ST Y= | FiE EXamimy, s

S

Linear Algebra Libraries for High-

Performance Computing: Scientific

Computing with Multicore and
Accelerators

Presenters
Prof. Jack Dongarra (8:30 - 10:00)

University of Tennessee & Oak Ridge National Lab
Dr. Jakub Kurzak (10:30 - 12:00)

University of Tennessee
Prof. James Demmel (1:30 - 3:00)
University of California Berkeley
Dr. Michael Heroux (3:30 - 5:00)
Sandia National Laboratory

Overview of Dense Numerical Linear
Algebra Libraries

 BLAS: kernel for dense linear algebra
 LAPACK: sequential dense linear algebra

* ScalLAPACK: parallel distributed dense linear
algebra

K
-K
-K

K

K
-K

Yoy wmowmom o3

> > > > > >
ANAAGADRN

L A
L -A
L A
L -A
L A
L -A

Linear Algebra PACKage

ICLOr"

What do you mean by performance?

What is a xflop/s?

> xflop/s is a rate of execution, some number of floating
point operations per second.

> Whenever this term is used it will refer to 64 bit floating point
operations and the operations will be either addition or
multiplication.
> Tflop/s refers to trillions (10!2) of floating point operations
per second and

> Pflop/s refers to 10> floating point operations per second.

What is the theoretical peak performance?

> The theoretical peak is based not on an actual performance

from a benchmark run, but on a paper computation to
determine the theoretical peak rate of execution of floating
point operations for the machine.

> The theoretical peak performance is determined by counting
the number of floating-point additions and multiplications (in
full precision) that can be completed during a period of
time, usually the cycle time of the machine.

> For example, an Intel Xeon 5570 quad core at 2.93 GHz
can complete 4 floating point operations Gper' cycle or a
theoretical peak performance of 11.72 GFlop/s per core or
46.88 Gflop/s for the socket.

N

A

“" What Is LINPACK?

LINPACK is a package of mathematical software for solvin

problems in linear algebra, mainly dense linear systems of ?inear
equations.

LINPACK: “"LINear algebra PACKage"
> Woritten in Fortran 66

The project had its origins in 1974

The project had four primary contributors: myself when I was
at Argonne National Lab, Jim Bunch from the University of
California-San Diego, Cleve Moler who was at New Mexico at
that time, and Pete Stewart from the University of Maryland.

LINPACK as a software package has been largely superseded by
LAPACK, which has been designed to run efficiently on shared-
memory, vector supercomputers.

{\
A\ %
ICL g

Computing 1n 1974

" High Performance Computers:

» IBM 370/195, €DC 7600, Univac 1110, DEC PDP-10,
Honeywell 6030

" Fortran 66

" Trying to achieve software portability
" Run efficiently
" BLAS (Level 1)

> Vector operations

" Software released in 1979
> About the time of the Cray 1

" LINPACK Benchmark?

" The Linpack Benchmark is a measure of a
computer’s floating-point rate of execution.

» It is determined by running a computer program that
solves a dense system of linear equations.

" Over the years the characteristics of the
benchmark has changed a bit.

> In fact, there are three benchmarks included in the
Linpack Benchmark report.

" LINPACK Benchmark

> Dense linear system solve with LU factorization using
partial pivoting

» Operation count is: 2/3 n3 + O(n?)

> Benchmark Measure: MFlop/s

» Original benchmark measures the execution rate for a
Fortran program on a matrix of size 100x100.

c

Accidental Benchmarker LispaEs

|INAAIL
Appendix B of the Linpack Users’ Guide Al

> Designed to help users extrapolate execution Pl
time for Linpack software package "Gk

First benchmark report from 1977 useRs’ '=
> Cr'ay 1 to DEC PDP-10 ENIRE

J.J. Dongarra C.B. Moler
J.R.Bunch G.W. Stewart

2 - UNI’I = 10%*%6 TIME/(1/3 100%%3 + 100%%2)

D £ TIME UNLT
Facility H=100 micro- Computer Type Compiler
J secs. Becs.

KCAR 142 049 0.14 CRAY-1 § CFT, Assembly BLAS
LASL 467 148 0.43 CDC 7600 S FIN, Assembly BLAS
NCAR 3.5%.192 0.56 CRAY-1 S CFT

LASL 2,27 .210 0.61 cnc 7600 5 FTN

Argonne 2.3 297 0.86 IBM 370/195 D H

KCAR tai .3%9 1.05 CDC 7600 S Local

Argonne -L'}? .388 1.33 IBM 3033 D H

NASA Langley V.52 489 1.42 CDC Cyber 175 S FTN

U. I11. Urbana \:%& ,506 1.47 CDC Cyber 175 S Ext. 4.6

1LL 14 .554 1.61 CDC 7600 S CHAT, No optimize
SLAC 149 .579 1.69 IBM 370/168 D H Ixt., Fast mult.
Michigan jw9.631 1.84 Amdahl 470/Vvé D H

Toronto 773 890 2.59 IBM 370/165 D 1 Ext., Fast mult.
Northwestern #T]l.(olb 4,20 CDC 6600 e FTN

Texas +35¢1.93 5.63 CDC 6600 S RL'N

China Lake 9641.95% 5.69 Univac 1110 S

Yale) -1952.59 7.53 TDEC KL-20 s FZO

Bell Labs 497 3.46 10.1 Honeywell 6080 S Y

Wisconsin !17 3.49 10.1 . Univaec 1110 S v

Iowa State g 54 10.2 Itel AS/5 modI ™D H

U. I11. (‘hicago #4.10 11.9-—-1IBM 370/158 b Gl

Purdue 4% 5.68 16.6 CDC 6500 S FWN

U, C. San Diego: 26343.1 38.2 Burroughs 6700 § H

Yale-~ (Wnl7.1¥% 49.9 DEC KA-10 S F40

* TIME(LOO) = (1C0/75)**3 SGEFA(75) + (100/75)#**2 SGESL(75)

