
1

1

Jack Dongarra

Alfredo Buttari, Jakub Kurzak, Julie Langou,
Julien Langou, Piotr Luszczek, Stan Tomov

University of Tennessee
and

Oak Ridge National Laboratory

The Challenge of The Challenge of MulticoreMulticore and and
Specialized Accelerators for Specialized Accelerators for

Mathematical SoftwareMathematical Software

2

A GrowthA Growth--Factor of more than a Trillion Factor of more than a Trillion
in Performance in the Past 65 Yearsin Performance in the Past 65 Years

1 103 106 109 1012 1015

KiloOPS MegaOPS GigaOPS TeraOPS PetaOPSOne OPS

1951
Pilot Ace

1949
Edsac

1976
Cray 1

1982
Cray XMP

1988
Cray YMP

1964
CDC 6600

1996
T3E

1991
Intel Delta

1997
ASCI Red

2001
Earth

Simulator

2003
Cray X1

1943
Harvard
Mark 1

1959
IBM 7094

2005
IBM
BG/L

1948
Manchr
Baby

Scalar to super scalar to vector to SMP to DMP to massively parallel to many-core designs

2

3

Future Large Systems, Say in 5 YearsFuture Large Systems, Say in 5 Years
♦ 128 cores per socket

May be heterogeneous

♦ 32 sockets per node

♦ 128 nodes per system

♦ System = 128*32*128
= 524,288 Cores!

♦ And by the way, its 4-8
threads of exec per core

♦ That’s about 4M threads to
manage

1 Chip =

4

Major Changes to Math SoftwareMajor Changes to Math Software

♦ Scalar
Fortran code in EISPACK

♦ Vector
Level 1 BLAS use in LINPACK

♦ SMP
Level 3 BLAS use in LAPACK

♦ Distributed Memory
Message Passing w/MPI in ScaLAPACK

♦ Many-Core
Event driven multi-threading in PLASMA

Parallel Linear Algebra Software for Multicore Architectures

3

5

Time to Rethink Software AgainTime to Rethink Software Again
♦Must rethink the design of our
software

Another disruptive technology
Similar to what happened with cluster
computing and message passing

Rethink and rewrite the applications,
algorithms, and software

♦Numerical libraries for example will
change

For example, both LAPACK and
ScaLAPACK will undergo major changes
to accommodate this

6

ScaLAPACK

PBLASPBLASPBLAS

BLACSBLACSBLACS

MPIMPIMPI

LAPACK

ATLASATLASATLAS Specialized Specialized Specialized
BLASBLASBLAS

threadsthreadsthreads

P
arallel

Parallelism in LAPACK /
ScaLAPACK

Shared Memory Distributed Memory

Two well known open source software efforts for dense matrix problems.

4

7

DGETF2

DLSWP

DLSWP

DTRSM

DGEMM

LAPACK

LAPACK

LAPACK

BLAS

BLAS

Steps in the LAPACK LUSteps in the LAPACK LU

(Factor a panel)

(Backward swap)

(Forward swap)

(Triangular solve)

(Matrix multiply) Most of the work
done here

8

DGETF2

DLSWP

DLSWP

DTRSM

DGEMM

LU Timing Profile (4 processor system)LU Timing Profile (4 processor system)

1D decomposition and SGI OriginTime for each component
DGETF2
DLASWP(L)
DLASWP(R)
DTRSM
DGEMM

Threads – no lookahead

Bulk Sync PhasesBulk Sync Phases

5

9

Adaptive Adaptive LookaheadLookahead -- DynamicDynamic

Event Driven MultithreadingEvent Driven Multithreading
Reorganizing

algorithms to use
this approach

10

A

C

A

B C

T TT

ForkFork--Join vs. Dynamic ExecutionJoin vs. Dynamic Execution

Fork-Join – parallel BLAS

Experiments on Experiments on
IntelIntel’’s Quad Core s Quad Core ClovertownClovertown
with 2 Sockets w/ 8 Treadswith 2 Sockets w/ 8 Treads

Time

6

11

A

C

A

B C

T TT

ForkFork--Join vs. Dynamic ExecutionJoin vs. Dynamic Execution

Fork-Join – parallel BLAS

DAG-based – dynamic scheduling

Time

Experiments on Experiments on
IntelIntel’’s Quad Core s Quad Core ClovertownClovertown
with 2 Sockets w/ 8 Treadswith 2 Sockets w/ 8 Treads

