The accuracy of a floating point system can be characterized by a quantity variously known as the unit roundoff, machine precision, machine epsilon, or macheps. Its value, which we denote by ϵ_{mach}, depends on the particular rounding rules used. With rounding by chopping,

$$
\epsilon_{mach} = \beta^{1-p},
$$

(where β is the base and p is the number of digits in the mantissa) whereas with rounding to nearest

$$
\epsilon_{mach} = \frac{1}{2} \beta^{1-p}.
$$

The unit roundoff is important because it determines the maximum possible relative error in representing a nonzero real number x in a floating point system. A characterization of the unit roundoff that you may sometimes see is that it is the smallest number ϵ such that

$$
fl(1 + \epsilon) > 1.
$$

Here $fl(x)$ is the floating point approximation to x.

Part 1:
Compute the machine precision on your computer. In addition compute the overflow and underflow threshold. Explain how you did the computation and your results.

Part 2:
Explain why an alternating infinite series, such as

$$
e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots
$$

for $x < 0$, is difficult to evaluate accurately in floating point arithmetic.

Part 3:
What happens when you evaluate the infinite series?

$$
\sum_{n=1}^{\infty} \frac{1}{n}
$$

Explain why summing the series in floating point arithmetic yields a finite sum.