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£ A Growth-Factor of more than a Trillion
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in Performance in the Past 65 Years
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Scalar to super scalar to vector to SMP to DMP to massively parallel to many-core desngn<
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Future Large Systems, Say in 5 Years

+ 128 cores per socket

> May be heterogeneous _
1 Chip =

*

32 sockets per node

*

128 nodes per system

*

System = 128*32*128
= 524,288 Cores!

*

And by the way, its 4-8
threads of exec per core

¢ That's about 4M threads to
manage
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Major Changes to Math Software

¢ Scalar

> Fortran code in EISPACK

Vector

> Level 1 BLAS use in LINPACK

¢ SMP

> Level 3 BLAS use in LAPACK
Distributed Memory

> Message Passing w/MPT in ScaLAPACK
Many-Core

> Event driven multi-threading in PLASMA
> Parallel Linear Algebra Software for Multicore Architectures

*

*

*
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< Time to Rethink Software Again

¢ Must rethink the design of our
software

»Another disruptive technology

>Similar to what happened with cluster
computing and message passing

>Rethink and rewrite the applications,
algorithms, and software
¢ Numerical libraries for example will
change

>»For example, both LAPACK and
ScalLAPACK will undergo major changes
to accommodate this

¢ Parallelism in LAPACK /
~ ScaLAPACK

Shared Memory Distributed Memory

LAPACK ScaLAPACK

lolered
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Two well known open source software efforts for dense matrix problems.
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< Steps in the LAPACK LU

DGETF2 LAPACK
(Factor a panel)
DLSWP l LAPACK
(Backward swap) |
DLSWP ﬂ LAPACK
(Forward swap) A
. DTRSM % l l l l BLAS
(Triangular solve)
N 1 ><
gz
]
DGEMM 7 l l l l BLAS
(Matrix multiply) é Most of the work 7
TN\ done here

n

c‘f Threads — no lookahead

LU T1ming Profile (4 processor system)
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£ Adaptive Lookahead - Dynamic

KcLor- !
while (1)
fetch_task();
switch (task.type) {
case PANEL:
dgetf2();

update_progress ()
case COLUMN:
dlaswp () ;

update _}’progress ()
—— case END:

\
> $ O ® B iy

return;

—

Reorganizing
Event Driven Multithreading al?rﬁrs't;'&?;gcfe
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«. Fork-Join vs. Dynamic Execution
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i Fork-Join — parallel BLAS

11l

Time

Experiments on
Intel’s Quad Core Clovertown ;
with 2 Sockets w/ 8 Treads
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«. Fork-Join vs. Dynamic Execution
o N il i Fork-Join — parallel BLAS
L Ens T B RO
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Experiments on
Intel's Quad Core Clovertown )
with 2 Sockets w/ 8 Treads
N
@ Fork-Join vs. Dynamic Execution
Breaking the “hour-glass” pattern
of parallel processing
LU Factorization Cholesky Factorization QR Factorization

Dynamic Dynamic Dynamic

Fork-Join
Fork-Join
Fork-Join

Intel Clovertown

clock - 2.66 GHz

2 sockets - quad-core

8 cores total

85 GFlop/s Theoretical Peak 12
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Intel’s Clovertown Quad Core
1. LAPACK (BLAS Fork-Join Parallelism)
2. ScalLAPACK (Mess Pass using mem copy)
3. DAG Based (Dynamic Scheduling)

3 Implementations of LU factorization
Quad core w/2 sockets per board, w/ 8 Treads
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Problems Size

f What about the IBM’sp
Cell Processor?

¢ Power PC at 3.2 GHz 1+ 1= %
+ 8 SPEs

»>204.8 Gflop/s peak!

»>The catch is that this is for 32 bit
floating point; (Single Precision SP)

»>And 64 bit floating point runs at 14.6
Gflop/s total for all 8 SPEsl!

>Divide SP peak by 14; factor of 2 because
of DP and 7 because of latency issues

The SPEs are fully IEEE-754 compliant in double precision.
In single precision, they only implement round-towards-zero.

| PowerPC part s fullv IEEE compliant




£ On the Way to Understanding How to Use
the Cell Something Else Happened ...
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Realized have the
similar situation on

our commodity Speedup Speedup

processors. size | scemw | Size | scEwv/
> That is, SP is 2X DGEMM DGEMV
as fast as DP on [AMD Opteron 246 3000 2.00 5000 1.70
many systems Sun UltraSparc-le | 3000 1.64 5000 1.66
Intel PIIl Coppermine[ 3000 2.03 5000 2.09

g’m".d“"d IJ”:;AD PowerPC 970 3000 | 2.04 | 5000 1.44
Oep'lrzgm‘ ‘;‘"ave SSE2 |Intel Woodcrest 3000 181 5000 2.18
> 2 flops/cycle DP | Itel XEON 3000 2.04 5000 1.82
Intel Centrino Duo 3000 2.71 5000 2.21

> 4 flops/cycle SP

IBM PowerPC has
AltiVec
> 8 flops/cycle SP
> 4 flops/cycle DP
> No DP on AltiVec

Two things going on:
» SP has higher execution rate and
* Less data to move.
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Idea Something Like This...

