
Autotuning Dense Batched QR Factorizations on
GPU

Tim A. Davis
Wissam M. Sid-Lakhdar

Texas A&M University

February 25, 2017

Overview

Introduction

Autotuning
Meta-Programming
Optimization
Preliminary results

Conclusion

Context
Solving sparse least squares problems

Problem :
Min
x
||Ax − b||2

with:

A ∈ Rmxn (large sparse matrix)
b ∈ Rm

x ∈ Rm

Solution : Factorization of A through the Multifrontal QR method

Architecture : Shared-memory computer with a single (or multiple) GPU(s)

Context
Multifrontal QR method (Duff, Reid, others)

Context
Multifrontal QR method (Duff, Reid, others)

Context
Bucket scheduler

GPU-based QR factorization of a single frontal matrix

Context
Bucket scheduler

GPU-based QR factorization of a single frontal matrix

Context
Bucket scheduler

GPU-based QR factorization of a single frontal matrix

Context
Bucket scheduler

GPU-based QR factorization of a single frontal matrix

Context
Bucket scheduler

GPU-based QR factorization of a single frontal matrix

Context
Bucket scheduler

GPU-based QR factorization of a single frontal matrix

Context
Bucket scheduler

GPU-based QR factorization of a single frontal matrix

Context
Bucket scheduler

GPU-based QR factorization of a single frontal matrix

Context
Bucket scheduler

GPU-based QR factorization of a single frontal matrix

Context
Bucket scheduler

GPU-based QR factorization of a single frontal matrix

Context
Bucket scheduler

GPU-based QR factorization of a single frontal matrix

Context
Bucket scheduler

GPU-based QR factorization of a single frontal matrix

Need
Batched BLAS on GPU

I Bundles are formed of non-contiguous pebbles

I Low in the tree: many small fronts

i.e. potential for parallel factorizations . . . (1)

I High in the tree: few large fronts, but with staircase shape

i.e. advantageous to subdivide the factorization of a whole front
(gross granularity) into many smaller ones (fine granularity) . . . (2)

Need
Batched BLAS on GPU

I Bundles are formed of non-contiguous pebbles

I Low in the tree: many small fronts

i.e. potential for parallel factorizations . . . (1)

I High in the tree: few large fronts, but with staircase shape

i.e. advantageous to subdivide the factorization of a whole front
(gross granularity) into many smaller ones (fine granularity) . . . (2)

(1) + (2) ⇒ Need for batched GEQRF and batched GEMM!

Old approaches

I First kernels:
I targets NVidia C2070 GPU (Fermi architecture) specifically
I fixed pebble (tile) size 32x32
I maximum bundle size 3x1 (96x32 matrix)

I Second kernels:
I targets NVidia K40 GPU (Kepler architecture) specifically
I fixed pebble (tile) size 64x64 (but larger)
I maximum bundle size 2x1 (128x64 matrix)
I takes advantage of newer architectural features

(Shuffle instruction, more registers, more shared memory, . . .)

Old approaches

I First kernels:
I targets NVidia C2070 GPU (Fermi architecture) specifically
I fixed pebble (tile) size 32x32
I maximum bundle size 3x1 (96x32 matrix)

I Second kernels:
I targets NVidia K40 GPU (Kepler architecture) specifically
I fixed pebble (tile) size 64x64 (but larger)
I maximum bundle size 2x1 (128x64 matrix)
I takes advantage of newer architectural features

(Shuffle instruction, more registers, more shared memory, . . .)

I Factorize and Apply kernels faster . . .

Old approaches

I First kernels:
I targets NVidia C2070 GPU (Fermi architecture) specifically
I fixed pebble (tile) size 32x32
I maximum bundle size 3x1 (96x32 matrix)

I Second kernels:
I targets NVidia K40 GPU (Kepler architecture) specifically
I fixed pebble (tile) size 64x64 (but larger)
I maximum bundle size 2x1 (128x64 matrix)
I takes advantage of newer architectural features

(Shuffle instruction, more registers, more shared memory, . . .)

I Factorize and Apply kernels faster . . .

. . . but total sparse factorization time slower!

Old approaches

I First kernels:
I targets NVidia C2070 GPU (Fermi architecture) specifically
I fixed pebble (tile) size 32x32
I maximum bundle size 3x1 (96x32 matrix)

I Second kernels:
I targets NVidia K40 GPU (Kepler architecture) specifically
I fixed pebble (tile) size 64x64 (but larger)
I maximum bundle size 2x1 (128x64 matrix)
I takes advantage of newer architectural features

(Shuffle instruction, more registers, more shared memory, . . .)

