Architecture-aware Algorithms and
Software for Peta and Exascale
Computing

Jack Dongarra

University of Tennessee
Oak Ridge National Laboratory
University of Manchester

11/20/13

ICL

November 2013: The TOP 10

. Rmax | 7% of| Power IMF/ops
Rank Site Computer Country Cores [Pflops] | Peak|| [mw] ||/ Watt
National University Tianhe-2 NUDT,
1 of Defense Xeon 12C 2.26Hz + IntelXeon 3,120, 33.9 62 17.8 || 1905
Technology (
DOE / Os Titan, Cray XK7 (16C€) + Nvidia
2 Oak Ridge Nat Lab Kepler 6PU (14c) + Custom LG oo &2 b | |
DOE / NNSA Sequoia, BlueGene/Q (16c¢)
3 L Livermore Nat Lab + custom 1,572, 86J 17.2 85 7.9 || 2063
RIKEN Advanced Inst K computer Fujitsu SPARC64
4 for Comp Sci VIIIfx (c) + Custom 705,024 105 | 93 || 12.7 || 827
DOE / Os Mira, BlueGene/Q (16¢c)
5 Argonne Nat Lab + Custom 786,432 3.95 [} 2066
. Piz Daint, Cray XC30, Xeon 8C +
6 Swiss CSCS Nvidia Kepler (14c) + Custom K#ﬂ 115,984 -’ 2.3 || 2726
Texas Advanced
/ Computing Center Sl || e
Forschungszentrum JUQUEEN, BlueGene/Q, '
8 Juelich (FZJ) | Power BQC 16C 1.66Hz+Custom kBl 2.30 || 2178
DOE / NNSA Vulcan, BlueGene/Q, -
J L Livermore Nat Lab Power BQC 16C 1.6GHz+Custom ," F 4 “ HELEE 2 < || B
Leibniz
10 Rechenzentrum SuperMUC, Intel (8c) + IB 147,456 2.90 91* | 3.42 || 848
. H
500 Banking HP USA .118 50

s
“ Accelerators (53 systems)

60 M Intel MIC (13)
- I Clearspeed CSX600 (0)
W ATI GPU (2)
w 40 i IBM PowerXcCell 8i (0)
(S
9 - LINVIDIA 2070 (4)
2 30
AN I NVIDIA 2050 (7)
20 I NVIDIA 2090 (11)
i NVIDIA K20 (16)
10 19 US 1 Australia
9 China 2 Brazil
0 — | | | 6 Japan 1 Saudi Arabia
S 5 Q 2 S = N ® 4 Russia 1 Soufth Korea
S g g g Q g Q Q 2France 1 Spain

2 Germany 2 Switzerland
2 India 1 UK

1 Italy

1 Poland

A
&
IcLor-

Top500 Performance Share of Accelerators

40%

35%

30%

25%

20%

Performance

15%

10%

Fraction of Total TOP500

5%

0%

2006
2007
2008
2009
2010
2011
2012
2013

C For the Top 500: Rank at which Half of Total
Performance 1s Accumulated

100
90
g 80
g 70 A AN
AP ARY, N Vs
© 50 N N/ \/
P40 35 3
8 30 20 Top 500 November 2013 M
E 20 2 |
=g \
< 10 30T
0 £ 15
5| °F S o
Y &«
’ ;) 100 200 300 400 500

£L.

< Commodity plus Accelerator Today

Commodity Accelerator (GPU) e 2 COres/SMX
Intel Xeon Nvidia K20X “Kepler” z
8 cores 2688 “Cuda cores”
3 GHz 732 GHz
8*4 ops/cycle 2628* cle
96 Gflop/s (DP) 1.31 Tflop/s (DP)

Infiniband

PCle x8
e ol 1/O0

RAM CPU Hub PCle x16
RAM u GPU (6GB)

QPI

PCle x16

RAN DB 1/0

RAM CPU
Y QPI Hub PCle x16 GPU (6GB)

GPU (6GB)

IMITTUUTITITUL

PCI-X lane
64 Gb/s (8 GB/s)
1 GW/s

{\)
“* Linpack Efficiency

120%
100%
| |
a .I : '..l .p...-. ..‘ ?.‘.f ;
s 80% "a o ~ " . o
&:‘: '... l.‘ m "'!-I"'"""""""_ .l--.|‘.] T .
5 60% = o = T .
38) ':--r-.—'"'-"ll""l': r'-'ll'"""l
8 40% — Tmm= .
= m
H Ny S . E =
20%
OO/O I I I I |
0 100 200 300 400 500

cror Llnpack EfﬁClenCy

120%

100%

-II IPI-.-. .|ﬁ T gy "

80%

u l.‘ m H¢ :Mﬁ-ﬂ._ ..I-- l.i: l: mmlt

T
60% & n u®
a =

Linpack Efficiency

" om o ‘gﬂ on o.:‘:on.o .
, o P ‘.“ \ g . ’g “ A4
40% = ‘a o -
* 00, BOBS W00
20%
0% | | |

