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Started 36 Years Ago
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High Performance Linpack (HPL)

- Is a widely recognized and discussed metric for ranking
high performance computing systems

- When HPL gained prominence as a performance metric in
the early 1990s there was a strong correlation between
its predictions of system rankings and the ranking
that full-scale applications would realize.

- Computer system vendors pursued designs that
would increase their HPL performance, which would in
turn improve overall application performance.

- Today HPL remains valuable as a measure of historical
trends, and as a stress test, especially for leadership
class systems that are pushing the boundaries of current

technology.
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The Problem

- HPL performance of computer systems are no longer so
strongly correlated to real application performance,
especially for the broad set of HPC applications governed
by partial differential equations.

- Designing a system for good HPL performance can
actually lead to design choices that are wrong for the
real application mix, or add unnecessary components or
complexity to the system.



Concerns

- The gap between HPL predictions and real application
performance will increase in the future.

- A computer system with the potential to run HPL at 1
Exaflops is a design that may be very unattractive for
real applications.

- Future architectures targeted toward good HPL
performance will not be a good match for most
applications.

- This leads us to a think about a different metric
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HPL - Good Things

Easy to run

Easy to understand

Easy to check results

Stresses certain parts of the system

Historical database of performance information
Good community outreach tool
“Understandable” to the outside world

If your computer doesn’t perform well on the LINPACK
Benchmark, you will probably be disappointed with the
performance of your application on the computer.
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HPL - Bad Things

LINPACK Benchmark is 36 years old
Top500 (HPL) is 20.5 years old

Floating point-intensive performs O(n3) floating point
operations and moves O(n?) data.

No longer so strongly correlated to real apps.

Reports Peak Flops (although hybrid systems see only 1/2 to 2/3 of Peak)
Encourages poor choices in architectural features
Overall usability of a system is not measured

Used as a marketing tool

Decisions on acquisition made on one number
Benchmarking for days wastes a valuable resource
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Running HPL

- In the beginning to run HPL on the number 1 system
was under an hour.

- On Livermore’s Sequoia IBM BG/Q the HPL run took
about a day to run.

- They ran a size of n=12.7 x 10°(1.28 PB)
- 16.3 PFlop/s requires about 23 hours to run!!

- 23 hours at 7.8 MW that the equivalent of 100 barrels of oil or about
$8600 for that one run.

- The longest run was 60.5 hours

- JAXA machine
- Fujitsu FX1, Quadcore SPARC64 VIl 2.52 GHz
- A matrix of size n = 3.3 x 106

- .11 Pflop/s #160 today
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#1 System on the Top500 Over the Past 20 Years
6.0

(16 machines 1n that club) 9
6/93 (1) | TMC CM-5/1024
11/93 (1)  Fujitsu Numerical Wind Tunnel
6/94 (1) Intel XP/S140
11/94 - 11/95
(3) Fujitsu Numerical Wind Tunnel
6/96 (1) Hitachi SR2201/1024
11/96 (1) Hitachi CP-PACS/2048

6/97 - 6/00 (7) Intel ASCI Red
11/00 - 11/01 (3)IBM ASCTI White, SP Power3 375 MHz

6/02 - 6/04 (5) NEC Earth-Simulator
11/04 - 11/07
(7) IBM BlueGene/L

6/08 - 6/09 (3) IBM Roadrunner -PowerXCell 8i 3.2 Ghz
11/09 - 6/10 (2) Cray Jaguar - XT5-HE 2.6 GHz

11/10 (1)  NUDT Tianhe-1A, X5670 2.936hz NVIDIA
6/11 - 11/11 (2) Fujitsu K computer, SPARC64 VIIIfx

6/12 (1) IBM Sequoia BlueGene/Q

11/12 (1)  Cray XK7 Titan AMD + NVIDIA Kepler
6/13 - 11/13(?) NUDT Tianhe-2 Intel IvyBridge & Xeon Phi
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Ugly Things about HPL

- Doesn’t probe the architecture; only one data point

- Constrains the technology and architecture options for
HPC system designers.
- Skews system design.

