Introduction to GPU Programming with CUDA

Mark Gates
COSC 594 — Spring 2020
Scientific Computing for Engineers

Examples and slides available at: icl.utk.edu/~mgates3/gpu-tutorial/
Outline

GPU Architecture
- Threads & thread blocks
- Streaming Multiprocessor (SM)
- Specs

Ex 0: kernel
- Kernel syntax
- Compiling

Ex 1: matrix add
- Basic Runtime API
- Thrust library
- Coalesced memory loads

Ex 2: matrix norm
- Shared memory
- Reductions

Ex 3: matrix multiply
- Reusing data in shared memory
- Kernel strategy

Optimization

Ex 4: hybrid computing
- Streams
- Profiling

Runtime API
- Devices, Streams, Events, Memory
GPU Architecture

Threads and thread blocks
Streaming Multiprocessors (SMs)
Hiding memory latency
Why GPUs?

High peak performance (Gflop/s)
High speed memory (GDDR, HBM, MCDRAM)
High parallelism — 1000s of threads
Simpler, low-overhead execution model
 • No out-of-order execution
 • No speculative execution
 • Threads run in lock-step
 • Blocks are independent
Devotes more transistors to compute (green)
Energy efficient — high flop/s / watt

Data from NVIDIA and Intel specs, diagrams from NVIDIA manuals
CUDA: Threads

Thread block (1D, 2D, or 3D)
- Example: 2D grid of 5x2 threads
- **dim3 threads(5, 2);**
- Typically, # threads is multiple of 32 (warp size)
- Think of warp size roughly as vector length
- Max. 1024 threads

Grid of thread blocks (1D, 2D, or 3D)
- Example: 2D grid of 3x2 blocks
- **dim3 blocks(3, 2);**
- Max. $2^{31} - 1 \times 65535 \times 65535$

Threads within block can synchronize

Blocks cannot synchronize — executed in any order!

For limits see: CUDA C Programming Guide, Appendix H: Compute Capabilities
CUDA: Streaming Multiprocessors (SMs)

GPUs have several SM processors

• Each SM has some number of CUDA cores (varies: 64–192)
• GTX 1060 has 10 SMs (consumer card)
• Volta V100 has 84 SMs (HPC card)
Hiding memory latency

Simplified execution model

• Does not support out-of-order execution
• Does not support speculative execution, branch prediction, etc.

SM execution model

• Schedules warp of 32 threads that run in lock-step (caveat: Volta)
• Warp loads 32 elements from memory
• While load is pending, context switches to another warp
• Implies we need many warps per SM to hide latency and achieve good performance
Two version numbers

CUDA architecture or compute capability is hardware version; code names

- CUDA arch 1 Tesla*
- CUDA arch 2 Fermi
- CUDA arch 3 Kepler
- CUDA arch 5 Maxwell
- CUDA arch 6 Pascal
- CUDA arch 7 Volta
- CUDA arch 7.5 Turing

* Confusingly, there’s also the Tesla line of HPC GPU cards, spanning all CUDA architectures.

CUDA Toolkit version is the software version

- CUDA 1.x — 2007, supports arch 1.0 – 1.1
- CUDA 2.x — 2008, supports arch 1.0 – 1.3
- CUDA 3.x — 2010, supports arch 1 – 2
- CUDA 4.x — 2011, supports arch 1 – 2
- CUDA 5.x — 2012, supports arch 1 – 2
- CUDA 6.x — 2014, supports arch 1 – 3
- CUDA 7.x — 2015, supports arch 2 – 5
- CUDA 8.x — 2016, supports arch 2 – 6
- CUDA 9.x — 2017, supports arch 3 – 7.2
- CUDA 10.x — 2018, supports arch 3 – 7.5

Limits: Pascal

CUDA architecture 6.0 (Pascal)

- CUDA cores / SM 64
- Blocks / SM 32
- Warps (32 threads) / SM 64
- Threads / SM 2048
- 32-bit Registers / SM 64 KiB (i.e., 256 KiB)
- 32-bit Registers / thread 255
- Shared memory / SM 64 KiB
- Shared memory / block 48 KiB

Pascal P100 has 56 SMs (HPC card)

