
TOWARD A NEW (ANOTHER)
METRIC FOR RANKING HIGH
PERFORMANCE
COMPUTING SYSTEMS
Jack Dongarra & Piotr Luszczek
University of Tennessee/ORNL

Michael Heroux
Sandia National Labs

See: http//tiny.cc/hpcg

http://tiny.cc/hpcg 1

2 Confessions of an
Accidental Benchmarker

•  Appendix B of the Linpack Users’ Guide
•  Designed to help users extrapolate execution time for

Linpack software package
•  First benchmark report from 1977;

•  Cray 1 to DEC PDP-10

http://tiny.cc/hpcg

Started 36 Years Ago
Have seen a Factor of 109 - From 14 Mflop/s to 34 Pflop/s

•  In the late 70’s the
fastest computer ran
LINPACK at 14 Mflop/s

•  Today with HPL we are
at 34 Pflop/s
•  Nine orders of magnitude
•  doubling every 14 months
•  About 6 orders of

magnitude increase in the
number of processors

•  Plus algorithmic
improvements

Began in late 70’s
time when floating point operations were expensive compared to
other operations and data movement

http://tiny.cc/hpcg 3

High Performance Linpack (HPL)
•  Is a widely recognized and discussed metric for ranking

high performance computing systems
• When HPL gained prominence as a performance metric in

the early 1990s there was a strong correlation between
its predictions of system rankings and the ranking
that full-scale applications would realize.

• Computer system vendors pursued designs that
would increase their HPL performance, which would in
turn improve overall application performance.

•  Today HPL remains valuable as a measure of historical
trends, and as a stress test, especially for leadership
class systems that are pushing the boundaries of current
technology.

http://tiny.cc/hpcg 4

The Problem
• HPL performance of computer systems are no longer so

strongly correlated to real application performance,
especially for the broad set of HPC applications governed
by partial differential equations.

• Designing a system for good HPL performance can
actually lead to design choices that are wrong for the
real application mix, or add unnecessary components or
complexity to the system.

http://tiny.cc/hpcg 5

Concerns
•  The gap between HPL predictions and real application

performance will increase in the future.
• A computer system with the potential to run HPL at 1

Exaflops is a design that may be very unattractive for
real applications.

•  Future architectures targeted toward good HPL
performance will not be a good match for most
applications.

•  This leads us to a think about a different metric

http://tiny.cc/hpcg 6

HPL - Good Things
• Easy to run
• Easy to understand
• Easy to check results
• Stresses certain parts of the system
• Historical database of performance information
• Good community outreach tool
•  “Understandable” to the outside world

•  If your computer doesn’t perform well on the LINPACK
Benchmark, you will probably be disappointed with the
performance of your application on the computer.

http://tiny.cc/hpcg 7

HPL - Bad Things
•  LINPACK Benchmark is 36 years old

•  Top500 (HPL) is 20.5 years old

•  Floating point-intensive performs O(n3) floating point
operations and moves O(n2) data.

• No longer so strongly correlated to real apps.
• Reports Peak Flops (although hybrid systems see only 1/2 to 2/3 of Peak)
• Encourages poor choices in architectural features
• Overall usability of a system is not measured
• Used as a marketing tool
• Decisions on acquisition made on one number
• Benchmarking for days wastes a valuable resource

http://tiny.cc/hpcg 8

Running HPL
•  In the beginning to run HPL on the number 1 system

was under an hour.
• On Livermore’s Sequoia IBM BG/Q the HPL run took

about a day to run.
•  They ran a size of n=12.7 x 106 (1.28 PB)

•  16.3 PFlop/s requires about 23 hours to run!!

•  23 hours at 7.8 MW that the equivalent of 100 barrels of oil or about
$8600 for that one run.

