The accuracy of a floating point system can be characterized by a quantity variously known as the unit roundoff, machine precision, machine epsilon, or macheps. Its value, which we denote by \(\varepsilon_{mach} \), depends on the particular rounding rules used. With rounding by chopping,

\[
\varepsilon_{mach} = \beta^{1 - p},
\]

(where \(\beta \) is the base and \(p \) is the number of digits in the mantissa) whereas with rounding to nearest

\[
\varepsilon_{mach} = \frac{1}{2} \beta^{1 - p}.
\]

The unit roundoff is important because it determines the maximum possible relative error in representing a nonzero real number \(x \) in a floating point system. A characterization of the unit roundoff that you may sometimes see is that it is the smallest number \(\epsilon \) such that

\[
fl(1 + \epsilon) > 1.
\]

Here \(fl(x) \) is the floating point approximation to \(x \).

Part 1:
Compute the machine precision on your computer. In addition compute the overflow and underflow threshold. Explain how you did the computation and your results.

Part 2:
Explain why an alternating infinite series, such as

\[
e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots
\]

for \(x < 0 \), is difficult to evaluate accurately in floating point arithmetic.

Part 3:
What happens when you evaluate the infinite series?

\[
\sum_{n=1}^{\infty} \frac{1}{n}
\]

Explain why summing the series in floating point arithmetic yields a finite sum.