Connecting communities

Section:

Through HPC

Linear Algebra Libraries for High-Performance Computing: Scientific Computing with Multicore and Accelerators

Presenters

Prof. Jack Dongarra (8:30 - 10:00)

University of Tennessee & Oak Ridge National Lab

<u>Dr. Jakub Kurzak</u> (10:30 - 12:00)

University of Tennessee

<u>Prof. James Demmel (1:30 - 3:00)</u>

University of California Berkeley

<u>Dr. Michael Heroux (3:30 - 5:00)</u>

Sandia National Laboratory

Overview of Dense Numerical Linear Algebra Libraries

- BLAS: kernel for dense linear algebra
- LAPACK: sequential dense linear algebra
- ScaLAPACK: parallel distributed dense linear algebra

```
L A P A C K
L -A P -A C -K
L A P A -C -K
L -A P -A -C K
L A -P -A C K
L -A -P A C K
```

Linear Algebra PACKage

What do you mean by performance?

What is a xflop/s?

- > xflop/s is a rate of execution, some number of floating point operations per second.
 - > Whenever this term is used it will refer to 64 bit floating point operations and the operations will be either addition or multiplication.
- > Tflop/s refers to trillions (1012) of floating point operations per second and
- \triangleright Pflop/s refers to 10^{15} floating point operations per second.

" What is the theoretical peak performance?

- The theoretical peak is based not on an actual performance from a benchmark run, but on a paper computation to determine the theoretical peak rate of execution of floating point operations for the machine.
- The theoretical peak performance is determined by counting the number of floating-point additions and multiplications (in full precision) that can be completed during a period of time, usually the cycle time of the machine.
- For example, an Intel Xeon 5570 quad core at 2.93 GHz can complete 4 floating point operations per cycle or a theoretical peak performance of 11.72 GFlop/s per core or 46.88 Gflop/s for the socket.

What Is LINPACK?

- " LINPACK is a package of mathematical software for solving problems in linear algebra, mainly dense linear systems of linear equations.
- "LINPACK: "LINear algebra PACKage"
 - Written in Fortran 66
- The project had its origins in 1974
- The project had four primary contributors: myself when I was at Argonne National Lab, Jim Bunch from the University of California-San Diego, Cleve Moler who was at New Mexico at that time, and Pete Stewart from the University of Maryland.
- "LINPACK as a software package has been largely superseded by LAPACK, which has been designed to run efficiently on shared-memory, vector supercomputers.

Computing in 1974

- " High Performance Computers:
 - > IBM 370/195, CDC 7600, Univac 1110, DEC PDP-10, Honeywell 6030
- Fortran 66
- "Trying to achieve software portability
- " Run efficiently
- " BLAS (Level 1)
 - > Vector operations
- "Software released in 1979
 - > About the time of the Cray 1

LINPACK Benchmark?

- The Linpack Benchmark is a measure of a computer's floating-point rate of execution.
 - > It is determined by running a computer program that solves a dense system of linear equations.
- "Over the years the characteristics of the benchmark has changed a bit.
 - > In fact, there are three benchmarks included in the Linpack Benchmark report.

" LINPACK Benchmark

- Dense linear system solve with LU factorization using partial pivoting
- \triangleright Operation count is: 2/3 n³ + O(n²)
- Benchmark Measure: MFlop/s
- Original benchmark measures the execution rate for a Fortran program on a matrix of size 100×100.

Accidental Benchmarker

- Appendix B of the Linpack Users' Guide
 - Designed to help users extrapolate execution time for Linpack software package
- First benchmark report from 1977;
 - > Cray 1 to DEC PDP-10

27 : 3	UNIT = 1	0**6 TIME	/(1/3	100**3 + 100*	*2)	
5- M +	MA OPS - 1					
13	4 ince		NIT			
1	Facility 🎳	N=100 mi	.cro-	Computer	Type	Compiler
	**************************************	secs. s	ecs.			
				17. 持斯. 15		
	NCAR 14.8	.049 0	.14	CRAY-1	S	CFT, Assembly BLAS
	LASL 6 4.69	148 0	.43	CDC 7600	S	FTN, Assembly BLAS
	NCAR 5.5	%.192 0	.56	CRAY-1	S	CFT
	LASL 5,27		.61	CDC 7600	S	FTN
			.86	IBM 370/195	D.	H
			05	CDC 7600	S	Local
	Argonne 1777	.388 . 1	33	IBM 3033	D.	H
	NASA Langley	^a .489 1	.42	CDC Cyber 175	S	FTN
	U. Ill. Urbana		.47	CDC Cyber 175	S	Ext. 4.6
	LLL (A)		61	CDC 7600	S	CHAT, No optimize
		[.579 1	69	IBM 370/168	D	H Ext., Fast mult.
		₹.631 1	84	Amdahl 470/V6	D	H
	Toronto .77		.59	IBM 370/165	D	H Ext., Fast mult.
	Northwestern 47		.20	CDC 6600	S	FTN
	Texas *550	61.93 * 5	.63	CDC 6600	S	RUN
		21.95* <u>5</u>	.69	Univac 1110	S	V
		52.59 7	.53	DEC KL-20		F20
			0.1	Honeywell 6080	S	Y
		3.49 1	0.1	Univac 1110	S	Ti.
				Itel AS/5 mod3		H. A. S. Option
	U. Ill. Chicago			-IBM 370/158	D	G1
			6.6	CDC 6500	S	FUN
	U, C, San Diego		88.2) S	H
	Yale de la company	ŋ17,1 † 4	9.9	DEC KA-10	S	F40
	* TIME(100) = (100/75)**	3 SCEI	FA(75) +=(100/7	5)**2	SCESL(75)
			. 5011	11(13) 1 (100)1	-/ -	55554(15)

High Performance Linpack (HPL)

Benchmark	Matrix	Optimizations	Parallel
Name	dimension	allowed	Processing
Linpack 100	100	compiler	_a
Linpack 1000b	1000	hand, code replacement	_c
Linpack Parallel	1000	hand, code replacement	Yes
HPLinpack ^d	arbitrary	hand, code replacement	Yes

^a Compiler parallelization possible.

