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2 Confessions of an  
Accidental Benchmarker 

•  Appendix B of the Linpack Users’ Guide 
•  Designed to help users extrapolate execution                                time for 

Linpack software package 
•  First benchmark report from 1977;  

•  Cray 1 to DEC PDP-10                                  
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Started 36 Years Ago 
Have seen a Factor of 109  - From 14 Mflop/s to 34 Pflop/s 

•  In the late 70’s the 
fastest computer ran 
LINPACK at 14 Mflop/s 

•  Today with HPL we are 
at 34 Pflop/s 
•  Nine orders of magnitude 
•  doubling every 14 months 
•  About 6 orders of 

magnitude increase in the 
number of processors 

•  Plus algorithmic 
improvements 

Began in late 70’s  
time when floating point operations were expensive compared to 
other operations and data movement 
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High Performance Linpack (HPL) 
•  Is a widely recognized and discussed metric for ranking 

high performance computing systems  
• When HPL gained prominence as a performance metric in 

the early 1990s there was a strong correlation between 
its predictions of system rankings and the ranking 
that full-scale applications would realize. 

• Computer system vendors pursued designs that 
would increase their HPL performance, which would in 
turn improve overall application performance. 

•  Today HPL remains valuable as a measure of historical 
trends, and as a stress test, especially for leadership 
class systems that are pushing the boundaries of current 
technology.  
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The Problem 
• HPL performance of computer systems are no longer so 

strongly correlated to real application performance, 
especially for the broad set of HPC applications governed 
by partial differential equations. 

• Designing a system for good HPL performance can 
actually lead to design choices that are wrong for the 
real application mix, or add unnecessary components or 
complexity to the system. 
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Concerns 
•  The gap between HPL predictions and real application 

performance will increase in the future.  
• A computer system with the potential to run HPL at 1 

Exaflops is a design that may be very unattractive for 
real applications.  

•  Future architectures targeted toward good HPL 
performance will not be a good match for most 
applications. 

•  This leads us to a think about a different metric  
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HPL - Good Things 
• Easy to run 
• Easy to understand 
• Easy to check results 
• Stresses certain parts of the system 
• Historical database of performance information 
• Good community outreach tool 
•  “Understandable” to the outside world 

•  If your computer doesn’t perform well on the LINPACK 
Benchmark, you will probably be disappointed with the 
performance of your application on the computer. 
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HPL - Bad Things  
•  LINPACK Benchmark is 36 years old 

•  Top500 (HPL)  is 20.5 years old 

•  Floating point-intensive performs O(n3) floating point 
operations and moves O(n2) data. 

• No longer so strongly correlated to real apps. 
• Reports Peak Flops (although hybrid systems see only 1/2 to 2/3 of Peak) 
• Encourages poor choices in architectural features  
• Overall usability of a system is not measured 
• Used as a marketing tool 
• Decisions on acquisition made on one number 
• Benchmarking for days wastes a valuable resource 
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Running HPL 
•  In the beginning to run HPL on the number 1 system 

was under an hour. 
• On Livermore’s Sequoia IBM BG/Q the HPL run took 

about a day to run. 
•  They ran a size of n=12.7 x 106 (1.28 PB) 

•  16.3 PFlop/s requires about 23 hours to run!! 

•  23 hours at 7.8 MW that the equivalent of 100 barrels of oil or about 
$8600 for that one run.  

•  The longest run was 60.5 hours  
•  JAXA machine  

•  Fujitsu FX1, Quadcore  SPARC64 VII  2.52 GHz 
•  A matrix of size n = 3.3 x 106 

•  .11 Pflop/s #160 today 
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#1 System on the Top500 Over the Past 20 Years  
(16 machines in that club) 

Top500  List Computer 
r_max 

(Tflop/s) n_max Hours MW 
6/93 (1) TMC CM-5/1024 .060 52224 0.4 
11/93 (1) Fujitsu Numerical Wind Tunnel .124 31920 0.1 1. 
6/94 (1) Intel XP/S140 .143 55700 0.2 

11/94 - 11/95 
(3) Fujitsu Numerical Wind Tunnel .170 42000 0.1 1. 