N

A

“" High Performance Linpack (HPL)

Benchmark Matrix Optimizations Parallel

Name dimension allowed Processing

Linpack 100 100 compiler —a

Linpack 1000 1000 hand, code —¢
replacement

Linpack Parallel 1000 hand, code Yes
replacement

HPLinpack? arbitrary hand, code Yes
replacement

2 Compiler parallelization possible.
b Also known as TPP (Toward Peak Performance) or Best Effort

¢ Multiprocessor implementations allowed.

d Highly-Parallel LINPACK Benchmark is also known as NxN Linpack
Benchmark or High Parallel Computing (HPC).

ICL

A brief history of (Dense) Linear Algebra software

" But the BLAS-1 weren't enough

> Consider AXPY (y = a-x + y): 2n flops on 3n read/writes
» Computational intensity = (2n)/(3n) = 2/3
> Too low to run near peak speed (read/write dominates)

" So the BLAS-2 were developed (1984-1986)

» Standard library of 25 operations (mostly) on matrix/vector
pairs
>"GEMV": y = a-A-x + p-x, "6ER": A = A + a-x-y’,
x =T 1.x

> Up to 4 versions of each (S/D/C/Z), 66 routines, 18K LOC
» Why BLAS 2 ? They do O(n?) ops on O(n®) data
> So computational intensity still just ~(2n2)/(n2) =2

> OK for vector machines, but not for machine with caches

A brief history of (Dense) Linear Algebra software

" The next step: BLAS-3 (1987-1988)

» Standard library of 9 operations (mostly) on matrix/matrix
pairs
>"GEMM": C = a-A-B+p-C,C=a-A-AT+p-C, B=T"1.8
> Up to 4 versions of each (S/D/C/Z), 30 routines, 10K LOC
» Why BLAS 3 ? They do O(n®) ops on O(n?) data
» So computational intensity (2n3)/(4n2) = n/2 - big at last!
» Good for machines with caches, other mem. hierarchy levels

" How much BLAS1/2/3 code so far (all at

www.netlib.org/blas)
> Source: 142 routines, 31K LOC, Testing: 28K LOC

> Reference (unoptimized) implementation only
» Ex: 3 nested loops for GEMM

10

ICL

Memory Hierarchy

By taking advantage of the principle of locality:

> Present the user with as much memory as is available in

the cheapest technology.

> Provide access at the speed offered by the fastest

technology.
Processor Tertiary
Storage
Secondary .
Disk/T
Control Storage (Disk/Tape)
/ (Disk)
Level Main
7~ ® g 2 and 3 Memory Distributed || Remote
Datapath "(i % A Cache (DRAM) Memory Cluster
g = (SRAM) Memory
_\ | —
—
\
Speed (ns): 1s 10s 100s 10(3{)80700)05 10,000,000,000s
s ms

Size (bytes): 100s (10s sec)

Ks Ms 100,000 10,000,000 s
(.1s ms) (10s ms)
Gs Ts

4

A

“" Why Higher Level BLAS?

" Can only do arithmetic on data at the top of
the hierarchy

* Higher level BLAS lets us do this

BLAS Memory| Flops Flops/
Refs Memory
Refs
Level 1 3n Zn 2/3
y=y+ox
Level 2 n2 2n?z 2
y=y+AX
Level 3 4n2 2ns3 n/2

C=C+AB

N
“" Level 1, 2 and 3 BLAS

" Level 1 BLAS
Vector-Vector
operations

" Level 2 BLAS
Matrix-Vector
operations

" Level 3 BLAS
Matrix-Matrix
operations

13

G fbp/s

Level 1, 2 and 3 BLAS

Before (2007)

3.4 GHz EM 64T Xeon M KL8.1
Peak: 6.8 G fbp/s
gce —fom itfram eponter -funroltaltbops -0 3

1 19 37 55 73 91 109 127 145 163 181 199 217 235 253 271 289 307 325 343 361 379 397 415 433 451 469 487 505

0 rder

——daxpy —s—dgemv dgem m

GFLOPS

12

10

Level 1, 2 and 3 BLAS

Now (2011)

AMD Opteron 8439 SE Processor (6 cores total @ 2.8Ghz)
Using 1 core 11.2 Gflop/s theoretical peak

