
11/20/13 1

Jack Dongarra
University of Tennessee

Oak Ridge National Laboratory
University of Manchester

Rank Site Computer Country Cores Rmax
[Pflops]

% of
Peak

Power
[MW]

MFlops
/Watt

1
National University

of Defense
Technology

Tianhe-2 NUDT,
Xeon 12C 2.2GHz + IntelXeon

Phi (57c) + Custom
China 3,120,000 33.9 62 17.8 1905

2 DOE / OS
Oak Ridge Nat Lab

Titan, Cray XK7 (16C) + Nvidia
Kepler GPU (14c) + Custom USA 560,640 17.6 65 8.3 2120

3 DOE / NNSA
L Livermore Nat Lab

Sequoia, BlueGene/Q (16c)
+ custom USA 1,572,864 17.2 85 7.9 2063

4 RIKEN Advanced Inst
for Comp Sci

K computer Fujitsu SPARC64
VIIIfx (8c) + Custom Japan 705,024 10.5 93 12.7 827

5 DOE / OS
Argonne Nat Lab

Mira, BlueGene/Q (16c)
+ Custom USA 786,432 8.16 85 3.95 2066

6 Swiss CSCS Piz Daint, Cray XC30, Xeon 8C +
Nvidia Kepler (14c) + Custom Swiss 115,984 6.27 81 2.3 2726

7 Texas Advanced
Computing Center

Stampede, Dell Intel (8c) + Intel
Xeon Phi (61c) + IB USA 204,900 2.66 61 3.3 806

8 Forschungszentrum
Juelich (FZJ)

JuQUEEN, BlueGene/Q,
Power BQC 16C 1.6GHz+Custom Germany 458,752 5.01 85 2.30 2178

9 DOE / NNSA
L Livermore Nat Lab

Vulcan, BlueGene/Q,
Power BQC 16C 1.6GHz+Custom USA 393,216 4.29 85 1.97 2177

10 Leibniz
Rechenzentrum SuperMUC, Intel (8c) + IB Germany 147,456 2.90 91* 3.42 848

500 Banking HP

 USA 22,212 .118 50

0	

10	

20	

30	

40	

50	

60	

20
06
	

20
07
	

20
08
	

20
09
	

20
10
	

20
11
	

20
12
	

20
13
	

Sy
st
em

s	

Intel	
 MIC	
 (13)	

Clearspeed	
 CSX600	
 (0)	

ATI	
 GPU	
 (2)	

IBM	
 PowerXCell	
 8i	
 (0)	

NVIDIA	
 2070	
 (4)	

NVIDIA	
 2050	
 (7)	

NVIDIA	
 2090	
 (11)	

NVIDIA	
 K20	
 (16)	

19 US
9 China
6 Japan
4 Russia
2 France
2 Germany
2 India
1 Italy
1 Poland

1 Australia
2 Brazil
1 Saudi Arabia
1 South Korea
1 Spain
2 Switzerland
1 UK

0%

5%

10%

15%

20%

25%

30%

35%

40%

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

Fr
ac

ti
on

 o
f

To
ta

l T
O

P5
00

Pe

rf
or

m
an

ce

0
10
20
30
40
50
60
70
80
90

100
19

94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

N
um

be
rs

 o
f S

ys
te

m
s

0

5

10

15

20

25

30

35

0 100 200 300 400 500

Top 500 November 2013

Pf
lo

p/
s

6

Intel Xeon
8 cores
3 GHz

8*4 ops/cycle
96 Gflop/s (DP)

Nvidia K20X “Kepler”
2688 “Cuda cores”

.732 GHz
2688*2/3 ops/cycle
1.31 Tflop/s (DP)

Commodity Accelerator (GPU)

Interconnect
PCI-X 16 lane

64 Gb/s (8 GB/s)
1 GW/s

6 GB

192 Cuda cores/SMX
2688 “Cuda cores”

0%

20%

40%

60%

80%

100%

120%

0 100 200 300 400 500

Li
np

ac
k

Ef
fi
ci
en

cy

0%

20%

40%

60%

80%

100%

120%

0 100 200 300 400 500

Li
np

ac
k

Ef
fi
ci
en

cy

0%

20%

40%

60%

80%

100%

120%

0 100 200 300 400 500

Li
np

ac
k

Ef
fi
ci
en

cy

0%

20%

40%

60%

80%

100%

120%

0 100 200 300 400 500

Li
np

ac
k

Ef
fi
ci
en

cy

¨ We are interested in developing
Dense Linear Algebra Solvers
¨ Retool LAPACK and ScaLAPACK for
hybrid architectures

