Math Library Challenges in Auto-Tuning

Greg Henry
Intel® MKL Architect
My Perspective on Automation

• We’re a consumer of numerical auto-tuning and automation
• Automation is critical to math library success
• When optimizing, the closer you are to peak performance, the more everything has to be perfect or you’ll lose performance.
• We hand-tune + auto-search accordingly
Dispatching is an important feature

- Run optimal code on any HW automatically.
- We use internal dispatching to accomplish this.
- We want to be competitive everywhere we run (not just on Intel HW).
BLAS as an example of automation

- All our BLAS routines are based upon an internal API.
 - Lower level library routines than the BLAS themselves
- Our developers can use this API to get even more performance control
- Internal API routines are both auto-tuned and hand-tuned
- Examples to mention:
 - Dynamic run-time examples
 - Distributed memory searches
Our Auto-searching tools

• Obvious targets: find the optimal block-size or loop ordering
• Non-obvious things: finding the best assembly instruction streams
• Search spaces can be large
 – We’ve techniques for trying more cases per second than other approaches
Automation hurdles aren’t just about performance

- Finding the best library isn’t our biggest hurdle
- Identifying and dealing with regressions while making code changes can involve far more data parsing.
Conclusion

• Auto-tuning is critical.
• Please send me ideas/feedback at greg.henry@intel.com