Topics

Projection in Scientific Computing

Sparse matrices, parallel implementations

PDEs, Numerical solution, Tools, etc.

Iterative Methods
Part I
Discussion
Motivation for iterative methods

Part II
Stationary Iterative Methods

Part III
Nonstationary Iterative Methods
Iterative Methods
Motivation

So far we have discussed and have seen:

- Many engineering and physics simulations lead to sparse matrices
e.g. PDE based simulations and their discretizations based on
 - FEM/FVM
 - finite differences
 - Petrov-Galerkin type of conditions, etc.

- How to optimize performance on sparse matrix computations

- Some software how to solve sparse matrix problems (e.g. PETSc)

The question is:

Can we solve sparse matrix problems faster than using direct sparse methods?

- In certain cases **Yes:**
 using **iterative methods**
Sparse direct methods

- These are based on Gaussian elimination (LU)
- Performed in sparse format

Are there limitations of the approach?

- Yes, they have fill-ins which lead to
 - more memory requirements
 - more flops being performed
- Fill-ins can become prohibitively high
Sparse direct methods

Consider LU for the matrix below

- a nonzero is represented by a *

1st step of LU factorization will introduce fill-ins

- marked by an F
Sparse direct methods

Fill-ins can be improved by reordering

- Remember: we talked about it in slightly different context (for speed and parallelization)
- Consider the following reordering

These were extreme cases

- but still, the problem exists
Sparse methods

Sparse direct vs dense methods

- Dense takes $O(n^2)$ storage, $O(n^3)$ flops, runs within peak performance
- Sparse direct can take $O(\#\text{nonz})$ storage, and $O(\#\text{nonz})$ flops, but these can also grow due to fill-ins and performance is bad
- with $\#\text{nonz} << n^2$ and 'proper' ordering it pays off to do sparse direct

Software (table from Julien Langou)

- http://www.netlib.org/utk/people/JackDongarra/la-sw.html

<table>
<thead>
<tr>
<th>Package</th>
<th>Support</th>
<th>Type</th>
<th>Language</th>
<th>Mode</th>
<th>Seq</th>
<th>Dist</th>
<th>SPD</th>
<th>Gen</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSCPACK</td>
<td>yes</td>
<td>X</td>
<td>f77</td>
<td>X</td>
<td>X</td>
<td>M</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>HSL</td>
<td>yes</td>
<td>X</td>
<td>c</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>MFACT</td>
<td>yes</td>
<td>X</td>
<td>c++</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>MUMPS</td>
<td>yes</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>M</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PSPASES</td>
<td>yes</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>M</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SPARSE</td>
<td>?</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>M</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SPOOLES</td>
<td>?</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>M</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SuperLU</td>
<td>yes</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>M</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>TAUCS</td>
<td>yes</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>UMFPACK</td>
<td>yes</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Y12M</td>
<td>?</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
What about Iterative Methods? Think for example

\[x_{i+1} = x_i + P(b - Ax_i) \]

Pluses:

- Storage is only \(O(\#\text{nonz}) \) (for the matrix and a few working vectors)
- Can take only a few iterations to converge (e.g. \(<< n \))
 - for \(P = A^{-1} \) it takes 1 iteration (check)!
- In general easy to parallelize
What about Iterative Methods? Think for example

\[x_{i+1} = x_i + P(b - Ax_i) \]

Minuses:
- Performance can be bad
 (as we saw in Lecture 13 and today’s discussion)
- Convergence can be slow or even stagnate
 But can be improved with preconditioning
 - Think of \(P \) as a preconditioner, an operator/matrix \(P \approx A^{-1} \)
 - Optimal preconditioners (e.g. multigrid can be) lead to convergence in \(O(1) \) iterations
Part II

Stationary Iterative Methods
Stationary Iterative Methods

Can be expressed in the form

\[x_{i+1} = B x_i + c \]

where \(B \) and \(c \) do not depend on \(i \)