11/20/13
11

 MAGMA
 Hybrid Algorithms 
 (heterogeneity friendly)

Rely on
 - hybrid scheduler
 - hybrid kernels

Software/Algorithms follow hardware evolution in time
LINPACK (70’s)
(Vector operations)

Rely on
 - Level-1 BLAS
operations

LAPACK (80’s)
(Blocking, cache
friendly)

Rely on
 - Level-3 BLAS
operations

ScaLAPACK (90’s)
(Distributed Memory)

Rely on
 - PBLAS Mess Passing

PLASMA
New Algorithms
(many-core friendly)

Rely on
 - a DAG/scheduler
 - block data layout
 - some extra kernels

¨ MAGMA
Ø  Matrix algebra for GPU and multicore architecture
Ø  To provide LAPACK/ScaLAPACK on hybrid architectures
Ø  http://icl.cs.utk.edu/magma/

¨ MAGMA for CUDA, Intel Xeon Phi, and
OpenCL
Ø  Hybrid dense linear algebra:

Ø  One-sided factorizations and linear system solvers
Ø  Two-sided factorizations and eigenproblem solvers
Ø  A subset of BLAS and auxiliary routines

¨ MAGMA developers & collaborators
Ø  UTK, UC Berkeley, UC Denver, INRIA (France), KAUST (Saudi

Arabia)
Ø  Community effort, similar to LAPACK/ScaLAPACK

Software/Algorithms follow hardware evolution in time

LINPACK (70’s)

(Vector operations)

Rely on

 - Level-1 BLAS

operations

LAPACK (80’s)

(Blocking, cache

friendly)

Rely on

 - Level-3 BLAS

operations

ScaLAPACK (90’s)

(Distributed Memory)

Rely on

 - PBLAS Mess Passing

PLASMA (00’s)

New Algorithms

(many-core friendly)

Rely on

 - a DAG/scheduler

 - block data layout

 - some extra kernels

����������������������
���
��������������������
����������
����
��������������
����������������������
���������
���������������������������
�����������	�����
����������
�����������������
���������	�����
���������������
�
�����
��������������
�������������
��

�
������
���������������������

 MAGMA
 Hybrid Algorithms 
 (heterogeneity friendly)

Rely on
 - hybrid scheduler
 - hybrid kernels

Parallelization of LU and QR.
Parallelize the update:

•  Easy and done in any reasonable software.
•  This is the 2/3n3 term in the FLOPs count.
•  Can be done efficiently with LAPACK+multithreaded BLAS

-­‐	

dgemm	

-­‐	

lu(
)	

dge/2	

dtrsm	
 (+	
 dswp)	

dgemm	

\	

L	

U	

A(1)	

A(2)	

L	

U	

Fork - Join parallelism
Bulk Sync Processing

C
or

es

Time

•  Fork-join, bulk synchronous processing 27

�
�	��� �
�	��� �
�	��� �
�	��� ������

23

���	�������������

���	����
�������

�������
�������

���
���������������

�����
������
�����

Ø  fork join
Ø  bulk synchronous processing

17

xTRSM

xGEMM

xGEMM

xGETF2

xTRSM

xTRSM

xTRSM

xGEMM
xGEMM

xGEMM

xGEMM xGEMM
xGEMM

xGEMM

xGEMM xGEMM

Numerical program generates tasks and
run time system executes tasks respecting
data dependences.

We are developing a strategy :

•  That prioritizes the data-intensive operations to be executed
by the accelerator

•  That keep the memory-bound ones for the CPUs since the
hierarchical caches with out-of-order superscalar scheduling
are more appropriate to handle it.

•  Moreover, in order to keep the accelerator busy, we redesign
the kernels and propose dynamically guided data distribution
to exploit enough parallelism to keep the accelerators and
processors busy.