^b Also known as TPP (Toward Peak Performance) or Best Effort

^c Multiprocessor implementations allowed.

^d Highly-Parallel LINPACK Benchmark is also known as NxN Linpack Benchmark or High Parallel Computing (HPC).

A brief history of (Dense) Linear Algebra software

But the BLAS-1 weren't enough

- \triangleright Consider AXPY (y = $a \cdot x + y$): 2n flops on 3n read/writes
- \triangleright Computational intensity = (2n)/(3n) = 2/3
- > Too low to run near peak speed (read/write dominates)
- "So the BLAS-2 were developed (1984-1986)
 - > Standard library of 25 operations (mostly) on matrix/vector pairs

> "GEMV":
$$y = \alpha \cdot A \cdot x + \beta \cdot x$$
, "GER": $A = A + \alpha \cdot x \cdot y^T$, $x = T^{-1} \cdot x$

- > Up to 4 versions of each (S/D/C/Z), 66 routines, 18K LOC
- > Why BLAS 2? They do $O(n^2)$ ops on $O(n^2)$ data
- > So computational intensity still just $\sim (2n^2)/(n^2) = 2$
 - > OK for vector machines, but not for machine with caches

A brief history of (Dense) Linear Algebra software

- " The next step: BLAS-3 (1987-1988)
 - > Standard library of 9 operations (mostly) on matrix/matrix pairs
 - \succ "GEMM": $C = \alpha \cdot A \cdot B + \beta \cdot C$, $C = \alpha \cdot A \cdot A^{T} + \beta \cdot C$, $B = T^{-1} \cdot B$
 - > Up to 4 versions of each (S/D/C/Z), 30 routines, 10K LOC
 - > Why BLAS 3? They do $O(n^3)$ ops on $O(n^2)$ data
 - > So computational intensity $(2n^3)/(4n^2) = n/2 big$ at last!
 - > Good for machines with caches, other mem. hierarchy levels
- "How much BLAS1/2/3 code so far (all at www.netlib.org/blas)
 - > Source: 142 routines, 31K LOC, Testing: 28K LOC
 - > Reference (unoptimized) implementation only
 - > Ex: 3 nested loops for GEMM

Memory Hierarchy

By taking advantage of the principle of locality:

> Present the user with as much memory as is available in the cheapest technology.

Provide access at the speed offered by the fastest technology.

Speed (ns):	1s	10s	100s	10,000,000s	10,000,000,000s
Size (bytes):	100s	Ks	Ms	(10s ms) 100,000 s	(10s sec) 10,000,000 s
				(.1s ms)	(10s ms)
				Gs	Ts

Why Higher Level BLAS?

- " Can only do arithmetic on data at the top of the hierarchy
- " Higher level BLAS lets us do this

BLAS	Memory Refs	Flops	Flops/ Memory	A
			Refs	
Level 1	3n	2 n	2/3	Registers
$y=y+\alpha x$				L 1 Cache
Level 2	\mathbf{n}^2	2n ²	2	L 2 Cache
y=y+Ax				Local Memory
Level 3	4n ²	2n ³	n/2/	Remote Memory
C=C+AB				Secondary Memory

Level 1, 2 and 3 BLAS

- "Level 1 BLAS Vector-Vector operations
- "Level 2 BLAS Matrix-Vector operations
- "Level 3 BLAS Matrix-Matrix operations

Level 1, 2 and 3 BLAS

Before (2007)

3.4 G H z EM 64T Xeon M KL8.1 Peak: 6.8 G fbp/s gcc -fom it-fram e-pointer-funroll-all-bops -03

0 mder

Level 1, 2 and 3 BLAS

Now (2011)