I Factorize and Apply kernels faster . . .

. . . but total sparse factorization time slower!
I More work done within the Apply kernel rather than within the

Factorize kernel in the first case
I The Apply kernel relies on BLAS3 routines while the Factorize kernel

relies on BLAS2 routines

Motivation and Goal
Portability or Efficiency?

Portability (too general) Write one code that fits all GPU architectures
but that is not the fastest / fast enough on any one of them

Efficiency (too specific) Write the best code for a one GPU architecture
but that will be much less efficient / will not work for other
architectures

Effort Writing an efficient code for every architecture is tedious and
unsustainable.

Motivation and Goal
Portability or Efficiency?

Portability (too general) Write one code that fits all GPU architectures
but that is not the fastest / fast enough on any one of them

Efficiency (too specific) Write the best code for a one GPU architecture
but that will be much less efficient / will not work for other
architectures

Effort Writing an efficient code for every architecture is tedious and
unsustainable.

How to get both Portability and Efficiency with a minimum Effort?

New approach
Within NSF SparseKaffe project

Autotuning

I Write a general template code that relies on a set of parameters.

I The Autotuner generates, compiles, runs and checks a kernel,
for every combination of parameters.

I The Autotuner traverses the parameters search space in order to
find the combination leading to the best (fastest) kernel,
for any given GPU architecture.

Overview

Introduction

Autotuning
Meta-Programming
Optimization
Preliminary results

Conclusion

Overview

Introduction

Autotuning
Meta-Programming
Optimization
Preliminary results

Conclusion

Algorithm
Matlab

funct ion [A V1 T] = v t h q r g p u (A)
[m n] = s i z e (A) ;
T = zeros (min (m, n)) ;
f o r k = 1 :min (m, n)

[v , tau , s] = house h igham (A(k :m, k)) ;
V1(k) = v (1) ;
A (k+1:m, k) = v (2 : end) ;
z = −tau ∗ v ’ ∗ A(k :m, :) ;
A(k :m, k+1:n) = A(k :m, k+1:n) + v ∗ z (k+1:n) ;
T(1 : k−1,k) = T(1 : k−1 ,1: k−1) ∗ z (1 : k−1) ’ ;
T(k , k) = tau ;
A(k , k) = s ;

end

I QR factorization (for GPU)

I Householder à la Highim:
I Numerical stability (when norm of Householder vector is small)
I Less operations (most Householder vector entries stay unchanged)
⇒ GPU friendly

I Computing and using the z vector allows for less branching (warp
divergence) and for more parallelism

Template
Python/CUDA

I Given that principle of batched BLAS is to target many small
matrices, we consider that small is whatever fits into the
shared-memory and registers of a GPU. Thus, our strategy for the
QR kernels is to load the whole matrix to be factorized into
registers, do the whole factorizations using registers as data holders
and shared-memory for intra-warp communication, and finally, store
the results into global memory

I PyExpander: replacing and extending the C macros system by
leveraging the power of Python

I ability to use loops while very difficult and painful with macros
I ability to have functions calling other functions or using variables,

which is very difficult with C macros
I nice checking done by the python compiler while hassle with dealing

with non understandable errors with the C/CUDA compiler
I even the Makefile is generated to take into account architecture type

and optimization options

Code example

Template Code

PyExpander instructions evaluated by the Python interpreter

I $for ≈ #pragma unroll

I $if ≈ #ifeq . . . #endif

Parameters

I Problem:
I TlSz ,NbXTl ,NbYTl
I Inputs (fixed for every configuration)

I Architecture:
I WpSz ,NbTh,NbReg

I Mapping:

I

{
Nb
Dt

}{
Th
Wp

}{
X
Y

}{
A
T

}
I Load/Store:

I NbXChkA,NbXChkT

I Code optimization:
I X∗,X 1∗, . . .
I Switch between sub-algorithms
I Replace pragma and inline of CUDA

I . . . : Many more parameters and
routines exist, but they [depend on /
are deduced from] the above core
parameters

Warp0

Thread0

Search space

I Some parameters need to be of the form

2i , i ∈ [0, n]

in order to make the code simpler (⇒ faster)