- Up to 1,792 blocks and 114,688 threads resident, up to 3584 threads executing per cycle
- Kernel launch can (should) be much larger

ICL.utk.edu/~mgates3/gpu-tutorial/

Figures from NVIDIA whitepapers
Limits: Volta

CUDA architecture 7.0 (Volta)

- CUDA cores / SM: 64
- Blocks / SM: 32
- Warps (32 threads) / SM: 64
- Threads / SM: 2048
- 32-bit Registers / SM: 64 KiB (i.e., 256 KiB)
- 32-bit Registers / thread: 255
- Shared memory / SM: 96 KiB
- Shared memory / block: 96 KiB (using > 48 KiB requires special configuration)

Volta V100 has 84 SMs (HPC card)

- Up to 2,688 blocks and 172,032 threads resident, up to 5376 threads executing per cycle
- Kernel launch can (should) be much larger

CUDA C Programming Guide: Appendix H
Volta Architecture Whitepaper
Volta V100 Datasheet

Figures from NVIDIA whitepapers
Figures from NVIDIA whitepapers
Example 0: kernel

Basic CUDA kernel syntax
Compiling CUDA kernel
CUDA kernel syntax

__global__ keyword marks GPU kernel

- Always void
- Executed by each thread

dim3 blocks, threads

- 1D, 2D, or 3D grid

<<< ... >>> triple chevron syntax

- Launches kernel asynchronously; returns immediately
- Optional shmem: dynamic shared memory, typically 0
- Optional stream: recommended

