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A GrowthA Growth--Factor of more than a Trillion Factor of more than a Trillion 
in Performance in the Past 65 Yearsin Performance in the Past 65 Years
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Scalar to super scalar to vector to SMP to DMP to massively parallel to many-core designs
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Future Large Systems, Say in 5 YearsFuture Large Systems, Say in 5 Years
♦ 128 cores per socket

May be heterogeneous

♦ 32 sockets per node

♦ 128 nodes per system

♦ System = 128*32*128
= 524,288 Cores!

♦ And by the way, its 4-8 
threads of exec per core

♦ That’s about 4M threads to 
manage 

1 Chip =
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Major Changes to Math SoftwareMajor Changes to Math Software

♦ Scalar
Fortran code in EISPACK

♦ Vector
Level 1 BLAS use in LINPACK

♦ SMP
Level 3 BLAS use in LAPACK

♦ Distributed Memory
Message Passing w/MPI in ScaLAPACK

♦ Many-Core
Event driven multi-threading in PLASMA

Parallel Linear Algebra Software for Multicore Architectures
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Time to Rethink Software AgainTime to Rethink Software Again
♦Must rethink the design of our 
software

Another disruptive technology
Similar to what happened with cluster 
computing and message passing

Rethink and rewrite the applications, 
algorithms, and software

♦Numerical libraries for example will 
change

For example, both LAPACK and 
ScaLAPACK will undergo major changes 
to accommodate this
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ScaLAPACK

PBLASPBLASPBLAS

BLACSBLACSBLACS

MPIMPIMPI

LAPACK

ATLASATLASATLAS Specialized Specialized Specialized 
BLASBLASBLAS

threadsthreadsthreads

P
arallel

Parallelism in LAPACK  / 
ScaLAPACK

Shared Memory Distributed Memory

Two well known open source software efforts for dense matrix problems.
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DGETF2

DLSWP

DLSWP

DTRSM

DGEMM

LAPACK

LAPACK

LAPACK

BLAS

BLAS

Steps in the LAPACK LUSteps in the LAPACK LU

(Factor a panel)

(Backward swap)

(Forward swap)

(Triangular solve)

(Matrix multiply) Most of the work 
done here
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DGETF2

DLSWP

DLSWP

DTRSM

DGEMM

LU Timing Profile (4 processor system)LU Timing Profile (4 processor system)

1D decomposition and SGI OriginTime for each component
DGETF2
DLASWP(L)
DLASWP(R)
DTRSM
DGEMM

Threads – no lookahead

Bulk Sync PhasesBulk Sync Phases
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Adaptive Adaptive LookaheadLookahead -- DynamicDynamic

Event Driven MultithreadingEvent Driven Multithreading
Reorganizing 

algorithms to use 
this approach

10

A

C

A

B C

T TT

ForkFork--Join vs. Dynamic ExecutionJoin vs. Dynamic Execution

Fork-Join – parallel BLAS

Experiments on Experiments on 
IntelIntel’’s Quad Core s Quad Core ClovertownClovertown
with 2 Sockets w/ 8 Treadswith 2 Sockets w/ 8 Treads

Time
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A

C

A

B C

T TT

ForkFork--Join vs. Dynamic ExecutionJoin vs. Dynamic Execution

Fork-Join – parallel BLAS

DAG-based – dynamic scheduling

Time

Experiments on Experiments on 
IntelIntel’’s Quad Core s Quad Core ClovertownClovertown
with 2 Sockets w/ 8 Treadswith 2 Sockets w/ 8 Treads

Time 
saved
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LU Factorization Cholesky Factorization QR Factorization
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Intel Clovertown
clock - 2.66 GHz 
2 sockets - quad-core
8 cores total
85 GFlop/s Theoretical Peak

Fork-Join vs. Dynamic Execution

Fork-Join

Dynamic

Fork-Join

Dynamic

Fork-Join

Dynamic

Breaking the “hour-glass” pattern 
of parallel processing
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IntelIntel’’s s ClovertownClovertown Quad CoreQuad Core
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1. LAPACK (BLAS Fork-Join Parallelism)

2. ScaLAPACK (Mess Pass using mem copy)
3. DAG Based (Dynamic Scheduling)

3 Implementations of LU factorization3 Implementations of LU factorization
Quad core w/2 sockets per board, w/ 8 TreadsQuad core w/2 sockets per board, w/ 8 Treads

8 Core Experiments

14

What about the IBMWhat about the IBM’’s s 
Cell Processor?Cell Processor?

♦ Power PC at 3.2 GHz
♦8 SPEs

204.8 Gflop/s peak!
The catch is that this is for 32 bit 
floating point; (Single Precision SP) 
And 64 bit floating point runs at 14.6 
Gflop/s total for all 8 SPEs!! 