- Floating point benchmarks are not quite as valuable to
some as data-intensive system measurements



Many Other Benchmarks
- Top 500 - Livermore Loops
- Green 500 - EuroBen
- Graph 500-161 - NAS Parallel Benchmarks
- Sustained Petascale - Genesis
Performance - RAPS
- HPC Challenge - SHOC
- Perfect - LAMMPS
- ParkBench . Dhrystone

- SPEC-hpc - Whetstone
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Proposal: HPCG

High Performance Conjugate Gradient (HPCG).
Solves Ax=b, A large, sparse, b known, x computed.

An optimized implementation of PCG contains essential
computational and communication patterns that are
prevalent in a variety of methods for discretization and
numerical solution of PDEs

Patterns:
Dense and sparse computations.

Dense and sparse collective.
Data-driven parallelism (unstructured sparse triangular solves).

Strong verification and validation properties (via spectral
properties of CG).



Model Problem Description

- Synthetic discretized 3D PDE (FEM, FVM, FDM).
- Single DOF heat diffusion model.
- Zero Dirichlet BCs, Synthetic RHS s.t. solution = 1.
- Local domain: (n,xn,xn.)
- Process layout; ~ ("P.Xnp,Xnp,)
- Global domain: (. *np,)x(n,*np )x(n *np,)
- Sparse matrix:
- 27 nonzeros/row interior.

- 7 — 18 on boundary.
- Symmetric positive definite.

27-point stencil operator
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Example

Build HPCG with default MPl and OpenMP modes enabled.
export OMP_NUM_THREADS=1
mpiexec —n 96 ./xhpcg 70 80 90

Results in:
n._=170, n,= 80, n, =90

np,=4,np,=4,np =6
Global domain dimensions: 280-by-320-by-540
Number of equations per MPI process: 504,000
Global number of equations: 48,384,000
Global number of nonzeros: 1,298,936,872

Note: Changing OMP_NUM_ THREADS does not change any
of these values.
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CG ALGORITHM
®p, =x,r,=b-Ap,
®Lloopi=1,2,...
o z;:=M'r,,
oifi=1
"Pi Tz
"a = dot_product(?’i_], Z)
o else
"a = dot_product(l”l-_], Z)
" b, :=ajla,,
" p;=bp. itz
end 1f
a; .= dot_product(l”l-_], Zi) /dot_product(pl-, A*pl-)
Xpvp =X T 4P,
7= = aATp,

o 1f ||r]|, < tolerance then Stop
@ cnd Loop

O O O O




Problem Setup

*Construct Geometry.

*Generate Problem.

*Setup Halo Exchange.

*Initialize Sparse Meta-data.

*Call user-defined
OptimizeProblem function.
This function permits the
user to change data
structures and perform
permutation that can improve
execution.

Optimized CG Setup.

*Run one set of Optimized CG solver
to determine number of iterations
required to reach residual reduction
of reference CG.

*Record iteration count as
numberOfOptCglters.

*Detect failure to converge.

*Compute how many sets of
Optimized CG Solver are required
to fill benchmark timespan. Record
as numberOfCgSets

\_

/

*Perform spectral
properties CG Tests:
*Convergence for 10

distinct eigenvalues:
* No preconditioning.
*With Preconditioning

*Symmetry tests:

*Sparse MV kernel.

*Symmetric Gauss-Seidel
kernel.

Optimized CG timing and
analysis.

*Run numberOfCgSets
calls to optimized CG
solver with
numberOfOptCglters
iterations.

*For each set, record
residual norm.

*Record total time.

*Compute mean and
variance of residual
values.

Reference Sparse MV
and Gauss-Seidel

kernel timing.

*Time calls to the
reference versions
of sparse MV and
symmetric Gauss-
Seidel for inclusion
in output report.

Reference CG timing
and residual
reduction.

*Time the execution
of 50 iterations of
the reference CG
implementation.

*Record reduction of
residual using the
reference
implementation.
The optimized code
must attain the
same residual
reduction, even if
more iterations are
required.

*Write a log file for

*Write a benchmark

diagnostics and
debugging.

results file for reporting
official information.