cudaGetLastError

- Launch errors: invalid blocks, threads, etc.

```c
// ex00-empty.cu
// compile: nvcc -o ex00-empty ex00-empty.cu

// GPU Kernel: executed by multiple threads on GPU.
__global__
void kernel( ... args ... )
{
    ... code ...
}

// CPU Driver: executed on CPU, launches kernel on GPU.
void driver( ... args ..., cudaStream_t stream )
{
    dim3 blocks( 10, 20, 30 ); // 6000 blocks of
dim3 threads( 8, 16 ); // 128 threads each.
kernal<<< blocks, threads, shmem, stream >>>( ... args ... );
cudaError_t err = cudaGetLastError();
throw_error( err );
}
Compiling CUDA code

Compile with NVIDIA compiler nvcc

- `nvcc -O3 -c -o ex00-empty.o ex00-empty.cu` # create .o object
- `nvcc -O3 -o ex00-empty ex00-empty.cu` # create executable

GPU kernel code compiled by nvcc itself

- Supports limited subset of C++
- Doesn’t support most of std standard library — use Thrust instead

For CPU driver code, nvcc invokes host compiler (g++, clang++, ...)

- Supports full C++
- Can pass flags to host compiler and linker
  - `nvcc -Xcompiler "-fPIC -Wall -Wno-unused-function" -o ex00-empty ex00-empty.cu`
Example 1: matrix add

ceildiv for # blocks
Kernel blockIdx, blockDim, threadIdx
Disabling threads
Basic runtime API — malloc, memcpy, free
Thrust — device_vector, copy, raw pointers
Optimize for coalesced memory loads
Matrix add example

Add two matrices

• $C = A + B$

Thread blocks overlay matrices

• $\text{ceildiv}(m, mb) = 3$ block rows
  $\text{ceildiv}(n, nb) = 2$ block cols

Each thread computes one element of $C$:

• $C_{ij} = A_{ij} + B_{ij}$

Threads outside matrix are disabled

Note 4x4 threads is sub-optimal; want multiples of 32 threads
CUDA: Kernel syntax

Add two matrices:

• \( C = A + B \)

Get thread ID, block ID, and block dimensions from predefined variables

• `blockIdx.x, y`
  • index of block, ex: (1, 0)

• `blockDim.x, y`
  • # threads, ex: (4, 4)

• `threadIdx.x, y`
  • index of thread within block, ex: (2, 1)

Threads outside matrix are disabled by if condition

Here, every thread is independent

---

---

---
CUDA: Runtime API

#include <cuda_runtime.h>

cudaMalloc
• Allocate GPU device memory
• Synchronizes GPU

cudaMemcpy
• cudaMemcpyDefault
  Direction determined from pointers
• cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice, etc.

cudaFree
• Free GPU memory

C functions, callable from any .c file
(don’t need nvcc)
Thrust: STD for CUDA

#include <thrust/device_vector.h>

device_vector<T>
  • Similar to std::vector<T>

Copy from std::vector
  • CPU ⇒ GPU
  • Copy to std::vector doesn’t work

Get raw pointer to pass to GPU kernel

thrust::copy
  • Similar to std::copy
  • CPU ↔ GPU

---

/// ex01-add-matrix-thrust.cu
template <typename T>
void test( int m, int n, ... )
{
  // Allocate and initialize matrices on CPU host.
  int ld = m;
  std::vector<T> A( ld * n ), B( ld * n ), C( ld * n );
  rand_matrix( m, n, A.data(), ld );
  rand_matrix( m, n, B.data(), ld );

  // Allocate matrices on GPU device and copy from host to device.
  thrust::device_vector<T> dA_vec, dB_vec, dC_vec;
  dA_vec = hA;
  dB_vec = hB;
  dC_vec = hC;

  // Get raw pointers to pass to CUDA kernel.
  T *dA, *dB, *dC;
  dA = thrust::raw_pointer_cast( dA_vec.data() );
  dB = thrust::raw_pointer_cast( dB_vec.data() );
  dC = thrust::raw_pointer_cast( dC_vec.data() );

  // Add matrices, for now using null stream.
  matrix_add( m, n, dA, dB, dC, ld, nullptr );

  // Copy C = dC (device to host).
  // hC = dC_vec; // doesn’t work
  thrust::copy( dC_vec.begin(), dC_vec.end(), hC.begin() );
}
First optimization: Coalesced memory access

If threads issue reads or writes within one cache line, generates one coalesced (vector) load

Similar to optimizing for cache lines on CPUs

- CUDA L1 cache line is 128 bytes (32 floats or 16 doubles)
- CUDA L2 cache line is 32 bytes (8 floats or 4 doubles)
- Ideally, loads are aligned to 128 byte boundaries
First optimization: Coalesced memory access

Tune block dimensions of matrix-add kernel

- All using 64 threads
- 8000 x 8000 matrix
- Stored column-major

![16 x 4 thread block](image1)
![4 x 16 thread block](image2)

<table>
<thead>
<tr>
<th>thread block size</th>
<th>64x1</th>
<th>32x2</th>
<th>16x4</th>
<th>8x8</th>
<th>4x16</th>
<th>2x32</th>
<th>1x64</th>
</tr>
</thead>
<tbody>
<tr>
<td>GB/s</td>
<td>150</td>
<td>125</td>
<td>100</td>
<td>75</td>
<td>50</td>
<td>25</td>
<td>0</td>
</tr>
</tbody>
</table>

single-precision results on GTX 1060
192 GB/s theoretical peak, achieve 80% of peak
Example 2: norm

- Memory hierarchy
- Shared memory
- __syncthreads
- Parallel reduction
- Column vs. row access
- Thrust — reduction
CUDA memory hierarchy

Registers

- Variables and arrays
- Local to each thread
  - Shuffle provides means to exchange

Shared memory

- User-managed L1 cache
- __shared__ keyword
- Local to each block
- __syncthreads() to ensure data consistency

L1, L2 cache

Global memory (GDDR, HBM)

CUDA C Programming Guide, Appendix H: Compute Capabilities

icl.utk.edu/~mgates3/gpu-tutorial/
Matrix norm

One norm: maximum column sum

• Version 1:
  • Assign one column per thread-block
  • Each thread does partial column sum
  • Parallel sum reduction to get total column sum

• Version 2:
  • Assign nb columns per thread-block
  • Each thread does one column

Inf norm: maximum row sum

• Same implementations, using rows
Matrix norm: Version 1, part A

Thread block 0 sums column 0

---

