Optimizing GPU codes

Vasily Volkov
UC Berkeley
August 11, 2009
Background

January 2008: we got 205 Gflop/s in SGEMM on G80
 – CUBLAS was at ~128 Gflop/s
 – Best published results were at 90-100 Gflop/s
 • Baskaran et al. 2008, Ryoo et al. 2008
 – (Now our code is in CUBLAS)

That was not expected
 – How did we do that!?

June 2008: 160 Gflop/s in FFT on G80
 – CUFFT was at ~50 Gflop/s
 – (Since June 2009 CUFFT matches our performance)
Our code vs. CUBLAS 1.1

- Popular GPU programming guidelines recommend:
 - Minimize use of registers
 - Maximize use of shared memory
 - Use longer thread blocks
 - Maximize occupancy (number of concurrent instruction streams)
- CUBLAS 1.1 succeed in following all of them, but loses in performance:

<table>
<thead>
<tr>
<th></th>
<th>CUBLAS 1.1</th>
<th>Our code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registers per thread</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>Shared memory per block</td>
<td>8.3 KB</td>
<td>1.1 KB</td>
</tr>
<tr>
<td>Thread block size</td>
<td>512</td>
<td>64</td>
</tr>
<tr>
<td>Occupancy (8800 GTX)</td>
<td>67%</td>
<td>33%</td>
</tr>
<tr>
<td>Performance (8800 GTX)</td>
<td>128 Gflop/s</td>
<td>205 Gflop/s</td>
</tr>
</tbody>
</table>

- Note that both codes do the same amount of work per block
 - 2048^2K flops per thread if multiplying MxK matrix by KxN matrix
Memory latency hiding

Little’s law
\[\text{data in transit [B]} = \text{latency [s]} \times \text{bandwidth [B/s]} \]

How to keep much data in transit?
- (Prefetch)
- Use long vectors: SIMD
- Use many threads: SMT
- Mixture: SIMT = SIMD + SMT

It is all about memory concurrency, not threads
Little’s law in numbers

<table>
<thead>
<tr>
<th></th>
<th>8800GTX</th>
<th>9800GTX</th>
<th>GTX280</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sustained bandwidth</td>
<td>76 GB/s</td>
<td>58 GB/s</td>
<td>127 GB/s</td>
</tr>
<tr>
<td>Sustained latency</td>
<td>320 ns</td>
<td>300 ns</td>
<td>335 ns</td>
</tr>
<tr>
<td>Little’s law</td>
<td>24320 B</td>
<td>17400 B</td>
<td>42545 B</td>
</tr>
<tr>
<td>Max threads</td>
<td>12288</td>
<td>12288</td>
<td>30720</td>
</tr>
<tr>
<td>Min requests/thread</td>
<td>2.0 B</td>
<td>1.4 B</td>
<td>1.4 B</td>
</tr>
</tbody>
</table>

Hides latency if access is **very fine grain**
≥2 bytes in independent requests in thread

So small granularity may be unnecessary
Block/tiled algorithms

Workflow: **load block**, compute, **store block**, repeat
- all in one thread block
Consider 32x32 block of single precision numbers
This is **4 KB** data/block or per multiprocessor
Hides latency no matter how many threads are run:

<table>
<thead>
<tr>
<th></th>
<th>8800GTX</th>
<th>9800GTX</th>
<th>GTX280</th>
</tr>
</thead>
<tbody>
<tr>
<td># of multiprocessors</td>
<td>16</td>
<td>16</td>
<td>30</td>
</tr>
<tr>
<td>Little’s law</td>
<td>24320 B</td>
<td>17400 B</td>
<td>42545 B</td>
</tr>
<tr>
<td>Per multiprocessor</td>
<td>1.5 KB</td>
<td>1.1 KB</td>
<td>1.4 KB</td>
</tr>
</tbody>
</table>

Tiled algorithms don’t require many threads
Register files

<table>
<thead>
<tr>
<th></th>
<th>8800GTX</th>
<th>9800GTX</th>
<th>GTX280</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threads/multiprocessor</td>
<td>768</td>
<td>768</td>
<td>1024</td>
</tr>
<tr>
<td>Registers/multiprocessor</td>
<td>8192</td>
<td>8192</td>
<td>16384</td>
</tr>
<tr>
<td>Registers/thread</td>
<td>10</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>Registers, total</td>
<td>512 KB</td>
<td>512 KB</td>
<td>1.9 MB</td>
</tr>
</tbody>
</table>

