BBLAS APIs and Memory Layouts

Samuel Relton

samuel.relton@manchester.ac.uk
samrelton.com

Joint work with Mawussi Zounon

mawussi.zounon@manchester.ac.uk

24th February 2017
Outline

Aim: Generate discussion on standard API and memory layout for BBLAS.

- Batched linear algebra
- APIs for batched BLAS
 - Available options
 - Comparison
 - Talking points
- Memory layouts
 - Available options
 - Experiments using interleaved layout
 - Talking points
We are interested in solving \textit{thousands of small matrix problems simultaneously}. E.g. for GEMM

\[C_i \leftarrow \alpha_i A_i B_i + \beta_i C_i, \quad i = 1 : \text{batch_count}. \]

There are two main types of batch:

- \textbf{fixed batch} – \(A_i, B_i, C_i \) have constant sizes, \(\alpha_i, \beta_i \) constant.
- \textbf{variable batch} – \(A_i, B_i, C_i \) have varying sizes, \(\alpha_i, \beta_i \) vary.
APIs for Batched BLAS

There are 3 main APIs that we will discuss in more detail:

- Flag-based API
- Separate fixed and variable functions
- Group-based API

We use GEMM to show the different APIs in C-code.
Flag-based API

dgemm_batch(
 *transA, *transB,
 *m, *n, *k,
 *alpha, **arrayA, **ldA,
 **arrayB, *ldB,
 *beta, **arrayC, *ldC,
 batch_count, batch_type)

- **batch_type** – enum with value BATCH_FIXED or BATCH_VARIABLE.
- Treating both fixed and variable in one function means \(m, n, \text{ etc.} \) must all be pointers.
Separate fixed and variable API

- Two functions for each BLAS operation.
- Fixed batch operations become simpler for user.
Group-based API

dgemm_batch(
 *transA, *transB,
 *m, *n, *k,
 *alpha, **arrayA, **lda,
 **arrayB, *ldb,
 *beta, **arrayC, *ldc,
 group_count, *group_size)

- **Group together multiple fixed batches.** E.g. 2 groups with
 \(m = \{3, 5\}, \ n = \{3, 2\}, \ group_size = \{100, 200\}\) etc.
- **Complicates simple fixed and variable batches.**
- **Potential optimizations** e.g. combining multiple small matrices of
 different sizes to fill vector units.
- **Currently used in MKL.**
Group-based API experiments

Is the extra complication of the group-based API worthwhile?

Two experiments:
1. 1 group of 10,000 DGEMM vs 10,000 groups of 1 DGEMM
2. Group-based API vs multiple calls to fixed batch API

Setup:
- 20 core NUMA node
- Intel MKL 11.3.3 (not latest)
• Not a big difference between many or few groups.
• Each group has different number of matrices with different sizes
• Mixed results, groups better for larger numbers of groups
Talking points

Here a few ideas for discussion on which API to take as the standard.

- Separate functions for fixed/variable makes both cases simple as possible.

- Need to consider ease of using each API for non-expert BLAS users.

- Group-based API not immediately intuitive but some performance boost. Makes variable batches a little awkward.

- Other potential optimizations of group-based API?

- Addition of info parameter similar to LAPACK?
Memory layouts

Once an API is chosen we also need to standardize the memory layout.

Three options:

- Pointer-to-pointer (P2P) layout
- Strided layout
- Interleaved layout (fixed batch only)
P2P layout

- Matrices spread in RAM
- Very easy for users to understand/create
- Flexibility to add more matrices into the batch
- Not cache friendly when loading matrices into memory
Strided layout

- Matrices grouped in RAM
- Adding more matrices requires reallocating large chunk of memory
- Less prone to cache misses
Interleaved layout

<table>
<thead>
<tr>
<th>$a_{0,0}$</th>
<th>$a_{0,0}$</th>
<th>$a_{0,0}$</th>
<th>$a_{1,0}$</th>
<th>$a_{1,0}$</th>
<th>$a_{0,1}$</th>
<th>$a_{0,1}$</th>
<th>$a_{0,1}$</th>
<th>$a_{1,1}$</th>
<th>$a_{1,1}$</th>
<th>$a_{1,1}$</th>
</tr>
</thead>
</table>

- Matrices grouped in RAM (permutation of strided)
- Difficult for users to create
- Cannot be used for variable batches
- Less prone to cache misses
- Maximizes use of vector units
- Avoids synchronization points in e.g. TRSM
- Block interleaved: Interleave first k matrices then next k etc.
- Intel has proposed similar “Compact BLAS” (Tim Costa).
Memory transfer experiment

Many users may want to offload computation to a GPU or similar device.

NVIDIA K40c GPU connected to 20 core NUMA node.

- Time to allocate in RAM/GPU and transfer time (batch of 10k).
- Interleaved is simply a permutation of stride.
Interleaved memory layout - GEMM (Intel KNL, 10k batch)

- Includes time to convert memory (P2P to interleaved and back)
- Difficult to beat MKL optimized GEMM
Block interleaved avoids waiting for division in each column

Using 4 right-hand sides here.
Interleaved memory layout - DPOTRF (Intel KNL, 10k batch)

- As matrix size continues to grow OpenMP kernel eventually overtakes: our custom dpotrf kernel is less efficient than MKLs for large problems.
Interleaved memory layout - DPOTRS (Intel KNL, 10k batch)

- 4 right-hand sides used here
Talking points

- User facing and internal data layouts can be different!

- P2P layout very bad for offloading computation.

- Interleaved formats are very complicated for users.

- P2P layout is most the flexible (easy to add new matrices etc).