AMD Opteron 8439 SE Processor (6 cores total @ 2.8Ghz) Using 1 core 11.2 Gflop/s theoretical peak


```
Level 1 BLAS
                        dim scalar vector vector
                                                                                        5-element array
                                                                                                                                                                                                    prefixes
                                                             scalars
SUBROUTINE *ROTG (
                                                                       A, B, C, S)
                                                                                                                     Generate plane rotation
                                                                                                                                                                                                    S, D
                                                             D1, D2, A, B,
SUBROUTINE xROTMG(
                                                                                        PARAM )
                                                                                                                     Generate modified plane rotation
                                                                                                                                                                                                    S, D
SUBROUTINE XROT ( N.
                                      X, INCX, Y, INCY,
                                                                               C, S)
                                                                                                                     Apply plane rotation
                                                                                                                                                                                                    S. D
SUBROUTINE *ROTM ( N,
                                      X, INCX, Y, INCY,
                                                                                        PARAM )
                                                                                                                     Apply modified plane rotation
                                                                                                                                                                                                    S, D
                                                                                                                                                                                                    S, D, C, Z
SUBROUTINE XSWAP ( N,
                                      X, INCX, Y, INCY )
                                                                                                                    x \leftrightarrow y
SUBROUTINE xSCAL ( N,
                             ALPHA, X, INCX )
                                                                                                                    x \leftarrow \alpha x
                                                                                                                                                                                                    S, D, C, Z, CS, ZD
SUBROUTINE XCOPY ( N,
                                      X, INCX, Y, INCY )
                                                                                                                    y \leftarrow x
                                                                                                                                                                                                    S, D, C, Z
SUBROUTINE xAXPY ( N.
                             ALPHA, X, INCX, Y, INCY )
                                                                                                                     y \leftarrow \alpha x + y
                                                                                                                                                                                                    S, D, C, Z
                                                                                                                     dot \leftarrow x^T u
FUNCTION xDOT ( N.
                                                                                                                                                                                                    S, D, DS
                                      X, INCX, Y, INCY )
                                      X, INCX, Y, INCY )
                                                                                                                     dot \leftarrow x^T y
                                                                                                                                                                                                    C, Z
FUNCTION
             xDOTU ( N,
                                      X, INCX, Y, INCY )
                                                                                                                     dot \leftarrow x^H u
                                                                                                                                                                                                    C, Z
FUNCTION
             xDOTC ( N,
                                                                                                                     dot \leftarrow \alpha + x^T y
FUNCTION
             xxDOT ( N,
                                      X, INCX, Y, INCY )
                                                                                                                                                                                                    SDS
                                                                                                                    nrm2 \leftarrow ||x||_2
                                                                                                                                                                                                    S, D, SC, DZ
FUNCTION
             xNRM2 ( N,
                                      X, INCX )
FUNCTION
             xASUM ( N.
                                      X, INCX )
                                                                                                                     asum \leftarrow ||re(x)||_1 + ||im(x)||_1
                                                                                                                                                                                                    S, D, SC, DZ
                                      X. INCX )
                                                                                                                    amax \leftarrow 1^{st}k \ni |re(x_k)| + |im(x_k)|
                                                                                                                                                                                                    S, D, C, Z
FUNCTION
             IXAMAX( N.
                                                                                                                                     = max(|re(x_i)| + |im(x_i)|)
Level 2 BLAS
          options
                                  dim b-width scalar matrix vector scalar vector
xGEMV (
                                                    ALPHA, A, LDA, X, INCX, BETA, Y, INCY )
                                                                                                                    y \leftarrow \alpha Ax + \beta y, y \leftarrow \alpha A^T x + \beta y, y \leftarrow \alpha A^H x + \beta y, A - m \times n
                                                                                                                                                                                                    S, D, C, Z
                   TRANS,
                                                                                                                    y \leftarrow \alpha Ax + \beta y, y \leftarrow \alpha A^Tx + \beta y, y \leftarrow \alpha A^Hx + \beta y, A - m \times n
                                                                                                                                                                                                    S, D, C, Z
xGBMV (
                   TRANS,
                                  M, N, KL, KU, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
xHEMV ( UPLO.
                                                    ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
                                                                                                                    y \leftarrow \alpha Ax + \beta y
                                                                                                                                                                                                    C, Z
                                      N,
xHBMV ( UPLO.
                                      N.K.
                                                    ALPHA, A. LDA, X. INCX, BETA, Y. INCY )
                                                                                                                    y \leftarrow \alpha Ax + \beta y
                                                                                                                                                                                                    C, Z
xHPMV ( UPLO.
                                      N.
                                                    ALPHA, AP. X, INCX, BETA, Y, INCY)
                                                                                                                    u \leftarrow \alpha Ax + \beta u
                                                                                                                                                                                                    C, Z
                                                    ALPHA, A, LDA, X, INCX, BETA, Y, INCY )
                                                                                                                    y \leftarrow \alpha Ax + \beta y
                                                                                                                                                                                                    S. D
xSYMV ( UPLO.
                                      N.
                                                                                                                                                                                                    S, D
                                                    ALPHA, A, LDA, X, INCX, BETA, Y, INCY )
                                                                                                                    y \leftarrow \alpha Ax + \beta y
xSBMV ( UPLO,
                                      N, K,
