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TopS500 List of Supercomputers
H. Meuer, H. Simon, E. Strohmaier, & JD

- Listing of the 500 most powertul

Computers 1n the World

- Yardstick: Rmax from LINPACK MPP

Ax=b , dense problem

- Updated twice a year

Rate

TPP performance

Size

SC*xy 1n the States in November
Meeting in Germany in June

. - All data available from www.top500.org
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< Performance Development

100 Pflop/s 74 PFlop/s

10 Pflop/s ws
1 Pflop/s /
100 Tflop/s SUM B
10 Tflop/s N=1
1Tflop/s | 15 Teic 4 6-8years
100 Gflop/s | N=500
RS My Laptop (12 Gflop/
10 Gflop/s yoapop’ — sq»
1 Gflop/s | My iPad2 & iPhone 4s (1.02 Gﬂoﬂs)
400 MFIc p/s
100 Mflop/s
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Example of typical parallel machine
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Example of typical parallel machine
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Example of typical parallel machine
Shared memory programming between processes on a board and
a combination of shared memory and distributed memory programming
between nodes and cabinets
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Example of typical parallel machine

Combination of shared memory and distributed memory programming

Chip/%écket ... | Chip/Socket Chip/Socket
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"November 2011: The TOP10

Rank Site Computer Country Cores [,,,2 ﬁ::;] lfe:}:

RIKEN Advanced Inst | K computer Fujitsu SPARC64

! for Comp Sci VIIIfx + custom Japan ALl =
Nat. SuperComputer Tianhe-1A, NUDT

2 Center in Tianjin Intel + Nvidia GPU + custom LRl =

DOE / Os Jaguar, Cray

& Oak Ridge Nat Lab AMD + custom Led = R =
Nat. Supercomputer Nebulea, Dawning

& Center in Shenzhen Intel + Nvidia 6PU + IB HERERl ded =
GSIC Center, Tokyo Tusbame 2.0, HP

= Institute of Technology), Intel + Nvidia GPU + IB Japan VR Lol 2

DOE / NNSA Cielo, Cray

6 LANL & SNL AMD + custom usd |14z2272 1.11 | 81
NASA Ames Research Plelades SGI Altix ICE

7 Center/NAS 8200EX/8400EX + IB A e I B

2l e Hopper, Cray
8 | Lawrence LB:gkeley Nat AMD + custom UsSA 153,408 1.054 82
Commissariat a
9 | I'Energie Atomique o b 138,368 1.050 @ 84
(CEA)
10 DOE / NNSA Roadrunner, IBM USA 1.04 76

Los Alamos Nat Lab

AMD + Cell GPU + IB

122,400
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"November 2011: The TOP10

. Rmax | 7% of | Power | MFlops
Rank Site Computer Country Cores [Pflops] | Peak | [MW] | /Watt
RIKEN Advanced Inst | K computer Fujitsu SPARC64
1 for Comp Sci VIITfx + custom Japan 705,024, 10.5 93 | 12.7 | 830
Nat. SuperComputer Tianhe-1A, NUDT
3 Center in Tianjin Intel + Nvidia GPU + custom et 2ay 57 e
DOE / Os Jaguar, Cray
< Oak Ridge Nat Lab AMD + custom Lo e 162_1'7_6 | & 7 A
Nat. Sup: r on o ter ver 4 ta, Ly aviig ] , J
4| CentetnlS i 0 tnidl +UNSLa\SAY + 1) o P0.a Q0 \J-275|| |[ASp2-%8 | 493
GSTC Ce irer, ‘1 ko Tusbame 7 0, HP - o m Y
Ine™ wh) of T che b ') L%\« /N SHigl G/ D) | B :-Tapd ) | ’ 7, 7 .19 52 1<{e 8F )
DOE / NNSA Cielo, Cray
6 LANL & SNL AMD + custom USA 142,272 1.11 81 3.98 | 279
NASA Ames Research Plelades SGI Altix ICE
4 Center/NAS 8200EX/8400EX + I8 usa |11L1o4 109 | 8 | 410 265
20is 708 Hopper, Cray
8 | Lawrence LB:gkeley Nat AMD + custom UsA 153,408 1.054 82 | 2.91 | 362
Commissariat a
9 | I'Energie Atomique VR, G France 138,368 1.050 | 84 | 4.59 | 229
Intel + IB
(CEA)
DOE / NNSA Roadrunner, IBM
e Los Alamos Nat Lab AMD + Cell GPU + IB e ER by 76 SE| G
500 IT Service IBM Cluster, Intel + GigE USA 7,236 .051 53



e K Computer > Sum(#2 : #8)