Time
saved

12

0 2000 4000 6000 8000

0

4

8

12

16

20

24

28

32

36

40

Size

G
flo

p/
s

LU Factorization Cholesky Factorization QR Factorization

0 2000 4000 6000 8000

8

12

16

20

24

28

32

Size

G
flo

p/
s

0 2000 4000 6000 8000

0

4

8

12

16

20

24

28

32

36

40

Size

G
flo

p/
s

Intel Clovertown
clock - 2.66 GHz
2 sockets - quad-core
8 cores total
85 GFlop/s Theoretical Peak

Fork-Join vs. Dynamic Execution

Fork-Join

Dynamic

Fork-Join

Dynamic

Fork-Join

Dynamic

Breaking the “hour-glass” pattern
of parallel processing

7

13

IntelIntel’’s s ClovertownClovertown Quad CoreQuad Core

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000

Problems Size

M
flo

p/
s

1. LAPACK (BLAS Fork-Join Parallelism)

2. ScaLAPACK (Mess Pass using mem copy)
3. DAG Based (Dynamic Scheduling)

3 Implementations of LU factorization3 Implementations of LU factorization
Quad core w/2 sockets per board, w/ 8 TreadsQuad core w/2 sockets per board, w/ 8 Treads

8 Core Experiments

14

What about the IBMWhat about the IBM’’s s
Cell Processor?Cell Processor?

♦ Power PC at 3.2 GHz
♦8 SPEs

204.8 Gflop/s peak!
The catch is that this is for 32 bit
floating point; (Single Precision SP)
And 64 bit floating point runs at 14.6
Gflop/s total for all 8 SPEs!!

Divide SP peak by 14; factor of 2 because
of DP and 7 because of latency issues

$600

The SPEs are fully IEEE-754 compliant in double precision.
In single precision, they only implement round-towards-zero.
PowerPC part is fully IEEE compliant.

8

15

On the Way to Understanding How to Use On the Way to Understanding How to Use
the Cell Something Else Happened the Cell Something Else Happened ……

♦ Realized have the
similar situation on
our commodity
processors.

That is, SP is 2X
as fast as DP on
many systems

♦ Standard Intel
Pentium and AMD
Opteron have SSE2

2 flops/cycle DP
4 flops/cycle SP

♦ IBM PowerPC has
AltiVec

8 flops/cycle SP
4 flops/cycle DP

No DP on AltiVec

Size
Speedup
SGEMM/
DGEMM

Size
Speedup
SGEMV/
DGEMV

AMD Opteron 246 3000 2.00 5000 1.70
Sun UltraSparc-IIe 3000 1.64 5000 1.66
Intel PIII Coppermine 3000 2.03 5000 2.09
PowerPC 970 3000 2.04 5000 1.44
Intel Woodcrest 3000 1.81 5000 2.18
Intel XEON 3000 2.04 5000 1.82
Intel Centrino Duo 3000 2.71 5000 2.21

Two things going on:
• SP has higher execution rate and
• Less data to move.

16

Idea Something Like ThisIdea Something Like This……
♦ Exploit 32 bit floating point as much as

possible.
Especially for the bulk of the computation

♦ Correct or update the solution with
selective use of 64 bit floating point to
provide a refined results

♦ Intuitively:
Compute a 32 bit result,
Calculate a correction to 32 bit result using
selected higher precision and,
Perform the update of the 32 bit results with
the correction using high precision.

9

17

L U = lu(A) SINGLE O(n3)
x = L\(U\b) SINGLE O(n2)
r = b – Ax DOUBLE O(n2)
WHILE || r || not small enough

z = L\(U\r) SINGLE O(n2)
x = x + z DOUBLE O(n1)
r = b – Ax DOUBLE O(n2)

END

MixedMixed--Precision Iterative RefinementPrecision Iterative Refinement
♦ Iterative refinement for dense systems, Ax = b, can work

this way.

Wilkinson, Moler, Stewart, & Higham provide error bound for SP
fl pt results when using DP fl pt.
It can be shown that using this approach we can compute the
solution to 64-bit floating point precision.

