calcs, load, store)

- 2-level only enacts a small, constant-sized inner tree
 - GPU is least efficient here: get it over with as quick as possible
Overheads In Action
(prefix scan)

Thread-instructions / Element

Grid Size (# of threadblocks)

- Compute Load
- 285 Scan Kernel Wall
Warp-synchronous Programming

Too much expressed parallelism is bad (part 2)
Want hybrid algorithms composed of different phases

- E.g., local parallel prefix sum:
 - SIMD lanes wasted on $O(n)$-work Brent Kung (left), but less work when $n >$ warp size
 - Kogge-Stone (right) is $O(n \log n)$-work, but faster when $n \leq$ warp size
Want hybrid algorithms composed of different phases

- E.g., local parallel prefix sum:
 - SIMD lanes wasted on $O(n)$-work Brent Kung (left), but less work when $n > \text{warp size}$
 - Kogge-Stone (right) is $O(n \log n)$-work, but faster when $n \leq \text{warp size}$
Warp-synchronous + Algorithm Serialization
(e.g., reduction)

Tree-based:

Vs. raking-based:
Warp-synchronous + Algorithm Serialization (e.g., reduction)

Tree-based:

Vs. raking-based:
Diverse Warp Jobs

- Communication between threads is expensive
 - Barriers make $O(n)$ code $O(n \log n)$

- One or two “worker warps”
 - The rest are “DMA engine” threads
 - Use threadblocks to cover pipeline latencies, e.g., Fermi SMs occupied by
 - 2 worker warps per CTA
 - 6-7 CTAs
Meta-programming

Improper granularity == performance cliff
Specialize target code for given devices

- Optimal granularity is different for:
 - Different SMs (varied local storage: registers/smem)
 - Different input types (e.g., sorting chars vs. ulongs)

- Author a single source implementation
 - # of steps for each algorithm phase is configuration-driven
 - Template expansion + Constant-propagation + Static loop unrolling + Preprocessor Macros
 - Compiler produces a target assembly that is well-tuned for the specifically targeted hardware and problem
E.g.: Scattering vector-2 pairs of keys to their binned destinations

#define SM20_PAIRS_PER_TILE() (4) // 4 pairs on GF100
#define SM12_PAIRS_PER_TILE() (2) // 2 pair on GT200
#define SM10_PAIRS_PER_TILE() (1) // 1 pairs on G80
#define PAIRS_PER_TILE(version)((version >= 200) ? SM20_PAIRS_PER_TILE() : \n (version >= 120) ? SM12_PAIRS_PER_TILE() : \n SM10_PAIRS_PER_TILE())

...

template <typename KeyType, uint PAIRS>
 __device__ __forceinline__
void ScatterRankedKeys(
 KeyType *d_out_keys,
 typename VecType<KeyType, 2>::Type pairs[PAIRS],
 uint2 ranks[PAIRS])
{
 #pragma unroll
 for (uint PAIR = 0; PAIR < PAIRS; PAIR++) {
 d_out_keys[rank[PAIR].x] = pairs[PAIR].x;
 d_out_keys[rank[PAIR].y] = pairs[PAIR].y;
 }
}
...

ScatterRankedKeys<float, PAIRS_PER_TILE(__CUDA_ARCH__)>(d_out_keys, pairs, ranks);
• Templates have logistical problems
 – Compiled libraries suffer from code bloat
 • CUDPP primitives library is 100s of MBs, yet still doesn’t support all built-in numeric types.
 • Specializing for device configurations makes it even worse
 – The alternative is to ship source for #include’ing
 • Have to be willing to share source
 – Need a way to fit meta-programming in at the JIT / bytecode level to help avoid expansion / mismatch-by-omission

• Serializing algorithms is more than just “blocking”
 – Can leverage fundamentally different algorithms for different phases
 • How to teach the compiler do to this?
Summary

- Cooperative allocation crucial for dynamic parallelism
- Performance Strategies
 - Resource-allocation as runtime
 - Kernel fusion
 - Algorithm serialization
 - Warp-synchronous programming
 - Flexible granularity via meta-programming
- Challenges for the Programming Model
 - Poor functional abstraction
 - Little code-reuse
 - How to ship/deploy flexible code (avoid code bloat)
Questions?

{dgm4d, grimshaw} @ virginia.edu