High Performance Computing :
Current Development

¨  A runtime environment for the
dynamic execution of
precedence-constraint tasks
(DAGs) in a multicore machine
Ø Translation
Ø  If you have a serial program that

consists of computational kernels
(tasks) that are related by data
dependencies, QUARK can help you
execute that program (relatively
efficiently and easily) in parallel on
a multicore machine

20

¨ Objectives
Ø  High utilization of each core
Ø  Scaling to large number of cores
Ø  Synchronization reducing algorithms

¨ Methodology
Ø  Dynamic DAG scheduling (QUARK)
Ø  Explicit parallelism
Ø  Implicit communication
Ø  Fine granularity / block data layout

¨ Arbitrary DAG with dynamic scheduling

21

Fork-join parallelism
Notice the synchronization
penalty in the presence of
heterogeneity. DAG scheduled

parallelism

QUARK

Shared Memory Superscalar Scheduling

FOR k = 0..TILES-1
 A[k][k] ← DPOTRF(A[k][k])
 FOR m = k+1..TILES-1
 A[m][k] ← DTRSM(A[k][k], A[m][k])
 FOR m = k+1..TILES-1
 A[m][m] ← DSYRK(A[m][k], A[m][m])
 FOR n = k+1..m-1
 A[m][n] ← DGEMM(A[m][k], A[n][k], A[m][n])

for (k = 0; k < A.mt; k++) {
 QUARK_CORE_dpotrf(...);
 for (m = k+1; m < A.mt; m++) {
 QUARK_CORE_dtrsm(...);
 }
 for (m = k+1; m < A.mt; m++) {
 QUARK_CORE_dsyrk(...);
 for (n = k+1; n < m; n++) {
 QUARK_CORE_dgemm(...)
 }
 }
}

definition – pseudocode

implementation – actual
QUARK code in PLASMA

High Performance Computing :
current development

Algorithm 1: Two-phase implementation of a one-sided
factorization.
for Pi 2 {P1, P2, . . . , Pn} do

CPU:
Receive Panel(Pi)
PanelFactorize(Pi)
Send Panel(Pi)
GPU:
TrailingMatrixUpdate(A(i))

Algorithm 2: Two-phase implementation of a one-sided
factorization.
for Pi 2 {P1, P2, . . . , Pn} do

CPU:
Receive Panel(Pi)
PanelFactorize(Pi)
Send Panel(Pi)
GPU:
NextPanelUpdate (lookahead)(P(i+1))
TrailingMatrixUpdate(A(i))

operations, it is the trailing matrix update that is be off-loaded.
The problem of keeping track of the computational activities
is exacerbated by the separation between the address spaces
of main memory of the CPU and the devices. This requires
synchronization between memory buffers and is included in the
implementation shown in Algorithm 4.

The code has to be modified further to achieve closer to opti-
mal performance. In fact, the bandwidth between the CPU and
the devices is orders of magnitude too slow to sustain computa-
tional rates of accelerators1 The common technique to alleviate
this imbalance is to use lookahead [16, 17].

Algorithm 5 shows a very simple case of lookahead of depth
1. The update operation is split into an update of the next panel,
the start of the receiving of the next panel that just got updated,
and an update of the rest of the trailing matrix R. The splitting is
done to overlap the communication of the panel and the update
operation. The complication of this approach comes from the
fact that depending on the communication bandwidth and the
accelerator speed, a different lookahead depth might be required
for optimal overlap. In fact, the adjustment of the depth is often
required throughout the factorization’s runtime to yield good
performance: the updates consume progressively less time when
compared to the time spent in the panel factorization.

1The bandwidth for current generation PCI Express is at most 16 GB/s and
the devices achieve over 1000 Gflop/s performance.

Algorithm 3: Two-phase implementation with a split up-
date.
for Pi 2 {P1, P2, . . .} do

PanelFactorize(Pi)
TrailingMatrixUpdateKepler(A(i))
TrailingMatrixUpdatePhi(A(i))

Algorithm 4: Two-phase implementation with a split update
and explicit communication.
for Pi 2 {P1, P2, . . .} do

PanelFactorize(Pi)
PanelSendKepler(Pi)
TrailingMatrixUpdateKepler(A(i))
PanelSendPhi(Pi)
TrailingMatrixUpdatePhi(A(i))

Algorithm 5: Lookahead of depth 1 for the two-phase fac-
torization.
PanelFactorize(P1)
PanelSend(P1)
TrailingMatrixUpdate{Kepler,Phi}(P1)
PanelStartReceiving(P2)
TrailingMatrixUpdate{Kepler,Phi}(R(1))
for Pi 2 {P2, P3, . . .} do

PanelReceive(Pi)
PanelFactor(Pi)
PanelSend(Pi)
TrailingMatrixUpdate{Kepler,Phi}(Pi)
PanelStartReceiving(Pi)
TrailingMatrixUpdate{Kepler,Phi}(R(i))

PanelReceive(Pn)
PanelFactor(Pn)

Since the management of adaptive lookahead is tedious, it
is desirable to use a dynamic DAG scheduler to keep track of
data dependences and communication events. The only issue
is the homogeneity inherent in most of the schedulers which is
violated here due to the use of three different computing devices
that we used. Also, common scheduling techniques, such as
task stealing, are not applicable here due to the disjoint address
spaces and the associated large overheads. These caveats are
dealt with comprehensively in the remainder of the paper.