/

/

’_/—_

200

-1

400 600 800 1000 2000 3000 4000 5000
Matrix Size

@==w»| evel 3 BLAS: DGEMM
em=m| evel 2 BLAS: DGEMV

Level 1 BLAS: DAXPY

Level 1 BLAS

dim scalar vector vector scalars 5-element array prefixes
SUBROUTINE xROTG (A, B, C, 5) Generate plane rotation S, D
SUBRQUTINE xROTMG(D1, D2, 4, B, PARAM) Generate modified plane rotation 35, D
SUBROUTINE xRCT (N, X, INCX, Y, INCY, ¢, 5 Apply plane rotation S, D
SUBRQUTINE xROTM (N, X, INCK, Y, INCY, PARAM) Apply modified plane rotation S, D
SUBROUTINE xSWAP (N, X, INCX, Y, INCY) x4 Yy 5D, Z
SUBROUTINE xSCAL (N, ALPHA, X, INCX) x4 o S, D, ., Z, CS, ZD
SUBROUTINE xCOFY { N, X, INCX, Y, INCY) Yy e S, D.C,Z
SUBROUTINE xAXPY (N, ALPHA, X, INCX, Y, INCY) g oty $,D,C,Z
FUNCTION xDOT (N, X, INCX, Y, INCY) dot — oTy S, D. DS
FUNCTION xDOTU { N, X, INCX, Y, INCY) dot + aT'y C.Z
FUNCTION xDOTC (N, X, INCX, Y, INCY) dot < 27y <, Z
FUNCTION xxDOT (N, X, INCX, Y, INCY) dot +— o+ 2Ty sSDS
FUNCTION xNEM2 (N, X, INCX) nrm2 < ||x]|2 S,D,SC, DZ
FUNCTION xASUM (N, X, INCX) aswrn +— |[re(c)]| + |[irn(ed||o S, D, 5S¢, DZ
FUNCTION IxAMAX(N, X, INCX) amax — L 2 |re(o)| + [om{ap)| S, D.C,Z
= max(re{x)] 4 [#n(e)])

Level 2 BLAS

options dim b-width scalar matrixz vector scalar vector
XGEMY (TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY) y A+ Gy y — oATe + 3y, y — adlo 4+ 3y, A —moxon S, DL Z
xGBMY (TRANS, M, N, KL, KU, ALPHA, 4, LD4, X, INCX, BETA, Y, INCY) yi-ade+ By y—otle 4 3y gy — oo+ 8. A—mxan S, D, CZ
xHEMY (UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY) ¥« ade + Sy ¢, Z
xHBMV (UPLOD, N, X, ALPHA, A, LDA, X, INCX, BETA, Y, INCY) y ¢ adr + By <,z
xHPMV (UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY) ¥+ adr + By C.Z
xSYMV (UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY) y+— ade + 3y S, D
xSBMV (UPLO, N, X, ALPHA, A, LDA, X, INCX, BETA, Y, INCY) ¥ cdx + Fy 5, D
xSPMV (UPLD, N, ALPHA, AP, X, INCX, BETA, Y, INCY) y +— ade + 3y S, D
xTRMY (UPLO, TRANS, DIAG, N, A, LDA, X, INCX) z e Av,e — ATr o+ Ally S,D, ¢, Z
xTBMV (UPLO, TRANS, DIAG, N, X, A, LDA, X, INCX) A S.D,C, Z
xTPMV (UPLD, TRANS, DIAG, N, AP, X, INCX) e Acx — ATex « Allp S.D, L Z
xTRSV (UPLD, TRANS, DIAG, ¥, A, LDA, X, INCX) reAbrr i A Te e+ ATy S5, D.C, %
xTBSV (UPLD, TRANS, DIAG, N, X, 4, LDA, X, INCX) s ATz e AT+~ A~y S5, D.C, Z
xTPSV (UPLD, TRANS, DIAG, N, AP, X, INCX) A e - AT o A H S, D, Z

options dim scalar vecter vector matrix
XGER (M, ¥, ALPHA, X, INCX, Y, INCY, &, LDA) Aoy’ + A A—mxn S, D
XGERU (M, N, ALPHA, X, INCX, Y, INCY, 4, LDA) AvaryT +4,4-mxn C.Z
%GERC (M, N, ALPHA, X, INCX, Y, INCY, A, LDA) Aearyl + 4, 4-mxn C Zz
xHER (UPLO, W, ALPHA, X, INCX, A, LDA) A aeel + 4 CZ
xHPR (UPLD, ¥, ALPHA, X, INCX, AP) A+ oreil 4 C Z
xHER2 (UPLO, W, ALPHA, X, INCX, Y, INCY, A, LD4) A oyt 4 oylan)? + 4 ¢, Z
xHPR2 (UPLO, N, ALPHA, X, INCX, Y, INCY, AP) A axyT +ylon) + 4 ¢, 2
xSYR (UPLD, W, ALPHA, X, INCX, A, LDA) A+ aeaT + A4 5. D
xSPR (UPLD, W, ALPHA, X, INCX, AP) A arrT + .4 S, D
%SYR2 (UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA) Aoy oyl +4 5, D
xSPR2 (UPLO, N, ALPHA, X, INCX, Y, INCY, AP) A+ aey?T oyl + A S, D
Level 3 BLAS

¢ptions dim scalar matrix matrix scalar matrix
XGEMM (TRANSA, TRAWSB, M, N, X, ALPHA, A, LDA, B, LDB, BETA, C, LDC) « aop{A)op(B) + 3, op(X) =X, XT X7 ¢/ —m xn $,D,CZ
xSYMM (SIDE, UPLO, M, N, ALPHA, 4, LDA, B, LDB, BETA, C, LDC) C « «wAB+3C.C' + aBA+3C.C —mxn,4=AT S, D, Z
xHEMM (SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C, LDC) C'+ aAB+3C.C+ aBA+3CC—mxn A=Al SAVA
XSYRK (UPLOD, TRANS, N, X, ALPHA, A, LDA, BETA, C, LDC) (7<= aAAT 4 #C,C 4 0AT A + 30, —n X n S, D.C,Z
xHERK (UPLO, TRANS, N, X, ALPHA, A, LDA, BETA, C, LDC) (4 aAAT 4 30 C AT A+ 3C " —nxn ¢ Z
xS$YR2K(UPLO, TRANS, N, X, ALPHA, A, LDA, B, LDB, BETA, €, LDC) C «— aABT +aBAT 4+ 3C,C—uATB+aBTA+3C. C—nxn 8, D.C, 7%
*HER2K (UPLO, TRANS, W, X, ALPHA, A, LDA, B, LDB, BETA, C, LDC) (- aABY 4 @BAY 4 3C. C 4 aAYB 4 @By A3 3C.C—nxn C,Z
xTRMM (SIDE, UPLD, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB) B + aop(A)B, B + aBop(A), op(4) = AL AT AT B —mn x n 5, D, 0L Z
xTRSM (SIDE, UPLD, TRANSA, DIAG, M, W, ALPHA, A, LDA, B, LDB) B+ qop{A=1)B, B « aBop(A~) op(A) = A, AT, AT, B—mxn $§,D,C,Z