< Japanese K Computer -25

= = -2
K computer Specmcatlons g:l FUJITSU
|

Performance

No. of link

CPU Architecture Inter-

(SPARC64 1(1/C - /32KE connect Additional
Viiifx) Cache feature

Architecture

Mem. bandwidth GB/s CcPU, ICC*
Other parts
Memory capacity B (- /core
System
board(SB) _

System
LINPACK 10 PFlops

over 1PB mem.
CPU [b[}] H 800 racks
128GFlops 80,000 CPUs
SPARCGB4™ V]|Ifx ; g 12.3 TFlops 640,000 cores
8 Cores@2.0GHz System Board 15TB memory (705,024 cores)

‘ 512 GFlops
' Node 64 GB memory
128 GFlops
16GB Memory

64GB/s Memorv band width

Linpack run with 705,024 cores at 10.51 Pflop/s (88,128 CPUs), 12.7 MW; 29.5 hours
Fujitsu to have a 100 Pflop/s system in 2014

* ICC : Interconnect Chip

10



China’s Very Aggressive Deployment of HPC

Absolute Counts

UsS: 263

China: 75 — —— “ :
ok il L] T
France: 23 ; ; ‘ 1IH|[‘!| " ))W
Germany: 20 i

China has 6 Pflops systems (4 based on GPUs)
— 2-NUDT, Tianhe-1A, located in Tianjin

Dual-Intel 6 core + Nvidia Fermi w/custom
interconnect
* Budget 600M RMB

— MOST 200M RMB, Tianjin Government 400M
RMB

— CIT, Dawning 6000, Nebulea, located in
Shenzhen

Dual-Intel 6 core + Nvidia Fermi w/QDR
Ifiniband
* Budget 600M RMB

— MOST 200M RMB, Shenzhen Government 400M
RMB

— Mole-8.5 Cluster/320x2 Intel QC Xeon E5520
2.26 Ghz + 320x6 Nvidia Tesla C2050/QDR
Infiniband
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10+ Pflop/s Systems Planned in the States

07

DOE Funded, Titan at Oak Ridge Nat. Lab,
Cray design w/AMD & Nvidia, XE6/XK6 hybrid

« 20 Pflop/s, 2012

DOE Funded, Sequoia at Lawrence Livermore
Nat. Lab, IBM's BG/Q

« 20 Pflop/s, 2012
DOE Funded, BG/Q at Argonne National Lab,
IBM's BG/Q

. 10 Pflop/s, 2012

NSF Funded, Blue Waters at U of Illinois UC,
Cray design w/AMD & Nvidia, XE6/XK6 hybrid
. 11.5 Pflop/s, 2012

NSF Funded, U of Texas, Austin, Based on
Dell/Intel MIC

- 10 Pflop/s, 2013




° Commodity plus Accelerator

Accelerator (GPU)

Gaiiz: Howtany of the

3 GHz

Topsld systemis:tise CPU

s T1 e [ i ::m_ .