•  The longest run was 60.5 hours
•  JAXA machine

•  Fujitsu FX1, Quadcore SPARC64 VII 2.52 GHz
•  A matrix of size n = 3.3 x 106

•  .11 Pflop/s #160 today

http://tiny.cc/hpcg 9

0%#

10%#

20%#

30%#

40%#

50%#

60%#

70%#

80%#

90%#

100%#

6/
1/
93
#

10
/1
/9
3#

2/
1/
94
#

6/
1/
94
#

10
/1
/9
4#

2/
1/
95
#

6/
1/
95
#

10
/1
/9
5#

2/
1/
96
#

6/
1/
96
#

10
/1
/9
6#

2/
1/
97
#

6/
1/
97
#

10
/1
/9
7#

2/
1/
98
#

6/
1/
98
#

10
/1
/9
8#

2/
1/
99
#

6/
1/
99
#

10
/1
/9
9#

2/
1/
00
#

6/
1/
00
#

10
/1
/0
0#

2/
1/
01
#

6/
1/
01
#

10
/1
/0
1#

2/
1/
02
#

6/
1/
02
#

10
/1
/0
2#

2/
1/
03
#

6/
1/
03
#

10
/1
/0
3#

2/
1/
04
#

6/
1/
04
#

10
/1
/0
4#

2/
1/
05
#

6/
1/
05
#

10
/1
/0
5#

2/
1/
06
#

6/
1/
06
#

10
/1
/0
6#

2/
1/
07
#

6/
1/
07
#

10
/1
/0
7#

2/
1/
08
#

6/
1/
08
#

10
/1
/0
8#

2/
1/
09
#

6/
1/
09
#

10
/1
/0
9#

2/
1/
10
#

6/
1/
10
#

10
/1
/1
0#

2/
1/
11
#

6/
1/
11
#

10
/1
/1
1#

2/
1/
12
#

6/
1/
12
#

10
/1
/1
2#

2/
1/
13
#

6/
1/
13
#

61#hours#

30#hours#

20#hours#

12#hours#

11#hours#

10#hours#

9#hours#

8#hours#

7#hours#

6#hours#

5#hours#

4#hours#

3#hours#

2#hours#

1#hour#

Run Times for HPL on Top500 Systems
http://tiny.cc/hpcg 10

#1 System on the Top500 Over the Past 20 Years
(16 machines in that club)

Top500 List Computer
r_max

(Tflop/s) n_max Hours MW
6/93 (1) TMC CM-5/1024 .060 52224 0.4
11/93 (1) Fujitsu Numerical Wind Tunnel .124 31920 0.1 1.
6/94 (1) Intel XP/S140 .143 55700 0.2

11/94 - 11/95
(3) Fujitsu Numerical Wind Tunnel .170 42000 0.1 1.

6/96 (1) Hitachi SR2201/1024 .220 138,240 2.2
11/96 (1) Hitachi CP-PACS/2048 .368 103,680 0.6

6/97 - 6/00 (7) Intel ASCI Red 2.38 362,880 3.7 .85
11/00 - 11/01 (3) IBM ASCI White, SP Power3 375 MHz 7.23 518,096 3.6
6/02 - 6/04 (5) NEC Earth-Simulator 35.9 1,000,000 5.2 6.4
11/04 - 11/07

(7) IBM BlueGene/L 478. 1,000,000 0.4 1.4
6/08 - 6/09 (3) IBM Roadrunner –PowerXCell 8i 3.2 Ghz 1,105. 2,329,599 2.1 2.3

11/09 - 6/10 (2) Cray Jaguar - XT5-HE 2.6 GHz 1,759. 5,474,272 17.3 6.9
11/10 (1) NUDT Tianhe-1A, X5670 2.93Ghz NVIDIA 2,566. 3,600,000 3.4 4.0

6/11 - 11/11 (2) Fujitsu K computer, SPARC64 VIIIfx 10,510. 11,870,208 29.5 9.9
6/12 (1) IBM Sequoia BlueGene/Q 16,324. 12,681,215 23.1 7.9
11/12 (1) Cray XK7 Titan AMD + NVIDIA Kepler 17,590. 4,423,680 0.9 8.2

6/13 – 11/13(?) NUDT Tianhe-2 Intel IvyBridge & Xeon Phi 33,862. 9,960,000 5.4 17.8

9 6 2

11

Ugly Things about HPL
• Doesn’t probe the architecture; only one data point
• Constrains the technology and architecture options for

HPC system designers.
•  Skews system design.