A

ICL

A brief history of (Dense) Linear Algebra software
~ LAPACK - "Linear Algebra PACKage” - uses BLAS-3 (1989 - now)

» Ex: Obvious way to express Gaussian Elimination (GE) is
adding multiples of one row to other rows - BLAS-1

» How do we reorganize GE to use BLAS-3 ? (details later)

> Contents of LAPACK (summary)
> Algorithms we can turn into (nearly) 100% BLAS 3
> Linear Systems: solve Ax=b for x
> Least Squares: choose x to minimize ||Ax - b||,
» Algorithms that are only 50% BLAS 3 (so far)
> "Eigenproblems”: Find A and x where Ax = A x
» Singular Value Decomposition (SVD): (ATA)x:ozx
> Generalized problems (eg Ax = A Bx)
> Error bounds for everything
> Lots of variants depending on A's structure (banded, A=AT, etc)
» How much code? (Release 3.4, Nov 2011) (www.netlib.org/
lapack)

> Source: 1674 routines, 490K LOC, Testing: 448K LOC
17

c

ICL

A brief history of (Dense) Linear Algebra software

" Is LAPACK parallel?

> Only if the BLAS are parallel (possible in shared memory)

" ScaLAPACK - "Scalable LAPACK"” (1995 - now)

> For distributed memory - uses MPI

> More complex data structures, algorithms than LAPACK
» Only (small) subset of LAPACK's functionality available

> All at www.netlib.org/scalapack

18

{\
A\ %
ICL

LAPACK

: - LAPACK is in
http: .netlib.org/lapack/
p://www.netlib.org/lapac FORTRAN

Column Major

LAPACK (Linear Algebra Package) provides routines for
> solving systems of simultaneous linear equations,

. . : LAPACK is
> Ie.as'r-squar'es solutions of linear systems of equations, SEQUENTTAL
> eigenvalue problems,
» and singular value problems. LAPACK is
REFERENCE

LAPACK relies on BLAS implemen tation

The associated matrix factorizations (LU, Cholesky, QR, SVD, Schur,
generalized Schur) are also provided, as are related computations such as
reordering of the Schur factorizations and estimating condition numbers.

Dense and banded matrices are handled, but not general sparse matrices. In
all areas, similar functionality is provided for real and complex matrices, in
both single and double precision.

19

A new generation of algorithms?

Algorithms follow hardware evolution along time.

LINPACK (80’s)
(Vector operations)

LAPACK (90’s)
(Blocking, cache friendly)

Rely on
- Level-1 BLAS operations

Rely on
- Level-3 BLAS operations

20

Example with GESV

Solve a system of linear equations using a LU factorization

subroutine dgesv(n, nrhs, A, Ida, ipiv, b, Idb, info)

input:

n info

Solution of Ax=b
nrhs /

X n

info

21

Functionalities in LAPACK

Type of Problem

Linear system of equations

Linear least squares problems

Linear equality-constrained least squares problem
General linear model problem

Symmetric eigenproblems

Nonsymmetric eigenproblems

Singular value decomposition

Generalized symmetric definite eigenproblems
Generalized nonsymmetric eigenproblems

Generalized (or quotient) singular value decomposition

Acronyms

SV
LLS

LSE

GLM

SEP

NEP

SVD

GSEP

GNEP

GSVD (QSVD)

22

LAPACK Software

First release in February 1992
Version 3.4.0 released in November 2011

LICENSE: Mod-BSD, freely-available software package - Thus, it can be included in
commercial software packages (and has been). We only ask that proper credit be
given to the authors.
Open SVN repository
Multi-OS
— *nix, Mac 0S/X, Windows
Multi-build support (cmake)
— make, xcode, nmake, VS studio, Eclipse, etc..
LAPACKE: Standard C language APIs for LAPACK (In collaboration with INTEL)

— 2 layers of interface
High-Level Interface : Workspace allocation and NAN Check
Low-Level Interface

Prebuilt Libraries for Windows
Extensive test suite
Forum and User support: http://icl.cs.utk.edu/lapack-forum/

Latest Algorithms

Since release 3.0 of LAPACK

m

Hessenberg QR algorithm with the small bulge multi-shift QR algorithm together with
aggressive early deflation. [2003 SIAM SIAG LA Prize winning algorithm of Braman, Byers and
Mathias]

Improvements of the Hessenberg reduction subroutines. [G. Quintana-Orti and van de Geijn]

New MRRR eigenvalue algorithms [2006 SIAM SIAG LA Prize winning algorithm of Dhillon and
Parlett]

New partial column norm updating strategy for QR factorization with column pivoting. [Drmac
and Bujanovic]

Mixed Precision Iterative Refinement for exploiting fast single precision hardware for GE, PO
[Langou’s]

Variants of various factorization (LU, QR, Chol) [Du]

RFP (Rectangular Full Packed) format [Gustavson, Langou]

XBLAS and Extra precise iterative refinement for GESV [Demmel et al.].