                                                                                                                    y \leftarrow \alpha Ax + \beta y
                                                                                                                                                                                                    S, D
xSPMV ( UPLO,
                                      N,
                                                    ALPHA, AP, X, INCX, BETA, Y, INCY)
                                                                                                                    x \leftarrow Ax, x \leftarrow A^Tx, x \leftarrow A^Hx
                                                             A, LDA, X, INCX )
                                                                                                                                                                                                    S. D. C. Z
xTRMV ( UPLO, TRANS, DIAG,
                                                                                                                    x \leftarrow Ax, x \leftarrow A^Tx, x \leftarrow A^Hx
                                                             A, LDA, X, INCX )
xTBMV ( UPLO, TRANS, DIAG,
                                      N, K,
                                                                                                                                                                                                    S, D, C, Z
                                                                                                                    x \leftarrow Ax, x \leftarrow A^Tx, x \leftarrow A^Hx
xTPMV ( UPLD, TRANS, DIAG,
                                      N.
                                                             AP, X, INCX )
                                                                                                                                                                                                    S. D. C. Z
                                                                                                                    x \leftarrow A^{-1}x, x \leftarrow A^{-T}x, x \leftarrow A^{-H}x
xTRSV ( UPLO, TRANS, DIAG,
                                      N,
                                                             A, LDA, X, INCX )
                                                                                                                                                                                                    S, D, C, Z
                                                                                                                    x \leftarrow A^{-1}x, x \leftarrow A^{-T}x, x \leftarrow A^{-H}x
                                                             A, LDA, X, INCX )
xTBSV ( UPLO, TRANS, DIAG,
                                      N, K,
                                                                                                                                                                                                    S, D, C, Z
                                                                                                                    x \leftarrow A^{-1}x, x \leftarrow A^{-T}x, x \leftarrow A^{-H}x
                                                             AP. X. INCX )
                                                                                                                                                                                                    S. D. C. Z
xTPSV ( UPLO, TRANS, DIAG.
                                      N.
          options
                                  dim scalar vector vector matrix
xGER (
                                  M. N. ALPHA, X. INCX, Y. INCY, A. LDA )
                                                                                                                    A \leftarrow \alpha x y^T + A, A - m \times n
                                                                                                                                                                                                    S. D
                                                                                                                    A \leftarrow \alpha x y^T + A, A - m \times n
xGERU (
                                  M, N, ALPHA, X, INCX, Y, INCY, A, LDA)
                                                                                                                                                                                                    C, Z
                                                                                                                    A \leftarrow \alpha x y^H + A, A - m \times n
                                  M, N, ALPHA, X, INCX, Y, INCY, A, LDA)
                                                                                                                                                                                                    C, Z
xGERC (
                                                                                                                    A \leftarrow \alpha x x^H + A
xHER (UPLO,
                                      N, ALPHA, X, INCX,
                                                                     A, LDA )
                                                                                                                                                                                                    C, Z
                                                                                                                    A \leftarrow \alpha x x^H + A
xHPR (UPLO,
                                      N. ALPHA, X. INCX,
                                                                          AP )
                                                                                                                                                                                                    C, Z
                                                                                                                    A \leftarrow \alpha x y^H + y(\alpha x)^H + A
                                                                                                                                                                                                    C, Z
xHER2 ( UPLO,
                                      N, ALPHA, X, INCX, Y, INCY, A, LDA)
                                                                                                                    A \leftarrow \alpha x y^H + y(\alpha x)^H + A
                                      N, ALPHA, X, INCX, Y, INCY, AP )
                                                                                                                                                                                                    C, Z
xHPR2 ( UPLO,
                                                                                                                    A \leftarrow \alpha x x^T + A
                                      N, ALPHA, X, INCX,
                                                                        A, LDA )
                                                                                                                                                                                                    S. D
xSYR (UPLO,
                                                                                                                    A \leftarrow \alpha x x^T + A
xSPR ( UPLD,
                                      N, ALPHA, X, INCX,
                                                                          AP )
                                                                                                                                                                                                    S, D
                                                                                                                    A \leftarrow \alpha x y^T + \alpha y x^T + AA \leftarrow \alpha x y^T + \alpha y x^T + A
xSYR2 ( UPLO.
                                      N. ALPHA, X. INCX, Y. INCY, A. LDA )
                                                                                                                                                                                                    S. D
xSPR2 (UPLO,
                                      N, ALPHA, X, INCX, Y, INCY, AP )
                                                                                                                                                                                                    S. D
Level 3 BLAS
          options
                                                                scalar matrix matrix scalar matrix
                                                    M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC ) C \leftarrow \alpha op(A)op(B) + \beta C, op(X) = X, X^T, X^H, C - m \times n
xGEMM (
                          TRANSA, TRANSB,
                                                                                                                                                                                                    S, D, C, Z
                                                    M, N, ALPHA, A, LDA, B, LDB, BETA, C, LDC ) C \leftarrow \alpha AB + \beta C, C \leftarrow \alpha BA + \beta C, C - m \times n, A = A^T
                                                                                                                                                                                                    S. D. C. Z.
xSYMM ( SIDE, UPLO.
                                                    M. N. ALPHA, A. LDA, B. LDB, BETA, C. LDC ) C \leftarrow \alpha AB + \beta C, C \leftarrow \alpha BA + \beta C, C - m \times n, A = A^H
xHEMM ( SIDE, UPLO,
                                                                                                                                                                                                    C, Z
                                                                                                                    C \leftarrow \alpha A A^T + \beta C, C \leftarrow \alpha A^T A + \beta C, C - n \times n
xSYRK (
                  UPLO, TRANS,
                                                       N, K, ALPHA, A, LDA,
                                                                                             BETA, C, LDC )
                                                                                                                                                                                                    S. D. C. Z
                                                        N, K, ALPHA, A, LDA, BETA, C, LDC ) C \leftarrow \alpha AA^H + \beta C, C \leftarrow \alpha A^H A + \beta C, C - n \times n

N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC ) C \leftarrow \alpha AB^T + \bar{\alpha}BA^T + \beta C, C \leftarrow \alpha A^TB + \bar{\alpha}B^TA + \beta C, C - n \times n
                                                                                                                                                                                                    C, Z
xHERK (
                  UPLO, TRANS,
```