6/96 (1) Hitachi SR2201/1024 .220 138,240 2.2 
11/96 (1) Hitachi CP-PACS/2048 .368 103,680 0.6 

6/97 - 6/00 (7) Intel ASCI Red 2.38 362,880 3.7 .85 
11/00 - 11/01 (3) IBM ASCI White, SP Power3 375 MHz 7.23 518,096 3.6 
6/02 - 6/04 (5) NEC Earth-Simulator 35.9 1,000,000 5.2 6.4 
11/04 - 11/07 

(7) IBM BlueGene/L  478. 1,000,000 0.4 1.4 
6/08 - 6/09 (3)  IBM Roadrunner –PowerXCell 8i 3.2 Ghz 1,105. 2,329,599 2.1 2.3 

11/09 - 6/10 (2) Cray Jaguar - XT5-HE 2.6 GHz 1,759. 5,474,272 17.3 6.9 
11/10 (1) NUDT Tianhe-1A, X5670 2.93Ghz NVIDIA  2,566. 3,600,000 3.4 4.0 

6/11 - 11/11 (2) Fujitsu K computer, SPARC64 VIIIfx 10,510. 11,870,208 29.5 9.9 
6/12 (1) IBM Sequoia BlueGene/Q 16,324. 12,681,215 23.1 7.9 
11/12 (1) Cray XK7 Titan AMD + NVIDIA Kepler 17,590. 4,423,680 0.9 8.2 

6/13 – 11/13(?) NUDT Tianhe-2 Intel IvyBridge & Xeon Phi 33,862. 9,960,000 5.4 17.8 

9 6 2 
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Ugly Things about HPL 
• Doesn’t probe the architecture; only one data point 
• Constrains the technology and architecture options for 

HPC system designers. 
•  Skews system design. 

•  Floating point benchmarks are not quite as valuable to 
some as data-intensive system measurements 

http://tiny.cc/hpcg 12 



Many Other Benchmarks 
• Top 500 
• Green 500 
• Graph 500 161 
• Sustained Petascale 
Performance  

• HPC Challenge 
• Perfect 
• ParkBench 
• SPEC-hpc 

• Livermore Loops 
• EuroBen 
• NAS Parallel Benchmarks 
• Genesis 
• RAPS 
• SHOC 
• LAMMPS 
• Dhrystone  
• Whetstone 
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Proposal: HPCG 
• High Performance Conjugate Gradient (HPCG). 
• Solves Ax=b, A large, sparse, b known, x computed. 
• An optimized implementation of PCG contains essential 

computational and communication patterns that are 
prevalent in a variety of methods for discretization and 
numerical solution of PDEs  

• Patterns: 
•  Dense and sparse computations. 
•  Dense and sparse collective. 
•  Data-driven parallelism (unstructured sparse triangular solves). 

• Strong verification and validation properties (via spectral 
properties of CG). 
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Model Problem Description 
• Synthetic discretized 3D PDE (FEM, FVM, FDM). 
• Single DOF heat diffusion model. 
•  Zero Dirichlet BCs, Synthetic RHS s.t. solution = 1. 
•  Local domain: 
• Process layout: 
• Global domain: 
• Sparse matrix:  

•  27 nonzeros/row interior.  
•  7 – 18 on boundary. 
•  Symmetric positive definite. 

(nx × ny × nz )

(npx × npy × npz )

(nx *npx )× (ny *npy )× (nz *npz )
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Example 
•  Build HPCG with default MPI and OpenMP modes enabled. 

export OMP_NUM_THREADS=1 
mpiexec –n 96 ./xhpcg 70 80 90 

•  Results in: 

•  Global domain dimensions: 280-by-320-by-540 
•  Number of equations per MPI process: 504,000 
•  Global number of equations:     48,384,000 
•  Global number of nonzeros: 1,298,936,872 
•  Note: Changing OMP_NUM_THREADS does not change any 

of these values. 