4 Lightweight Runtime for Heterogeneous Hy-
brid Architectures

In this section, we discuss the techniques that we developed
in order to achieve an effective and efficient use of heteroge-
neous hybrid architectures. Our proposed techniques consider
both, the higher ratio of execution and the hierarchical mem-
ory model of the new and emerging accelerators and coproces-
sor hardware in order to create a heterogeneous programming
model. We also redesign an existing superscalar task execution
environment to handle to schedule and execute tasks on multi-
way heterogeneous devices. For our experiments, we consider
shared-memory multicore machines with some collection of
GPUs and MIC devices. Below, we present QUARK and the
specific changes incorporated in it to facilitate execution on
heterogeneous devices.

3

factor panel k then update è factor panel k+1

1. Standard hybrid CPU-GPU implementation

Standard implementation without lookahead:	

Ø Execution trace of the Cholesky factorization on a single socket CPU (Sandy Bridge) and a K20c GPU. 	

Ø We see that the computation on the CPU (e.g., the panel factorization) is not overlapped with the
computation on the GPU. 	

Ø The algorithm looks like sequential, the only advantage is that the data extensive operations are
accelerated by the GPU. 	

High Performance Computing :
current development





             

        





             

        

factor panel k then update è factor panel k+1
 next panel
 continue update k

High Performance Computing:
 current development

Algorithm 1: Two-phase implementation of a one-sided
factorization.
for Pi 2 {P1, P2, . . . , Pn} do

CPU:
Receive Panel(Pi)
PanelFactorize(Pi)
Send Panel(Pi)
GPU:
TrailingMatrixUpdate(A(i))

Algorithm 2: Two-phase implementation with a split update
and explicit communication.
for Pi 2 {P1, P2, . . . , Pn} do

CPU:
Receive Panel(Pi)
PanelFactorize(Pi)
Send Panel(Pi)
GPU:
NextPanelUpdate(lookahead P(i+1)) ! goto CPU
TrailingMatrixUpdate(A(i))

operations, it is the trailing matrix update that is be off-loaded.
The problem of keeping track of the computational activities
is exacerbated by the separation between the address spaces
of main memory of the CPU and the devices. This requires
synchronization between memory buffers and is included in the
implementation shown in Algorithm 4.

The code has to be modified further to achieve closer to opti-
mal performance. In fact, the bandwidth between the CPU and
the devices is orders of magnitude too slow to sustain computa-
tional rates of accelerators1 The common technique to alleviate
this imbalance is to use lookahead [16, 17].

Algorithm 5 shows a very simple case of lookahead of depth
1. The update operation is split into an update of the next panel,
the start of the receiving of the next panel that just got updated,
and an update of the rest of the trailing matrix R. The splitting is
done to overlap the communication of the panel and the update
operation. The complication of this approach comes from the
fact that depending on the communication bandwidth and the
accelerator speed, a different lookahead depth might be required
for optimal overlap. In fact, the adjustment of the depth is often
required throughout the factorization’s runtime to yield good
performance: the updates consume progressively less time when
compared to the time spent in the panel factorization.

1The bandwidth for current generation PCI Express is at most 16 GB/s and
the devices achieve over 1000 Gflop/s performance.

Algorithm 3: Two-phase implementation with a split up-
date.
for Pi 2 {P1, P2, . . .} do

PanelFactorize(Pi)
TrailingMatrixUpdateKepler(A(i))
TrailingMatrixUpdatePhi(A(i))

Algorithm 4: Two-phase implementation with a split update
and explicit communication.
for Pi 2 {P1, P2, . . .} do

PanelFactorize(Pi)
PanelSendKepler(Pi)
TrailingMatrixUpdateKepler(A(i))
PanelSendPhi(Pi)
TrailingMatrixUpdatePhi(A(i))

Algorithm 5: Lookahead of depth 1 for the two-phase fac-
torization.
PanelFactorize(P1)
PanelSend(P1)
TrailingMatrixUpdate{Kepler,Phi}(P1)
PanelStartReceiving(P2)
TrailingMatrixUpdate{Kepler,Phi}(R(1))
for Pi 2 {P2, P3, . . .} do