New fast and accurate Jacobi SVD [2009 SIAM SIAG LA Prize, Drmac and Veseli¢]
Pivoted Cholesky [Lucas]

Better multishift Hessenberg QR algorithm with early aggressive deflation [Byers]
Complete CS decomposition [Sutton]

Level-3 BLAS symmetric indefinite solve and symmetric indefinite inversion [Langou’s]
Since LAPACK 3.3, all routines in are now thread-safe

24

LAPACK 3.4.0

XGEQRT: QR factorization (improved interface).
Contribution by Rodney James, UC Denver.
XGEQRT is analogous to xGEQRF with a modified interface which enables better
performance when the blocked reflectors need to be reused. The companion subroutines
XGEMQRT apply the reflectors.

XGEQRT3: recursive QR factorization.
Contribution by Rodney James, UC Denver.

The recursive QR factorization enable cache-oblivious and enable high performance on tall
and skinny matrices.

XTPQRT: Communication-Avoiding QR sequential kernels.
Contribution by Rodney James, UC Denver.

These subroutines are useful for updating a QR factorization and are used in sequential and
parallel Communication Avoiding QR. These subroutines support the general case Triangle
on top of Pentagone which includes as special cases the so-called triangle on top of triangle
and triangle on top of square. This is the right-looking version of the subroutines and the
routine is blocked.The T matrices and the block size are part of the interface. The
companion subroutines xTPMQRT apply the reflectors.

xSYEVK: LDLT with rook pivoting and fast Bunch-Parlett pivoting.
Contribution by Craig Lucas.

These subroutines enables better stability than the Bunch-Kaufman pivoting scheme
(XSYEV) currently used in LAPACK. The computational time is slightly higher.

Resources

Reference Code:

- Reference code: (current version 3.3.1)
http://www.netlib.org/lapack/lapack.tgz

- LAPACK build for windows (current version 3.3.1)
http://icl.cs.utk.edu/lapack-for-windows/lapack

- LAPACKE: Standard C language APIs for LAPACK (in collaboration with INTEL):
http://www.netlib.org/lapack/# standard c language apis for lapack

- Remi’s wrappers (wrapper for Matlab users):
http://icl.cs.utk.edu/~delmas/lapwrapmw.htm

Vendor Libraries:
more or less same as the BLAS: MKL, ACML, VECLIB, ESSL, etc... (\WARNING: some implementations are just a subset of LAPACK)

Documentation:
LAPACK Users’ guide:
http://www.netlib.org/lapack/lug/

— LAPACK Working notes (in particular LAWN 41)
http://www.netlib.org/lapack/lawns/downloads/

- LAPACK release notes
http://www.netlib.org/lapack/lapack-3.1.0.changes

— LAPACK NAG example and auxiliary routines
http://www.nag.com/lapack-ex/lapack-ex.html

- CRC Handbook of Linear Algebra, Leslie Hogben ed, Packages of Subroutines for Linear Algebra, Bai, Demmel, Dongarra, Langou, and Wang,
Section 75: pages 75-1,75-24, CRC Press, 2006.

http://www.netlib.org/netlib/utk/people/JackDongarra/PAPERS/CRC-LAPACK-2005.pdf

Support:
- LAPACK forum: (more than 1000 topics)
http://icl.cs.utk.edu/lapack-forum/
- LAPACK mailing-list:
lapack@cs.utk.edu
- LAPACK mailing-list archive:
http://icl.cs.utk.edu/lapack-forum/archives/

26

{\
A\ %
ICL

Organizing Linear Algebra — in books

T

ScalAPACK Users’ Guide

LAPATCK s
L-A P-A C-K G APP“ED
LA P A -C-K o
LA P A <K = NUMERICAL
L A-P-A C K -
L-A-P A C-K 3 uNEAR

Users’ Guide - AlGEBHA

SOITWARE - INVINOAMENTSR.TOODLN

James W. Demmel

www.netlib.org/lapack

Templates <=
for the Solution of Linear Systems:
Building Blocks for Iterative Methoda

aaaaaaaaaaaa

www.netlib.org/templates www.cs.utk.edu/~dongarra/etemplates

Parallelization of LU and QR.

Parallelize the update: dgemm
* Easy and done in any reasonable software.]
* This is the 2/3n3 term in the FLOPs count. - - 'I

* Can be done efficiently with LAPACK+multithreaded BLAS

NI/

dgetf2

I<— IuI) l
PN

dtrsm (+ dswp) l l l l l

— R QY —

dgemm L]

O-mi1=
N7

i
i
I
I's
b

Overview of Dense Numerical Linear
Algebra Libraries

 BLAS: kernel for dense linear algebra
 LAPACK: sequential dense linear algebra

* ScalLAPACK: parallel distributed dense linear
algebra S

Scalable Linear Algebra PACKage

N

A

IcLOr-

ScaLAPACK

" Library of software dealing with dense &
banded routines

" Distributed Memory - Message Passing

" MIMD Computers and Networks of
Workstations

" Clusters of SMPs

30

ScalLAPACK

http://www.netlib.org/scalapack/

ScalLAPACK (Scalable Linear Algebra Package) provides
routines for

— solving systems of simultaneous linear equations,

— least-squares solutions of linear systems of equations,

— eigenvalue problems,

— and singular value problems.

Relies on LAPACK / BLAS and BLACS / MPI

Includes PBLAS (Parallel BLAS)

ScaLAPACK is in
FORTRAN and C

ScaLAPACK is for
PARALLEL
DISTRIBUTED

ScalLAPACK is a
REFERENCE
implementation

{\
A\ %
ICL ’

Programming Style

" SPMD Fortran 77 with object based design

" Built on various modules

»PBLAS Interprocessor communication

> BLACS
»PVM, MPI, IBM SP, CRI T3, Intel, TMC
» Provides right level of notation.

