Stanford 50: State of the Art and Future
Directions of Computational
Mathematics and Numerical Computing

A conference celebrating the 50th anniversary of George
Forsythe's arrival at Stanford and the 75th birthday of Professor Gene Golub.

The Challenge of Multicore and
Specialized Accelerators for
Mathematical Software

Jack Dongarra

Alfredo Buttari, Jakub Kurzak, Julie Langou,
Julien Langou, Piotr Luszczek, Stan Tomov

University of Tennessee
and
Oak Ridge National Laboratory

£ A Growth-Factor of more than a Trillion

L

in Performance in the Past 65 Years

e o -
‘!
wiIJ
1959

1948 |BM 7094 1976 1991 1996 2003 gy
anchr 1949 Cray 1 Intel Delta T3 Cray X1 GIL
Baby Edsac 103 10G 109 1015

% OPS i /9)6635 /{gao%s Ter.

PetaOPS
1943 1964 1982 1988 1997 2001
1951 CDC6600 Cray XMP Cray YMP ASCIRed Earth
Harvard . Yy ray e
Mark 1 Pilot Ace Simulator
ar e

Scalar to super scalar to vector to SMP to DMP to massively parallel to many-core desngn<

N

L

Future Large Systems, Say in 5 Years

+ 128 cores per socket

> May be heterogeneous _
1 Chip =

*

32 sockets per node

*

128 nodes per system

*

System = 128*32*128
= 524,288 Cores!

*

And by the way, its 4-8
threads of exec per core

¢ That's about 4M threads to
manage

N

L

Major Changes to Math Software

¢ Scalar

> Fortran code in EISPACK

Vector

> Level 1 BLAS use in LINPACK

¢ SMP

> Level 3 BLAS use in LAPACK
Distributed Memory

> Message Passing w/MPT in ScaLAPACK
Many-Core

> Event driven multi-threading in PLASMA
> Parallel Linear Algebra Software for Multicore Architectures

*

*

*

N

< Time to Rethink Software Again

¢ Must rethink the design of our
software

»Another disruptive technology

>Similar to what happened with cluster
computing and message passing

>Rethink and rewrite the applications,
algorithms, and software
¢ Numerical libraries for example will
change

>»For example, both LAPACK and
ScalLAPACK will undergo major changes
to accommodate this

¢ Parallelism in LAPACK /
~ ScaLAPACK

Shared Memory Distributed Memory

LAPACK ScaLAPACK

lolered

;> &5 D
e

M0

Two well known open source software efforts for dense matrix problems.

i

< Steps in the LAPACK LU

DGETF2 LAPACK
(Factor a panel)
DLSWP l LAPACK
(Backward swap) |
DLSWP ﬂ LAPACK
(Forward swap) A
. DTRSM % l l l l BLAS
(Triangular solve)
N 1 ><
gz
]
DGEMM 7 l l l l BLAS
(Matrix multiply) é Most of the work 7
TN\ done here

n

c‘f Threads — no lookahead

LU T1ming Profile (4 processor system)

‘! INEEE EEEEN ONSENE ENEN #GEEN ANESE (NEDR EEA NAN O BOAM D mmELILL
EEREEE DNENE DEEEE SESEE EEEEE EEEN #GERE (EEDE inm m II.III
—— EEENEE-EENEEE EEENE—NENEE-DNESN-DENEE NEEE—EEN0-DEED-EEED EN—NI-DH-EH D HEAELI
EENEEN NEENEE ENENEE HENEN SEENE HEEEN EENED NOER NADE HEEN OEEN GO0 NED RN EE MAUEM
Time for each component *1D decomposition and SGI Origil
O bGETF2
Bl DbLaswp)
E DbLASWPR)
B DTRSM
B DpGEMM

DGETF2

DLSWP

DLSWP

<=
<=
G —am— &=
4—>
<=

DTRSM

X

Bulk Sync Phases

=
=
=
=

:

DGEMM 0

£ Adaptive Lookahead - Dynamic

KcLor- !
while (1)
fetch_task();
switch (task.type) {
case PANEL:
dgetf2();

update_progress ()
case COLUMN:
dlaswp () ;

update _}’progress ()
—— case END:

\
> $ O ® B iy

return;

