MPI Has Failed
Now What?

Patrick Geoffray
Senior Software Architect
patrick@myri.com

14 September 2008
CCGSC – Flat Rock, NC
Failed ?!? Yeah, Right.

• MPI is widely used in HPC.
 – Millions of lines of code.
 – Supported by all vendors.

• MPI has reduced the cost of HPC.
 – Applications are easier to port to new machines.
 – ISVs maintain single code base.
 – Larger pool of human expertise, tools.
 – Everybody can write parallel codes, even physicists.

• MPI is a good programming interface.
 – Implicitly express locality.
 – Does not rely on compilers.
 – Simple error handling.
 – Support communication/computation overlap.
The Devil’s Advocate

• MPI is not portable.
 – Look for “undefined” or “implementation dependent” in the spec.
 – False buffering assumption can deadlock valid MPI codes.

• MPI is not efficient.
 – Force matching and/or copy even when locality is not important.
 – Unexpected messages, matching in linear time, MPI-2 RMA.

• MPI is not scalable.
 – Everybody knows about everybody else.

• MPI is not fault-tolerant.
 – Spec assumes reliable message transmission, no async errors.
 – Après moi le deluge (After me comes the floods, Louis XV).

• MPI is in the HPC ghetto.
 – Real world uses Socket.
MPI Cannot Be Fixed

• MPI Forum can only add things, too much inertia to really reform the Interface.

• Most problems are semantic (ex. matching) or interface-based (ex. error handling).
 – Require major changes to the foundations of the Interface.

• Sub-setting is not a solution.
 – Narrow down some part of the Interface (for example removing ANY_SENDER).
 – Mostly targeted at performance.

• FT-MPI and other proposals are not practical.

➢ Define a small, well-defined, fault-tolerant, scalable, efficient interface below MPI.
The MPI World

- MPI
 - OMPi BTL
 - MPICH ADI
 - Intel DAPL
- TCP/IP
- Myricom MX
- Qlogic PSM
- Cray Portals
- Sandia Portals
- IBM LAPI
- Mellanox Verbs
The HPC Ghetto

- PGAS
- MPI
- File Systems
- PVM Misc
- Omnipath
- MPICH ADI
- Intel DAPI
- Socket
- TCP/IP
- Myricom MX
- Qlogic PSM
- Cray Portals Sandia Portals
- IBM LAPI
- Mellanox Verbs
The Unified World

Common Communication Interface (CCI)

- PGAS
- MPI
- File Systems
- Sockets
- Financial markets
- Databases
- Misc

- TCP/IP
- Myricom MX
- Qlogic PSM
- Cray Portals Sandia Portals
- IBM LAPI
- Mellanox Verbs
The Refined Unified World

Common Communication Interface (CCI)

- TCP/IP
- UDP/IP
- Ethernet
- Infiniband

PGAS
MPI
File Systems
Sockets
Financial markets
Databases
Misc
Common Communication Interface (CCI)

- Actives Messages and RMA operations.
- Operations are always non-blocking.
 - Incentive for communication/computation overlap.
- No assumed order on the wire.
 - Allow for multi-rails and/or adaptive routing.
- Asynchronous progress.
 - Threads or event-driven runtime.
 - Explicit progress function for backup.
- No per-connection resources (no QPs), but not connection-less (state).
- Local completion == Remote completion.
 - All error notifications are synchronous.
- Callbacks on operations’ state transitions.
Active Messages

• Semantics:
 – Always buffering on send side.
 – Separate Header and Data.
 – Message size limited to MTU (no order on wire).
 – Handler called on receive side, asynchronously or in progress function.
 – Access to Header and Data buffers limited to handler lifetime.
 – Possibility to “borrow” Data buffer for zero-copy deferred access.

• Implementation benefits:
 – Simple MTU-sized send and receive rings.
 • Implicit flow-control.
 – Handler can be executed on a host, a NIC, a GPU.
Remote Memory Access Operations

• Semantics:
 – One-sided operations.
 – Never buffering on local side.
 – Explicit memory regions management.
 • Virtual memory regions for custom mappings.
 – Express dependencies between groups of operations (including Active Messages).
 – Regular non-contiguous access (n-dimension stride) local/remote.
 – Atomic operations.

• Implementation benefits:
 – Can be implemented on top of Active Messages.
 – Dependencies (order) can be enforced on remote side.
 – Virtual regions piggyback IOMMU for global memory allocator.
Status

- Technical spec in still in early development.
- CCI is not a Public Forum.
 - Right now, a more or less formal group of experts.
 - Public input later in the process.
- CCI is gaining momentum.
 - A number of vendors have joined or expressed great interest.
 - Some middlewares maintainers cried of joy.
- Proof is in the pudding.
 - Early implementations of CCI over common low-level vendor interfaces.
 - Early ports of various middlewares on top of CCI.
- Ethernet unification is a great drive.
Thank you! Questions?