»BLAS

" LAPACK software expertise/quality
» Software approach
» Numerical methods

32

ICLOr"

Overall Structure of Software

" Object based - Array descriptor

» Contains information required to establish
mapping between a global array entry and its
corresponding process and memory location.

> Provides a flexible framework to easily
specify additional data distributions or
matrix types.

» Currently dense, banded, & out-of-core
" Using the concept of context

33

IcLOr-

PBLAS

" Similar to the BLAS in functionality and
naming.
" Built on the BLAS and BLACS

" Provide global view of matrix
CALL DGEXXX (M, N, A(IA, JA), LDA,...)

. 3
CALL PDGEXXX(M, N, A, TA, JA, DESCA,...)

34

N

ke ScalLAPACK Structure
\
PBLAS
Global
local /7 [

35

A
\

“" Choosing a Data Distribution

" Main issues are:
> Load balancing
> Use of the Level 3 BLAS

k+b

i —
! k k+b N

T
|
|
| Completed part of U
|
I
|

Completed

partof L A(k+b:N, k+b:N)

36

{\
A\ %
ICL g

Possible Data Layouts

" 1D block and cyclic column distributions

(=)

h

N

w

o

—t

N

w
v o v s v o v e
W = W] = W] = W] -
ol e o s v e v e
W | | - | =] ef <«
o e o s v s v e
W =] | = w| =] w =
o v o v | v e
W - o - w| - wf -

2

" 1D block-cycle column and 2D block-cyclic
distribution

- 2D block-cyclic used in ScaLAPACK for dense
matrices

From LAPACK to ScaLAPACK

[LAPACK] subroutine dgesv(n, nrhs, a(ia,ja), lda, ipiv, b(ib,jb), Idb, info)

input:

LAPACK Data layout

n info

output:

rhs X LAPACK Data layout

info

From LAPACK to ScaLAPACK

[LAPACK] subroutine dgesv(n, nrhs, a(ia,ja), lda, ipiv, b(ib,jb), Idb, info)

input:

< n >
“ ”
AN

output:

< n >
D e

n Ly Uys n

v L31 &l A 4

»

ScalLAPACK Data layout

info

ScalLAPACK Data layout

info

From LAPACK to ScaLAPACK

[LAPACK] subroutine dgesv(n, nrhs, a(ia,ja), lda, ipiv, b(ib,jb), Idb, info)

[ScaLAPACK] subroutine pdgesv(n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info)

ScalLAPACK Data layout

info

input:

< n >
“ ”
AN

output:

< n >
D e

n Ly Uys n

v L31 &l A 4

»

ScalLAPACK Data layout

info

IcLOr-

Distribution and Storage

5x5 matrix partitioned in 2x2 blocks

2x2 process grid point of view

|

|

Ais

Az

A,)

Ass

" Routines available to distribute/redistribute

data.

A: Ad
A= A
As: Al
A: Ad
As A

A55

" Matrix is block-partitioned & maps blocks
" Distributed 2-D block-cyclic scheme

As |[As A
As || As A
As |[A A
A | [A A
As || A A

41

2D Block Cyclic Layout

Matrix point of view

Processor point of view

- N ‘ Q ‘
0|00 2|12 |2 4 1 4|4
0|00 2|12 |2 4 1 4|4
0|00 2|12 |2 4 1 4|4
0|00 2|12 |2 4 1 4|4 .
0|00 2|12 |2 4 1 4|4
11111 31313 5|51|5
11111 31313 5|55
11111 31313 5|55
11111 31313 5|55

NB Matrix is MxN
IMB Process grid is PxQ, P=2, Q=3
Blocks are MBxNB

2D Block Cyclic Layout

Processor point of view

4
4
4
4
4

5
5
5
5

0
0
0
0
0

Matrix point of view

2D Block Cyclic Layout

Processor point of view

4
4
4
4
4

5
5
5
5

0
0
0
0
0

Matrix point of view

2D Block Cyclic Layout

Processor point of view

4

4
4
4
4
4

3)
5
5
5

2

3

2

3

0
0
0
0
0

Matrix point of view

2D Block Cyclic Layout

Processor point of view

4
4
4
4
4

5
5
5
5

0
0
0
0
0

Matrix point of view

2D Block Cyclic Layout

Processor point of view

4
4
4
4
4

5
5
5
5

0
0
0
0
0

Matrix point of view

2D Block Cyclic Layout

Processor point of view

4
4
4
4
4

5
5
5
5

0
0
0
0
0

Matrix point of view

2D Block Cyclic Layout

Processor point of view

4
4
4
4

4
4
4
4

5
5
5
5

2
2
2
2

3
3
3
3

2
2
2
2

3
3
3
3

Matrix point of view

3

1

5

3

1

5

3

NENSSEEEE |

2D Block Cyclic Layout

Processor point of view

ORI | |
2|2

4
4
4
4

4
4
4
4

4

5
5

5
5

2
2
2

3
3

0
0
0
0

0
0
0
0

Matrix point of view

[N [[)) I

[N [[)) [

2D Block Cyclic Layout

Matrix point of view

Processor point of view

N [1 I I I

||

||
1
0
1
0
1
0

||

||
3
2
3
2
3
2

||

||

||
5
4
5
4
5
4

2|2

B NE
1 3|3
1 3
1 3|3

2D Block Cyclic Layout

Matrix point of view

Processor point of view

[N [[)) I
[N [) I I
N [1 I I I
NN [[I I
NPT
N
N
N

A

h

ﬂ

5

ICLOr"