—

Reorganizing
Event Driven Multithreading al?rﬁrs't;'&?;gcfe

L . . .
«. Fork-Join vs. Dynamic Execution
B

—
—
—
—

Ak

i Fork-Join — parallel BLAS

11l

Time

Experiments on
Intel’s Quad Core Clovertown ;
with 2 Sockets w/ 8 Treads

N . . .
«. Fork-Join vs. Dynamic Execution
o N il i Fork-Join — parallel BLAS
L Ens T B RO
- = Time "
@
® ® @ DAG-based — dynamic scheduling
® i g
. @ EINNUEE ENENEYNIITEEVNEIENINY ITEINNENIINEISVER] EXEEEIENY
@
—p
o Time
) saved
Experiments on
Intel's Quad Core Clovertown)
with 2 Sockets w/ 8 Treads
N
@ Fork-Join vs. Dynamic Execution
Breaking the “hour-glass” pattern
of parallel processing
LU Factorization Cholesky Factorization QR Factorization

Dynamic Dynamic Dynamic

Fork-Join
Fork-Join
Fork-Join

Intel Clovertown

clock - 2.66 GHz

2 sockets - quad-core

8 cores total

85 GFlop/s Theoretical Peak 12

N
A
L

b
Intel’s Clovertown Quad Core
1. LAPACK (BLAS Fork-Join Parallelism)
2. ScalLAPACK (Mess Pass using mem copy)
3. DAG Based (Dynamic Scheduling)

3 Implementations of LU factorization
Quad core w/2 sockets per board, w/ 8 Treads

45000

40000

35000 -

30000 -

25000

0
Q.
o
=
S 20000

15000

8 Core Experiments

10000

5000

0+ T T T T T
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 1300CH

Problems Size

f What about the IBM’sp
Cell Processor?

¢ Power PC at 3.2 GHz 1+ 1= %
+ 8 SPEs

»>204.8 Gflop/s peak!

»>The catch is that this is for 32 bit
floating point; (Single Precision SP)

»>And 64 bit floating point runs at 14.6
Gflop/s total for all 8 SPEsl!

>Divide SP peak by 14; factor of 2 because
of DP and 7 because of latency issues

The SPEs are fully IEEE-754 compliant in double precision.
In single precision, they only implement round-towards-zero.

| PowerPC part s fullv IEEE compliant

£ On the Way to Understanding How to Use
the Cell Something Else Happened ...

L

L

Realized have the
similar situation on

our commodity Speedup Speedup

processors. size | scemw | Size | scEwv/
> That is, SP is 2X DGEMM DGEMV
as fast as DP on [AMD Opteron 246 3000 2.00 5000 1.70
many systems Sun UltraSparc-le | 3000 1.64 5000 1.66
Intel PIIl Coppermine[3000 2.03 5000 2.09

g’m".d“"d IJ”:;AD PowerPC 970 3000 | 2.04 | 5000 1.44
Oep'lrzgm‘ ‘;‘"ave SSE2 |Intel Woodcrest 3000 181 5000 2.18
> 2 flops/cycle DP | Itel XEON 3000 2.04 5000 1.82
Intel Centrino Duo 3000 2.71 5000 2.21

> 4 flops/cycle SP

IBM PowerPC has
AltiVec
> 8 flops/cycle SP
> 4 flops/cycle DP
> No DP on AltiVec

Two things going on:
» SP has higher execution rate and
* Less data to move.

N

L

Idea Something Like This...

+ Exploit 32 bit floating point as much as
possible.
> Especially for the bulk of the computation

¢ Correct or update the solution with
selective use of 64 bit floating point to
provide a refined results

¢+ Intuitively:
> Compute a 32 bit result,
> Calculate a correction to 32 bit result using
selected higher precision and,

> Perform the update of the 32 bit results with
the correction using high precision.

N . - . .
~ Mixed-Precision lterative Refinement
¢ Iferafive refinement for dense systems, Ax = b, can work

this way.
L U = lu(A) SINGLE o(n®)
x = L\(U\b) SINGLE o(n?)
r=b- Ax DOUBLE o(n?)
WHILE || r || not small enough
z = L\(U\r) SINGLE o(n?)
X=Xx+2 DOUBLE o(nh)
r=b- Ax DOUBLE o(n?
END

> Wilkinson, Moler, Stewart, & Higham provide error bound for SP
fl pt results when using DP fl pt.

> It can be shown that using this approach we can compute the
solution to 64-bit floating point precision.

> Requires extra storage, total is 1.5 times normal;
> O(n3) work is done in lower precision
> O(n?) work is done in high precision

> Problems if the matrix is ill-conditioned in sp; O(108)

N
< In Matlab on My Laptop!
+ Matlab has the ability to perform 32 bit

floating point for some computations
> Matlab uses LAPACK and MKL BLAS underneath.

sa=single(a); sh=single(b);

[sl,su,spl=lu(sa); Most of the work: O(n3)
sx=su\(sl\(sp*sh)); x=double(sx); r=b-a*x; Oo(n3)
i=0;
while(norm(r)>res1),

i=i+1;

sr = single(r);

sx1=su\(sl\(sp*sr)); x1=double(sx1); x=x1+x; r=b-a*x; Oo(n?)

if (i==30), break; end;

¢ Bulk of work, O(n3), in “single” precision
+ Refinement, O(n?), in “"double” precision

» Computing the correction to the SP results in DP and
adding it to the SP results in DP.