- older, simpler, easy to implement, but usually not as effective (as nonstationary)
- examples: Richardson, Jacobi, Gauss-Seidel, SOR, etc. (next)
Richardson Method

Richardson iteration

\[x_{i+1} = x_i + (b - Ax_i) = (I - A)x_i + b \] \hspace{1cm} (1)

i.e. B from the definition above is $B = I - A$

Denote $e_i = x - x_i$ and rewrite (1)

\[
\begin{align*}
 x - x_{i+1} &= x - x_i - (Ax - Ax_i) \\
 e_{i+1} &= e_i - Ae_i \\
 &= (I - A)e_i \\
 ||e_{i+1}|| &\leq ||(I - A)e_i|| \leq ||I - A|| ||e_i|| \leq ||I - A||^2 ||e_{i-1}|| \\
 &\leq \cdots \leq ||I - A||^i ||e_0||
\end{align*}
\]

i.e. for convergence ($e_i \to 0$) we need

\[||I - A|| < 1 \]

for some norm $|| \cdot ||$, e.g. when $\rho(B) < 1$.

COSC 594, 04-22-2020
Jacobi Method

\[x_{i+1} = x_i + D^{-1}(b - Ax_i) = (I - D^{-1}A)x_i + D^{-1}b \quad (2) \]

where \(D \) is the diagonal of \(A \) (assumed nonzero; \(B = I - D^{-1}A \) from the definition)

Denote \(e_i = x - x_i \) and rewrite (2)

\[
\begin{align*}
 x - x_{i+1} &= x - x_i - D^{-1}(Ax - Ax_i) \\
 e_{i+1} &= e_i - D^{-1}Ae_i \\
 &= (I - D^{-1}A)e_i \\
 ||e_{i+1}|| &\leq ||(I - D^{-1}A)e_i|| \leq ||I - D^{-1}A|| ||e_i|| \leq ||I - D^{-1}A||^2 ||e_{i-1}|| \\
 &\leq \cdots \leq ||I - D^{-1}A||^i ||e_0||
\end{align*}
\]

i.e. for convergence (\(e_i \to 0 \)) we need

\[||I - D^{-1}A|| < 1 \]

for some norm \(|| \cdot || \), e.g. when \(\rho(I - D^{-1}A) < 1 \)
Gauss-Seidel Method

\[x_{i+1} = (D - L)^{-1}(Ux_i + b) \] \hspace{1cm} (3)

where \(-L\) is the lower and \(-U\) the upper triangular part of \(A\), and \(D\) is the diagonal.

Equivalently:

\[
\begin{align*}
 x_1^{(i+1)} &= (b_1 - a_{12}x_2^{(i)} - a_{13}x_3^{(i)} - a_{14}x_4^{(i)} - \ldots - a_{1n}x_n^{(i)}) / a_{11} \\
 x_2^{(i+1)} &= (b_2 - a_{21}x_1^{(i+1)} - a_{23}x_3^{(i)} - a_{24}x_4^{(i)} - \ldots - a_{2n}x_n^{(i)}) / a_{22} \\
 x_3^{(i+1)} &= (b_2 - a_{31}x_1^{(i+1)} - a_{32}x_2^{(i+1)} - a_{34}x_4^{(i)} - \ldots - a_{3n}x_n^{(i)}) / a_{22} \\
 &\vdots \\
 x_n^{(i+1)} &= (b_n - a_{n1}x_1^{(i+1)} - a_{n2}x_2^{(i+1)} - a_{n3}x_3^{(i+1)} - \ldots - a_{n,n-1}x_{n-1}^{(i+1)}) / a_{nn}
\end{align*}
\]
Gauss-Seidel method

\[A = \begin{pmatrix}
10 & 1 & 2 & 0 & 1 \\
0 & 12 & 1 & 3 & 1 \\
1 & 2 & 9 & 1 & 0 \\
0 & 3 & 1 & 10 & 0 \\
1 & 2 & 0 & 0 & 15
\end{pmatrix}, \quad b = \begin{pmatrix}
23 \\
44 \\
36 \\
49 \\
80
\end{pmatrix} \]