AnSW@rf
Today 39 systems on
the T@PS@@ use @PUS

ercon
PCIX16I 13

64 Gb/s
1 GWI/s




“ 39 Accelerator Based Systems

40
35
30 ul Clearspeed CSX60022
0 25 M ATI GPU
..:.: 20 B IBM PowerXCell 8i
& 1  NVIDIA 2090
H NVIDIA 2070
10 INVIDIA 2050
5
20 US 1 Italy
0 i 5 China 1 Poland

2006 2007 2008 2009 2010 2011 SiJapan - Spain

2 France 1 Switzerland
2 Germany 1 Russia
1 Australia 1 Taiwan



< We Have Seen This Before

" Floating Point Systems FPS-164/
MAX Supercomputer (1976)

" Intel Math Co-processor (1980)
" Weitek Math Co-processor (1981

O Y |

There's one for every machine.

lath CoProcessor
1$ for crunching numbers faster. e

SO287 Faumily. Foe 324
tasd machine
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Balance Between Data Movement and
Floating point

" FPS-164 and VAX (1976)
> 11 Mflop/s; transfer rate 44 MB/s

> Ratio of flops to bytes of data movement:
1 flop per 4 bytes transferred

" Nvidia Fermi and PCI-X to host
» 500 Gflop/s; transfer rate 8 GB/s

> Ratio of flops to bytes of data movement:
62 flops per 1 byte transferred

" Flop/s are cheap, so are provisioned in
excess

16
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< Future Computer Systems

" Most likely be a hybrid design

» Think standard multicore chips and
accelerator (GPUs)

" Today accelerators are attached
" Next generation more integrated

" Intel's MIC architecture “"Knights Ferry” anc
"Knights Corner” to come.

| > 48. x86 c?r'es AMD
AMD S FUS'O" The future is fusion
> Multicore with embedded graphics ATI
" Nvidia’s Project Denver plans to develop

an integrated chip using ARM
architecture in 2013.

17




<  What’s Next?

All Large Core

Many Floating-

Point Cores
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The High Cost of Data Movement

*Flop/s or percentage of peak flop/s become
much less relevant

Approximate power costs (in picoJoules)

DP FMADD flop 100 pJ
DP DRAM read 4800 pJ
Local Interconnect 7500 pJ
Cross System 9000 pJ

Source: John Shalf, LBNL

*Algorithms & Software: minimize data
movement; perform more work per unit data

movement.

19



(. Broad Community Support and Development of
“" the Exascale Initiative Since 2007

http://science.energy.gov/ascr/news-and-resources/program-documents/

"~ Town Hall Meetings April-June 2007
" Scientific Grand Challenges Workshops Sippeiiee

Nov, 2008 — Oct, 2009
> Climate Science (11/08)

High Energy Physics (12/08)

Nuclear Physics (1/09)

Fusion Energy (3/09)

Nuclear Energy (5/09)

Biology (8/09)

Material Science and Chemistry (8/09)
National Security (10/09)

Cross-cutting technologies (2/10)

YV V VYV V V VY

" Exascale Steering Committee
> “Denver” vendor NDA visits (8/09)
> SCO09 vendor feedback meetings

» Extreme Architecture and Technology
Workshop (12/09)

" International Exascale Software Project

> Santa Fe, NM (4/09); Paris, France (6/09); Fundamental Science
Tsukuba, Japan (10/09); Oxford (4/10); Maui 20
(10/10); San Francisco (4/11); Cologne (10/11)



¢ Performance Development in
_ Top500

21

1 Eflop/s

100 Pflop/s
10 Pflop/s

1 Pflop/s
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Potential System Architecture

Systems 2011
K computer

System peak

Power

System memory

Node performance

Node memory BW

Node concurrency

Total Node Interconnect BW
System size (nodes)

Total concurrency

MTTI

10.5 Pflop/s

12.7 MW
1.6 PB
128 GF

64 GB/s

8

20 GB/s
88,124

705,024

days



Potential System Architecture

with a cap of $200M and 20MW

Systems 2011 Difference
K computer Today & 2019

System peak 10.5 Pflop/s 1 Eflop/s O(100)
Power 12.7 MW ~20 MW

System memory 1.6 PB 32-64PB 0(10)
Node performance 128 GF 1,2 or 15TF O(10) = O(100)
Node memory BW 64 GB/s 2 - 4TB /s O(100)
Node concurrency 8 O(1k) or 10k O(100) — O(1000)
Total Node Interconnect BW 20 GB/s 200-400GB/s O(10)
System size (nodes) 88,124 O(100,000) or O(1M) O(10) = O(100)
Total concurrency 705,024 Olbillion) O(1,000)