```cpp
/// GPU kernel: computes column sums:
/// sums[j] = sum_{i = 0...m} | Aij |.
///
/// Each thread-block computes one entry, sums[j].
/// Threads compute partial sums,
/// then sum-reduce to get sums[j].
///
/// template <typename T>
/// __global__
/// void norm_one_kernel_v1(
/// int m, int n, T const* A, int ld, T* sums)
///{
/// // Partial column sums, one per thread in thread block.
/// const int nb = norm_one_nb;
/// __shared__ T s_partial_sums[nb];
///
/// // Shift to j-th column.
/// int j = blockIdx.x;
/// T const* Aj = &A[j*ld];
///
/// // Thread tid sums:
/// // s_partial_sums[tid] = sum_i A(tid + i*nb, j).
/// int tid = threadIdx.x;
/// s_partial_sums[tid] = 0;
/// for (int i = tid; i < m; i += nb) {
/// s_partial_sums[tid] += abs(Aj[i]);
/// }
///
/// // continued ...
```
Matrix norm: Version 1b, part A

Thread block 0 sums column 0 — alternate ordering

```
// GPU kernel: computes column sums:
/// sums[j] = sum_{i = 0...m} | Aij |.
///
/// Each thread-block computes one entry, sums[j].
/// Threads compute partial sums,
/// then sum-reduce to get sums[j].
///
template <typename T>
__global__
void norm_one_kernel_v1(
 int m, int n, T const* A, int ld, T* sums)
{
 // Partial column sums, one per thread in thread block.
 const int nb = norm_one_nb;
 __shared__ T s_partial_sums[nb];

 // Shift to j-th column.
 int j = blockIdx.x;
 T const* Aj = &A[j*ld];

 // Thread tid sums:
 // s_partial_sums[tid] = sum_i A(tid + i*nb, j).
 int tid = threadIdx.x;
 s_partial_sums[tid] = 0;

 // original:
 // for (int i = tid; i < m; i += nb) {
 int chunk = ceildiv(m, nb);
 int begin = tid*chunk;
 int end = min((tid+1)*chunk, m);
 for (int i = begin; i < end; ++i) {
 s_partial_sums[tid] += abs(Aj[i]);
 }
 // continued ...
```
Matrix norm: Version 1, part B

Binary tree based sum reduction of s_partial_sums

**All threads** call `__syncthreads()` between updates to shared memory s_partial_sums

- Even threads that are not computing must sync, otherwise can deadlock

```
// ... continued

// Parallel binary tree sum reduction;
// result in s_partial_sums[0].
int kb = nb / 2;
while (kb > 0) {
 __syncthreads();
 if (tid < kb)
 s_partial_sums[tid] += s_partial_sums[tid + kb];
 kb /= 2;
}

// Save thread block's result.
if (tid == 0) {
 sums[j] = s_partial_sums[0];
}
```

---

**Iteration 3**

```
kb = nb/8 = 2
```

**Iteration 2**

```
kb = nb/4 = 2
```

**Iteration 1**

```
kb = nb/2 = 4
```
Matrix norm: Version 2

Assign nb columns (rows) per thread-block
Each thread does one column (row)
No shared memory, no synchronization

Version 2
nb = 4 threads
for illustration

/// GPU kernel: computes col sums:
/// sums[j] = sum_{j = 0...n} | Aij |.
///
/// Each thread-block computes nb column sums,
/// sums[ k, ..., k+nb ], k = blockIdx*nb.
/// Each thread sums one col.
///
template <typename T>
__global__
void norm_one_kernel_v2(
    int m, int n, T const* A, int ld, T* sums )
{
    int j = blockIdx.x * blockDim.x + threadIdx.x;
    if (j < n) {
        // Shift to j-th col.
        T const* Aj = &A[ j*ld ];

        // Thread sums down col i.
        T sum = 0;
        for (int i = 0; i < m; ++i) {
            sum += abs( Aj[i ] );
        }

        // Save thread’s result.
        sums[ j ] = sum;
    }
}
Matrix norm

One norm: column sums
- Version 1
  - Coalesced loads
  - Alternate ordering (1b) suffers from non-coalesced (strided) loads
- Version 2
  - Suffers from non-coalesced loads

Inf norm: row sums
- Version 1
  - Suffers from non-coalesced loads
- Version 2
  - Coalesced loads
Matrix norm: final step

Find max of column (row) sums

• Max reduction of n elements

Could implement similar to column-sum kernel

Thrust provides reductions

• thrust::plus
• thrust::multiplies
• thrust::logical_and
• thrust::maximum
• thrust::minimum