+ Exploit 32 bit floating point as much as
possible.
> Especially for the bulk of the computation

¢ Correct or update the solution with
selective use of 64 bit floating point to
provide a refined results

¢+ Intuitively:
> Compute a 32 bit result,
> Calculate a correction to 32 bit result using
selected higher precision and,

> Perform the update of the 32 bit results with
the correction using high precision.
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~ Mixed-Precision lterative Refinement
¢ Iferafive refinement for dense systems, Ax = b, can work

this way.
L U = lu(A) SINGLE o(n®)
x = L\(U\b) SINGLE o(n?)
r=b- Ax DOUBLE o(n?)
WHILE || r || not small enough
z = L\(U\r) SINGLE o(n?)
X=Xx+2 DOUBLE o(nh)
r=b- Ax DOUBLE o(n?
END

> Wilkinson, Moler, Stewart, & Higham provide error bound for SP
fl pt results when using DP fl pt.

> It can be shown that using this approach we can compute the
solution to 64-bit floating point precision.

> Requires extra storage, total is 1.5 times normal;
> O(n3) work is done in lower precision
> O(n?) work is done in high precision

> Problems if the matrix is ill-conditioned in sp; O(108)

N
< In Matlab on My Laptop!
+ Matlab has the ability to perform 32 bit

floating point for some computations
> Matlab uses LAPACK and MKL BLAS underneath.

sa=single(a); sh=single(b);

[sl,su,spl=lu(sa); Most of the work: O(n3)
sx=su\(sl\(sp*sh)); x=double(sx); r=b-a*x; Oo(n3)
i=0;
while(norm(r)>res1),

i=i+1;

sr = single(r);

sx1=su\(sl\(sp*sr)); x1=double(sx1); x=x1+x; r=b-a*x; Oo(n?)

if (i==30), break; end;

¢ Bulk of work, O(n3), in “single” precision
+ Refinement, O(n?), in “"double” precision

» Computing the correction to the SP results in DP and
adding it to the SP results in DP.
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“* Another Look at Iterative Refinement

¢ On a Pentium; using SSE2, single precision can perform 4 floating
point operations per cycle and in double precision 2 floating point
operations per cycle.

+ In addition there is reduced memory traffic (for sp data)

In Matlab Comparison of 32 bit w/iterative refinement and 64 Bit Computation for Ax=b

3.5 T T
Intel Pentium M (T2500 2 GHz)
3L 4
251 4
” 2+ 4
5 sl A\b; Double Precision B 1.4 GFlop/s!
_ Not bad for Matlab
1 / 1
0.5—/,/“ B
OO/‘ 560 10‘00 15‘00 20‘00 25‘00 3000 19
X = Size of Problem
N
»
“* Another Look at Iterative Refinement
+ On a Pentium; using SSE2, single precision can perform 4 floating
point operations per cycle and in double precision 2 floating point
operations per cycle.
+ In addition there is reduced memory traffic (factor on sp data)
In Matlab Comparison of 32 bit w/iterative refinement and 64 Bit Computation for Ax=b
3.5 T T T
"Ab: Single Precision wiiterative refinement
| A\b; Single Precision w/iterative refinemen
: With same accuracy as DP 3 GFIOp/S!!
251 B
0 2r ]
& 15k A\b; Double Precision |
1 / - i
/-
wsl/ 2 X speedup Matlab ]
on my laptop!
00 560 10‘00 15‘00 20‘00 25‘00 3000 20

X =b Size of Problem
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¢ Speedups for Ax

L

= b (Ratio of Times)