PanelReceive(Pi)
PanelFactor(Pi)
PanelSend(Pi)
TrailingMatrixUpdate{Kepler,Phi}(Pi)
PanelStartReceiving(Pi)
TrailingMatrixUpdate{Kepler,Phi}(R(i))

PanelReceive(Pn)
PanelFactor(Pn)

Since the management of adaptive lookahead is tedious, it
is desirable to use a dynamic DAG scheduler to keep track of
data dependences and communication events. The only issue
is the homogeneity inherent in most of the schedulers which is
violated here due to the use of three different computing devices
that we used. Also, common scheduling techniques, such as
task stealing, are not applicable here due to the disjoint address
spaces and the associated large overheads. These caveats are
dealt with comprehensively in the remainder of the paper.

4 Lightweight Runtime for Heterogeneous Hy-
brid Architectures

In this section, we discuss the techniques that we developed
in order to achieve an effective and efficient use of heteroge-
neous hybrid architectures. Our proposed techniques consider
both, the higher ratio of execution and the hierarchical mem-
ory model of the new and emerging accelerators and coproces-
sor hardware in order to create a heterogeneous programming
model. We also redesign an existing superscalar task execution
environment to handle to schedule and execute tasks on multi-
way heterogeneous devices. For our experiments, we consider
shared-memory multicore machines with some collection of
GPUs and MIC devices. Below, we present QUARK and the
specific changes incorporated in it to facilitate execution on
heterogeneous devices.

3

2.  Introducing a lookahead panel to overlap CPU and GPU





          

        





          

        

New implementation with lookahead:	

Ø Execution trace of the Cholesky factorization on a single socket CPU (Sandy Bridge) and a K20c GPU. 	

Ø We see that the memory-bound kernel (e.g., the panel factorization) has been allocated to the CPU while
the compute-bound kernel (e.g., the update performed by DSYRK) has been allocated to the accelerator. 	

Ø the advantage of such strategy is not only to hide the data transfer cost between the CPU and GPU but
also to keep the GPU busy all the way until the end of execution.	

High Performance Computing:
 current development

factor panel k then update è factor panel k+1
 next panel
 continue update k

High Performance Computing : current development

Algorithm 1: Two-phase implementation of a one-sided
factorization.
for Pi 2 {P1, P2, . . . , Pn} do

CPU:
Receive Panel(Pi)
PanelFactorize(Pi)
Send Panel(Pi)
GPU:
TrailingMatrixUpdate(A(i))

Algorithm 2: Two-phase implementation with a split update
and lookahead panel.
for Pi 2 {P1, P2, . . . , Pn} do

CPU:
Receive Panel(Pi)
PanelFactorize(Pi)
Send Panel(Pi)
GPU:
NextPanelUpdate(lookahead P(i+1)) ! goto CPU
TrailingMatrixUpdate(A(i))

operations, it is the trailing matrix update that is be off-loaded.
The problem of keeping track of the computational activities
is exacerbated by the separation between the address spaces
of main memory of the CPU and the devices. This requires
synchronization between memory buffers and is included in the
implementation shown in Algorithm 5.

The code has to be modified further to achieve closer to opti-
mal performance. In fact, the bandwidth between the CPU and
the devices is orders of magnitude too slow to sustain computa-
tional rates of accelerators1 The common technique to alleviate
this imbalance is to use lookahead [16, 17].

Algorithm 6 shows a very simple case of lookahead of depth
1. The update operation is split into an update of the next panel,
the start of the receiving of the next panel that just got updated,
and an update of the rest of the trailing matrix R. The splitting is
done to overlap the communication of the panel and the update
operation. The complication of this approach comes from the
fact that depending on the communication bandwidth and the
accelerator speed, a different lookahead depth might be required

1The bandwidth for current generation PCI Express is at most 16 GB/s and
the devices achieve over 1000 Gflop/s performance.

Algorithm 3: Two-phase implementation with a split update
prioritizing critical path.
for Pi 2 {P1, P2, . . . , Pn} do

CPU:
Receive Panel(Pi)
PanelFactorize(Pi)
Send Panel(Pi)
GPU:
for j 2 {Pi+1, Pi+2, . . . , Pn} do

MatrixUpdate of block j(P(j)) with priority p � j

Algorithm 4: Two-phase implementation with a split up-
date.
for Pi 2 {P1, P2, . . .} do

PanelFactorize(Pi)
TrailingMatrixUpdateKepler(A(i))
TrailingMatrixUpdatePhi(A(i))

Algorithm 5: Two-phase implementation with a split update
and explicit communication.
for Pi 2 {P1, P2, . . .} do

PanelFactorize(Pi)
PanelSendKepler(Pi)
TrailingMatrixUpdateKepler(A(i))
PanelSendPhi(Pi)
TrailingMatrixUpdatePhi(A(i))

for optimal overlap. In fact, the adjustment of the depth is often
required throughout the factorization’s runtime to yield good
performance: the updates consume progressively less time when
compared to the time spent in the panel factorization.