Requires extra storage, total is 1.5 times normal;
O(n3) work is done in lower precision
O(n2) work is done in high precision

Problems if the matrix is ill-conditioned in sp; O(108)

18

In In MatlabMatlab on My Laptop!on My Laptop!
♦ Matlab has the ability to perform 32 bit

floating point for some computations
Matlab uses LAPACK and MKL BLAS underneath.

sa=single(a); sb=single(b);
[sl,su,sp]=lu(sa); Most of the work: O(n3)
sx=su\(sl\(sp*sb)); x=double(sx); r=b-a*x; O(n2)
i=0;
while(norm(r)>res1),

i=i+1;
sr = single(r);
sx1=su\(sl\(sp*sr)); x1=double(sx1); x=x1+x; r=b-a*x; O(n2)

if (i==30), break; end;

♦ Bulk of work, O(n3), in “single” precision
♦ Refinement, O(n2), in “double” precision

Computing the correction to the SP results in DP and
adding it to the SP results in DP.

10

190 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3

3.5

Size of Problem

G
flo

p/
s

In Matlab Comparison of 32 bit w/iterative refinement and 64 Bit Computation for Ax=b

Another Look at Iterative RefinementAnother Look at Iterative Refinement
♦ On a Pentium; using SSE2, single precision can perform 4 floating

point operations per cycle and in double precision 2 floating point
operations per cycle.

♦ In addition there is reduced memory traffic (for sp data)

A\b; Double Precision

Intel Pentium M (T2500 2 GHz)

Ax = b

1.4 GFlop/s!
Not bad for Matlab

200 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3

3.5

Size of Problem

G
flo

p/
s

In Matlab Comparison of 32 bit w/iterative refinement and 64 Bit Computation for Ax=b

Another Look at Iterative RefinementAnother Look at Iterative Refinement
♦ On a Pentium; using SSE2, single precision can perform 4 floating

point operations per cycle and in double precision 2 floating point
operations per cycle.

♦ In addition there is reduced memory traffic (factor on sp data)

A\b; Double Precision

A\b; Single Precision w/iterative refinement
With same accuracy as DP

2 X speedup Matlab
on my laptop!

Intel Pentium M (T2500 2 GHz)

Ax = b

3 GFlop/s!!

11

21

Speedups for Ax = b Speedups for Ax = b (Ratio of Times)(Ratio of Times)

71.321.571.684000Cray X1 (libsci)

40.911.131.082000SGI Octane (ATLAS)

31.001.131.033000IBM SP Power3 (ESSL)

41.011.080.993000Compaq Alpha EV6 (CXML)

51.242.052.295000IBM Power PC G5 (2.7 GHz) (VecLib)

41.581.791.453000Sun UltraSPARC IIe (Sunperf)

51.531.931.984000AMD Opteron (Goto)

51.571.862.004000Intel Pentium IV Prescott (Goto)

41.922.242.103500Intel Pentium III Coppermine (Goto)

iterDP Solve
/Iter Ref

DP Solve
/SP Solve

DGEMM
/SGEMM

nArchitecture (BLAS)

61.831.903200064AMD Opteron (Goto – OpenMPI MX)

61.791.852262732AMD Opteron (Goto – OpenMPI MX)

iter

DP Solve
/Iter Ref

DP Solve
/SP Solve

n#
procs

Architecture (BLAS-MPI)

Recent addition to LAPACK 3.1 as DSGESV

22

Quadruple PrecisionQuadruple Precision

♦ Variable precision factorization (with say < 32 bit precision)
plus 64 bit refinement produces 64 bit accuracy

94.8 2.92 276.1000
86.3 2.33 201. 900
77.3 1.83 141. 800
68.7 1.38 94.9 700
59.0 1.01 60.1 600
49.7 0.69 34.7 500
40.4 0.44 17.8400
30.5 0.24 7.61 300
20.9 0.10 2.27 200
9.5 0.03 0.29 100

Speedup time (s) time (s)

Iter. Refine.
DP to QP

Quad Precision
Ax = b

n Intel Xeon 3.2 GHz

Reference
implementation of
the
quad precision
BLAS

Accuracy: 10-32

No more than 3
steps of iterative
refinement are
needed.

