Lecture 12 Overview

Resource Management and Scheduling
– From Cluster/Batch schedulers to MetaComputing

Specific MetaComputing Systems
– Legion, Globus, SNIPE, …

Case Study: Interoperating MPI applications
– PVMPI / MPI_Connect
– PACX
– mpich-g (Globus MPICH)
Lecture 12

MPI-2
– Dynamic features
– Parallel IO
Contents - Resource Management and Scheduling

Clusters, MetaComputing and Super Computers
Motivation for CMS
Motivation for using Clusters
Cycle Stealing
Management Software
Problems with Distributed Computing Resource Management
Cluster Management Software Systems
From Clusters to MetaComputing
Cluster, Super Computers and Metacomputing

A main goal of distributed computing research is to provide users with simple and transparent access to a distributed set of heterogeneous computing resources. This is often called **Metacomputing** - the user submits jobs to a virtual distributed computer, rather than specifying particular computers.

Super Computing on the other hand is designed to provide massive computational power to users. Performance is more important than usability. MetaComputing promises both.
Cluster and Metacomputing

Metacomputing is still a research area - current implementations are limited, mostly applying to LAN rather than WANs.

- Except for when SuperComputing Conferences are taking place!
- Situation is getting better all the time.

LAN implementations are Cluster Management Software (CMS) or Cluster Computing Environments (CCE).

MetaComputing systems can be built by extending LAN systems, or by using many LAN systems together.
Cluster and Metacomputing

Cluster Management Software
– Managing clusters of (mostly) workstations as a distributed compute resource.
– Built on top of existing OS.

Cluster Computing Environments
– Software to allow the cluster to be used as an applications environment, similar to Distributed Shared Memory (DSM) systems.
– Built into OS kernel for improved performance.
Cluster and Metacomputing

The World Wide Web is now so ubiquitous that it is becoming the platform of choice for distributed computing (Internet or Intranet) and Metacomputing.

– See the Webflow project later.
– Mostly used as the server to client binding structure.
 • I.e. submit a web form rather than a job request ticket.
Motivation for Resource Management

Users want to be able to submit their jobs without having to worry about where they run - i.e. submit jobs to a metacomputer (virtual computer) rather than search for spare cycles on a real computer.

– Ease of use. Requires both distributed code as well as data! Large organisations (companies, universities, national labs, etc.) typically have hundreds or thousands of powerful workstations for use by employees, which is a major under-utilised compute resource.

– Check lecture 3 notes on Resource Management.
 • What is Spare Cycles and do we want to use them?
Motivation for using Clusters

Surveys show utilisation of CPU cycles of desktop workstations is typically <10%.

Performance of workstations and PCs is rapidly improving (my Laptop > 60 Mflops/s on Fortran 77 code).

As performance grows, percent utilisation will decrease even further!

Organisations are reluctant to buy large supercomputers, due to the large expense and short useful life span.
Usage depends on the class of the users.
As shown here; Meteorology verse Psychology.
Motivations for Clusters

The communications bandwidth between workstations is increasing as new networking technologies and protocols are implemented in LANs and WANs.

Workstation clusters are easier to integrate into existing networks than special parallel computers.

- Install Linux from the local NFS copy… (look at NASA Beowulf)
- MPPs require special HiPPI switches and interface hookups.

Many MetaComputers will be made from Clusters although most of the larger research efforts prefer to integrate different MPPs rather than clusters.

- I.e. more output for less effort from the MetaComputing System itself (I.e getting the Bell Award).
Motivation for using Clusters

The development tools for workstations are more mature than the contrasting proprietary solutions for parallel computers - mainly due to the non-standard nature of many parallel systems.

Workstation clusters are a cheap and readily available alternative to specialised High Performance Computing (HPC) platforms.

Use of clusters of workstations as a distributed compute resource is very cost effective - incremental growth of system!!

- CPUs and disks are a lot cheaper, but some of the better InterConnection cards like Myranet, Gigabit etc are expensive.
- Well almost… try upgrading all your systems to PIIs after you just brought all the PIIs… with the wrong motherboards.

 • Do a few a week maybe?
Cycle Stealing

Usually a workstation will be owned by an individual, group, department, or organisation - they are dedicated to the exclusive use by the owners. This brings problems when attempting to form a cluster of workstations for running distributed applications.