Problem Setup

« Construct Geometry.
« Generate Problem.
« Setup Halo Exchange.
« Use symmetry to eliminate communication in this phase.
« C++ STL containers/algorithms: Simple code, force use of C++.
* |nitialize Sparse Meta-data.
 Call user-defined OptimizeProblem function.

* Permits the user to change data structures and perform
permutation that can improve execution.

o /




Validation Testing

.

« Temporarily modify matrix diagonals:

 (2.0e6, 3.0e0, ... 9.0e6, 1.0e06, ...1.0e06).
 Offdiagonal still -1.0.
« Matrix looks diagonal with 10 distinct eigenvalues.
Perform spectral properties CG Tests:
« Convergence for 10 distinct eigenvalues:

* No preconditioning: About 10 iters.

« With Preconditioning: About 1 iter.

Symmetry tests:
« Matrix, preconditioner are symmetric.
« Sparse MV kernel. x Ay=y" Ax

- Symmetric Gauss-Seidel kernel.  x"M'y=y" M 'x

~

/




Reference Sparse MV and

Gauss-Seidel kernel timing.

* Time calls to the reference
versions of sparse MV and
symmetric Gauss-Seidel for
inclusion in output report.

.




Reference CG timing and residual reduction.

~

* Time the execution of 50 iterations of the
reference CG implementation.

» Record reduction of residual using the
reference implementation.

* The optimized code must attain the same
residual reduction, even if more iterations are
required.

* Most graph coloring algorithms improve

parallel execution at the expense of
Increasing iteration counts.

o /




Optimized CG Setup.

* Run one set of Optimized CG solver to determine number
of iterations required to reach residual reduction of
reference CG.

« Record iteration count as numberOfOptCglters.
 Detect failure to converge.

« Compute how many sets of Optimized CG Solver are
required to fill benchmark timespan. Record as
numberOfCgSets

\_ /




Optimized CG timing and analysis.

\

 Run numberOfCgSets calls to
optimized CG solver with
numberOfOptCglters iterations.

 For each set, record residual
norm.

 Record total time.

 Compute mean and variance of
residual values.

\_ /




Report results

\
* Write a log file for

diagnostics and
debugging.
* Write a benchmark

results file for reporting
official information.

o /
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Example

Reference CG: 50 iterations, residual drop of 1e-6.

Optimized CG: Run one seft of iterations

Multicolor ordering for Symmetric Gauss-Seidel:
Better vectorization, threading.
But: Takes 65 iterations to reach residual drop of 1e-6.
Overhead:
Extra 15 iterations.
Computing of multicolor ordering.
Compute number of sets we must run to fill entire execution time:
Sh/time-to-compute-1-set.
Results in thousands of CG set runs.

Run and record residual for each set.

Report mean and variance (accounts for non-associativity of FP
addition).



Preconditioner

- Symmetric Gauss-Seidel preconditioner
- (Non-overlapping additive Schwarz)
- Differentiate latency vs. throughput optimize core sets.

- From Matlab reference code:

Setup:
LA = tril(A); UA = triu(A); DA = diag(diag(A));

Solve:
x = LAly;
x1 =y - LA*x + DA*X; % Subtract off extra diagonal contribution
x = UA\X1;
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Key Computation Data Patterns

- Domain decomposition:
- SPMD (MPI): Across domains.
- Thread/vector (OpenMP, compiler): Within domains.

- Vector ops:

- AXPY: Simple streaming memory ops.
- DOT/NRMZ2 : Blocking Collectives.

- Matrix ops:
- SpMV: Classic sparse kernel (option to reformat).

- Symmetric Gauss-Seidel: sparse triangular sweep.

- Exposes real application tradeoffs:
- threading & convergence vs. SPMD and scaling.



S mwusioecgme
Merits of HPCG

- Includes major communication/computational patterns.
- Represents a minimal collection of the major patterns.

- Rewards investment in:
- High-performance collective ops.
- Local memory system performance.
- Low latency cooperative threading.

- Detects and measures variances from bitwise identical
computations.