```cpp
/// CPU driver computes one norm of matrix, maximum column sum:
/// max_{j = 0...n} \sum_{i = 0...m} | A_{ij} |.
///
/// CPU driver launches kernels on GPU.
///
/// CPU driver computes one norm of matrix, maximum column sum:
/// max_{j = 0...n} \sum_{i = 0...m} | A_{ij} |.
///
/// CPU driver launches kernels on GPU.
///
template<typename T>
T matrix_norm_one(
 int m, int n, T const* A, int ld, cudaStream_t stream,
 int version, int verbose)
{
 // Workspace for n column sums.
 thrust::device_vector<T> sums_vec(n);
 T* sums = thrust::raw_pointer_cast(sums_vec.data());

 // Compute column sums.
 // m blocks, nb threads each.
 int blocks = m;
 norm_one_kernel_v1<<< blocks, norm_one_nb, 0, stream >>>
 (m, n, A, ld, sums);
 throw_error(cudaGetLastError());

 // Get max column sum.
 T result = thrust::reduce(sums_vec.begin(), sums_vec.end(), 0,
 thrust::maximum<T>());
 return result;
}
```

http://thrust.github.io/doc/group__reductions.html
http://thrust.github.io/doc/group__predefined__function__objects.html
Example 3: matrix multiply

Device and host functions
Loading to shared memory
Kernel strategy
Matrix Multiply: $C = A*B$

Adapted from CUDA C Programmer Guide

- Modified: column-major, renamed variables
- Assumes dimensions divisible by BLOCK_SIZE

Device functions

- `__device__` marks GPU device function, callable from GPU kernel
- `__host__` marks CPU function, callable from CPU code
- `__device__ __host__` marks function callable from both CPU code and GPU kernel

```c
// ex03-matrix-multiply.cu
// Thread block size (16 x 16)
#define BLOCK_SIZE 16

//---
// Matrices are stored in column-major order:
// M(row, col) = *(M.elements + row + col*M.stride)
//---
typedef struct {
 int cols;
 int rows;
 int stride;
 float* elements;
} Matrix;

//---
// Get a matrix element, A(row, col).
__device__ float GetElement(const Matrix A, int row, int col)
{
 return A.elements[row + col*A.stride];
}

//---
// Set a matrix element, A(row, col) = value.
__device__ __host__ void SetElement(Matrix A, int row, int col, float value)
{
 A.elements[row + col*A.stride] = value;
}
```
Matrix Multiply: \( C = A \times B \)

Each thread-block computes one \( \text{BLOCK} \_\text{SIZE} \times \text{BLOCK} \_\text{SIZE} \) block of \( C \)

Each thread computes one element of \( C \)

---

```c
__global__
void MatMulKernel(Matrix A, Matrix B, Matrix C)
{
 // Block row and column
 int blockRow = blockIdx.x;
 int blockCol = blockIdx.y;

 // Get block sub-matrix \(A(\text{blockRow}, \text{blockCol}) \).
 __device__
 Matrix GetSubMatrix(Matrix A, int blockRow, int blockCol)
 {
 Matrix Asub;
 Asub.cols = BLOCK_SIZE;
 Asub.rows = BLOCK_SIZE;
 Asub.stride = A.stride;
 Asub.elements = &A.elements[BLOCK_SIZE * blockRow + A.stride * BLOCK_SIZE * blockCol];
 return Asub;
 }

 // Each thread block computes one sub-matrix \(C_{\text{sub}} \) of \(C \)
 Matrix Csub = GetSubMatrix(C, blockRow, blockCol);

 // Each thread computes one element of \(C_{\text{sub}} \)
 // by accumulating results into Cvalue
 float Cvalue = 0;
 int row = threadIdx.x;
 int col = threadIdx.y;