\[\| b - Ax(i) \|_2 / \| b \|_2, \text{ function of } i, \text{ the number of iterations} \]

\[
\begin{array}{cccccc}
& x(0) & x(1) & x(2) & x(3) & x(4) \\
0.0000 & 2.3000 & 0.8783 & 0.9790 & 0.9978 & 1.0000 \\
0.0000 & 3.6667 & 2.1548 & 2.0107 & 2.0005 & 2.0000 \\
0.0000 & 2.9296 & 3.0339 & 3.0055 & 3.0006 & 3.0000 \\
0.0000 & 3.5070 & 3.9502 & 3.9962 & 3.9998 & 4.0000 \\
0.0000 & 4.6911 & 4.9875 & 5.0000 & 5.0001 & 5.0000 \\
\end{array}
\]
A comparison (from Julien Langou slides)

Jacobi Method:

\[
\begin{align*}
 x_1^{(i+1)} &= \left(b_1 - a_{12}x_2^{(i)} - a_{13}x_3^{(i)} - a_{14}x_4^{(i)} - \ldots - a_{1n}x_n^{(i)} \right) / a_{11} \\
 x_2^{(i+1)} &= \left(b_2 - a_{21}x_1^{(i)} - a_{23}x_3^{(i)} - a_{24}x_4^{(i)} - \ldots - a_{2n}x_n^{(i)} \right) / a_{22} \\
 x_3^{(i+1)} &= \left(b_2 - a_{31}x_1^{(i)} - a_{32}x_2^{(i)} - a_{34}x_4^{(i)} - \ldots - a_{3n}x_n^{(i)} \right) / a_{22} \\
 &\vdots \\
 x_n^{(i+1)} &= \left(b_n - a_{n1}x_1^{(i)} - a_{n2}x_2^{(i)} - a_{n3}x_3^{(i)} - \ldots - a_{n,n-1}x_{n-1}^{(i)} \right) / a_{nn}
\end{align*}
\]

Gauss-Seidel method

\[
\begin{align*}
 x_1^{(i+1)} &= \left(b_1 - a_{12}x_2^{(i)} - a_{13}x_3^{(i)} - a_{14}x_4^{(i)} - \ldots - a_{1n}x_n^{(i)} \right) / a_{11} \\
 x_2^{(i+1)} &= \left(b_2 - a_{21}x_1^{(i+1)} - a_{23}x_3^{(i)} - a_{24}x_4^{(i)} - \ldots - a_{2n}x_n^{(i)} \right) / a_{22} \\
 x_3^{(i+1)} &= \left(b_2 - a_{31}x_1^{(i+1)} - a_{32}x_2^{(i+1)} - a_{34}x_4^{(i)} - \ldots - a_{3n}x_n^{(i)} \right) / a_{22} \\
 &\vdots \\
 x_n^{(i+1)} &= \left(b_n - a_{n1}x_1^{(i+1)} - a_{n2}x_2^{(i+1)} - a_{n3}x_3^{(i+1)} - \ldots - a_{n,n-1}x_{n-1}^{(i+1)} \right) / a_{nn}
\end{align*}
\]

Gauss-Seidel is the method with better numerical properties (less iterations to convergence). Which is the method with better efficiency in term of implementation in sequential or parallel computer? Why?

In Gauss-Seidel, the computation of \(x_{k+1}^{(i+1)} \) implies the knowledge of \(x_k^{(i+1)} \). Parallelization is impossible.
Convergence can be very slow
Consider a modified **Richardson method**:

\[x_{i+1} = x_i + \tau (b - Ax_i) \] \hspace{1cm} (4)

Convergence is **linear**, similarly to Richardson we get

\[\| e_{i+1} \| \leq \| I - \tau A \| i \| e_0 \| \]

but can be very slow (if \(\| I - \tau A \| \) is close to 1), e.g. let

- \(A \) be symmetric and positive definite (SPD)
- the matrix norm in \(\| I - \tau A \| \) is induced by \(\| \cdot \|_2 \)