MTTI days O(1 day) - O(10)



¢ Major Changes to Software &

IcLOr-

Algorithms

e Must rethink the design of our
algorithms and software

= Another disruptive technology

« Similar to what happened with cluster
computing and message passing

= Rethink and rewrite the applications,
algorithms, and software

= Data movement is expense

* Flop/s are cheap, so are provisioned in
excess



¢. Critical Issues at Peta & Exascale for

IcLOr-

Algorithm and Software Design

* Synchronization-reducing algorithms

= Break Fork-Join model
« Communication-reducing algorithms

= Use methods which have lower bound on communication
* Mixed precision methods

= 2x speed of ops and 2x speed for data movement

* Autotuning

= Today’s machines are too complicated, build “smarts” into
software to adapt to the hardware

« Fault resilient algorithms
= Implement algorithms that can recover from failures/bit flips

« Reproducibility of results

= Today we can’t guarantee this. We understand the issues,
but some of our “colleagues” have a hard time with this.



Parallelization of QR Factorization

Parallelize the update: dgemm
* Easy and done in any reasonable software. ]
* This is the 2/3n3 term in the FLOPs count. -— - -I

* Can be done “efficiently” with LAPACK+multithreaded BLAS

Update of the

NN | /S
AN\ V7
dgeqf2 + dlarft
2 I<— qr(I) l
©
o

l l l l l Fork - Join parallelism
Bulk Sync Processing
dlarfb I

remaining submatrix [factorization

E-81 8 )
N7

26
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“ Parallel Tasks in LU/LLT/QR

=
lim i

> ——> Step4 -

o Break mto smaller tasks and remove
dependencies

e - | ‘} oo o
IHHA“-HM'H‘{:* ; \Ioo
mo |l mm |
_C | Lom
S E‘
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<~ Data Layout is Critical

Y

Y

Y Y

* Tile data layout where each data tile
is contiguous in memory

- Decomposed into several fine-grained
tasks, which better fit the memory of
the small core caches



€ PLASMA: Parallel Linear Algebra s/w
for Multicore Architectures

‘Objectives
= High utilization of each core Cholesky
= Scaling to large number of cores 4x4
= Shared or distributed memory

Methodology
= Dynamic DAG scheduling (QUARK)
= Explicit parallelism
* Implicit communication
= Fine granularity / block data layout

'Arbitrary DAG with dynamic scheduling
i B, .E; ﬁ- E_ EE = " Fork-join
%- % %-:':ﬂ __,_f = ===1{ parallelism

DAG scheduled
parallelism

Time > 29
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Synchronization Reducing Algorithms

[m} ‘ l [==ua}

Vb ! ""’u".'
| .

e Regular trace
e Factorization steps pipelined

e Stalling only due to natural

Tuat miua
' ‘.‘ ,ll

i

load imbalance ! | ! RS R ;“ -. ‘l
e Dynamic ' jh H
e Out of order execution | ]-.: : [
e Fine grain tasks . =171 In ' I ‘
o Independent block operations 1 -'l. F Fl

B 1
The colored area over the ' | ’ | ' f d :L “ -
: - = | ||| 1]
rectangle is the efficiency ] = yITTt ".

| f-“i.'l'." |"

Tile QR factorization; Matrix size 4000x4000, Tile size 200
8-socket, 6-core (48 cores total) AMD Istanbul 2.8 GHz



£ Pipelining: Cholesky Inversion

3 Steps: Factor, Invert L, Multiply L’s

L e B

I-} e |
A

BAEATS Rt oo
i I mm e .'.'.'.h... 1 1 |?I“

A i

| u | ] oo

<. $t2' R
o

'hLI L o o D O

i @

TRTRI

,

LAUUM

48 cores
POTRF, TRTRI and LAUUM.
The matrix is 4000 x 4000,tile size is 200 x 200,