 // Thread row and column within Csub
 // continued ...
```
Matrix Multiply: $C = A \times B$

### Outer $k$ loop over block row of $A$ / block col $B$

- Load block of $A$ into $sA$
- Load block of $B$ into $sB$

### Inner $e$ loop

- Each thread multiplies row of $sA$ and col of $sB$

### Reuse

- Elements in $sA$ and $sB$ reused $\text{BLOCK\_SIZE}$ times

---

// Loop over all the sub-matrices of $A$ and $B$ that are required to compute $C_{\text{sub}}$
// Multiply each pair of sub-matrices together and accumulate the results
for (int $k = 0; k < (A.\text{cols} / \text{BLOCK\_SIZE}); ++k)$ {
    // Get sub-matrix $A_{\text{sub}}$ of $A$ and $B_{\text{sub}}$ of $B$
    Matrix $A_{\text{sub}} = \text{GetSubMatrix}(A, \text{blockRow}, k)$;
    Matrix $B_{\text{sub}} = \text{GetSubMatrix}(B, k, \text{blockCol})$;

    // Shared memory used to store $A_{\text{sub}}$ and $B_{\text{sub}}$
    __shared__ float $sA[\text{BLOCK\_SIZE}][\text{BLOCK\_SIZE}]$;
    __shared__ float $sB[\text{BLOCK\_SIZE}][\text{BLOCK\_SIZE}]$;

    // Load $A_{\text{sub}}$ and $B_{\text{sub}}$ from memory to shared memory
    // Each thread loads one element of each sub-matrix
    $sA[\text{col}][\text{row}] = \text{GetElement}(A_{\text{sub}}, \text{row}, \text{col})$;
    $sB[\text{col}][\text{row}] = \text{GetElement}(B_{\text{sub}}, \text{row}, \text{col})$;

    // Synchronize to ensure sub-matrices are loaded before starting the computation
    __syncthreads();

    // Multiply $A_{\text{sub}}$ and $B_{\text{sub}}$ together
    for (int $e = 0; e < \text{BLOCK\_SIZE}; ++e$)
        $C_{\text{value}} += sA[e][\text{row}] \times sB[\text{col}][e]$;

    // Synchronize to ensure that the preceding computation is done before loading two new sub-matrices of $A$ and $B$ in the next iteration
    __syncthreads();
}
Matrix Multiply: \( C = A \times B \)

Save results to global memory

Kernel assumes dimensions are divisible by BLOCK_SIZE

```cpp
// ... continued

// Write Csub to device memory
// Each thread writes one element
 SetElement(Csub, row, col, Cvalue);
}
// end MatMulKernel

// Matrix multiplication - Host code
// Matrix dimensions assumed to be multiples of BLOCK_SIZE!
//
void MatMul(const Matrix d_A, const Matrix d_B, Matrix d_C)
{
 // Check matrix dimensions
 assert(d_A.rows == d_C.rows);
 assert(d_A.cols == d_B.rows);
 assert(d_B.cols == d_C.cols);

 // Invoke kernel
 dim3 threads(BLOCK_SIZE, BLOCK_SIZE);
 dim3 blocks(d_C.cols / dimBlock.x, d_C.rows / dimBlock.y);
 MatMulKernel<<< blocks, threads >>>(d_A, d_B, d_C);
 throw_error(cudaGetLastError());
}
```
Kernel strategy

while (not done)
  • Load data from global device memory into shared memory and registers
  • Synchronize threads
  • Compute on data in shared memory and registers
  • Synchronize threads

save results

sgemm performance on GTX 1060
Optimization

- Beware of thread divergence
- Avoid shared memory bank conflicts
- Compiling for specific architectures
- Profiling and tracing code
Thread divergence

Thread divergence happens when not all threads take the same branch

• Executes both sides of branch, disabling threads that took other branch
• If all threads in warp take same branch, there’s no divergence

⇒ align divergence with warps

For illustration, let warpsize = 4

```
if ((tid/warpsize) % 2 == 0) {
 B;
}
else {
 C;
}
D;
```
**Shared memory bank conflicts**

Shared memory spread over 32 banks

- If two threads access different data in the same bank, causes conflict

**Strided access to shared memory can cause bank conflicts**

- For illustration, assume 4 banks and 4 threads in warp
- Accessing row, all threads hit different banks (sA is row-major) — no conflicts!
- Accessing column, all threads hit same bank — **conflict**!
- Padding row by one eliminates conflicts

---

```c
// row-major
__shared__ float sA[4][4];
```

---

```c
// row +1 padding
__shared__ float sA[4][4+1];
```

---

icl.utk.edu/~mgates3/gpu-tutorial/
Compiling for specific GPU architectures

nvcc can generate:

- Binary code for specific architecture (\texttt{code=sm\_XY})
- PTX assembly code that is forward compatible (\texttt{code=compute\_XY})

Compiling for multiple architectures noticeably increases compile times and binary sizes.

Strategy is to compile binary for all desired architectures, plus PTX for only highest architecture