N
“* Another Look at Iterative Refinement

¢ On a Pentium; using SSE2, single precision can perform 4 floating
point operations per cycle and in double precision 2 floating point
operations per cycle.

+ In addition there is reduced memory traffic (for sp data)

In Matlab Comparison of 32 bit w/iterative refinement and 64 Bit Computation for Ax=b

3.5 T T
Intel Pentium M (T2500 2 GHz)
3L 4
251 4
” 2+ 4
5 sl A\b; Double Precision B 1.4 GFlop/s!
_ Not bad for Matlab
1 / 1
0.5—/,/“ B
OO/‘ 560 10‘00 15‘00 20‘00 25‘00 3000 19
X = Size of Problem
N
»
“* Another Look at Iterative Refinement
+ On a Pentium; using SSE2, single precision can perform 4 floating
point operations per cycle and in double precision 2 floating point
operations per cycle.
+ In addition there is reduced memory traffic (factor on sp data)
In Matlab Comparison of 32 bit w/iterative refinement and 64 Bit Computation for Ax=b
3.5 T T T
"Ab: Single Precision wiiterative refinement
| A\b; Single Precision w/iterative refinemen
: With same accuracy as DP 3 GFIOp/S!!
251 B
0 2r]
& 15k A\b; Double Precision |
1 / - i
/-
wsl/ 2 X speedup Matlab]
on my laptop!
00 560 10‘00 15‘00 20‘00 25‘00 3000 20

X =b Size of Problem

10

¢ Speedups for Ax

L

= b (Ratio of Times)

— Architecture (BLAS) n DGEMM | DP Solve | DP Solve | #iter
/ISGEMM | /SP Solve | /lter Ref
Intel Pentium 111 Coppermine (Goto) 3500 2.10 2.24 1.92 4
Intel Pentium IV Prescott (Goto) 4000 2.00 1.86 1.57 5
AMD Opteron (Goto) 4000 1.98 1.93 1.53 5
Sun UltraSPARC lle (Sunperf) 3000 1.45 1.79 1.58 4
IBM Power PC G5 (2.7 GHz) (VecLib) 5000 299 205 1.24 5
Cray X1 (libsci) 4000 1.68 1.57 1.32 7
Compag Alpha EV6 (CXML) 3000 0.99 1.08 1.01 4
IBM SP Power3 (ESSL) 3000 1.03 1.13 1.00 3
SGI Octane (ATLAS) 2000 1.08 192 0.91 4
Recent addition to LAPACK 3.1 as DSGESV
Architecture (BLAS-MPI) # n DP Solve DP Solve #
procs /SP Solve /Iter Ref | iter
AMD Opteron (Goto — OpenMPI MX) 32 22627 1.85 1.79 6
AMD Opteron (Goto — OpenMPI MX) 64 32000 1.90 1.83 6 ['
N
» - -
< Quadruple Precision
n Quad Precision | Iter. Refine. Intel Xeon 3.2 GHz
Ax = b DOP to QP
time (s) time (s) Speedup Reference
implementation of
100 0.29 0.03 9.5 the
quad precision
200 2.27 0.10 20.9 BLAS
300 7.61 0.24 30.5
Accuracy: 10-32
400 17.8 0.4 40.4 Y
500 34.7 0.69 497 No more than 3
steps of iterative
600 60.1 1.01 59.0 refinement are
700 94.9 1.38 68.7 needed.
800 141. 1.83 77.3
900 201. 2.33 86.3
1000 276. 2.92 94.8

+ Variable precision factorization (with say < 32 bit precision) 22
plus 64 bit refinement produces 64 bit accuracy

11

N

< |BM Cell 3.2 GHz, AX=Db

250
200
8 SGEMM (Embarrassingly Parallel),
——SP Peak (204 Gflop/s)
- =
150 — SPAxb IBM .30 secs
© DP Peak (15 Gflop/s)
Q
2 —¥=DP Ax=b IBM
[0}
100 +
50 +
3.9 secs
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Matrix Size
25
N
~
L ¥ —
IBM Cell 3.2 GHz, Ax=Db
250
200
8 SGEMM (Embarrassingly Parallel
—&— SP Peak (204 Gflop/s
—&—SP Ax=b IBM
150 {—— DSGESV -30 secs
2 DP Peak (15 Gflop/s)
o
L_(DL =¥=DP Ax=b IBM
100 —— A7 secs
2
5 | 8.3X
3.9 secs
w } } } } } f f f f ¥ f f g
0 + T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Matrix Size
24