N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC) $C \leftarrow \alpha AB^H + \bar{\alpha}BA^H + \beta C.C \leftarrow \alpha A^HB + \bar{\alpha}B^HA + \beta C.C - n \times n$ C, Z

 $B \leftarrow \alpha op(A)B, B \leftarrow \alpha Bop(A), op(A) = A, A^T, A^H, B - m \times n$

 $B \leftarrow \alpha op(A^{-1})B, B \leftarrow \alpha Bop(A^{-1}), op(A) \equiv A, A^T, A^H, B - m \times n$ S, D, C, Z

xSYR2K(

xHER2K(

UPLO. TRANS.

UPLO. TRANS.

DIAG, M, N, ALPHA, A, LDA, B, LDB)

DIAG, M, N, ALPHA, A, LDA, B, LDB)

xTRMM (SIDE, UPLO, TRANSA,

xTRSM (SIDE, UPLO, TRANSA,

ì

S. D. C. Z

S. D. C. Z

A brief history of (Dense) Linear Algebra software

LAPACK - "Linear Algebra PACKage" - uses BLAS-3 (1989 - now)

- > Ex: Obvious way to express Gaussian Elimination (GE) is adding multiples of one row to other rows BLAS-1
 - > How do we reorganize GE to use BLAS-3? (details later)
- > Contents of LAPACK (summary)
 - > Algorithms we can turn into (nearly) 100% BLAS 3
 - Linear Systems: solve Ax=b for x
 - \triangleright Least Squares: choose x to minimize $||Ax b||_2$
 - > Algorithms that are only 50% BLAS 3 (so far)
 - \triangleright "Eigenproblems": Find λ and x where $Ax = \lambda x$
 - > Singular Value Decomposition (SVD): $(A^TA)x=\sigma^2x$
 - \triangleright Generalized problems (eg Ax = λ Bx)
 - > Error bounds for everything
 - \triangleright Lots of variants depending on A's structure (banded, $A=A^{T}$, etc)
- How much code? (Release 3.4, Nov 2011) (www.netlib.org/lapack)
 - > Source: 1674 routines, 490K LOC, Testing: 448K LOC

A brief history of (Dense) Linear Algebra software

- " Is LAPACK parallel?
 - > Only if the BLAS are parallel (possible in shared memory)
- " ScaLAPACK "Scalable LAPACK" (1995 now)
 - > For distributed memory uses MPI
 - > More complex data structures, algorithms than LAPACK
 - > Only (small) subset of LAPACK's functionality available
 - > All at www.netlib.org/scalapack

LAPACK

- " http://www.netlib.org/lapack/
- " LAPACK (Linear Algebra Package) provides routines for
 - > solving systems of simultaneous linear equations,
 - > least-squares solutions of linear systems of equations,
 - > eigenvalue problems,
 - and singular value problems.
- " LAPACK relies on BLAS

LAPACK is in FORTRAN Column Major

LAPACK is SEQUENTIAL

LAPACK is a REFERENCE implementation

- The associated matrix factorizations (LU, Cholesky, QR, SVD, Schur, generalized Schur) are also provided, as are related computations such as reordering of the Schur factorizations and estimating condition numbers.
- Dense and banded matrices are handled, but not general sparse matrices. In all areas, similar functionality is provided for real and complex matrices, in both single and double precision.

A new generation of algorithms?

Algorithms follow hardware evolution along time.				
LINPACK (80's) (Vector operations)		Rely on - Level-1 BLAS operations		
LAPACK (90's) (Blocking, cache friendly)		Rely on - Level-3 BLAS operations		

Example with GESV

Solve a system of linear equations using a LU factorization

Functionalities in LAPACK

Type of Problem	Acronyms
Linear system of equations	SV
Linear least squares problems	LLS
Linear equality-constrained least squares problem	LSE
General linear model problem	GLM
Symmetric eigenproblems	SEP
Nonsymmetric eigenproblems	NEP
Singular value decomposition	SVD
Generalized symmetric definite eigenproblems	GSEP
Generalized nonsymmetric eigenproblems	GNEP
Generalized (or quotient) singular value decomposition	GSVD (QSVD)

LAPACK Software

- First release in February 1992
- Version 3.4.0 released in November 2011
- **LICENSE**: Mod-BSD, freely-available software package Thus, it can be included in commercial software packages (and has been). We only ask that proper credit be given to the authors.
- Open SVN repository
- Multi-OS
 - *nix, Mac OS/X, Windows
- Multi-build support (cmake)
 - make, xcode, nmake, VS studio, Eclipse, etc..
- LAPACKE: Standard C language APIs for LAPACK (In collaboration with INTEL)
 - 2 layers of interface
 - High-Level Interface: Workspace allocation and NAN Check
 - Low-Level Interface
- Prebuilt Libraries for Windows
- Extensive test suite
- Forum and User support: http://icl.cs.utk.edu/lapack-forum/

Latest Algorithms

Since release 3.0 of LAPACK

3.2

- Hessenberg QR algorithm with the small bulge multi-shift QR algorithm together with aggressive early deflation. [2003 SIAM SIAG LA Prize winning algorithm of Braman, Byers and Mathias]
- Improvements of the Hessenberg reduction subroutines. [G. Quintana-Ortí and van de Geijn]
- New MRRR eigenvalue algorithms [2006 SIAM SIAG LA Prize winning algorithm of Dhillon and Parlett]
- New partial column norm updating strategy for QR factorization with column pivoting. [Drmač and Bujanovic]
- Mixed Precision Iterative Refinement for exploiting fast single precision hardware for GE, PO
 [Langou's]
- Variants of various factorization (LU, QR, Chol) [Du]
- RFP (Rectangular Full Packed) format [Gustavson, Langou]
- XBLAS and Extra precise iterative refinement for GESV [Demmel et al.].
- New fast and accurate Jacobi SVD [2009 SIAM SIAG LA Prize, Drmač and Veselić]
- Pivoted Cholesky [Lucas]
- Better multishift Hessenberg QR algorithm with early aggressive deflation [Byers]
- Complete CS decomposition [Sutton]
 - Level-3 BLAS symmetric indefinite solve and symmetric indefinite inversion [Langou's]
 - Since LAPACK 3.3, all routines in are now thread-safe

LAPACK 3.4.0

xGEQRT: QR factorization (improved interface).

Contribution by Rodney James, UC Denver.

xGEQRT is analogous to xGEQRF with a modified interface which enables better performance when the blocked reflectors need to be reused. The companion subroutines xGEMQRT apply the reflectors.

xGEQRT3: recursive QR factorization.

Contribution by Rodney James, UC Denver.

The recursive QR factorization enable cache-oblivious and enable high performance on tall and skinny matrices.

xTPQRT: Communication-Avoiding QR sequential kernels.

Contribution by Rodney James, UC Denver.