```bash	nvcc -gencode arch=compute_30,\texttt{code=sm\_30} # binary for arch 3.x only
 \texttt{-gencode arch=compute_50,code=sm_50} # binary for arch 5.x only
 \texttt{-gencode arch=compute_50,code=compute_50} # PTX for arch \geq 5.0
 -c -o foo.o foo.cu
```
Profiling & tracing

>> nvprof -o gemm-4k.nvvp ./ex03-matrix-multiply -m 4096 -n 4096 -k 2048
m 4096, n 4096, k 2048
==43166== NVPROF is profiling process 43166, command: ./ex03-matrix-multiply -m 4096 -n 4096 -k 2048
==43166== Generated result file: /home/mgates/sc19/gemm-4k.nvvp

>> nvvp &
Example 4: hybrid computing

Streams

nvToolsExt tracing
Streams allow for concurrent execution

- Kernels & communication on one stream execute serially
- Kernels & communication on different streams may execute in parallel
- Async communication requires pinned (page-locked) host memory

nvToolsExt tracing

- Allows tracing CPU activity with nvprof

```c
#include <nvToolsExt.h>

// ex04-streams.cu

#include <nvToolsExt.h>

// ---
template <typename T>
void test(int m, int n)
{
 size_t size = m * n * sizeof(T);
 cudaMemcpy(&hA, size); // pinned
 cudaMemcpy(&hB, size); // pinned
 ...

cudaStream_t comm_stream;
 cudaStream_t compute_stream;
 cudaStreamCreate(&comm_stream);
 cudaStreamCreate(&compute_stream);

 // Fill in A.
 nvtxRangePush("init_matrix(A)");
 init_matrix(m, n, hA, m);
 nvtxRangePop();
```
Streams

While computing with dA on GPU

• Copy hB ⇒ dB

• Compute with hA on CPU

```c
// Copy hA => dA to device.
cudaMemcpyAsync(dA, hA, size, cudaMemcpyDefault, comm_stream);

// Meanwhile, fill in B.
nvtxRangePush("init_matrix(B)");
init_matrix(m, n, hB, m);
nvtxRangePop();

// Wait for dA copy, then compute on it.
cudaStreamSynchronize(comm_stream);
gpu_norm_one(m, n, dA, m, dworkA, compute_stream);

// Meanwhile, copy B => dB to device.
cudaMemcpyAsync(dB, hB, size, cudaMemcpyDefault, comm_stream);

// Meanwhile, do some CPU computation.
nvtxRangePush("cpu_norm_one(A)");
T normA = cpu_norm_one(m, n, hA, m);
nvtxRangePop();
```
Streams

While computing with dB on GPU
  • Compute with hA on CPU

Wait for GPU computation to finish

```c
// Wait for dB copy, then compute on it (after A).
cudaStreamSynchronize(comm_stream);
gpu_norm_one(m, n, dB, m, dworkB, compute_stream);

// Meanwhile, do some CPU computation.
nvtxRangePush("cpu_norm_one(B)");
T normB = cpu_norm_one(m, n, hB, m);
nvtxRangePop();