COMPUTATIONAL
RESULTS




GFLOPS/s “Shock”
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Peak Gflops

Mira Partition

Size

Gflop/s

Results for Cielo

Dual Socket AMD (8 core) Magny Cour

Each node is 2*8 Cores 2.4 GHz = Total 153.6 Gflops/ 512 nodes

6000

Sustained
Gflops

% of peak

64 nodes 13107.2 73.4 0.56%
128 nodes 26214.4 147.43 0.56%
256 nodes 52428.8 293.8 0.56%

104857.6 587.97 0.56%
1024 nodes 209715.2 1176.69 0.56%
49152 nodes 10066329.6 55177.6 0.55%

5000

4000

3000

@=HPL GFLOP/s

2000

1000

Nodes

16

32

512 MPI Proce

e=(meTheoretical Peak

HPCG GFLOP/s

Courtesy Kalyan
Kumaran, Argonne

Courtesy Mahesh
Rajan, Sandia

SSses




Results courtesy of Ludovic Saugé, Bull

Cielo, Red Sky, Edison, SID

Performance (Gflops/s)

GFLOP/s

10000

1000

100

10

hpcg-0.4 or 0.5; GFLOP/s rating

8192

HPCG runs on SID System

® Sid (E5-2697v2, DDR3-1866 MT/s, FDR)
& Curie (€5-2680, DDR3-1600 MT/s, QDR)

16 64 256
Number of MPI process

1024 4096 16384

| ==IDEAL Cielo 16 PE basis yaa
~~Edison hpcg-0.4
=i Re d Sky; 0.5;,GNU AN
d \
Edison: Avg DDOT MPI_Allreduce time: 2.0 sec
Red Sky: Avg DDOT MPI_Allreduce time: 10.5 sec
16 64 256 1024 4096 16384

# of MPI Tasks ( 1 thread/task)

Results courtesy of M. Rajan, D. Doerfler, Sandia




HPCG GFLOP/s on Sequoia: MPI x OpenMP
6.29M total threads, 1.57T equations
300000
250000 q
200000
<
a.
Q 150000
o  786432x8
£1572864x4
100000 -
50000 -
0 -
DDOT WAXPBY SpMV SymGS Total
Compute Phase

Results courtesy of lan Karlin, Scott Futral, LLNL
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D |

{} Tuning result on the K computer

pnp it

Summary of “as is” code on the K

Measured Time of Kernels * Parallel scalability shouldn’t be
(by HPCG.*.yaml file) obstacle for large scale problem
140.0 * We are focusing on single CPU
190.0 \ ™ Optimization performance improvement
100.0 x10 =ppoT | V
\ / Improvement \
2. 80.0 \ WAXPBY * Total x10 speed up now
-,§ 60.0 * Continuous memory for matrix
\ W SPMV * Multi-coloring for SYMGS
40.0 \ multi-threading
50,0 | "oYMes * Under Studying
o M * Node re-ordering for SPMV
0.0 - Total * Advanced matrix storage way
Asls Tuned
* Andsoon

8 Processes, 8 Threads/Process (Peak 128x8 GFLOPS)

RIKEN
@ Advanced Institute for 4
RIk=H  Computational Science (AICS)

Slide courtesy Naoya Maruyama, RIKEN AICS, and Fuijitsu
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Next Steps

- Validate against real apps on real machines.

- Validate ranking and driver potential. Communication within each V-Cycle
1.E+06

- Modify code as needed. Ee0s ® Message Size (bytes)
. . . . ' B# P2P Messages
ConS|de.r|.ng multi-level 1 E+04 - B4 Global Collectives
preconditioner. 1 E+03 |
- Discussions with LBL show potential 4 g+02 -
to enrich design tradeoff space 1 E+01 -
- Repeat as necessary. 1.E+00 -
* Introduce to broader community. =2t " T e e e
- HPCG 1.0 released today. v-cycle
. Notes: Graph courtesy Future Technology Group, LBL

- Simple is best.
- First version need not be last version (HPL evolved).
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HPCG and HPL

- We are NOT proposing to eliminate HPL as a metric.

- The historical importance and community outreach value
Is too important to abandon.

- HPCG will serve as an alternate ranking of the Top500.
- Similar perhaps to the Green500 listing.
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