Many threads require many registers
Up to ≈ 2 MB registers on die in total
- largest memory on die (4x shared memory)

Got many registers – how to use them well?
Register usage in CUBLAS SGEMM

| warp 1 | warp 2 | warp 3 | warp 4 | warp 5 | warp 6 | warp 7 | warp 8 | warp 9 | warp 10 | warp 11 | warp 12 | warp 13 | warp 14 | warp 15 | warp 16 |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |
| C's data |

C's index

<table>
<thead>
<tr>
<th>counter</th>
</tr>
</thead>
</table>

B's pointer

| C's data |

B's pointer in shared memory

<table>
<thead>
<tr>
<th>lda</th>
</tr>
</thead>
<tbody>
<tr>
<td>*****</td>
</tr>
<tr>
<td>*****</td>
</tr>
<tr>
<td>*****</td>
</tr>
</tbody>
</table>

C's index

| counter |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|

Runs many threads

Registers are wasted for auxiliary information

Extensive thread parallelism eats registers fast
Register usage in our SGEMM

Run fewer threads
Half registers are used for working set

Fewer threads – fewer registers wasted
• We want to use registers for working set
• But they are not shared
 – Use distributed memory algorithms?
Local data layout in our SGEMM

- Blocks in A and C are row-cyclic distributed across threads
 - Little inter-thread communication required
Is # of thread blocks important?

CUBLA SGEMM again
- 1 thread block per multiprocessor
- Many local barriers inside
- Memory latency doesn’t overlap with computation

More thread blocks is good
- 2-4 often enough
Our code vs. CUBLAS 1.1

Performance in multiplying two $N \times N$ matrices on GeForce 8800 GTX:

- Multiply-and-add with an operand in shared memory (66%)
- Our implementation (60%)
- CUBLAS 1.1 (37%)

Our SGEMM is used in CUBLAS 2.0 and later; open-source
Performance Results

Our solution runs at \(~\text{50\%}\) of the system’s peak (shown on the right)

Open-source
• If we compute on CPU anyway, do that in parallel with computing on GPU
Similar algorithm in double precision
FFT Performance on NVIDIA 8800GTX

- **compute bound (173 GInstr/s)**
- **bandwidth bound (76 GB/s)**

![Graph showing performance of FFT on NVIDIA 8800GTX.](image)
FFT Performance on NVIDIA 9800GTX

compute bound: (214 GInstr/s)

bandwidth bound: (58 GB/s)

CUDA FFT
Also used in OpenCL FFT
SGEMM, A:Mx2048, B:2048xN

Many 512 pt FFTs

256³ 3D stencil (double precision)

Geforce GTX280

(3D stencil flop count doesn’t include CSE done by compiler)
Performance doesn’t get better after 10,000 threads
Running more threads than can fit at a time is not critical
Global synchronization

• Global synchronization \approx launch new kernel
• Launch new kernel $\approx 3\div7$ μs in overhead
• LU factorization of $N\times N$ matrix $\approx 4N$ kernel invocations
 – This is $12\div28$ ms for 1000×1000 matrix
 – This is $24\div56$ Gflop/s upperbound
 – But you get 50 Gflop/s on quad-core CPU
• May not worth implementing on GPU
Panel Factorization

Factorizing $N \times 64$ matrix in GPU memory using LAPACK’s SGETF2:

- When optimizing CPU-GPU communication, mind:
 - Not only #bytes transferred
 - But also #kernels called
Alternative global synchronization

• 3 μs is 10x memory latencies – can do better?
 – Why not do all work in one kernel?
• Threads can globally communicate via DRAM
• Can implement custom barrier
 – Requires no atomic operations
 – Requires memory consistency
 • Memory fence will do (available since CUDA 2.2)
• Trends: fast on-chip global synchronization
 – Coherent caches on Intel Larrabee
 – ATI GPUs have global shared memory (GDS)
Fast on-chip communication?

• GPU has a memory crossbar anyway
 – Can we use it for on-chip global communication?