Divide SP peak by 14; factor of 2 because 
of DP and 7 because of latency issues

$600

The SPEs are fully IEEE-754 compliant in double precision. 
In single precision, they only implement round-towards-zero.
PowerPC part is fully IEEE compliant.
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On the Way to Understanding How to Use On the Way to Understanding How to Use 
the Cell Something Else Happened the Cell Something Else Happened ……

♦ Realized have the 
similar situation on 
our commodity 
processors.

That is, SP is 2X 
as fast as DP on 
many systems

♦ Standard Intel 
Pentium and AMD 
Opteron have SSE2 

2 flops/cycle DP
4 flops/cycle SP

♦ IBM PowerPC has 
AltiVec

8 flops/cycle SP
4 flops/cycle DP

No DP on AltiVec

Size
Speedup    
SGEMM/
DGEMM

Size
Speedup  
SGEMV/
DGEMV

AMD Opteron 246 3000 2.00 5000 1.70
Sun UltraSparc-IIe 3000 1.64 5000 1.66
Intel PIII Coppermine 3000 2.03 5000 2.09
PowerPC 970 3000 2.04 5000 1.44
Intel Woodcrest 3000 1.81 5000 2.18
Intel XEON 3000 2.04 5000 1.82
Intel Centrino Duo 3000 2.71 5000 2.21

Two things going on:
• SP has higher execution rate and 
• Less data to move.
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Idea Something Like ThisIdea Something Like This……
♦ Exploit 32 bit floating point as much as 

possible.
Especially for the bulk of the computation

♦ Correct or update the solution with 
selective use of 64 bit floating point to 
provide a refined results

♦ Intuitively: 
Compute a 32 bit result, 
Calculate a correction to 32 bit result using 
selected higher precision and,
Perform the update of the 32 bit results with 
the correction using high precision. 
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L U = lu(A) SINGLE O(n3)
x = L\(U\b) SINGLE O(n2)
r = b – Ax DOUBLE O(n2)
WHILE || r || not small enough

z = L\(U\r) SINGLE O(n2)
x = x + z DOUBLE O(n1)
r = b – Ax DOUBLE O(n2)

END

MixedMixed--Precision Iterative RefinementPrecision Iterative Refinement
♦ Iterative refinement for dense systems,   Ax = b, can work 

this way.

Wilkinson, Moler, Stewart, & Higham provide error bound for SP 
fl pt results when using DP fl pt.
It can be shown that using this approach we can compute the 
solution to 64-bit floating point precision.

Requires extra storage, total is 1.5 times normal;
O(n3) work is done in lower precision
O(n2) work is done in high precision

Problems if the matrix is ill-conditioned in sp; O(108)
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In In MatlabMatlab on My Laptop!on My Laptop!
♦ Matlab has the ability to perform 32 bit 

floating point for some computations
Matlab uses LAPACK and MKL BLAS underneath.

sa=single(a); sb=single(b);
[sl,su,sp]=lu(sa);                                                      Most of the work: O(n3)
sx=su\(sl\(sp*sb)); x=double(sx); r=b-a*x;                                           O(n2)
i=0;
while(norm(r)>res1),

i=i+1;
sr = single(r);
sx1=su\(sl\(sp*sr)); x1=double(sx1); x=x1+x; r=b-a*x;                    O(n2)

if (i==30), break; end;

♦ Bulk of work, O(n3), in “single” precision
♦ Refinement, O(n2), in “double” precision

Computing the correction to the SP results in DP and 
adding it to the SP results in DP.
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In Matlab Comparison of 32 bit w/iterative refinement and 64 Bit Computation for Ax=b

Another Look at Iterative RefinementAnother Look at Iterative Refinement
♦ On a Pentium; using SSE2, single precision can perform 4 floating 

point operations per cycle and in double precision 2 floating point 
operations per cycle.

♦ In addition there is reduced memory traffic (for sp data)

A\b; Double Precision

Intel Pentium M (T2500 2 GHz)

Ax = b

1.4 GFlop/s!
Not bad for Matlab
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In Matlab Comparison of 32 bit w/iterative refinement and 64 Bit Computation for Ax=b

Another Look at Iterative RefinementAnother Look at Iterative Refinement
♦ On a Pentium; using SSE2, single precision can perform 4 floating 

point operations per cycle and in double precision 2 floating point 
operations per cycle.

♦ In addition there is reduced memory traffic (factor on sp data)

A\b; Double Precision

A\b; Single Precision w/iterative refinement
With same accuracy as DP

2 X speedup Matlab
on my laptop!

Intel Pentium M (T2500 2 GHz)

Ax = b

3 GFlop/s!!
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Speedups for Ax = b Speedups for Ax = b (Ratio of Times)(Ratio of Times)

71.321.571.684000Cray X1 (libsci)

40.911.131.082000SGI Octane (ATLAS)

31.001.131.033000IBM SP Power3 (ESSL)

41.011.080.993000Compaq Alpha EV6 (CXML)

51.242.052.295000IBM Power PC G5 (2.7 GHz) (VecLib)

41.581.791.453000Sun UltraSPARC IIe (Sunperf) 

51.531.931.984000AMD Opteron (Goto)