— Architecture (BLAS) n DGEMM | DP Solve | DP Solve | #iter
/ISGEMM | /SP Solve | /lter Ref
Intel Pentium 111 Coppermine (Goto) 3500 2.10 2.24 1.92 4
Intel Pentium IV Prescott (Goto) 4000 2.00 1.86 1.57 5
AMD Opteron (Goto) 4000 1.98 1.93 1.53 5
Sun UltraSPARC lle (Sunperf) 3000 1.45 1.79 1.58 4
IBM Power PC G5 (2.7 GHz) (VecLib) 5000 299 205 1.24 5
Cray X1 (libsci) 4000 1.68 1.57 1.32 7
Compag Alpha EV6 (CXML) 3000 0.99 1.08 1.01 4
IBM SP Power3 (ESSL) 3000 1.03 1.13 1.00 3
SGI Octane (ATLAS) 2000 1.08 192 0.91 4
Recent addition to LAPACK 3.1 as DSGESV
Architecture (BLAS-MPI) # n DP Solve DP Solve #
procs /SP Solve /Iter Ref | iter
AMD Opteron (Goto — OpenMPI MX) 32 22627 1.85 1.79 6
AMD Opteron (Goto — OpenMPI MX) 64 32000 1.90 1.83 6 ['
N
» - -
< Quadruple Precision
n Quad Precision | Iter. Refine. Intel Xeon 3.2 GHz
Ax = b DOP to QP
time (s) time (s) Speedup Reference
implementation of
100 0.29 0.03 9.5 the
quad precision
200 2.27 0.10 20.9 BLAS
300 7.61 0.24 30.5
Accuracy: 10-32
400 17.8 0.4 40.4 Y
500 34.7 0.69 497 No more than 3
steps of iterative
600 60.1 1.01 59.0 refinement are
700 94.9 1.38 68.7 needed.
800 141. 1.83 77.3
900 201. 2.33 86.3
1000 276. 2.92 94.8

+ Variable precision factorization (with say < 32 bit precision) 22
plus 64 bit refinement produces 64 bit accuracy
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< |BM Cell 3.2 GHz, AX=Db
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< Sony Playstation 3 Cluster PS3-T

¢ From IBM or
Mercury
> 2 Cell chip
> Each w/8 SPEs
> 512 MB/Cell
> ~$17K
> Some SW
¢+ From WAL*MART
PS3
> 1 Cell chip
> w/6 SPEs
> 256 MB/PS3
> $600
> Download SW
> Dual boot

25

< PlayStation 3 LU Codes
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PlayStation 3 LU Codes
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Refinement Technique Using

_Single/Double Precision

+ Dense Linear Systems
» LU dense (in current release of LAPACK)
> Cholesky
» QR Factorization

+ Sparse Direct Method
> When kernel matrix multiple
> multifrontal approach - MUMPS

+ Iterative Linear System
> Relaxed GMRES
> Inner/outer iteration scheme

See webpage for tech report which discusses this.

256
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«- Sparse Direct Solver and lterative Refinement

MUMPS package based on multifrontal approach which
generates small dense matrix multiplies

Opteron w/intel compiler @ Iterative Refinement
Speedup Over DP @ Single Precision
2
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< Sparse lterative Methods (PCG)
¢ Outer/Inner Iteration Inner iteration:
Outer iterations using 64 bit floating point In 32 bit floating point

) ‘o (o) - ¢ b— A+l for some initial guess -
Compute r% = b — A2{% for some initial guess 2%

for i=1,2,... .
solve M:Ui-1) = pli-1) i
pioy = pli=1)7 26-1)
ifi=1 '
p':” — :[II‘! )
else a
Bi—1 = pi- .-"lf’r'— r
p':r'f =Ai-1 43 P'_]' IIIII i-| k o i e
endif

g = Apli)
oy = Pi—u'f":”r gt
2l = (=10 4 gppl)
pli) = pli=1) _ nr.qil'j

check convergence; continue if necessary
end

+ Outer iteration in 64 bit floating point and
fixed number of inner iteration in 32 bit floating point

30
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¢ Mixed Precision Computations for
Sparse Inner/Quter-type lterative Solvers

L
Time speedups for mixed precision Inner SP/Outer DP (SP/DP) iter. methods vs DP/DP
(CG, GMRES, PCG, and PGMRES with diagonal preconditioners)

25 Machine:
Intel Woodcrest (3GHz, 1333MHz bus)
2.25

2,

Reference methods

1.757
1.5 B CG
1.25 B PCG
14 B GMRES
0.751 B PGMRES

0.57

0.251 (More is better)

O,

11,142 25,980 79,275 230,793 602,091 =— Matrix size

6,021 18,000 39,000 120,000 240,000 <— Condition number

Data movement the main source of improvement 31

e
< Intriguing Potential

+ Exploit lower precision as
much as possible
> Payoff in performance
> Faster floating point
> Less data to move
¢ Automatically switch between SP and DP to match
the desired accuracy
» Compute solution in SP and then a correction to the
solution in DP
+ Potential for GPU, FPGA, special purpose
processors
> What about 16 bit floating point?
> 128 bit floating point?
¢+ Linear systems and Eigenvalue, optimization
problems, where Newton's method is used. 32
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Happy Birthday Genel
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