Sparse Matrices and Optimized Parallel Implementations

Stan Tomov
Innovative Computing Laboratory
Computer Science Department
The University of Tennessee

March 21, 2007
Topics

Projection in Scientific Computing

(lecture 1)

Sparse matrices, parallel implementations

(lecture 3, 03/21/07)

PDEs, Numerical solution, Tools, etc.

(lecture 2, 02/28/07)

Iterative Methods

(lectures 4 and 5, 04/11 and 04/18/07)
Outline

• Part I
 – Review: projection and homework #5

• Part II
 – Sparse matrix computations

• Part III
 – Reordering algorithms and parallelization
Part I

Review: Projection
Projection in $\mathbb{R}^n / \mathbb{C}^n$

- P: Orthogonal projection of u into $\text{span}\{e_1, \ldots, e_m\}$, $m \leq n$.

Let e_i, $i = 1 \ldots m$ is orthonormal basis, i.e.

\[
(e_i, e_j) = 0 \quad \text{for } i \neq j \quad \text{and} \quad (e_i, e_j) = 1 \quad \text{for } i = j
\]

\[
P u = (u, e_1) e_1 + \ldots + (u, e_m) e_m
\]

Orthogonal projection of u on e_1
What if the basis is not orthonormal?

- We can orthonormalize it. **How?**

 Can get one from every subspace by **Gram-Schmidt** orthogonalization:

 Input : m linearly independent vectors x_1, \ldots, x_m

 Output : m orthonormal vectors x_1, \ldots, x_m

CGS

1. $x_1 = x_1 / \| x_1 \|$
2. do $i = 2, m$
3. $x_i = x_i - (x_i, x_1) x_1 - \ldots - (x_i, x_{i-1}) x_{i-1}$
4. $x_i = x_i / \| x_i \|$
5. enddo

MGS

3'. do $j = 1, i-1$

4. $x_i = x_i - (x_i, x_j) x_j$

5. enddo
What if the basis is not orthonormal?

- If we do not want to orthonormalize:
 \[u \approx Pu = c_1 x_1 + c_2 x_2 + \ldots + c_m x_m \]
 \[(u, x_1) = c_1 (x_1, x_1) + c_2 (x_2, x_1) + \ldots + c_m (x_m, x_1) \]
 \[\ldots \]
 \[(u, x_m) = c_1 (x_1, x_m) + c_2 (x_2, x_m) + \ldots + c_m (x_m, x_m) \]

- These are the so-called Petrov-Galerkin conditions

- We saw examples of their use in
 * optimization (problem 1 and 4, Homework 5), and
 * PDE discretization, e.g. FEM
Homework #5, Problem 3

- Is the following a QR factorization for A?
 1. $G = A^T A$
 2. $G = L L^T$ (Cholesky factorization)
 3. $Q = A (L^T)^{-1}$

- From (3), assuming the operations used make sense, we have
 $A = Q L^T$ here L^T is upper triangular, so all is left is
 check if Q is orthogonal, i.e. is $Q^T Q = I$?

 $Q^T Q = (A (L^T)^{-1})^T (A (L^T)^{-1}) = (L^{-1} A^T) (A L^{-T}) = L^{-1} L = L^T L^T = I$

Use (1) and (2) to replace it by $L L^T$
Homework #5, Problem 4

• Find the projection of \(f(x) = \sin(x) \) in \(V_1 = \text{span}\{x, x^3, x^5\} \) on interval \([-1, 1]\) using inner-product

\[
(f, g) = \int_{-1}^{1} f(x) g(x) \, dx \quad \text{and norm} \quad \| f \| = (f,f)^{1/2}
\]

Approach I

* construct orthonormal basis, e.g. CGS

\[
y_1 = x / \| x \| \\
y_2 = x^3 - (x^3, y_1) y_1, \quad y_2 = y_2 / \| y_2 \| \\
y_3 = x^5 - (x^5, y_1) y_1 - (x^5, y_2) y_2, \quad y_3 = y_3 / \| y_3 \|
\]

\[
P f(x) = (\sin(x), y_1) y_1 + (\sin(x), y_2) y_2 + (\sin(x), y_3) y_3
\]

Approach II

* directly

\begin{align*}
(1) \quad \sin(x) & \approx Pf = c_1 x + c_2 x^3 + c_3 x^5 \quad / \text{mult. by } x,x^3,x^5 \\
(\sin(x),x) &= c_1 (x,x) + c_2 (x^3,x) + c_3 (x^5,x) \\
(\sin(x),x^3) &= c_1 (x,x^3) + c_2 (x^3,x^3) + c_3 (x^5,x^3) \\
(\sin(x),x^5) &= c_1 (x,x^5) + c_2 (x^3,x^5) + c_3 (x^5,x^5)
\end{align*}

solve this 3x3 system and plug \(c_1, c_2, c_3 \) back in (1)
Homework #5, Problem 4