POTRF+TRTRI+LAUUM: 25 (71-3)
Cholesky Factorization alone: 3t-2

Pipelined: 18 (3t+6)



- Big DAGs: No Global Critical Path

 DAGs get very big, very fast

o So windows of active tasks are used; this means no
global critical path

o Matrix of NBxNB tiles; NB3 operation
« NB=100 gives 1 million tasks
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“ PLASMA Local Scheduling

Dynamic Scheduling: Sliding Window

¢ Tile LU factorization
¢ 10 x 10 tiles

¢ 300 tasks

4 100 task window

I/




“ PLASMA Local Scheduling

Dynamic Scheduling: Sliding Window

¢ Tile LU factorization
& 10 x 10 tiles

¢ 300 tasks

4 100 task window

I/}




“ PLASMA Local Scheduling

Dynamic Scheduling: Sliding Window

¢ Tile LU factorization
¢ 10 x 10 tiles

¢ 300 tasks

4 100 task window




“ PLASMA Local Scheduling

Dynamic Scheduling: Sliding Window

¢ Tile LU factorization
¢ 10 x 10 tiles

¢ 300 tasks

4 100 task window




Number of tasks in DAG:
O(n3)
Cholesky: 1/3 n3

LU: 2/3 n3
QR: 4/3 n3

DPLASMA
(Distributed System)

\ ?\ I? é inputs

| H ﬁ tasks
/. .\

é ‘ & outputs

DAGUE

b

Number of tasks in parameterized DAG:
O(1)

Cholesky: 4 (POTRF, SYRK, GEMM, TRSM)

LU: 4 (GETRF, GESSM, TSTRF, SSSSM)

QR: 4 (GEQRT, LARFB, TSQRT, SSRFB)

DAG: Conceptualized & Parameterized




Start with PLASMA

for i,j = 0..N
QUARK_Insert( GEMM, A[i, j],INPUT, B[j, i],INPUT, C[i,i],INOUT )
QUARK_Insert( TRSM, A[i, j],INPUT, B[j, i],INOUT )

Parse the C source code to Abstract Syntax Tree

QUARK_Insert

Analyze dependencies with Omega Test

{1<i<N: GEMM(i, j) => TRSM(JF) } Loops & array
references

v have to be
affine

Generate Code which has the Parameterized DAG
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< Example: Cholesky 4x4

= RT is using the symbolic
information from the
compiler to make
scheduling, message
passing, & RT decisions

= Data distribution: regular,
irregular

= Task priorities

= No left looking or right
looking, more adaptive or
opportunistic




Gflop/s

6000
4000 //-—-—
3000 //
DSBP =
——DSB
1000 / >8P Distributed Square
0 ! ' ! ! T 7 T T T 1 e ScalLAPACK Block Packed
O O O O O O OO N®
& &V o K A0 VS
N S R S
Matrix size 4500 —
4000 LU
3500
81 nodes » 3000
N
Dual socket nodes § ;ggg
Quad core Xeon L5420 © 1500 —HpL
Total 648 cores at 2.5 GHz 1283 ——DAGUE
ConnectX InfiniBand DDR 4x 0 ===ScalAPACK
O O N O O O & O 0 ©
PP DL DPO
& & oA A0 O
R RN L L \9‘0 09 \3)0
4500
4000 / Matrix size
3500 / /—4
» 3000 7 —
2 2500
S 2000 [
g / /
100 T——7 ~——DAGUE
1000 1/ 7
500 7 ScalAPACK
0 ) 1 T 1 T 1 T ] T ] 1
Q O N0 O O O O 0O NV O O
S P LL PSS DS
FEFTES PO L

Matrix size



< Conclusions

* For the last decade or more, the
research investment strategy has been
overwhelmingly biased in favor of

hardware.

* This strategy needs to be rebalanced -
barriers to progress are increasingly on

the software side.

e High Performance Ecosystem out of balance

= Hardware, OS, Compilers, Software, Algorithms,
Applications
« No Moore’s Law for software, algorithms and applications
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“We can only see a short
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= Alan Turing (1912 —
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