•  Floating point benchmarks are not quite as valuable to
some as data-intensive system measurements

http://tiny.cc/hpcg 12

Many Other Benchmarks
• Top 500
• Green 500
• Graph 500 161
• Sustained Petascale
Performance

• HPC Challenge
• Perfect
• ParkBench
• SPEC-hpc

• Livermore Loops
• EuroBen
• NAS Parallel Benchmarks
• Genesis
• RAPS
• SHOC
• LAMMPS
• Dhrystone
• Whetstone

http://tiny.cc/hpcg 13

Proposal: HPCG
• High Performance Conjugate Gradient (HPCG).
• Solves Ax=b, A large, sparse, b known, x computed.
• An optimized implementation of PCG contains essential

computational and communication patterns that are
prevalent in a variety of methods for discretization and
numerical solution of PDEs

• Patterns:
•  Dense and sparse computations.
•  Dense and sparse collective.
•  Data-driven parallelism (unstructured sparse triangular solves).

• Strong verification and validation properties (via spectral
properties of CG).

http://tiny.cc/hpcg 14

Model Problem Description
• Synthetic discretized 3D PDE (FEM, FVM, FDM).
• Single DOF heat diffusion model.
•  Zero Dirichlet BCs, Synthetic RHS s.t. solution = 1.
•  Local domain:
• Process layout:
• Global domain:
• Sparse matrix:

•  27 nonzeros/row interior.
•  7 – 18 on boundary.
•  Symmetric positive definite.

(nx × ny × nz)

(npx × npy × npz)

(nx *npx)× (ny *npy)× (nz *npz)

http://tiny.cc/hpcg

Example
•  Build HPCG with default MPI and OpenMP modes enabled.

export OMP_NUM_THREADS=1
mpiexec –n 96 ./xhpcg 70 80 90

•  Results in:

•  Global domain dimensions: 280-by-320-by-540
•  Number of equations per MPI process: 504,000
•  Global number of equations: 48,384,000
•  Global number of nonzeros: 1,298,936,872
•  Note: Changing OMP_NUM_THREADS does not change any

of these values.

16

nx = 70, ny = 80, nz = 90

npx = 4, npy = 4, npz = 6

http://tiny.cc/hpcg

CG ALGORITHM
u p0 := x0, r0 := b-Ap0
u Loop i = 1, 2, …

o  zi := M-1ri-1
o  if i = 1

§  pi := zi
§  ai := dot_product(ri-1, z)

o  else
§  ai := dot_product(ri-1, z)
§  bi := ai/ai-1
§  pi := bi*pi-1+zi

o  end if
o  ai := dot_product(ri-1, zi) /dot_product(pi, A*pi)
o  xi+1 := xi + ai*pi
o  ri := ri-1 – ai*A*pi
o  if ||ri||2 < tolerance then Stop

u end Loop

http://tiny.cc/hpcg 17

Problem Setup

• Construct Geometry.
• Generate Problem.
• Setup Halo Exchange.
• Initialize Sparse Meta-data.
• Call user-defined
OptimizeProblem function.
This function permits the
user to change data
structures and perform
permutation that can improve
execution.

Validation Testing

• Perform spectral
properties CG Tests:
• Convergence for 10
distinct eigenvalues:
•  No preconditioning.
• With Preconditioning

• Symmetry tests:
• Sparse MV kernel.
• Symmetric Gauss-Seidel
kernel.

Reference Sparse MV
and Gauss-Seidel
kernel timing.

• Time calls to the
reference versions
of sparse MV and
symmetric Gauss-
Seidel for inclusion
in output report.

Reference CG timing
and residual
reduction.

• Time the execution
of 50 iterations of
the reference CG
implementation.

• Record reduction of
residual using the
reference
implementation.
The optimized code
must attain the
same residual
reduction, even if
more iterations are
required.

Optimized CG Setup.

• Run one set of Optimized CG solver
to determine number of iterations
required to reach residual reduction
of reference CG.

• Record iteration count as
numberOfOptCgIters.

• Detect failure to converge.
• Compute how many sets of
Optimized CG Solver are required
to fill benchmark timespan. Record
as numberOfCgSets

Optimized CG timing and
analysis.

• Run numberOfCgSets
calls to optimized CG
solver with
numberOfOptCgIters
iterations.

• For each set, record
residual norm.

• Record total time.
• Compute mean and
variance of residual
values.

Report results

• Write a log file for
diagnostics and
debugging.

• Write a benchmark
results file for reporting
official information.

http://tiny.cc/hpcg 18

Problem Setup

•  Construct Geometry.
•  Generate Problem.
•  Setup Halo Exchange.