12

N

< Sony Playstation 3 Cluster PS3-T

¢ From IBM or
Mercury
> 2 Cell chip
> Each w/8 SPEs
> 512 MB/Cell
> ~$17K
> Some SW
¢+ From WAL*MART
PS3
> 1 Cell chip
> w/6 SPEs
> 256 MB/PS3
> $600
> Download SW
> Dual boot

25

< PlayStation 3 LU Codes

P o o o o o N o

6 SGEMM (Embarrassingly Parallel)

—4— SP Peak (153.6 Gflop/s)

~#- SP Ax=b IBM

100 —
DP Peak (10.9 Gflop/s)

GFlop/s

T T T
0 500 1000 1500 2000 2500

26

13

N

- -
cL
PlayStation 3 LU Codes
180
160 — — — — — — — —
140 q
6 SGEMM (Embarrassingly Parallel),
—&— SP Peak (153.6 Gflop/s)
120 ——
~— SP Ax=b IBM
» 100 — DSGESV
Q
2 DP Peak (10.9 Gflop/s)
O 80
60 -
40 1
20
0 ./
0 500 1000 1500 2000 2500
Matrix Si
atrix Size 27
(\

A

Refinement Technique Using

_Single/Double Precision

+ Dense Linear Systems
» LU dense (in current release of LAPACK)
> Cholesky
» QR Factorization

+ Sparse Direct Method
> When kernel matrix multiple
> multifrontal approach - MUMPS

+ Iterative Linear System
> Relaxed GMRES
> Inner/outer iteration scheme

See webpage for tech report which discusses this.

256

14

N
«- Sparse Direct Solver and lterative Refinement

MUMPS package based on multifrontal approach which
generates small dense matrix multiplies

Opteron w/intel compiler @ Iterative Refinement
Speedup Over DP @ Single Precision
2

1.8
1.6 .1 ’_‘(
1.4
1.2 ﬁ Hr r*
1 I p T
0.8 H-i L_
0.6 I F’
0.4
0.2
° J
% %%Q/"’&-q‘% q'q, % % g 4
% 2 %, % 7 bg@%oo%@%% % % ’/)/(A . T 3 .
TR R T % %@%%°\%;§; %é‘%ﬁ ", e %%f%«
Tim Davis's Collection, n=100K - 3M < °
N
A -
< Sparse lterative Methods (PCG)
¢ Outer/Inner Iteration Inner iteration:
Outer iterations using 64 bit floating point In 32 bit floating point

) ‘o (o) - ¢ b— A+l for some initial guess -
Compute r% = b — A2{% for some initial guess 2%

for i=1,2,... .
solve M:Ui-1) = pli-1) i
pioy = pli=1)7 26-1)
ifi=1 '
p':” — :[II‘!)
else a
Bi—1 = pi- .-"lf’r'— r
p':r'f =Ai-1 43 P'_]' IIIII i-| k o i e
endif

g = Apli)
oy = Pi—u'f":”r gt
2l = (=10 4 gppl)
pli) = pli=1) _ nr.qil'j

check convergence; continue if necessary
end

+ Outer iteration in 64 bit floating point and
fixed number of inner iteration in 32 bit floating point

30

15

¢ Mixed Precision Computations for
Sparse Inner/Quter-type lterative Solvers

L
Time speedups for mixed precision Inner SP/Outer DP (SP/DP) iter. methods vs DP/DP
(CG, GMRES, PCG, and PGMRES with diagonal preconditioners)

25 Machine:
Intel Woodcrest (3GHz, 1333MHz bus)
2.25

2,

Reference methods

1.757
1.5 B CG
1.25 B PCG
14 B GMRES
0.751 B PGMRES

0.57

0.251 (More is better)

O,

11,142 25,980 79,275 230,793 602,091 =— Matrix size

6,021 18,000 39,000 120,000 240,000 <— Condition number

Data movement the main source of improvement 31

e
< Intriguing Potential

+ Exploit lower precision as
much as possible
> Payoff in performance
> Faster floating point
> Less data to move
¢ Automatically switch between SP and DP to match
the desired accuracy
» Compute solution in SP and then a correction to the
solution in DP
+ Potential for GPU, FPGA, special purpose
processors
> What about 16 bit floating point?
> 128 bit floating point?
¢+ Linear systems and Eigenvalue, optimization
problems, where Newton's method is used. 32

16

Happy Birthday Genel

17

