COSC 594 – 007
3 credit hours

Scientific Computing for Engineers

Web page for the course:
CS 594

Wednesday’s 1:30 – 4:30

◆ **Scientific Computing for Engineers**
◆ **Spring 2020 - 3 credits**
 ➢ Jack Dongarra
 ➢ with help from:
 » George Bosilca
 » Anthony Danalis
 » Mark Gates
 » Heike Jagode
 » Jeff Larkin
 » Piotr Luszczek
 » Stan Tomov

◆ **Class will meet in Room C-233, Claxton Building**
To Get Hold of Us

- **Email:** dongarra@icl.utk.edu
 - Room: 203, Claxton
 - Phone: 974-8295

- **Office hours:**
 - Wednesday 11:00 - 1:00, or by appointment

- **TA:** ?
- **TA's Office:** Claxton ??
Four Major Aspects Of The Course:

1. **Start with current trends in high-end computing systems and environments, and continue with a practical short description on parallel programming with MPI, OpenMP, and pthreads.**

2. **Deal with numerical linear algebra solvers: both direct dense methods and direct and iterative methods for the solution of sparse problems. Algorithmic and practical implementation aspects will be covered.**

3. **Illustrate the modeling of problems from physics and engineering in terms of partial differential equations (PDEs), and their numerical discretization using finite difference, finite element, and spectral approximation.**

4. **Various software tools will be surveyed and used. This will include PETSc, Sca/LAPACK, MATLAB, and some tools and techniques for scientific debugging and performance analysis.**
Grades Based on:

- 40% on weekly assignments (the lowest grade will be dropped)
- 40% on a written report (15-20 pages) and presentation.
- 20% on a final exam (2 hours) & on class participation.
Homework

- Usually weekly
- Lowest grade will be dropped
- Must be turned in on time (no late assignments accepted)
- Don't copy someone else's work.
- Sometimes problems, sometimes programming assignments, sometimes requiring running a program to find the solution.
Homework (continued)

- We expect an analysis and detailed discussion of the results of your efforts.
 - The program itself is not very interesting.
- Programming in C or Fortran.
 - If you don't know C or Fortran could be a problem.
- Will go over the assignments the week they are due.
- See class web page weekly for details.
Project

- Topic of general interest to the course.
- The idea is to read three or four papers from the literature (references will be provided)
- Implement the application on the cluster you build
- Synthesize them in terms of a report (~15-20 pages)
- Present your report to class (~30 mins)
- New ideas and extensions are welcome, as well as implementation prototype.
- Could be from your dissertation.
Remarks

- Hope for very interactive course
- Willing to accept suggestions for changes in content.
Final Exam

- In class
- Will cover the material presented in the course
- ~2 hours
Material

- For each lecture a set of slides will be made available in pdf or html.
- Other reading material will be made available electronically if possible.
- The web site for the course is:
Important Place for Software

- **Netlib** - software repository
 - Go to http://www.netlib.org/
What will we be doing?

- **Learning about:**
 - High-Performance Computing.
 - Parallel Computing
 - Performance Analysis
 - Computational techniques
 - Tools to aid parallel computing.
 - Developing programs in C or Fortran using MPI and OpenMP.
Outline of the Course

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 8th</td>
<td>Class Introduction & Introduction to High Performance Computing</td>
</tr>
<tr>
<td>January 15th</td>
<td>Parallel programming paradigms and their performances</td>
</tr>
<tr>
<td>January 23rd</td>
<td>Introduction to MPI</td>
</tr>
<tr>
<td>January 29th</td>
<td>MPI</td>
</tr>
<tr>
<td>February 3rd</td>
<td>Advanced MPI & OpenSHEM</td>
</tr>
<tr>
<td>February 12th</td>
<td>Modern Directive Programming with OpenMP and OpenACC</td>
</tr>
<tr>
<td>February 19th</td>
<td>Machine Learning with Deep Neural Networks</td>
</tr>
<tr>
<td>February 26th</td>
<td>Performance Modeling & PAPI</td>
</tr>
<tr>
<td>March 4th</td>
<td>Dense Linear Algebra</td>
</tr>
<tr>
<td>March 11th</td>
<td>Dense Linear Algebra</td>
</tr>
<tr>
<td>March 18th</td>
<td>Spring Break</td>
</tr>
<tr>
<td>March 25th</td>
<td>Accelerators</td>
</tr>
<tr>
<td>April 1st</td>
<td>Projection and its importance in scientific computing & GPU Computing</td>
</tr>
<tr>
<td>April 8th</td>
<td>Discretization of PDEs and Parallel Solvers</td>
</tr>
<tr>
<td>April 15th</td>
<td>Sparse Matrices and Optimized Parallel Implementations</td>
</tr>
<tr>
<td>April 22th</td>
<td>Iterative Methods in Linear Algebra Part 1</td>
</tr>
<tr>
<td>April 29th</td>
<td>Final and Reports</td>
</tr>
</tbody>
</table>
What you should get out of the course

In depth understanding of:

- Why parallel computing is useful.
- Understanding of parallel computing hardware options.
- Overview of programming models (software) and tools.
- Some important parallel applications and the algorithms
- Performance analysis and tuning techniques.
Background

- C and/or Fortran programming.
- Good to have an understanding of parallel programming.
- Some background in numerical computing.