Since the management of adaptive lookahead is tedious, it
is desirable to use a dynamic DAG scheduler to keep track of
data dependences and communication events. The only issue
is the homogeneity inherent in most of the schedulers which is
violated here due to the use of three different computing devices
that we used. Also, common scheduling techniques, such as
task stealing, are not applicable here due to the disjoint address
spaces and the associated large overheads. These caveats are
dealt with comprehensively in the remainder of the paper.

4 Lightweight Runtime for Heterogeneous Hy-
brid Architectures

In this section, we discuss the techniques that we developed
in order to achieve an effective and efficient use of heteroge-
neous hybrid architectures. Our proposed techniques consider
both, the higher ratio of execution and the hierarchical mem-
ory model of the new and emerging accelerators and coproces-
sor hardware in order to create a heterogeneous programming
model. We also redesign an existing superscalar task execution
environment to handle to schedule and execute tasks on multi-
way heterogeneous devices. For our experiments, we consider
shared-memory multicore machines with some collection of
GPUs and MIC devices. Below, we present QUARK and the
specific changes incorporated in it to facilitate execution on
heterogeneous devices.

4.1 Task Superscalar Scheduling
Task-superscalar execution takes a serial sequence of tasks as
input and schedules them for execution in parallel, inferring
the data dependences between the tasks at runtime. The depen-
dences between the tasks are inferred through the resolution of
data hazards: Read after Write (RaW), Write after Read (WaR)
and Write after Write (WaW). The dependences are extracted
from the serial code by having the user annotate the data when
defining the tasks, noting whether the data is to be read and/or

3

3.  Prioritizing critical path to provide more parallelism if
needed





       

        





       

        

High Performance Computing : current development

Prioritize the critical path :	

Ø the panel factorization can be executed earlier. This will increase the lookahead depth that the algorithm
exposes, increasing parallelism, so that there are more update tasks available to be executed by the device
resources.	

Ø This options has advantage when a lot of parallelism is needed especially for small sizes.	

High Performance Computing:
 current development

Algorithm 1: Two-phase implementation of a one-sided
factorization.
for Pi 2 {P1, P2, . . . , Pn} do

CPU:
Receive Panel(Pi)
PanelFactorize(Pi)
Send Panel(Pi)
GPU:
TrailingMatrixUpdate(A(i))

Algorithm 2: Two-phase implementation of a one-sided
factorization.
for Pi 2 {P1, P2, . . . , Pn} do

CPU:
Receive Panel(Pi)
PanelFactorize(Pi)
Send Panel(Pi)
GPU:
NextPanelUpdate (lookahead)(P(i+1))
TrailingMatrixUpdate(A(i))

operations, it is the trailing matrix update that is be off-loaded.
The problem of keeping track of the computational activities
is exacerbated by the separation between the address spaces
of main memory of the CPU and the devices. This requires
synchronization between memory buffers and is included in the
implementation shown in Algorithm 4.

The code has to be modified further to achieve closer to opti-
mal performance. In fact, the bandwidth between the CPU and
the devices is orders of magnitude too slow to sustain computa-
tional rates of accelerators1 The common technique to alleviate
this imbalance is to use lookahead [16, 17].

Algorithm 5 shows a very simple case of lookahead of depth
1. The update operation is split into an update of the next panel,
the start of the receiving of the next panel that just got updated,
and an update of the rest of the trailing matrix R. The splitting is
done to overlap the communication of the panel and the update
operation. The complication of this approach comes from the
fact that depending on the communication bandwidth and the
accelerator speed, a different lookahead depth might be required
for optimal overlap. In fact, the adjustment of the depth is often
required throughout the factorization’s runtime to yield good
performance: the updates consume progressively less time when
compared to the time spent in the panel factorization.

1The bandwidth for current generation PCI Express is at most 16 GB/s and
the devices achieve over 1000 Gflop/s performance.