12

23

IBM Cell 3.2 GHz, Ax = bIBM Cell 3.2 GHz, Ax = b

0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Matrix Size

G
Fl

op
/s

SP Peak (204 Gflop/s)

SP Ax=b IBM

DP Peak (15 Gflop/s)

DP Ax=b IBM

.30 secs

3.9 secs

8 SGEMM (Embarrassingly Parallel)

24

IBM Cell 3.2 GHz, Ax = bIBM Cell 3.2 GHz, Ax = b

0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Matrix Size

G
Fl

op
/s

SP Peak (204 Gflop/s)
SP Ax=b IBM
DSGESV
DP Peak (15 Gflop/s)
DP Ax=b IBM

.30 secs

.47 secs

3.9 secs

8.3X

8 SGEMM (Embarrassingly Parallel)

13

25

Sony Sony PlaystationPlaystation 3 Cluster PS33 Cluster PS3--TT

♦ From IBM or
Mercury

2 Cell chip
Each w/8 SPEs

512 MB/Cell
~$17K
Some SW

♦ From WAL*MART
PS3

1 Cell chip
w/6 SPEs

256 MB/PS3
$600
Download SW
Dual boot

26

PlayStation 3 LU CodesPlayStation 3 LU Codes

0

20

40

60

80

100

120

140

160

180

0 500 1000 1500 2000 2500

Matrix Size

G
Fl

op
/s

SP Peak (153.6 Gflop/s)

SP Ax=b IBM

DP Peak (10.9 Gflop/s)

6 SGEMM (Embarrassingly Parallel)

14

27

PlayStation 3 LU CodesPlayStation 3 LU Codes

0

20

40

60

80

100

120

140

160

180

0 500 1000 1500 2000 2500

Matrix Size

G
Fl

op
/s

SP Peak (153.6 Gflop/s)

SP Ax=b IBM

DSGESV

DP Peak (10.9 Gflop/s)

6 SGEMM (Embarrassingly Parallel)

28

Refinement Technique Using Refinement Technique Using
Single/Double PrecisionSingle/Double Precision

♦ Dense Linear Systems
LU dense (in current release of LAPACK)
Cholesky
QR Factorization

♦ Sparse Direct Method
When kernel matrix multiple
multifrontal approach - MUMPS

♦ Iterative Linear System
Relaxed GMRES
Inner/outer iteration scheme

See webpage for tech report which discusses this.

15

29

Sparse Direct Solver and Iterative RefinementSparse Direct Solver and Iterative Refinement

G64
Si10H16

airfoil_2d

bcsstk39

blockqp1

c-71
cavity26

dawson5

epb3
finan512

heart1
kivap004

kivap006

mult_dcop_01

nasasrb

nemeth26

qa8fk
rma10

torso2
venkat01

wathen120

Ite ra tiv e R e fin e me n t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Tim Davis's Collection, n=100K - 3M

Speedup Over DP
Opteron w/Intel compiler Iterative Refinement

Single Precision

MUMPS package based on multifrontal approach which
generates small dense matrix multiplies

30

Sparse Iterative Methods (PCG)Sparse Iterative Methods (PCG)
♦ Outer/Inner Iteration

♦ Outer iteration in 64 bit floating point and
fixed number of inner iteration in 32 bit floating point

Inner iteration:
In 32 bit floating pointOuter iterations using 64 bit floating point

16

31

Mixed Precision Computations forMixed Precision Computations for
Sparse Inner/OuterSparse Inner/Outer--type Iterative Solverstype Iterative Solvers

0
0.25

0.5
0.75

1
1.25

1.5
1.75

2
2.25

2.5

11,142 25,980 79,275 230,793 602,091

CG
PCG
GMRES
 PGMRES

6,021 18,000 39,000 120,000 240,000

Matrix size

Condition number

Time speedups for mixed precision Inner SP/Outer DP (SP/DP) iter. methods vs DP/DP
(CG, GMRES, PCG, and PGMRES with diagonal preconditioners)

Machine:
Intel Woodcrest (3GHz, 1333MHz bus)

Reference methods

(More is better)

Data movement the main source of improvement

32

Intriguing PotentialIntriguing Potential
♦ Exploit lower precision as

much as possible
Payoff in performance

Faster floating point
Less data to move

♦ Automatically switch between SP and DP to match
the desired accuracy

Compute solution in SP and then a correction to the
solution in DP

♦ Potential for GPU, FPGA, special purpose
processors

What about 16 bit floating point?
128 bit floating point?

♦ Linear systems and Eigenvalue, optimization
problems, where Newton’s method is used.

17

33

Happy Birthday Gene!Happy Birthday Gene!