Then the best choice for \(\tau \) \((\tau = \frac{2}{\lambda_1 + \lambda_N})\) would give

\[\| I - \tau A \| = \frac{k(A) - 1}{k(A) + 1} \]

where \(k(A) = \frac{\lambda_N}{\lambda_1} \) is the condition number of \(A \).
Convergence

Note:

- The rate of convergence depend on the condition number $k(A)$
- Even for the the best τ the rate of convergence

$$\frac{k(A) - 1}{k(A) + 1}$$

is slow (i.e. close to 1) for large $k(A)$

- We will see convergence of nonstationary methods also depend on $k(A)$ but is better, e.g. compare with CG

$$\frac{\sqrt{k(A)} - 1}{\sqrt{k(A)} + 1}$$
Part III

Nonstationary Iterative Methods
Nonstationary Iterative Methods

The methods involve information that changes at every iteration
 - e.g. inner-products with residuals or other vectors, etc.

The methods are
 - newer, harder to understand, but more effective
 - in general based on the idea of orthogonal vectors and subspace projections
 - examples: Krylov iterative methods
 - CG/PCG, GMRES, CGNE, QMR, BiCG, etc.
Krylov Iterative Methods
Krylov Iterative Methods

Krylov subspaces: these are the spaces

\[K_i(A, r) = \text{span}\{r, Ar, A^2r, \ldots, A^{i-1}r\} \]

Krylov iterative methods find approximation \(x_i \) to \(x \) where

\[Ax = b, \]

as a minimization on \(K_i(A, r) \).
We have seen how this can be done for example by projection, i.e.
by the Petrov-Galerkin conditions:

\[(Ax_i, \phi) = (b, \phi) \quad \text{for} \quad \forall \phi \in K_i(A, r) \]
Krylov Iterative Methods

In general we

- expend the Krylov subspace by a matrix-vector product, and
- do a minimization/projection in it.

Various methods result by specific choices of expansion and minimization/projection.
An example: The **Conjugate Gradient Method (CG)**

- The method is for SPD matrices
- There is a way at iteration \(i \) to construct new 'search direction' \(p_i \) s.t.

\[
\text{span}\{p_0, p_1, \ldots, p_i\} \equiv K_{i+1}(A, r_0) \quad \text{and} \quad (Ap_i, p_j) = 0 \quad \text{for} \quad i \neq j.
\]

Note: \(A \) is SPD \(\Rightarrow (Ap_i, p_j) \equiv (p_i, p_j)_A \) can be used as an inner product, i.e. \(p_0, \ldots, p_i \) is an \((\cdot, \cdot)_A\) orthogonal basis for \(K_{i+1}(A, r_0) \)

\(\Rightarrow \) we can easily find \(x_{i+1} \approx x \) as

\[
x_{i+1} = x_0 + \alpha_0 p_0 + \cdots + \alpha_i p_i \quad \text{s.t.}
\]

\[
(Ax_{i+1}, p_j) = (b, p_j) \quad \text{for} \quad j = 0, \ldots, i
\]

Namely, because of the \((\cdot, \cdot)_A\) orthogonality of \(p_0, \ldots, p_i \) at iteration \(i + 1 \) we have to find only \(\alpha_i \)

\[
(Ax_{i+1}, p_j) = (A(x_i + \alpha_i p_i), p_i) = (b, p_i), \quad \Rightarrow \quad \alpha_i = \frac{(r_i, p_i)}{(Ap_i, p_i)}
\]

Note: \(x_i \) above actually can be replaced by any \(x_0 + v, \quad v \in K_i(A, r_0) \) (Why?)
Learning Goals

A brief introduction to iterative methods

- Motivation for iterative methods and links to previous lectures, namely
 - PDE discretization and sparse matrices
 - Optimized implementations

- Stationary iterative methods

- Nonstationary iterative methods and links to building blocks that we have already covered
 - Projection/Minimization
 - Orthogonalization

- Krylov methods; an example with CG; to see more examples ... (next lecture)