(graph from Daniel Lucio)

\[f(x) = \sin(x) \]
Part II
Sparse matrix computations
Sparse matrices

• Sparse matrix: substantial part of the coefficients is zero
• Naturally arise from PDE discretizations
 – finite differences, FEM, etc; we saw examples in the

5-point finite difference operator

Row 6 will have 5 nonzero elements:
\[A_{6,2}, A_{6,5}, A_{6,6}, A_{6,7}, \text{ and } A_{6,10} \]

1-D piece-wise linear FEM

Row 3, for example, will have 3 nonzeros
\[A_{3,2}, A_{3,3}, A_{3,4} \]
Sparse matrices

- **In general:**

 * Degrees of freedom (DOF), associated for ex. with vertices (or edges, faces, etc.), are indexed

 * A basis function is associated with every DOF (unknown)

 * A **Petrov-Galerkin condition** (equation) is derived for every basis function, representing a row in the resulting system

 * Only 'a few' elements per row will be nonzero as the basis functions have local support

 - eg. row 10, using continuous piecewise linear FEM, will have 6 nonzeros:

 \[A_{10,10}, A_{10,35}, A_{10,100}, A_{10,332}, A_{10,115}, A_{10,201} \]

 - physical intuition behind: PDEs describe changes in physical processes;
 describing/discretizing these changes numerically, based only on local/neighborhood information, results in sparse matrices

 eg. what happens at '10' is described by the physical state at '10' and the neighboring 35, 201, 115, 100, and 332.
Sparse matrices

• Can we take advantage of this sparse structure?
 – To solve for example very large problems
 – To solve them efficiently

• Yes! There are algorithms
 – Linear solvers and preconditioners (to cover some in the last 2 lectures)
 – Efficient data storage and implementation (next ...)
Sparse matrix formats

• It pays to avoid storing the zeros!

• Common sparse storage formats:
 – AIJ
 – Compressed row/column storage (CRS/CCS)
 – Compressed diagonal storage (CDS)
 * for more see the 'Templates' book
 http://www.netlib.org/linalg/html_templates/node90.html#SECTION00931000000000000000
 – Blocked versions (why?)
• Stored in 3 arrays
 – The same length
 – No order implied

\[
\begin{bmatrix}
1 & 2 & 0 & 0 & 0 \\
3 & 0 & 4 & 0 & 0 \\
0 & 5 & 0 & 6 & 0 \\
0 & 0 & 7 & 0 & 8 \\
\end{bmatrix}
\]

<table>
<thead>
<tr>
<th>I</th>
<th>J</th>
<th>AIJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>
CRS

- Stored in 3 arrays
 - J and AIJ the same length
 - I (representing rows) is compressed

<table>
<thead>
<tr>
<th>I</th>
<th>J</th>
<th>AIJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

\[
\begin{bmatrix}
1 & 2 & 0 & 0 & 0 \\
3 & 0 & 4 & 0 & 0 \\
0 & 5 & 0 & 6 & 0 \\
0 & 0 & 7 & 0 & 8 \\
\end{bmatrix}
\]

array I: think of it as pointers to where next row starts

CCS: similar but J is compressed
CDS

• For matrices with nonzeros along subdiagonals

Subdiagonal index

subdiagonals						
-1	0	3	7	8	9	2
0	10	8	8	7	9	-1
1	-3	6	7	5	13	0

\[
A = \begin{pmatrix}
10 & -3 & 0 & 0 & 0 & 0 & 0 \\
3 & 8 & 6 & 0 & 0 & 0 & 0 \\
0 & 7 & 8 & 7 & 0 & 0 & 0 \\
0 & 0 & 8 & 7 & 5 & 0 & 0 \\
0 & 0 & 0 & 0 & 9 & 13 & 0 \\
0 & 0 & 0 & 0 & 2 & -1 & 0
\end{pmatrix}
\]
Performance (Mat-vec product)

- Notoriously bad for running at just a fraction of the performance peak!
- Why?

 Consider Mat-vec product for matrix in CRS:

  ```
  for i = 1, n
    for j = I[i], I[i+1]-1
      x[i] += AIJ[j] * x[J[j]]
  ```
Performance (Mat-vec product)

• **Notoriously bad** for running at just a fraction of the performance peak!

• Why?