These subroutines are useful for updating a QR factorization and are used in sequential and parallel Communication Avoiding QR. These subroutines support the general case Triangle on top of Pentagone which includes as special cases the so-called triangle on top of triangle and triangle on top of square. This is the right-looking version of the subroutines and the routine is blocked. The T matrices and the block size are part of the interface. The companion subroutines xTPMQRT apply the reflectors.

xSYEVK: LDLT with rook pivoting and fast Bunch-Parlett pivoting.

Contribution by Craig Lucas.

These subroutines enables better stability than the Bunch-Kaufman pivoting scheme (xSYEV) currently used in LAPACK. The computational time is slightly higher.

Resources

Reference Code:

Reference code: (current version 3.3.1)

http://www.netlib.org/lapack/lapack.tgz

LAPACK build for windows (current version 3.3.1)

http://icl.cs.utk.edu/lapack-for-windows/lapack

LAPACKE: Standard C language APIs for LAPACK (in collaboration with INTEL):

http://www.netlib.org/lapack/# standard c language apis for lapack

Remi's wrappers (wrapper for Matlab users):

http://icl.cs.utk.edu/~delmas/lapwrapmw.htm

Vendor Libraries:

more or less same as the BLAS: MKL, ACML, VECLIB, ESSL, etc... (WARNING: some implementations are just a subset of LAPACK)

Documentation:

LAPACK Users' guide:

http://www.netlib.org/lapack/lug/

LAPACK Working notes (in particular LAWN 41)

http://www.netlib.org/lapack/lawns/downloads/

LAPACK release notes

http://www.netlib.org/lapack/lapack-3.1.0.changes

LAPACK NAG example and auxiliary routines

http://www.nag.com/lapack-ex/lapack-ex.html

 CRC Handbook of Linear Algebra, Leslie Hogben ed, Packages of Subroutines for Linear Algebra, Bai, Demmel, Dongarra, Langou, and Wang, Section 75: pages 75-1,75-24, CRC Press, 2006.

http://www.netlib.org/netlib/utk/people/JackDongarra/PAPERS/CRC-LAPACK-2005.pdf

Support:

LAPACK forum: (more than 1000 topics)

http://icl.cs.utk.edu/lapack-forum/

LAPACK mailing-list:

lapack@cs.utk.edu

– LAPACK mailing-list archive:

http://icl.cs.utk.edu/lapack-forum/archives/

Organizing Linear Algebra – in books

www.netlib.org/lapack

www.netlib.org/templates

www.netlib.org/scalapack

www.cs.utk.edu/~dongarra/etemplates

Parallelization of LU and QR.

Parallelize the update:

- Easy and done in any reasonable software.
- This is the 2/3n³ term in the FLOPs count.
- Can be done efficiently with LAPACK+multithreaded BLAS

Overview of Dense Numerical Linear Algebra Libraries

BLAS: kernel for dense linear algebra

LAPACK: sequential dense linear algebra

• ScaLAPACK: parallel distributed dense linear

algebra

Scalable Linear Algebra PACKage

ScaLAPACK

- "Library of software dealing with dense & banded routines
- " Distributed Memory Message Passing
- " MIMD Computers and Networks of Workstations
- " Clusters of SMPs

ScaLAPACK

- http://www.netlib.org/scalapack/
- ScaLAPACK (Scalable Linear Algebra Package) provides routines for
 - solving systems of simultaneous linear equations,
 - least-squares solutions of linear systems of equations,
 - eigenvalue problems,
 - and singular value problems.
- Relies on LAPACK / BLAS and BLACS / MPI
- Includes PBLAS (Parallel BLAS)

ScaLAPACK is in FORTRAN and C

Scalapack is for PARALLEL DISTRIBUTED

ScaLAPACK is a REFERENCE implementation

Programming Style

- " SPMD Fortran 77 with object based design
- " Built on various modules
 - > PBLAS Interprocessor communication
 - > BLACS
 - >PVM, MPI, IBM SP, CRI T3, Intel, TMC
 - Provides right level of notation.
 - > BLAS
- "LAPACK software expertise/quality
 - > Software approach
 - > Numerical methods

Overall Structure of Software

Object based - Array descriptor

- Contains information required to establish mapping between a global array entry and its corresponding process and memory location.
- Provides a flexible framework to easily specify additional data distributions or matrix types.
- > Currently dense, banded, & out-of-core
- " Using the concept of context

PBLAS

- "Similar to the BLAS in functionality and naming.
- "Built on the BLAS and BLACS
- "Provide global view of matrix

 CALL DGEXXX (M, N, A(IA, JA), LDA,...)

CALL PDGEXXX(M, N, A, IA, JA, DESCA,...)

ScaLAPACK Structure

Choosing a Data Distribution

" Main issues are:

- > Load balancing
- > Use of the Level 3 BLAS

Possible Data Layouts

" 1D block and cyclic column distributions

0	1	0	1	0	1	0	1
2	3	2	3	2	3	2	3
0	1	0	1	0	1	0	1
2	3	2	3	2	3	2	3
0	1	0	1	0	1	0	1
2	3	2	3	2	3	2	3
0	1	0	1	0	1	0	1
2	3	2	3	2	3	2	3

- " 1D block-cycle column and 2D block-cyclic distribution
- " 2D block-cyclic used in ScaLAPACK for dense matrices

From LAPACK to ScaLAPACK

From LAPACK to ScaLAPACK

From LAPACK to ScaLAPACK

[LAPACK] subroutine dgesv(n, nrhs, a(ia,ja), lda, ipiv, b(ib,jb), ldb, info) [ScaLAPACK] subroutine pdgesv(n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info)

[ScaLAPACK] subroutine pdgesv(n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info) input: nrhs ScaLAPACK Data layout A₁₂ A₁₃ B₁₁ ip₁ info n n A₂₂ B₂₁ ip₂ A_{32} B₃₁ ip₃ output: nrhs ScaLAPACK Data layout X_{11} ip_1 info n n X₂₁ ip₂ ip₃

Distribution and Storage

- " Matrix is block-partitioned & maps blocks
- Distributed 2-D block-cyclic scheme

5x5 matrix partitioned in 2x2 blocks 2x2 process grid point of view

"Routines available to distribute/redistribute data.