•  Use symmetry to eliminate communication in this phase.
•  C++ STL containers/algorithms: Simple code, force use of C++.

•  Initialize Sparse Meta-data.
•  Call user-defined OptimizeProblem function.

•  Permits the user to change data structures and perform
permutation that can improve execution.

http://tiny.cc/hpcg 19

Validation Testing

•  Temporarily modify matrix diagonals:
•  (2.0e6, 3.0e6, … 9.0e6, 1.0e6, …1.0e6).
•  Offdiagonal still -1.0.
•  Matrix looks diagonal with 10 distinct eigenvalues.

•  Perform spectral properties CG Tests:
•  Convergence for 10 distinct eigenvalues:

•  No preconditioning: About 10 iters.
•  With Preconditioning: About 1 iter.

•  Symmetry tests:
•  Matrix, preconditioner are symmetric.
•  Sparse MV kernel.
•  Symmetric Gauss-Seidel kernel.

xT Ay = yT Ax

xTM −1y = yTM −1x

http://tiny.cc/hpcg 20

Reference Sparse MV and
Gauss-Seidel kernel timing.

• Time calls to the reference
versions of sparse MV and
symmetric Gauss-Seidel for
inclusion in output report.

http://tiny.cc/hpcg 21

Reference CG timing and residual reduction.

•  Time the execution of 50 iterations of the
reference CG implementation.

• Record reduction of residual using the
reference implementation.

•  The optimized code must attain the same
residual reduction, even if more iterations are
required.
• Most graph coloring algorithms improve

parallel execution at the expense of
increasing iteration counts.

Optimized CG Setup.

•  Run one set of Optimized CG solver to determine number
of iterations required to reach residual reduction of
reference CG.

•  Record iteration count as numberOfOptCgIters.
•  Detect failure to converge.
•  Compute how many sets of Optimized CG Solver are

required to fill benchmark timespan. Record as
numberOfCgSets

Optimized CG timing and analysis.

• Run numberOfCgSets calls to
optimized CG solver with
numberOfOptCgIters iterations.

•  For each set, record residual
norm.

• Record total time.
• Compute mean and variance of

residual values.

Report results

• Write a log file for
diagnostics and
debugging.

• Write a benchmark
results file for reporting
official information.

http://tiny.cc/hpcg 25

Example
• Reference CG: 50 iterations, residual drop of 1e-6.
• Optimized CG: Run one set of iterations

•  Multicolor ordering for Symmetric Gauss-Seidel:
•  Better vectorization, threading.
•  But: Takes 65 iterations to reach residual drop of 1e-6.

•  Overhead:
•  Extra 15 iterations.
•  Computing of multicolor ordering.

•  Compute number of sets we must run to fill entire execution time:
•  5h/time-to-compute-1-set.
•  Results in thousands of CG set runs.

• Run and record residual for each set.
•  Report mean and variance (accounts for non-associativity of FP

addition).

http://tiny.cc/hpcg 26

Preconditioner
• Symmetric Gauss-Seidel preconditioner

•  (Non-overlapping additive Schwarz)
•  Differentiate latency vs. throughput optimize core sets.

•  From Matlab reference code:
Setup:

 LA = tril(A); UA = triu(A); DA = diag(diag(A));
Solve:

 x = LA\y;
 x1 = y - LA*x + DA*x; % Subtract off extra diagonal contribution
 x = UA\x1;

27

http://tiny.cc/hpcg 27

Key Computation Data Patterns
• Domain decomposition:

•  SPMD (MPI): Across domains.
•  Thread/vector (OpenMP, compiler): Within domains.

• Vector ops:
•  AXPY: Simple streaming memory ops.
•  DOT/NRM2 : Blocking Collectives.

• Matrix ops:
•  SpMV: Classic sparse kernel (option to reformat).
•  Symmetric Gauss-Seidel: sparse triangular sweep.

•  Exposes real application tradeoffs:
•  threading & convergence vs. SPMD and scaling.

28

http://tiny.cc/hpcg 28

Merits of HPCG
•  Includes major communication/computational patterns.

•  Represents a minimal collection of the major patterns.

• Rewards investment in:
•  High-performance collective ops.
•  Local memory system performance.
•  Low latency cooperative threading.

• Detects and measures variances from bitwise identical
computations.