- Unless it is a dedicated cluster like the TORC cluster. (If it is managed correctly that is).
 - TORC runs too many different tests/configuration
 - I.e. not a stable platform?
Typically, there are three types of owner, who use their workstations mostly for:

1. Sending and receiving mail and preparing documents.
2. Software development - edit, compile, debug and test cycle.
3. Running compute-intensive applications.
Cluster computing aims to steal spare cycles from (1) and (2) to provide resources for (3).

However, this requires overcoming the *ownership hurdle* - people are very protective of their workstations.

Usually requires an organisational mandate that computers are to be used in this way.
Stealing cycles outside standard work hours (e.g. overnight) is easy, stealing idle cycles during work hours without impacting interactive users (both CPU and memory) is much harder.
Management Software

Software for managing clusters or metacomputers must handle many complex issues:

– Heterogeneous environments (computer and network hardware, software, OS, protocols, etc.).
– Resource Management.
 • CPUs, disk arrays, and sometimes long haul network connections.
– Job scheduling.
 • Handling multiple schedulers at the same time.
– Job allocation policy (prioritisation).
– Security and authentication.
– Cycle stealing from desktop computers without impacting interactive use by owner.
Management Software

- Fault tolerance.
- Support for batch and interactive jobs.
- Should support all programming paradigms (sequential, data parallel, message passing, shared memory, threads, etc.).
- Should support legacy applications.
- User interface and job specification mechanism.
Problems with Distributed Computing

Relatively immature technology.
Few standards (particularly for Metacomputing).
Lack of expertise of users, developers, and systems support staff.
High cost of good commercial software.
Relatively immature software development tools (debugger/profiler/etc).
Applications difficult and time consuming to develop.
Problems with Distributed Computing

Portability problems in heterogeneous environment.
– Use Corba? But then which ORB are you using?
– Use Java, maybe the native compilers will be available soon?

Difficult to tune and optimise across all platforms.
– On MPPs very true.. Sometime you have to use threads and sometimes just different compiler flags.

Scheduling and load balancing.

Trade off between performance hit in using remotely mounted files, and diskspace requirements for using local disk.
– Local disks or local disk arrays (I.e. PARALLEL IO)
 • How do you get the data there and back? All 15 TerraBytes of it?

How to handle legacy systems - rewrite, add interface, or use wrappers?
Problems with Distributed Computing

Management becomes much more difficult when going from:

LAN to WAN

- Administration, access permissions and authentication issue are much harder across site boundaries.
- Maintenance of management software is harder - administration...
- Latency increased and bandwidth decreased.
- Need wide-area file system access, temporary disk space.
 * Moving data again. What about IBP?
Problems with Distributed Computing

- One motivation for WAN-based systems is access to remote data repositories, which involves complex issues with storage and migration of large data sets.

Sequential to Parallel

- Latency and bandwidth more problematic on distributed computers.
- Load balancing is very difficult on multi-user systems, particularly for cycle-stealing of desktop systems (what happens if someone runs a job on a machine that is currently running a parallel program?).
- Fault tolerance and process migration are issues.
Existing Cluster Management Software

Many research and commercial packages exist - almost all originate from academic research projects. Widespread use in large organisations, National labs., supercomputer centres. Mostly designed for Unix - some support for PCs via Linux, support for NT sparse...

Not much use of Web as yet - some packages can use Web browser for alternate GUI. Targeted at LANs rather than WANs.
Cluster Computing - Research Projects

Batch - UCSF, USA
CCS (Computing Centre Software) - Paderborn, Germany
Condor - Wisconsin State University, USA
DJM (Distributed Job Manager) - Minnesota Supercomputing Center
DQS (Distributed Queuing System) - Florida State University, USA
EASY - Argonne National Lab, USA
far - University of Liverpool, UK
Generic NQS (Network Queuing System) - University of Sheffield, UK
MDQS - ARL, USA
NOW (Network of Workstations) - Berkeley, USA
NIMROD - Monash University, Australia
PBS (Portable Batch System) - NASA Ames and LLNL, USA
PRM (Prospero Resource Manager) - University of S. California, USA
QBATCH - Vita Services Ltd., USA
Cluster Computing - Commercial Software

Codine (Computing in Distributed Network Environment) - GENIAS GmbH, Germany

Connect:Queue - Sterling Corp., USA

CS1/JP1 - Hitachi and Cummings Group, USA

Load Balancer - Unison Software, USA

LoadLeveler - IBM Corp., USA

LSF (Load Sharing Facility) - Platform Computing, Canada

NQE (Network Queuing Environment) - Craysoft Corp., USA
1. Produce a job description file.
 – Text file produced manually or via a GUI.
 – Information such as program name, maximum runtime, desired platform, etc..