Matrix is MxN Process grid is PxQ, P=2, Q=3 Blocks are MBxNB

Matrix point of view

0	2	4	0	2	4	0	2	4
1	3	5	1	3	5	1	3	5
0	2	4	0	2	4	0	2	4
1	3	5	1	3	5	1	3	5
0	2	4	0	2	4	0	2	4
1	3	5	1	3	5	1	3	5
0	2	4	0	2	4	0	2	4
1	3	5	1	3	5	1	3	5
0	2	4	0	2	4	0	2	4

Processor point of view

0	0	0		2	2	2		4	4	4
0	0	0		2	2	2		4	4	4
0	0	0		2	2	2		4	4	4
0	0	0		2	2	2		4	4	4
0	0	0		2	2	2		4	4	4
			IJ L □ []			
1	1	1		3	3	3		5	5	5
1	1	1		3	3	3		5	5	5
		_						_	_	_

Matrix point of view

Processor point of view

			7				1 [
0	0	0		2	2	2		4	4	4
0	0	0		2	2	2		4	4	4
0	0	0		2	2	2		4	4	4
0	0	0		2	2	2		4	4	4
0	0	0		2	2	2		4	4	4
			╛┖							
1	1	1		3	3	3		5	5	5

1	1	1	3	3	3
1	1	1	3	3	3
1	1	1	3	3	3
1	1	1	3	3	3
	•				

5	5	5
5	5	5
5	5	5
5	5	5

Matrix point of view

0	2	4	0	2	4	0	2	4
1	3	5	1	3	5	1	3	5
0	2	4	0	2	4	0	2	4
1	3	5	1	3	5	1	3	5
0	2	4	0	2	4	0	2	4
1	3	5	1	3	5	1	3	5
0	2	4	0	2	4	0	2	4
1	3	5	1	3	5	1	3	5
0	2	4	0	2	4	0	2	4

Processor point of view

0	0	0		2	2	2		4	4	4
0	0	0		2	2	2		4	4	4
0	0	0		2	2	2		4	4	4
0	0	0		2	2	2		4	4	4
0	0	0		2	2	2		4	4	4
			IJ L □ []			
1	1	1		3	3	3		5	5	5
1	1	1		3	3	3		5	5	5
		_						_	_	_

Parallelism in ScaLAPACK

- Level 3 BLAS block operations
 - > All the reduction routines
- " Pipelining
 - QR Algorithm, Triangular Solvers, classic factorizations
- " Redundant computations
 - > Condition estimators
- " Static work assignment
 - > Bisection

- Task parallelism
 - Sign function eigenvalue computations
- " Divide and Conquer
 - Tridiagonal and band solvers, symmetric eigenvalue problem and Sign function
- " Cyclic reduction
 - Reduced system in the band solver
- " Data parallelism
 - > Sign function

Functionalities in LAPACK

Type of Problem	Acronyms
Linear system of equations	SV
Linear least squares problems	LLS
Linear equality-constrained least squares problem	LSE
General linear model problem	GLM
Symmetric eigenproblems	SEP
Nonsymmetric eigenproblems	NEP
Singular value decomposition	SVD
Generalized symmetric definite eigenproblems	GSEP
Generalized nonsymmetric eigenproblems	GNEP
Generalized (or quotient) singular value decomposition	GSVD (QSVD)

Functionnalities in ScaLAPACK

Type of Problem	Acronyms
Linear system of equations	SV
Linear least squares problems	LLS
Linear equality-constrained least squares problem	LSE
General linear model problem	GLM
Symmetric eigenproblems	SEP
Nonsymmetric eigenproblems	NEP
Singular value decomposition	SVD
Generalized symmetric definite eigenproblems	GSEP
Generalized nonsymmetric eigenproblems	GNEP
Generalized (or quotient) singular value decomposition	GSVD (QSVD)

Major Changes to Software

- Must rethink the design of our software
 - > Another disruptive technology
 - > Similar to what happened with cluster computing and message passing
 - > Rethink and rewrite the applications, algorithms, and software
- Numerical libraries for example will change
 - For example, both LAPACK and ScaLAPACK will undergo major changes to accommodate this

Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

Software/Algorithms follow hardware evolution in time LINPACK (70's) (Vector operations) Rely on - Level-1 BLAS operations

Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

Software/Algorithms follow hardware evolution in time					
LINPACK (70's) (Vector operations)		Rely on - Level-1 BLAS operations			
LAPACK (80's) (Blocking, cache friendly)		Rely on - Level-3 BLAS operations			

Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

Software/Algorithms follow hardware evolution in time						
LINPACK (70's) (Vector operations)		Rely on - Level-1 BLAS operations				
LAPACK (80's) (Blocking, cache friendly)		Rely on - Level-3 BLAS operations				
ScaLAPACK (90's) (Distributed Memory)		Rely on - PBLAS Mess Passing				

Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

Software/Algorithms follow hardware evolution in time					
LINPACK (70's) (Vector operations)		Rely on - Level-1 BLAS operations			
LAPACK (80's) (Blocking, cache friendly)		Rely on - Level-3 BLAS operations			
ScaLAPACK (90's) (Distributed Memory)		Rely on - PBLAS Mess Passing			
PLASMA (00's) New Algorithms (many-core friendly) Those new algorithms		Rely on - a DAG/scheduler - block data layout - some extra kernels			

Those new algorithms

- have a very low granularity, they scale very well (multicore, petascale computing, ...)
- removes a lots of dependencies among the tasks, (multicore, distributed computing)
- avoid latency (distributed computing, out-of-core)
- rely on fast kernels

Those new algorithms need new kernels and rely on efficient scheduling algorithms.