I The search space for the Mapping parameters is bound by the value
of the Problem parameters

I The search space for the Architecture and Load/Store parameters
depend on the architectural characteristics of the targeted GPU

I The Optimization parameters are (most often) Booleans, used to
turn On/Off some features

Constraints

I Equalities: enforce a bijection between matrices and threads

I Inequalities: prohibit out-of-memory accesses

I Conditional constraints

Examples

0 NbTh ∗ NbReg ≤ NbMaxReg

I Total # of registers cannot exceed architecture limit

1 NbThXA ∗ NbThYA ∗ NbTh == TlSz2 ∗ NbXTl ∗ NbYTl
I Sum of threads’ registers for A equals the surface of A

2 NbThXA ∗ DtThXA ≤ TlSz ∗ NbXTl
I A thread cannot be mapped on rows outside of A

3 NbWpXA ∗ NbWpYA == WpSz

I Layout of a warp respects its size

Positioning
Position of first row of first thread of a warp in matrix A

posWpXA = ((
WpIdXA

cx
)∗dx+(

WpIdXA&(cx − 1)

ex
)∗fx+(WpIdXA&(ex−1)))

(1)
Position of thread in warp

posThWpXA =
ThWpId

NbWpYA
∗ DtWpXA (2)

Position of first row of thread

posX0A = posWpXA + posThWpXA (3)

Relative position of i th row of a thread

posThXA(i) = i ∗ DtThXA (4)

Position of i th row of a thread

posX (i) = posX0A + posThXA(i) (5)

I posThXA(i) and posThYA(j) are straightforward to compute
I posX0A and posY 0A are expensive to compute. Every thread

computes them once only and stores them in dedicated registers

Implementation issues

I Template code is harder to read/write/modify than standard code

I CUDA optimization decisions are not easy to make in template code

I Over-use of the select statement

Autotuner

Overview

Introduction

Autotuning
Meta-Programming
Optimization
Preliminary results

Conclusion

Optimization problem

I Non-Linear Problem

I Non-Linear Constraints

I Discrete search space instead of Continuous

I MINLP (Mixed Integer Non Linear Programming)

I Worst case scenario of most difficult optimization problem

⇒ Most standard optimization tools do not apply!

Optimization solutions
Stochastic

I Strategy 1: Random sampling (Exploration)
I Not effective at finding an optimum . . .
I . . . but effective at discovering regions of interest

I Strategy 2: Mutation (Exploitation)

Idea Starting from an initial gene (valid combination of parameters),
slightly modify (with probability distribution) some parameters (given
a certain probability)

I Does not necessarily converge to global optimum . . .
I . . . but does converge to local minimums

Optimization solutions
Deterministic

I Strategy 3: Exhaustive search
I For a 32x32 matrix:

I Size of the unconstrained search space: 2437438960041984
I Size of the constrained search space: 45536

I Strategy 3bis: Exhaustive sub-space search
I Optimize sets of parameters independently, i .e., fix some parameters

in a first phase and optimize them in a second phase
I Parameters for T similarly than that for A
I Load/Store parameters

I If we assume that, for any given set of parameters, generating the
code, compiling it, running it and checking its correctness takes
about 10 seconds . . .

#rows #cols Space SubSpace
#Combinations Time (days) #Combinations Time (hours)

32 32 45536 5.2 788 2.2
64 32 93184 10.8 1563 4.3

128 32 57632 6.7 2266 6.3
256 32 11664 1.4 2683 7.5
512 32 0 0 0 0

Table: Estimated autotuning times for different matrix sizes

Dealing with hard constraints

I Deterministic case:
I Too costly to evaluate the validity of all combinations in search space
I Backtracking

Classical algorithm for finding the solutions of constrained
computational problems. It builds candidates incrementally and
drops them as soon as it determines that they cannot lead to valid
solutions.

I Stochastic case:
I Too much rejections of potential candidates before finding valid ones
I Too time consuming to code explicitly rules that ensure the validity

of genes
I Space reduction

For every parameter, start from its whole space and reduce it until
only one value remains. Parameters are set one after the other and
all the constraints related to them are checked in order to eliminate
the impossible values for the other parameters.

Autotuning parallelization

I Autotuning is an embarrassingly parallel process

I If a computer has more than one GPU, it is possible to lunch as
many autotuning processes as they are GPUs available

I The load of the host (CPUs) does not disturb performance measure,
as only code generation, compilation and checking occur on it . . .