16 

nx = 70,  ny = 80,  nz = 90

npx = 4,  npy = 4,  npz = 6
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CG ALGORITHM 
u p0 := x0, r0 := b-Ap0 
u Loop i = 1, 2, … 

o  zi := M-1ri-1 
o  if i = 1 

§  pi := zi 
§  ai := dot_product(ri-1, z) 

o  else 
§  ai := dot_product(ri-1, z) 
§  bi := ai/ai-1 
§  pi := bi*pi-1+zi 

o  end if 
o  ai := dot_product(ri-1, zi) /dot_product(pi, A*pi) 
o  xi+1 := xi + ai*pi 
o  ri := ri-1 – ai*A*pi 
o  if ||ri||2 < tolerance then Stop 

u end Loop 
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Problem Setup 

• Construct Geometry. 
• Generate Problem. 
• Setup Halo Exchange. 
• Initialize Sparse Meta-data. 
• Call user-defined 
OptimizeProblem function.  
This function permits the 
user to change data 
structures and perform 
permutation that can improve 
execution. 

Validation Testing 

• Perform spectral 
properties CG Tests: 
• Convergence for 10 
distinct eigenvalues: 
•  No preconditioning. 
• With Preconditioning 

• Symmetry tests: 
• Sparse MV kernel. 
• Symmetric Gauss-Seidel 
kernel. 

Reference Sparse MV 
and Gauss-Seidel 
kernel timing. 

• Time calls to the 
reference versions 
of sparse MV and 
symmetric Gauss-
Seidel for inclusion 
in output report. 

Reference CG timing 
and residual 
reduction. 

• Time the execution 
of 50 iterations of 
the reference CG 
implementation. 

• Record reduction of 
residual using the 
reference 
implementation.  
The optimized code 
must attain the 
same residual 
reduction, even if 
more iterations are 
required. 

Optimized CG Setup.   

• Run one set of Optimized CG solver 
to determine number of iterations 
required to reach residual reduction 
of reference CG. 

• Record iteration count as 
numberOfOptCgIters. 

• Detect failure to converge. 
• Compute how many sets of 
Optimized CG Solver are required 
to fill benchmark timespan. Record 
as numberOfCgSets 

Optimized CG timing and 
analysis. 

• Run numberOfCgSets 
calls to optimized CG 
solver with 
numberOfOptCgIters 
iterations. 

• For each set, record 
residual norm. 

• Record total time. 
• Compute mean and 
variance of residual 
values. 

Report results 

• Write a log file for 
diagnostics and 
debugging. 

• Write a benchmark 
results file for reporting 
official information. 
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Problem Setup 

•  Construct Geometry. 
•  Generate Problem. 
•  Setup Halo Exchange. 

•  Use symmetry to eliminate communication in this phase. 
•  C++ STL containers/algorithms: Simple code, force use of C++. 

•  Initialize Sparse Meta-data. 
•  Call user-defined OptimizeProblem function.   

•  Permits the user to change data structures and perform 
permutation that can improve execution. 
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Validation Testing 

•  Temporarily modify matrix diagonals: 
•  (2.0e6, 3.0e6, … 9.0e6, 1.0e6, …1.0e6). 
•  Offdiagonal still -1.0. 
•  Matrix looks diagonal with 10 distinct eigenvalues. 

•  Perform spectral properties CG Tests: 
•  Convergence for 10 distinct eigenvalues: 

•   No preconditioning: About 10 iters. 
•  With Preconditioning: About 1 iter. 

•  Symmetry tests: 
•  Matrix, preconditioner are symmetric. 
•  Sparse MV kernel. 
•  Symmetric Gauss-Seidel kernel. 

xT Ay = yT Ax

xTM −1y = yTM −1x
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Reference Sparse MV and 
Gauss-Seidel kernel timing. 

• Time calls to the reference 
versions of sparse MV and 
symmetric Gauss-Seidel for 
inclusion in output report. 
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Reference CG timing and residual reduction. 

•  Time the execution of 50 iterations of the 
reference CG implementation. 

• Record reduction of residual using the 
reference implementation.   

•  The optimized code must attain the same 
residual reduction, even if more iterations are 
required. 
• Most graph coloring algorithms improve 

parallel execution at the expense of 
increasing iteration counts. 



Optimized CG Setup.   

•  Run one set of Optimized CG solver to determine number 
of iterations required to reach residual reduction of 
reference CG. 