Moore's Law is Alive and Well

Data from Kunle Olukotun, Lance Hammond, Herb Sutter, Burton Smith, Chris Batten, and Krste Asanoviç

But Clock Frequency Scaling Replaced by Scaling Cores / Chip

Data from Kunle Olukotun, Lance Hammond, Herb Sutter. Burton Smith, Chris Batten, and Krste Asanovic

Performance Has Also Slowed, Along with Power

Data from Kunle Olukotun, Lance Hammond, Herb Sutter, Burton Smith, Chris Batten, and Krste Asanoviç

Power Cost of Frequency

- Power

 ✓ Voltage² x Frequency (V²F)

Power Cost of Frequency

- Power

 ✓ Voltage² x Frequency (V²F)

 Power								
		Cores	V	Freq	Perf	Power	PE (Bops/wa	ı ††)
	Superscalar	1	1	1	1	1	1	
"N	ew" Superscalar	1X	1.5X	1.5X	1.5X	3.3X	0.45X	
	Multicore	2X	0.75X	0.75X	1.5X	0.8X	1.88X	
						(Bigge	r#is bette	er)

50% more performance with 20% less power

Preferable to use multiple slower devices, than one superfast device

Moore's Law Reinterpreted

- "Number of cores per chip doubles every 2 year, while clock speed decreases (not increases).
 - Need to deal with systems with millions of concurrent threads
 - > Future generation will have billions of threads!
 - Need to be able to easily replace inter-chip parallelism with intro-chip parallelism
- Number of threads of execution doubles every 2 year

Shared memory programming between processes on a board and a combination of shared memory and distributed memory programming between nodes and cabinets

Combination of shared memory and distributed memory programming

November 2011: The TOP10

Rank	Site	Computer	Country	Cores	Rmax [Pflops]	% of Peak
1	RIKEN Advanced Inst for Comp Sci	K computer Fujitsu SPARC64 VIIIfx + custom	Japan	705,024	10.5	93
2	Nat. SuperComputer Center in Tianjin	Tianhe-1A, NUDT Intel + Nvidia GPU + custom	China	186,368	2.57	<i>55</i>
3	DOE / OS Oak Ridge Nat Lab	Jaguar, Cray AMD + custom	USA	224,162	1.76	75
4	Nat. Supercomputer Center in Shenzhen	Nebulea, Dawning Intel + Nvidia GPU + IB	China	120,640	1.27	43
5	GSIC Center, Tokyo Institute of Technology	Tusbame 2.0, HP Intel + Nvidia GPU + IB	Japan	73,278	1.19	52
6	DOE / NNSA LANL & SNL	Cielo, Cray AMD + custom	USA	142,272	1.11	81
7	NASA Ames Research Center/NAS	Plelades SGI Altix ICE 8200EX/8400EX + IB	USA	111,104	1.09	83
8	DOE / OS Lawrence Berkeley Nat Lab	Hopper, Cray AMD + custom	USA	153,408	1.054	82
9	Commissariat a l'Energie Atomique (CEA)	Tera-10, Bull Intel + IB	France	138,368	1.050	84
10	DOE / NNSA Los Alamos Nat Lab	Roadrunner, IBM AMD + <mark>Cell GPU</mark> + IB	USA	122,400	1.04	76

Critical Issues for Peta and Exascale Algorithms

- Synchronization-reducing algorithms
 - > Break Fork-Join model
- "Communication-reducing algorithms
 - > Use methods which have lower bound on communication
- " Mixed precision methods
 - > 2x speed of ops and 2x speed for data movement
- " Autotuning
 - > Today's machines are too complicated, build "smarts" into software have experiment to optimize.
- " Fault resilient algorithms
 - > Implement algorithms that can recover from failures/bit flips
- Reproducibility of results
 - > Today we can't guarantee this. We understand the issues, but some of our "colleagues" have a hard time with this.

Major Changes to Software

- Must rethink the design of our software
 - > Another disruptive technology
 - > Similar to what happened with cluster computing and message passing
 - > Rethink and rewrite the applications, algorithms, and software
- Numerical libraries for example will change
 - For example, both LAPACK and ScaLAPACK will undergo major changes to accommodate this

LAPACK LU - Intel64 - 16 cores

DGETRF - Intel64 Xeon quad-socket quad-core (16 cores) - th. peak 153.6 Gflop/s

Parallelization of QR Factorization

Parallelize the update:

- Easy and done in any reasonable software.
- This is the 2/3n³ term in the FLOPs count.
- Can be done efficiently with LAPACK+multithreaded BLAS

Fork - Join parallelism Bulk Sync Processing

PLASMA: Parallel Linear Algebra s/w for Multicore Architectures

≻Objectives

- > High utilization of each core
- > Scaling to large number of cores
- > Shared or distributed memory

> Methodology

> Dynamic DAG scheduling

> Split phases task generation and execution (syrk)

> Explicit parallelism/Implicit communication

> Fine granularity / block data layout

>Arbitrary DAG with dynamic scheduling

76