Algorithm 3: Two-phase implementation with a split up-
date.
for Pi 2 {P1, P2, . . .} do

PanelFactorize(Pi)
TrailingMatrixUpdateKepler(A(i))
TrailingMatrixUpdatePhi(A(i))

Algorithm 4: Two-phase implementation with a split update
and explicit communication.
for Pi 2 {P1, P2, . . .} do

PanelFactorize(Pi)
PanelSendKepler(Pi)
TrailingMatrixUpdateKepler(A(i))
PanelSendPhi(Pi)
TrailingMatrixUpdatePhi(A(i))

Algorithm 5: Lookahead of depth 1 for the two-phase fac-
torization.
PanelFactorize(P1)
PanelSend(P1)
TrailingMatrixUpdate{Kepler,Phi}(P1)
PanelStartReceiving(P2)
TrailingMatrixUpdate{Kepler,Phi}(R(1))
for Pi 2 {P2, P3, . . .} do

PanelReceive(Pi)
PanelFactor(Pi)
PanelSend(Pi)
TrailingMatrixUpdate{Kepler,Phi}(Pi)
PanelStartReceiving(Pi)
TrailingMatrixUpdate{Kepler,Phi}(R(i))

PanelReceive(Pn)
PanelFactor(Pn)

Since the management of adaptive lookahead is tedious, it
is desirable to use a dynamic DAG scheduler to keep track of
data dependences and communication events. The only issue
is the homogeneity inherent in most of the schedulers which is
violated here due to the use of three different computing devices
that we used. Also, common scheduling techniques, such as
task stealing, are not applicable here due to the disjoint address
spaces and the associated large overheads. These caveats are
dealt with comprehensively in the remainder of the paper.

4 Lightweight Runtime for Heterogeneous Hy-
brid Architectures

In this section, we discuss the techniques that we developed
in order to achieve an effective and efficient use of heteroge-
neous hybrid architectures. Our proposed techniques consider
both, the higher ratio of execution and the hierarchical mem-
ory model of the new and emerging accelerators and coproces-
sor hardware in order to create a heterogeneous programming
model. We also redesign an existing superscalar task execution
environment to handle to schedule and execute tasks on multi-
way heterogeneous devices. For our experiments, we consider
shared-memory multicore machines with some collection of
GPUs and MIC devices. Below, we present QUARK and the
specific changes incorporated in it to facilitate execution on
heterogeneous devices.

3

factor panel k then update è factor panel k+1

1. Standard hybrid CPU-GPU implementation

High Performance Computing : current development

Resource Capability Weight :	

Ø  the advantage of such strategy is to keep all resources busy all the way until the end of execution.	

Ø  Careful management of the capability-weights ensures that the CPU does not take any work that would cause
a delay to the GPU, since that would negatively affect the performance. 	





          

        





          

        

High Performance Computing : current development

2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k
0

200

400

600

800

1000

1200

Matrix size

Gf
lo

p/
s

DPOTRF using CW (Kepler K20c)
DPOTRF no CW (Kepler K20c)
DPOTRF using CW (Fermi M2090)
DPOTRF no CW (Fermi M2090)

High Performance Computing : current development

Scalability and performance of such implementation

¨ Multiple GPU Case
Ø Experiments with 6 GPUs

High Performance Computing : current development

Scalability and efficiency :	

Ø snapshot of the execution trace of the Cholesky factorization on System A for a matrix of size 40K using six
GPUs K20c. 	

Ø As expected the pattern of the trace looks compressed which means that our implementation is able to
schedule and balance the tasks on the whole six GPUs devices. 	















           

        















           

        