•  Record iteration count as numberOfOptCgIters. 
•  Detect failure to converge. 
•  Compute how many sets of Optimized CG Solver are 

required to fill benchmark timespan. Record as 
numberOfCgSets 



Optimized CG timing and analysis. 

• Run numberOfCgSets calls to 
optimized CG solver with 
numberOfOptCgIters iterations. 

•  For each set, record residual 
norm. 

• Record total time. 
• Compute mean and variance of 

residual values. 



Report results 

• Write a log file for 
diagnostics and 
debugging. 

• Write a benchmark 
results file for reporting 
official information. 
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Example 
• Reference CG: 50 iterations, residual drop of 1e-6. 
• Optimized CG: Run one set of iterations 

•  Multicolor ordering for Symmetric Gauss-Seidel: 
•  Better vectorization, threading. 
•  But: Takes 65 iterations to reach residual drop of 1e-6. 

•  Overhead: 
•  Extra 15 iterations. 
•  Computing of multicolor ordering. 

•  Compute number of sets we must run to fill entire execution time: 
•  5h/time-to-compute-1-set. 
•  Results in thousands of CG set runs. 

• Run and record residual for each set. 
•  Report mean and variance (accounts for non-associativity of FP 

addition). 
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Preconditioner 
• Symmetric Gauss-Seidel preconditioner  

•  (Non-overlapping additive Schwarz) 
•  Differentiate latency vs. throughput optimize core sets.  

•  From Matlab reference code: 
Setup:  

 LA = tril(A); UA = triu(A); DA = diag(diag(A)); 
Solve:  

 x = LA\y; 
 x1 = y - LA*x + DA*x; % Subtract off extra diagonal contribution 
 x = UA\x1; 

27 
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Key Computation Data Patterns 
• Domain decomposition: 

•  SPMD (MPI): Across domains. 
•  Thread/vector (OpenMP, compiler): Within domains. 

• Vector ops: 
•  AXPY: Simple streaming memory ops. 
•  DOT/NRM2 : Blocking Collectives. 

• Matrix ops: 
•  SpMV: Classic sparse kernel (option to reformat). 
•  Symmetric Gauss-Seidel: sparse triangular sweep. 

•  Exposes real application tradeoffs:  
•  threading & convergence vs. SPMD and scaling. 

28 
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Merits of HPCG 
•  Includes major communication/computational patterns. 

•  Represents a minimal collection of the major patterns. 

• Rewards investment in: 
•  High-performance collective ops. 
•  Local memory system performance. 
•  Low latency cooperative threading. 

• Detects and measures variances from bitwise identical 
computations. 

29 
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COMPUTATIONAL 
RESULTS 
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GFLOPS/s “Shock” 
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512 MPI Processes 

Courtesy Kalyan 
Kumaran, Argonne 

Courtesy Mahesh 
Rajan, Sandia 



Cielo, Red Sky, Edison, SID 
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Edison:   Avg DDOT MPI_Allreduce time:   2.0 sec 
Red Sky: Avg DDOT MPI_Allreduce time: 10.5 sec 

Results courtesy of Ludovic Saugé, Bull 

Results courtesy of M. Rajan, D. Doerfler, Sandia 



Sequoia Results 
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Results courtesy of Ian Karlin, Scott Futral, LLNL 
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Next Steps 
• Validate against real apps on real machines. 

•  Validate ranking and driver potential. 
•  Modify code as needed. 
•  Considering multi-level  

preconditioner. 
•  Discussions with LBL show potential  

to enrich design tradeoff space 
•  Repeat as necessary. 

•  Introduce to broader community. 
•  HPCG 1.0 released today. 

• Notes: 
•  Simple is best. 
•  First version need not be last version (HPL evolved). 

35 
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HPCG and HPL 
• We are NOT proposing to eliminate HPL as a metric. 

•  The historical importance and community outreach value 
is too important to abandon. 

• HPCG will serve as an alternate ranking of the Top500. 
•  Similar perhaps to the Green500 listing. 

36 
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HPCG Tech Reports 
Toward a New Metric for Ranking  
High Performance Computing Systems 

•  Jack Dongarra and Michael Heroux 
HPCG Technical Specification 
•  Jack Dongarra, Michael Heroux,  

Piotr Luszczek 

•  http://tiny.cc/hpcg 
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