Consider Mat-vec product for matrix in CRS:

```plaintext
for i = 1, n
    for j = I[i], I[i+1]-1
        x[i] += A[I][j] * x[J[j]]
```

* Irregular indirect memory access for x
 - result in cache trashing
* performance often <10% peak
Performance (Mat-vec product)

* Performance of mat-vec products of various sizes on a 2.4 GHz Pentium 4

(a) Untuned SpMV performance
Performance (Mat-vec product)

• How to improve the performance?
 – A common technique
 (as illustrated in Lecture #9 and Homework #6)
 is **blocking** (register, cache: next ...)
 – **Index reordering** (in Part II)
 – Exploit special matrix structure (eg. symmetry, bands, other structures)
Block Compressed Row Storage (BCRS)

• Example of using 2x2 blocks

<table>
<thead>
<tr>
<th>BI</th>
<th>BJ</th>
<th>AIJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

* Reduced storage for indexes
* Drawback: add 0s
* What block size to choose?
* BCRS for register blocking
* Discussion?
BCRS

(a) Untuned SpMV performance

(b) Speedups obtained from tuning
Cache blocking

• Improve cache reuse for x in Ax by splitting A into a set of sparse matrices, eg.

Sparse matrix and its splitting

For more info check:
Eun-Jin Im, K. Yelick, R. Vuduc
Part III
Reordering algorithms and Parallelization
Reorder to preserve locality

eg. Cuthill-McKee Ordering: start from arbitrary node, say '10' and reorder
* '10' becomes 0
* neighbors are ordered next to become 1, 2, 3, 4, 5, denote this as level 1
* neighbors to level 1 nodes are next consecutively reordered, and so on until end
Cuthill-McKee Ordering

- Reversing the ordering (RCM) results in ordering that is better for sparse LU
- Reduces matrix bandwidth (see example)
- Improves cache performance
- Can be used as partitioner (**parallelization**) but in general does not reduce edge cut
Self-Avoiding Walks (SAW)

- Enumeration of mesh elements through 'consecutive elements' (sharing face, edge, vertex, etc)

 * similar to space-filling curves but for unstructured meshes
 * improves cache reuse
 * can be used as partitioner with good load balance but in general does not reduce edge cut
Graph partitioning

- Refer back to Lecture #8, Part II
 Mesh Generation and Load Balancing
- Can be used for reordering
- Metis/ParMetis:
 - multilevel partitioning
 - Good load balance and minimize edge cut
Parallel Mat-Vec Product

- Easiest way:
 - 1D partitioning
 - May lead to load unbalance (why?)
 - May need a lot of communication for x
- Can use any of the just mentioned techniques
- Most promising seems to be spectral multilevel methods (as in Metis/ParMetis)
Possible optimizations

• Block communication
 – And send the min required from x
 – eg. pre-compute blocks of interfaces

• Load balance, minimize edge cut
 – eg. a good partitioner would do it

• Reordering

• Advantage of additional structure (symmetry, bands, etc)
Comparison

Distributed memory implementation
(by X. Li, L. Oliker, G. Heber, R. Biswas)

<table>
<thead>
<tr>
<th>P</th>
<th>ORIG</th>
<th>MeTiS</th>
<th>RCM</th>
<th>SAW</th>
<th>ORIG</th>
<th>MeTiS</th>
<th>RCM</th>
<th>SAW</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>3.684</td>
<td>3.034</td>
<td>3.749</td>
<td>2.004</td>
<td>3.228</td>
<td>0.011</td>
<td>0.031</td>
<td>0.049</td>
</tr>
<tr>
<td>16</td>
<td>2.007</td>
<td>1.330</td>
<td>1.905</td>
<td>0.971</td>
<td>2.364</td>
<td>0.011</td>
<td>0.032</td>
<td>0.036</td>
</tr>
<tr>
<td>32</td>
<td>1.060</td>
<td>0.658</td>
<td>1.017</td>
<td>0.507</td>
<td>1.492</td>
<td>0.009</td>
<td>0.032</td>
<td>0.030</td>
</tr>
<tr>
<td>64</td>
<td>0.601</td>
<td>0.358</td>
<td>0.515</td>
<td>0.290</td>
<td>0.828</td>
<td>0.008</td>
<td>0.032</td>
<td>0.023</td>
</tr>
</tbody>
</table>

- ORIG ordering has large edge cut (interprocessor comm) and poor locality (high number of cache misses)
- MeTiS minimizes edge cut, while SAW minimizes cache misses
Learning Goals

• Efficient sparse computations are challenging!

• Computational challenges and issues related to sparse matrices
 – Data formats
 – Optimization
 • Blocking
 • Reordering
 • Other

• Parallel sparse Mat-Vec product
 – Code optimization opportunities