magma_quark DPOTRF Kepler K20c

2k4k 8k 12k 16k 20k 24k 28k 32k 36k 40k 50k 60k
0

400
800

1200
1600
2000
2400
2800
3200
3600
4000
4400
4800
5200

Matrix size

G
flo

p/
s

DPOTRF 1 K20c

magma_quark DPOTRF Kepler K20c

2k4k 8k 12k 16k 20k 24k 28k 32k 36k 40k 50k 60k
0

400
800

1200
1600
2000
2400
2800
3200
3600
4000
4400
4800
5200

Matrix size

G
flo

p/
s

DPOTRF 2 K20c
DPOTRF 1 K20c

magma_quark DPOTRF Kepler K20c

2k4k 8k 12k 16k 20k 24k 28k 32k 36k 40k 50k 60k
0

400
800

1200
1600
2000
2400
2800
3200
3600
4000
4400
4800
5200

Matrix size

G
flo

p/
s

DPOTRF 3 K20c
DPOTRF 2 K20c
DPOTRF 1 K20c

magma_quark DPOTRF Kepler K20c

2k4k 8k 12k 16k 20k 24k 28k 32k 36k 40k 50k 60k
0

400
800

1200
1600
2000
2400
2800
3200
3600
4000
4400
4800
5200

Matrix size

G
flo

p/
s

DPOTRF 4 K20c
DPOTRF 3 K20c
DPOTRF 2 K20c
DPOTRF 1 K20c

magma_quark DPOTRF Kepler K20c

2k4k 8k 12k 16k 20k 24k 28k 32k 36k 40k 50k 60k
0

400
800

1200
1600
2000
2400
2800
3200
3600
4000
4400
4800
5200

Matrix size

G
flo

p/
s

DPOTRF 6 K20c
DPOTRF 4 K20c
DPOTRF 3 K20c
DPOTRF 2 K20c
DPOTRF 1 K20c

2k4k 8k 12k 16k 20k 24k 28k 32k 36k 40k 48k 56k
0

400
800

1200
1600
2000
2400
2800
3200
3600
4000
4400
4800

Matrix size

G
flo

p/
s

DGEQRF 1 K20c

2k4k 8k 12k 16k 20k 24k 28k 32k 36k 40k 48k 56k
0

400
800

1200
1600
2000
2400
2800
3200
3600
4000
4400
4800

Matrix size

G
flo

p/
s

DGEQRF 2 K20c
DGEQRF 1 K20c

2k4k 8k 12k 16k 20k 24k 28k 32k 36k 40k 48k 56k
0

400
800

1200
1600
2000
2400
2800
3200
3600
4000
4400
4800

Matrix size

G
flo

p/
s

DGEQRF 3 K20c
DGEQRF 2 K20c
DGEQRF 1 K20c

2k4k 8k 12k 16k 20k 24k 28k 32k 36k 40k 48k 56k
0

400
800

1200
1600
2000
2400
2800
3200
3600
4000
4400
4800

Matrix size

G
flo

p/
s

DGEQRF 4 K20c
DGEQRF 3 K20c
DGEQRF 2 K20c
DGEQRF 1 K20c

2k4k 8k 12k 16k 20k 24k 28k 32k 36k 40k 48k 56k
0

400
800

1200
1600
2000
2400
2800
3200
3600
4000
4400
4800

Matrix size

G
flo

p/
s

DGEQRF 6 K20c
DGEQRF 4 K20c
DGEQRF 3 K20c
DGEQRF 2 K20c
DGEQRF 1 K20c

2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k
0

200

400

600

800

1000

1200

1400

Matrix size

G
flo

p/
s

magma dpotrf quark 1−Fermi
magma dpotrfquark 2−Fermi
magma dpotrfquark 4−Fermi

2k 4k 6k 8k 12k 16k 20k 24k 28k 32k 36k 40k
0

400

800

1200

1600

2000

2400

Matrix size

G
flo

p/
s

DPOTRF_3 XeonPhi
DPOTRF_2 XeonPhi
DPOTRF_1 XeonPhi

2k 4k 6k 8k 12k 16k 20k 24k 28k 32k 36k 40k
0

400

800

1200

1600

2000

2400

Matrix size

G
flo

p/
s

QR 3 XeonPhi
QR 2 XeonPhi
QR 1 XeonPhi

47

• Must rethink the design of our
algorithms and software
§  Another disruptive technology

• Similar to what happened with cluster
computing and message passing

§  Rethink and rewrite the applications,
algorithms, and software

§  Data movement is expense
§  Flop/s are cheap, so are provisioned in

excess

•  Major Challenges are ahead for extreme
computing
§  Parallelism O(109)

•  Programming issues

§  Hybrid
•  Peak and HPL may be very misleading
•  No where near close to peak for most apps

§  Fault Tolerance
•  Today Sequoia BG/Q node failure rate is 1.25 failures/day

§  Power
•  50 Gflops/w (today at 2 Gflops/w)

•  We will need completely new approaches and
technologies to reach the Exascale level

u  PLASMA
http://icl.cs.utk.edu/plasma/

u  MAGMA
http://icl.cs.utk.edu/magma/

u  Quark (RT for Shared Memory)
•  http://icl.cs.utk.edu/quark/

u  PaRSEC(Parallel Runtime Scheduling
and Execution Control)

•  http://icl.cs.utk.edu/parsec/

49

u  Collaborating partners
 University of Tennessee, Knoxville

University of California, Berkeley
University of Colorado, Denver

MAGMA PLASMA