29

http://tiny.cc/hpcg 29

COMPUTATIONAL
RESULTS

http://tiny.cc/hpcg 30

GFLOPS/s “Shock”

0"

1000"

2000"

3000"

4000"

5000"

6000"

1" 2" 4" 8" 16" 32"

G
flo

p/
s'

Nodes'

Results'for'Cielo'
Dual'Socket'AMD'(8'core)'Magny'Cour'

Each'node'is'2*8'Cores'2.4'GHz'='Total'153.6'Gflops/'

Theore/cal"Peak"

HPL"GFLOP/s"

HPCG"GFLOP/s"

http://tiny.cc/hpcg 31

512 MPI Processes

Courtesy Kalyan
Kumaran, Argonne

Courtesy Mahesh
Rajan, Sandia

Cielo, Red Sky, Edison, SID

http://tiny.cc/hpcg 32

Edison: Avg DDOT MPI_Allreduce time: 2.0 sec
Red Sky: Avg DDOT MPI_Allreduce time: 10.5 sec

Results courtesy of Ludovic Saugé, Bull

Results courtesy of M. Rajan, D. Doerfler, Sandia

Sequoia Results

http://tiny.cc/hpcg 33

Results courtesy of Ian Karlin, Scott Futral, LLNL

http://tiny.cc/hpcg 34

•  Total%x10%speed%up%now%
•  ConVnuous%memory%for%matrix%
•  MulVMcoloring%for%SYMGS%

mulVMthreading%
•  Under%Studying%
•  Node%reMordering%for%SPMV%
•  Advanced%matrix%storage%way%%
•  And%so%on%

•  Parallel%scalability%shouldn’t%be%
obstacle%for%large%scale%problem%
• We%are%focusing%on%single%CPU%
performance%improvement%

Tuning%result%on%the%K%computer�
Summary'of'“as'is”'code'on'the'K�

��

8%Processes,%8%Threads/Process%(Peak%128x8%GFLOPS)�

Improvement�

0.0%%

20.0%%

40.0%%

60.0%%

80.0%%

100.0%%

120.0%%

140.0%%

As%Is% Tuned%

Ti
m
e'
[s
]'

Measured'Time'of'Kernels'
(by'HPCG.*.yaml'file)'

OpVmizaVon%

DDOT%

WAXPBY%

SPMV%

SYMGS%

Total%0.0%%

5.0%%

10.0%%

15.0%%

20.0%%

25.0%%

30.0%%

35.0%%

40.0%%

45.0%%

50.0%%

As%Is% Tuned%

GF
LO

PS
'

Measured'GFLOPS'of'Kernels'
(by'HPCG.*.yaml'file)�

DDOT%

WAXPBY%

SPMV%

SYMGS%

Total%

Total%with%Opt.%
overhead%

x10�

x10�

GFLOPSS10���HKF^��^	����
F
XZY[OIE�
GULDTPM^%
��	�PGFLOPS�(V\]W)QJURNM
SOD�

Slide courtesy Naoya Maruyama, RIKEN AICS, and Fujitsu

Next Steps
• Validate against real apps on real machines.

•  Validate ranking and driver potential.
•  Modify code as needed.
•  Considering multi-level

preconditioner.
•  Discussions with LBL show potential

to enrich design tradeoff space
•  Repeat as necessary.

•  Introduce to broader community.
•  HPCG 1.0 released today.

• Notes:
•  Simple is best.
•  First version need not be last version (HPL evolved).

35

http://tiny.cc/hpcg 35

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

0 1 2 3 4 5 6
v-cycle

Communication within each V-Cycle

Message Size (bytes)
P2P Messages
Global Collectives

Graph courtesy Future Technology Group, LBL

HPCG and HPL
• We are NOT proposing to eliminate HPL as a metric.

•  The historical importance and community outreach value
is too important to abandon.

• HPCG will serve as an alternate ranking of the Top500.
•  Similar perhaps to the Green500 listing.

36

http://tiny.cc/hpcg 36

HPCG Tech Reports
Toward a New Metric for Ranking
High Performance Computing Systems

•  Jack Dongarra and Michael Heroux
HPCG Technical Specification
•  Jack Dongarra, Michael Heroux,

Piotr Luszczek

•  http://tiny.cc/hpcg

37

http://tiny.cc/hpcg 37