51.571.862.004000Intel Pentium IV Prescott (Goto)

41.922.242.103500Intel Pentium III Coppermine (Goto)

# iterDP Solve
/Iter Ref

DP Solve
/SP Solve

DGEMM
/SGEMM

nArchitecture (BLAS)

61.831.903200064AMD Opteron (Goto – OpenMPI MX)

61.791.852262732AMD Opteron (Goto – OpenMPI MX)

# 
iter

DP Solve
/Iter Ref

DP Solve
/SP Solve

n# 
procs

Architecture (BLAS-MPI)

Recent addition to LAPACK 3.1 as DSGESV
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Quadruple PrecisionQuadruple Precision

♦ Variable precision factorization (with say < 32 bit precision) 
plus 64 bit refinement produces 64 bit accuracy

94.8  2.92 276.1000 
86.3  2.33 201. 900 
77.3  1.83 141. 800 
68.7  1.38 94.9 700 
59.0  1.01 60.1 600 
49.7  0.69 34.7 500 
40.4  0.44 17.8400 
30.5  0.24 7.61 300 
20.9  0.10 2.27 200 
9.5  0.03 0.29 100 

Speedup  time (s) time (s) 

Iter. Refine.
DP to QP

Quad Precision
Ax = b

n Intel Xeon 3.2 GHz

Reference 
implementation of 
the 
quad precision 
BLAS

Accuracy: 10-32

No more than 3 
steps of iterative 
refinement are 
needed.
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IBM Cell 3.2 GHz, Ax = bIBM Cell 3.2 GHz, Ax = b
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8 SGEMM (Embarrassingly Parallel)
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IBM Cell 3.2 GHz, Ax = bIBM Cell 3.2 GHz, Ax = b
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8 SGEMM (Embarrassingly Parallel)
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Sony Sony PlaystationPlaystation 3 Cluster PS33 Cluster PS3--TT

♦ From IBM or 
Mercury

2 Cell chip
Each w/8 SPEs

512 MB/Cell
~$17K
Some SW

♦ From WAL*MART 
PS3

1 Cell chip
w/6 SPEs

256 MB/PS3
$600
Download SW
Dual boot
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PlayStation 3 LU CodesPlayStation 3 LU Codes
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PlayStation 3 LU CodesPlayStation 3 LU Codes
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Refinement Technique Using Refinement Technique Using 
Single/Double PrecisionSingle/Double Precision

♦ Dense Linear Systems 
LU dense (in current release of LAPACK) 
Cholesky
QR Factorization

♦ Sparse Direct Method
When kernel matrix multiple
multifrontal approach - MUMPS

♦ Iterative Linear System
Relaxed GMRES
Inner/outer iteration scheme

See webpage for tech report which discusses this.
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Sparse Direct Solver and Iterative RefinementSparse Direct Solver and Iterative Refinement

G64
Si10H16

airfoil_2d

bcsstk39

blockqp1

c-71
cavity26
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finan512
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kivap004

kivap006

mult_dcop_01

nasasrb

nemeth26

qa8fk
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torso2
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wathen120

Ite ra tiv e  R e fin e me n t
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Tim Davis's Collection, n=100K - 3M

Speedup Over DP
Opteron w/Intel compiler Iterative Refinement

Single Precision

MUMPS package based on multifrontal approach which 
generates small dense matrix multiplies
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Sparse Iterative Methods (PCG)Sparse Iterative Methods (PCG)
♦ Outer/Inner Iteration

♦ Outer iteration in 64 bit floating point and             
fixed number of inner iteration in 32 bit floating point

Inner iteration:
In 32 bit floating pointOuter iterations using 64 bit floating point
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Mixed Precision Computations forMixed Precision Computations for
Sparse Inner/OuterSparse Inner/Outer--type Iterative Solverstype Iterative Solvers

0
0.25

0.5
0.75

1
1.25

1.5
1.75

2
2.25

2.5

11,142 25,980 79,275 230,793 602,091

CG
PCG
GMRES
 PGMRES 

6,021       18,000      39,000     120,000   240,000

Matrix size

Condition number

Time speedups for mixed precision Inner SP/Outer DP (SP/DP) iter. methods vs DP/DP 
(CG, GMRES, PCG, and PGMRES with diagonal preconditioners)

Machine:
Intel Woodcrest (3GHz, 1333MHz bus)

Reference methods

(More is better)

Data movement the main source of improvement
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Intriguing PotentialIntriguing Potential
♦ Exploit lower precision as                        

much as possible
Payoff in performance

Faster floating point 
Less data to move

♦ Automatically switch between SP and DP to match 
the desired accuracy

Compute solution in SP and then a correction to the 
solution in DP

♦ Potential for GPU, FPGA, special purpose 
processors

What about 16 bit floating point?
128 bit floating point?

♦ Linear systems and Eigenvalue, optimization 
problems, where Newton’s method is used.
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Happy  Birthday  Gene!Happy  Birthday  Gene!