I . . . However, every program should run on a separate specific GPU.

I We use the cudaSetDevice($(GPU ID)) routine to map an
autotuner process with a specific GPU

I Our system (backslash) contains 24 CPUs and 8 K40 GPUs

Overview

Introduction

Autotuning
Meta-Programming
Optimization
Preliminary results

Conclusion

Performance Results
K40 (Kepler)

I NVidia K40 GPU (Kepler architecture)

I Results format: GFlps/s (Time (ms))

#Row #Col MAGMA CuBLAS AutoTuner
Release 2.2.0 Experimental

32 32 3.64 (19.36) 7.98 (8.82) 18.83 (3.74) 19.89 (3.54)
64 32 8.83 (19.45) 18.8 (9.13) 27.64 (6.21) 23.97 (7.16)

128 32 16.9 (22.16) 28.7 (13.1) 27.86 (13.4) 22.97 (16.3)
256 32 21.8 (35.83) 34.0 (22.9) 18.11 (43.1) 19.41 (40.2)

Performance Results
Tegra (Maxwell)

I NVidia Tegra GPU (Maxwell architecture). Jetson TX1 embedding:
I 4+1 ARM CPUs
I one SM of a Maxwell GPU (compared to 15 SMs for the K40 GPU)
I CPUs and GPU share the same memory
I Lower clock frequency

I More instability of the results. Thus, we repeat every run 10 times
(instead of 1) and record the best runtime. Every kernel lunch runs
1000 thread blocks on the SM (instead of 100 per SM)

I Best parameters are different than the ones for the K40 GPU

I Results format: GFlps/s (Time (ms))

#Row #Col MAGMA CuBLAS AutoTuner
32 32 0.14 (335.44) 1.36 (34.58) 1.59 (29.49)
64 32 0.10 (1095.4) 2.43 (47.12) 1.98 (57.91)

128 32 0.15 (1706.2) 1.95 (127.7) 1.86 (133.8)
256 32 0.17 (3074.7) 1.72 (302.7) 0.97 (534.3)

Counter intuitive results

I The best kernels are not the fastest ones!

I The fastest kernel in terms of GFlops may have a lower occupancy,
while the optimal kernel might be slower sequentially, but since more
parallel versions can run in parallel, the total computation time of
the whole batch is lower.

I The optimal kernels induce register spill and use some local memory
. . . but not too much

I There is a trade off between using some local memory and having a
higher occupancy. The optimum is somewhere at the limit

I This result is counter intuitive, as when we handcraft a kernel, we
always carefully try to avoid register spill and use of local memory.

Overview

Introduction

Autotuning
Meta-Programming
Optimization
Preliminary results

Conclusion

Summary

I Write once, use forever!

I Writing a templatized code is different / more challenging than
customizing a code with a specific set of parameters . . .
. . . But the hassle of tweaking the last bit of performance out of the
code is transitioned from the library developper to the computer

I Several days / weeks necessary to find the best kernels for a given
architecture, but this tedious work has to be done once only. The
optimized kernel can then be packaged in the Batched BLAS library
for the end users.

I For batched BLAS, the targeted matrix sizes are usually small . . .
. . . trying to fit the whole matrices exclusively into GPU registers
and shared-memory is beneficial over the traditional approach of
using these only as temporary caches

Perspectives
Improving low-level kernels

I Given the time it takes to find the best kernel for a given matrix size
exhaustively, improved (stochastic) search methods should be
considered ⇒ relying on a Meta-Model could be the solution!

I Storing the T matrix in shared-memory instead of registers can be
more efficient for tall and skinny matrices

I With an autotuner infrastructure available, it becomes easy to write
any kind of Bathed BLAS routine. Indeed, we might be interested in
the case of the QR factorization of a set of upper triangular matrices,
as this case arises very often in the multifrontal QR method

Perspectives
Designing high-level kernels

I Limited size of matrices fitting in GPUs registers / shared-memory

I For larger matrices, rely on the previous kernels as building blocks

I Hierarchical factorization by row (à la CAQR) not applicable as
combining the V and T matrices vertically is not feasible

I Hierarchical factorization by column will be considered (as already
successfully achieved in the BEAST project)

Thank You!

	Introduction
	Autotuning
	Meta-Programming
	Optimization
	Preliminary results

	Conclusion