// Wait for computation on dB.
cudaStreamSynchronize(compute_stream);
cudaStreamDestroy(comm_stream);
cudaStreamDestroy(compute_stream);
cudaFreeHost(hA);
cudaFreeHost(hB);
...
```

// Wait for dB copy, then compute on it (after A).
cudaStreamSynchronize( comm_stream );
gpu_norm_one( m, n, dB, m, dworkB, compute_stream );

// Meanwhile, do some CPU computation.
nvtxRangePush( "cpu_norm_one( B )" );
T normB = cpu_norm_one( m, n, hB, m );
nvtxRangePop();

// Wait for computation on dB.
cudaStreamSynchronize( compute_stream );
cudaStreamDestroy( comm_stream );
cudaStreamDestroy( compute_stream );
cudaFreeHost( hA );
cudaFreeHost( hB );
...
Trace

Shows concurrent CPU computing, GPU computing, CPU ⇒ GPU communication

<table>
<thead>
<tr>
<th>s</th>
<th>0.44 s</th>
<th>0.45 s</th>
<th>0.46 s</th>
<th>0.47 s</th>
<th>0.48 s</th>
</tr>
</thead>
<tbody>
<tr>
<td>init_matrix(A)</td>
<td>init_matrix(B)</td>
<td>cpu_norm_one(A)</td>
<td>cpu_norm_one(B)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>init_matrix(A)</td>
<td>init_matrix(B)</td>
<td>cpu_norm_one(A)</td>
<td>cpu_norm_one(B)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Memcp...</td>
<td>Memcp...</td>
<td>Memcp...</td>
<td>Memcp...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

icl.utk.edu/~mgates3/gpu-tutorial/
Runtime API

Devices
Streams
Events
Memory allocation
Memory management
Device management

cudaGetDeviceCount( int* count )
  • Count of available GPUs

cudaSetDevice( int dev )
cudaGetDevice( int* dev )
  • Thread-local GPU device ID

cudaGetDeviceProperties

cudaDeviceGetAttr
  • Get all or one device properties
  • ex04-properties.cu
  • CUDA arch is major.minor

CUDA Runtime API

> ./ex05-properties
device count 1

---
device 0
name Tesla V100-PCIE-16GB
totalGlobalMem 15.75 GiB (16914055168)
sharedMemPerBlock 48 KiB (49152)
regsPerBlock 65536
warpSize 32
memPitch 2147483647
maxThreadsPerBlock 1024
maxThreadsDim 1024, 1024, 64
maxGridSize 2147483647, 65535, 65535
clockRate 1380 MHz (1380000 KHz)
totalConstMem 64 KiB (65536)
major 7
minor 0
textureAlignment 512
texturePitchAlignment 32
deviceOverlap 1
multiProcessorCount 80
kernelExecTimeoutEnabled 0
integrated 0
canMapHostMemory 1
...
Stream management

`cudaStreamCreate`
- Creates and destroys stream

`cudaStreamDestroy`
- Creates and destroys stream

`cudaStreamSynchronize`
- Blocks CPU until all kernels in stream finish

`cudaStreamWaitEvent`
- Blocks stream (but not CPU) until event executes
- Synchronization between two different streams

Default “null” stream has extra implicit synchronization
- Recommend always using a non-null stream

CUDA Runtime API

icl.utk.edu/~mgates3/gpu-tutorial/
Event management

cudaEventCreate

cudaEventDestroy
  • Creates and destroys event

cudaEventRecord
  • Insert event into stream

cudaEventSynchronize
  • Blocks CPU until event executes

cudaStreamWaitEvent
  • Blocks stream (but not CPU) until event executes

CUDA Runtime API

icl.utk.edu/~mgates3/gpu-tutorial/
Memory allocation

cudaMalloc | cudaMalloc2D | cudaMalloc3D | cudaFree

- Allocate and frees 1D, 2D, or 3D region
- 2D and 3D regions have pitches (aka strides, leading dimensions) with padding for better access

cudaMallocHost | cudaFreeHost

- Allocates and frees pinned, page-locked CPU memory
- Pinned memory is accessible by device (DMA engine), so transfers are much faster, and can be async

cudaHostRegister | cudaHostUnregister

- Pins and unpins existing CPU memory to be page-locked

GPU memory allocation is synchronous — it blocks GPUs
Memory management

- cudaMemcpy
- cudaMemcpy2D
- cudaMemcpy3D
- cudaMemcpyAsync
- cudaMemcpy2DAsync
- cudaMemcpy3DAsync
- cublasGetMatrix
- cublasSetMatrix
- cublasGetMatrixAsync
- cublasSetMatrixAsync

• Copy 1D, 2D, or 3D region
• Async versions run on stream; requires pinned CPU memory to be asynchronous

- cudaMemcpy
- cudaMemcpy2D
- cudaMemcpy3D
- cudaMemcpyAsync
- cudaMemcpy2DAsync
- cudaMemcpy3DAsync

• Set 1D, 2D, or 3D region to constant byte value, e.g., 0
• Async versions run on stream

CUDA Runtime API

icl.utk.edu/~mgates3/gpu-tutorial/