Parallelism in ScaLAPACK

" Level 3 BLAS block

operations
> All the reduction routines

" Pipelining

> QR Algorithm, Triangular
Solvers, classic
factorizations

" Redundant

computations
> Condition estimators

" Static work

assignment
> Bisection

" Task parallelism

> Sign function eigenvalue
computations

" Divide and Conquer

» Tridiagonal and band
solvers, symmetric
eigenvalue problem and
Sign function

" Cyclic reduction

> Reduced system in the
band solver

" Data parallelism

> Sign function

53

Functionalities in LAPACK

Linear system of equations SV
Linear least squares problems LLS
Linear equality-constrained least squares problem LSE
General linear model problem GLM
Symmetric eigenproblems SEP
Nonsymmetric eigenproblems NEP
Singular value decomposition SVD
Generalized symmetric definite eigenproblems GSEP
Generalized nonsymmetric eigenproblems GNEP

Generalized (or quotient) singular value decomposition GSVD (QSVD)

Functionnalities in ScaLAPACK

Linear system of equations SV

Linear least squares problems LLS

T i inod | N LSk
— Genperallinearmodelproblem—- — ————— G6GIlM—
Symmetric eigenproblems SEP

Nonsymmetric eigenproblems NEP

Singular value decomposition SVD

IcLOr-

Major Changes to Software

Must rethink the design of our software
> Another disruptive technology

> Similar to what happened with cluster computing and
message passing

> Rethink and rewrite the applications, algorithms, and
software
Numerical libraries for example will change

> For example, both LAPACK and ScalL APACK will
undergo major changes to accommodate this

56

£ A New Generation of Software:

IcLor-

Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

Software/Algorithms follow hardware evolution in time

LINPACK (70's) Rely on
(Vector operations) - Level-1 BLAS
operations

£ A New Generation of Software:

IcLor-

Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

Software/Algorithms follow hardware evolution in time

LINPACK (70's) Rely on

(Vector operations) - Level-1 BLAS
operations

LAPACK (80's) Rely on

(Blocking, cache - Level-3 BLAS

friendly) operations

& A New Generation of Software:
Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

IcLor-

Software/Algorithms follow hardware evolution in time

LINPACK (70's)
(Vector operations)

LAPACK (80's)
(Blocking, cache
friendly)

ScaLAPACK (90's)
(Distributed Memory)

Rely on
- Level-1 BLAS
operations

Rely on
- Level-3 BLAS
operations

Rely on
- PBLAS Mess Passing

& A New Generation of Software:

IcLor-

Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

Software/Algorithms follow hardware evolution in time

LINPACK (70's)
(Vector operations)

Rely on
- Level-1 BLAS
operations

LAPACK (80's) Rely on
(Blocking, cache - Level-3 BLAS
friendly) operations

ScaLAPACK (90's) ==l Rely on

(Distributed Memory) === - PBLAS Mess Passing
PLASMA (00's) Rely on

New Algorithms - a DAG/scheduler

(many-core friendly) - block data layout
- some extra kernels

Those new algorithms
- have a very low granularity, they scale very well (multicore, petascale computing, ...)
- removes a lots of dependencies among the tasks, (multicore, distributed computing)
- avoid latency (distributed computing, out-of-core)
- rely on fast kernels

Those new alaorithms need new kernels and relv on efficient schedulina alaorithms.

N

A

“" Moore’s Law 1s Alive and Well

1.E+07

1.E+06

¢ Transistors (in Thousands)

1.E+05

1.E+04

1.E+03
1.E+02 4’//,,/’/:L/r
1.E+01

1.E+00

1.E-01 T T T I I I I
1970 1975 1980 1985 1990 1995 2000 2005 2010

Data from Kunle Olukotun, Lance Hammond, Herb Sutter,

61 Burton Smith, Chris Batten, and Krste Asanovi¢

¢ But Clock Frequency Scaling Replaced by

~ Scaling Cores / Chip

1.E+07
15 Years of exponential growth ~2x year has ended *

LE+06 ¢ Transistors (in Thousands)

® Frequency (MHz)
1.E+05 e Cores
1.E+04
1.E+03
1.E+02 *
1.E+01

$

A hs o
1.E4+00 - \ \
1.E-01 ‘ T T T T T ‘
1970 1975 1980 1985 1990 1995 2000 2005 2010

Data from Kunle Olukotun, Lance Hammond, Herb Sutter,

62 Burton Smith, Chris Batten, and Krste Asanovi¢

¢ Performance Has Also Slowed,
Along with Power

1.E407
Power is the root cause of all this

1.E406

¢ Transistors (in Thousands)
1.E+05 ® Frequency (MHz)

Power (W)

1.E404

® Cores

A hardware issue just became
software problem

evor /
. . e O
) n °®
1.E+00 S & . 2
1.E-01 ‘ ‘ ‘ ‘ ‘ ‘ ‘
1970 1975 1980 1985 1990 1995 2000 2005 2010

Data from Kunle Olukotun, Lance Hammond, Herb Sutter,

63 Burton Smith, Chris Batten, and Krste Asanovi¢

c

ICLOr"

Power Cost of Frequency

- Power &« Voltage? x Frequency (VZF)

Frequency © Voltage

- Power *<Frequency3

Cores V mPem‘ Power Mam

Superscalar

“New" Superscalar

1 1 1 1 1

IX 15X 15X | 15X 3.3X|| 0.45X

c

ICLOr"

Power Cost of Frequency

- Power &« Voltage? x Frequency (VZF)

+ Frequency & Voltage

- Power *<Frequency3

Cores V mPem‘ Power mam

Superscalar

“New" Superscalar

1 1 1 1 1
IX 15X| 15X | 15X 3.3X

ot

0.45X

L Multicore

2X O.75X\O.75>/ 1.5X 0.8X

1.88

X

(Bigger # is better)

50% more performance with 20% less power

Preferable to use multiple slower devices, than one superfast device

c

IcLOr-

Moore’s Law Reinterpreted

" Number of cores per chip

doubles every 2 year, while
clock speed decreases (not
increases).

