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Motivations

Motivations

Covariance Matrix Problems
Ubiquitous in computational science and engineering
Symmetric, positive-definite matrix structure
(Apparently) Dense matrices
Often data-sparse
Decay of parameter correlations with distance
Hierarchically of low rank
Convergence big data / HPC

Sparse direct and iterative solvers
Schur complement
Preconditioning
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Real Scientific Applications
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Real Scientific Applications

Geospatial Statistics

Multivariate large spatial data sets in climate/weather
modeling to improve prediction

(a) Problem Definition. (b) Temperature prediction.

Figure: Climate/weather modeling.
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Real Scientific Applications

Computational Ground-Based Astronomy

Enhancing the observed image quality using MOAO by
filtering out the noise coming from the adaptive optics
instrumentation and the atmospheric turbulence.

(a) Problem Definition. (b) The E-ELT.

Figure: Finding new galaxies.

DK and HL 7 / 30



Real Scientific Applications

Computing the Eigenspectrum for Symmetric
Hierarchical Low Rank Matrix

Structural and vibrational analysis to problems in
computational physics and chemistry like electronic and
band structure calculations

(a) Problem
Definition.

(b) Electronic structure.

Figure: Design of new materials.
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Cholesky-based Matrix Computations
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Cholesky-based Matrix Computations

Matrix Form

The Cholesky factorization of an N × N real symmetric,
positive-definite matrix A has the form

A = LLT ,

where L is an N × N real lower triangular matrix with positive
diagonal elements.
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Cholesky-based Matrix Computations

LAPACK Block Algorithms
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(c) Third step.

Figure: Block Algorithms.
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Cholesky-based Matrix Computations

PLASMA Tile Algorithms

Figure: Tile Algorithms.
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Climate/Weather Prediction Application
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Climate/Weather Prediction Application

Computational Statistics for Climate/Weather
Prediction Applications

Applications from climate and weather science often deal
with a very large number of measurements regularly or
irregularly located in geographical region.
In geospatial statistics, these data are usually modeled as a
realization from Gaussian spatial random field.
This translates into evaluating the log-likelihood function,
involving a large dense (but data-sparse) covariance matrix.
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Climate/Weather Prediction Application

Dense Linear Algebra Renaissance

Figure: Tile Algorithms.
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Climate/Weather Prediction Application

Tile Low Rank Cholesky: Memory Footprint

Akbudak et al., accepted at ISC’17
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Climate/Weather Prediction Application

Tile Low Rank Cholesky: Time to Solution

Akbudak et al., accepted at ISC’17
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Climate/Weather Prediction Application

Dense Linear Algebra Renaissance
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Climate/Weather Prediction Application

HiCMA Software Stack
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KBLAS
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KBLAS

Recursive formulation

Usually used for Level 2 BLAS algorithms (e.g., panel
factorization)
Increase data locality
Run at the cache level speed
Again, not new and literature is quite rich: Kågström et. al
(1998), Goto et. al (2008), etc.
And it does pay off for Level 3 BLAS too!
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KBLAS

Triangular matrix-matrix multiplication (TRMM)
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Figure: Performance comparisons of KBLAS DTRMM against IP and OOP
cuBLAS DTRMM running on NVIDIA K40 GPU.

A. Charara, H. Ltaief and D. Keyes, Best Papers, EuroPar, 2016.
Integrated in CUDA 8.0

DK and HL 22 / 30



KBLAS

Triangular Solves (TRSM)
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Figure: Performance comparisons of KBLAS IP DTRSM against cuBLAS IP
DTRSM and MAGMA OOP TRSM running on NVIDIA K40 GPU, with
square and low RHS matrices.

A. Charara, H. Ltaief and D. Keyes, Best Papers, EuroPar, 2016.
Integrated in CUDA 8.0
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KBLAS

Advanced Batched BLAS Operations: HBLAS

Context:
Very small sizes!
Batch operation executions at each level of the tree
Currently fixed sizes (need to handle variable sizes)
Recursive formulation, stressing register usage
Convert into batch of large GEMMs
Minimize data transfer
Enhance data locality
Increase arithmetic intensity
State-of-the-art implementations not well optimized for this
scope or not supported
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KBLAS

Advanced Batched BLAS Operations: HBLAS

HBLAS Matrix computations:
Level 3 BLAS: SYRK, TRMM, TRSM
Factorizations: POTRF
Solves: POTRS, POSV, POTRI, POTI

HBLAS Matrix compression:
Batch QR factorizations
Batch SVD
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KBLAS

Advanced Batched BLAS Operations: HBLAS

Batches of Batched

Rec. Batch DPOTRF

Rec. Batch DTRSM

Rec. Batch DSYRK

Rec. Batch DPOTRF
Profiling shows 76% of time is spent in batch DGEMM (MAGMABLAS).
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KBLAS

Performance Results: Batched Level 3 BLAS on
NVIDIA K40 GPUs
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KBLAS

Performance Results: Batched Solves on NVIDIA
K40 GPUs
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KBLAS

Performance Results: Batched Schur
Complement on NVIDIA K40 GPUs
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