2. Submit the job.
 – Job is submitted to the metacomputer manager.
 – Job description file is passed to a master scheduler.
Using Cluster Management Software

 – Each computer in the cluster runs a resource daemon that communicates state to the master scheduler.
 – Scheduler checks system configuration, loads, queues, etc.
 – Multiple queues may be used for different types of jobs - sequential, parallel, batch, those needing fast turnaround, etc..
 – Scheduler matches job request to available resources while attempting to balance computational load.
Using Cluster Management Software

4. Job completion and fault tolerance.
 – Scheduler monitors each job to check that it finishes successfully - if not, it will reschedule it.
 • But not across different schedulers as of yet!
 • Can be configured to send you email when finished, but output will probably end up in file out.job.XXXX.
 • Make sure you get your large data file results out before your files are removed/purged.
Using Cluster Management Software

- CMS Master Server
- CMS Client Resources
- Local Schedulers
- Job Description File
Desirable Features of CMS - I

Resource configuration file for all computers - CPU type, performance, memory, times of availability (e.g. 5pm - 9am), authorised users, etc.

– Look back at the GRM scheduler...

Resource administration - control over access permissions to resources, authentication, accounting, configurable queue types, system loads, available disk space, etc.

Resource load balancing is a key requirement.
Desirable Features of CMS - II

Checkpointing (save state at regular intervals during run).

- Not just the job, but the schedulers as well!

Periodic checkpointing is useful (though costly) for fault tolerance of long jobs - job can be restarted at last checkpointed position.

Process migration...

Scalability, preferably across administrative boundaries to medium-area or wide-area networks.
Desirable Features of CMS - III

Robustness - system can handle network problems and dynamic addition and removal of compute resources.

No single points of failure - e.g. does system need to be restarted if master scheduler crashes?

GUI (preferably from Web browser) as well as command-line interface.

Configuration - easy to set up, maintain, and administer.
Desirable Features of CMS - IV

Easy to use - simple job specification.

User Information - user can query status of a job and get execution information.

Minimise impact on workstation owner:
 – Change priority (*nice*).
 – Suspend a job or migrate to another machine (but this uses CPU/memory/disk/network resources).

Security - provide at least standard Unix level of security and authentication.
Problems with Existing CMS

LAN-based - not scalable.

Limited platform and OS support (not truly heterogeneous), very little support for PC clusters, which are becoming a major compute resource.

NT support will probably be available in future - MS Wolfpack, Codine, LSF...

Do not support all programming paradigms - weak support for parallel computing.
Problems with Existing CMS

Load balancing is generally rudimentary (e.g. based on rup) and not dynamic.

Cycle stealing is not used effectively (ownership hurdle).

Limited fault tolerance and checkpointing.

Single points of failure - particularly master scheduler.
Problems with Existing CMS

Current R&D work involves creating distributed schedulers with fault-tolerant distributed database to store system configuration information.

- Globus uses the Metadata Directory Service (MDS) which is based on Netscapes LDAP server.
- SNIPE uses RCDS.
Recommended CMS Packages

See review at …
http://nhse.cs.rice.edu/NHSEreview/CMS/

Research packages

- **DQS** is probably the most comprehensive, functional and commonly used research offering.
- **GNQS** is robust and widely used (e.g. CERN), but does not support parallel jobs.
- **NOW** is an impressive project that aims to address problem areas with current CMS packages.
Recommended CMS Packages

Commercial Packages

These are generally more robust but can be very expensive:

– Codine
– LFS
– LoadLeveler
– NQE
– Connect:Queue
Other Packages

Other Packages (mainly MPP ones)
Maui Scheduler (NMSC)
Portable Batch System (NASA)
Parallel Operating Environment POE (IBM)
A tail of two SP2s

Other Packages (mainly MPP ones)
- Maui Scheduler (NMSC)
- Portable Batch System (NASA)
- Parallel Operating Environment POE (IBM)
Metacomputing Projects

Legion - University of Virginia
 • Object based

Wide Area Metacomputer Manager (WAMM) -- Italy
 • Grow from experiments with PVM

Wide Area Network Environment (WANE) - Florida State University

WebFlow and MetaWeb - Syracuse University

DISCWorld - University of Adelaide

Globus - Argonne National Lab. And ISI
 • Tool kit

SNIPE - UTK/ORNL

HARNESS - UTK/ORNL/Emory

Globe - Virje University in Amsterdam.
 • See http://www.cs.vu.nl/~steen/globe/