> Need to deal with systems with
millions of concurrent threads

» Future generation will have
billions of threads!

> Need to be able to easily
replace inter-chip parallelism
with intro-chip parallelism

" Number of threads of

execution doubles every 2
year

3500000

3000000

2500000

2000000

1500000

1000000

500000

\)
Q
,1,0

Cores in the Top20 Systems

{\
A\ %
ICL ’

Example of typical parallel machine

o
—~~
—
—

{\
A\ %
ICL ’

Example of typical parallel machine

Node/Board

e

Chip/Socket— GPU | ... |Chip/Socketr= GPU | |Chip/Socket— GPU

/ N ooe——

Core Core Core Core Core

{\
A\ %
ICL ’

Example of typical parallel machine

Shared memory programming between processes on a board and
a combination of shared memory and distributed memory programming
between nodes and cabinets

Cabinet
Ve T — - T~
V4 S~ ~So
/ =~
l/ = ~
Node/J/&éard L Node/Board| |N3d&/Board
/1 <<
/ ~ ~
/7 / ~
Chip/Socket ... |Chip/Seeket, - _ _ _ |Chip/Socket

II /’, S. T~
‘LI s \\ \~s\

/
Core Core Core Core Core

A
£
icLor-

Example of typical parallel machine

Combination of shared memory and distributed memory programming

Chip/Sbcket ... |Chip/Socket Chip/Socket

e e

c

ICL

"November 2011: The TOP10

Rank Site Computer Country Cores [,,,2 ﬁ::;] lfe:}:

RIKEN Advanced Inst | K computer Fujitsu SPARC64

! for Comp Sci VIIIfx + custom Japan ALl =
Nat. SuperComputer Tianhe-1A, NUDT

2 Center in Tianjin Intel + Nvidia GPU + custom LRl =

DOE / Os Jaguar, Cray

& Oak Ridge Nat Lab AMD + custom Led = R =
Nat. Supercomputer Nebulea, Dawning

& Center in Shenzhen Intel + Nvidia 6PU + IB HERERl ded =
GSIC Center, Tokyo Tusbame 2.0, HP

= Institute of Technology), Intel + Nvidia GPU + IB Japan VR Lol 2

DOE / NNSA Cielo, Cray

6 LANL & SNL AMD + custom usd |14z2272 1.11 | 81
NASA Ames Research Plelades SGI Altix ICE

7 Center/NAS 8200EX/8400EX + IB A e I B

2l e Hopper, Cray
8 | Lawrence LB:gkeley Nat AMD + custom UsSA 153,408 1.054 82
Commissariat a
9 | I'Energie Atomique o b 138,368 1.050 @ 84
(CEA)
10 DOE / NNSA Roadrunner, IBM USA 1.04 76

Los Alamos Nat Lab

AMD + Cell GPU + IB

122,400

ICLOr"

Critical Issues for Peta and Exascale Algorithms

" Synchronization-reducing algorithms

> Break Fork-Join model

"~ Communication-reducing algorithms

> Use methods which have lower bound on communication

" Mixed precision methods

> 2x speed of ops and 2x speed for data movement

- Autotuning

> Today's machines are too complicated, build "smarts” into
software have experiment to optimize.

" Fault resilient algorithms

> Implement algorithms that can recover from failures/bit
flips
Reproducibility of results

> Today we can't guarantee this. We understand the issues,
but some of our “colleagues” have a hard time with this.

IcLOr-

Major Changes to Software

Must rethink the design of our software
> Another disruptive technology

> Similar to what happened with cluster computing and
message passing

> Rethink and rewrite the applications, algorithms, and
software
Numerical libraries for example will change

> For example, both LAPACK and ScalL APACK will
undergo major changes to accommodate this

73

ICL

LAPACK LU - Intel64 - 16 cores

DGETREF - Intel64 Xeon quad-socket quad-core (16 cores) - th. peak 153.6 Gflop/s

140

| B | | | | | | |
120
100
-E-DGEMM
80
@
&
; e~ APACK
60
40 = —)
e
20
0
0 2000 4000 6000 8000 10000 12000 14000

Matrix size

Parallelization of QR Factorization

Parallelize the update:

e Easy and done in any reasonable software.
* This is the 2/3n3 term in the FLOPs count.

dgemm

1
- -

* Can be done efficiently with LAPACK+multithreaded BLAS

Panel

dgeqf2 + dlarft

I‘- qr(l)

Update of the

remaining submatrix [factorization

dlarfb

=-00 0

i1

75

NN\ | /S
NV

}

7N

0
LA
NV

Fork - Join parallelism
Bulk Sync Processing

£ PLASMA: Parallel Linear Algebra s/w
for Multicore Architectures

>Objectives
> High utilization of each core Cholesky
> Scaling to large number of cores 4 x4
> Shared or distributed memory

»Methodology

» Dynamic DAG scheduling

> Split phases task generation and execution
> Explicit parallelism/Implicit communication
> Fine granularity / block data layout

»>Arbitrary DAG with dynamic scheduling

S o LoE e o=. ==
- t e %Tﬁ _§ ?%_ —="E F__ Fork-join
1B S R '%:% o ._g o =TT parallelism

DAG scheduled
parallelism

Time > 76