0 100 200 300 400

e -
cror Llnpack EfﬁClenCy

120%

100%

80%

60%

40%

Linpack Efficiency

20%

0% | |

cror Llnpack EfﬁClenCy

120%

100%

80%

60%

40%

Linpack Efficiency

20%

0% | |

4

<= DLA Solvers

" We are interested in developing
Dense Linear Algebra Solvers

" Retool LAPACK and ScalLAPACK for
hybrid architectures

11/20/13

11

£

i A New Generation of DL A Software

LINPACK (70's)

(Vector operations)

LAPACK (80's)
(Blocking, cache
friendly)

ScaLAPACK (90's)
(Distributed Memory)

2D Block Cyclic Layout

Software/Algorithms follow hardware evolution in time

Rely on
- Level-1 BLAS
operations

Rely on
- Level-3 BLAS
operations

Rely on
- PBLAS Mess Passing

|

Matrix point of view

Processor point of vie:

=

0

1

ADBE

[N)

off=|lof=|lo|=|lo

1
0
1
0
1
0
1
0

R e o|o|o|o|o

afala|a o|lo|o|o|o

alalala o|lo|o|o|o

wlw|w|w [NEESRENREN]

W W ww NN NN

wlw | w|w [SEESRENRENEEN]

oo oo LR

oo oo INIFNAFN NS FN
oo oo INIFNIFNY NS FN

===~ ~]=]~]]
S B/ E3(0Y e e (Y

(][][Jeo][Jfea] o

S B3/ E3(0Y e (Y (Y

Doaoaoanan

&

< MAGMA: LAPACK for GPUs

" MAGMA

> Matrix algebra for GPU and multicore architecture
> To provide LAPACK/ScaLAPACK on hybrid architectures

> http://icl.cs.utk.edu/magma/

" MAGMA for CUDA, Intel Xeon Phi, and
OpenCL

» Hybrid dense linear algebra:

> One-sided factorizations and linear system solvers
> Two-sided factorizations and eigenproblem solvers
> A subset of BLAS and auxiliary routines

" MAGMA developers & collaborators

» UTK, UC Berkeley, UC Denver, INRIA (France), KAUST (Saudi
Arabia)

» Community effort, similar to LAPACK/ScalLAPACK

e

< Key Aspects of MAGMA

HYBRID ALGORITHMS

MAGMA uses a hybridization methodology where algorithms of interest are split into
tasks of varying granularity and their execution scheduled over the available hardware
components. Scheduling can be static or dynamic. In either case, small
non-parallelizable tasks, often on the critical path, are scheduled on the CPU, and
larger more parallelizable ones, often Level 3 BLAS, are scheduled on the GPU.

PERFORMANCE

Performance of MAGMA LU in DP on Kepler K20X
2000

1800
1600
1400
1200
L D MAGM

800

600

400

200 T vikL
0
2048 4032 6016 8064 10112 12032 14080 16000 17920 20000 22016 24064 26368

MAGM.

GFlop/s

MATRIX SIZE

21 K20X [ZZ7) Intel Xeon ES-2670
14 MP x192 @ 0.73 GHz 16 cores @ 2.60 GHz

FEATURES AND SUPPORT

* MAGMA 1.4 ror CUDA

¢ cIMAGMA 1.0 ror OpenCL

e MAGMA MIC 1.0 ror Intel Xeon Phi

A
@QV.QQQQ *‘@Q%\
® ® ©® Llinearsystemsolvers
® ® © Eigenvalue problem solvers
o MAGMA BLAS
o CPU Interface
® ® ® GPUlInterface
® @® O Multiple precision support
o Non-GPU-resident factorizations
o @® Multicore and multi-GPU support
o Tile factorizations with StarPU

dynamic scheduling

® ® ® |APACKtesting
® ® ® linux

O Windows

o Mac 0S

““ A New Generation of DLA Software

Software/Algorithms follow hardware evolution in time

LINPACK (70’s)
(Vector operations)

LAPACK (80’s)
(Blocking, cache
friendly)

ScalLAPACK (90’s)
(Distributed Memory)

PLASMA (00’s)
New Algorithms
(many-core friendly)

MAGMA
Hybrid Algorithms

Rely on
- Level-1 BLAS
operations

Rely on
- Level-3 BLAS
operations

Rely on
- PBLAS Mess Passing

Rely on
- a DAG/scheduler
- block data layout
- some extra kernels

Rely on
- hybrid scheduler
- hybrid kernels

Parallelization of LU and QR.

“ Parallelize the update: dgemm
— » Easy and done in any reasonable software.
* This is the 2/3n3 term in the FLOPs count.

* Can be done efficiently with LAPACK+multithreaded BLAS

N1/

-

dgetf2
I‘— Iu(I) l
IR
dtrsm (+ dswp)
— - l l l l l Fork - Join parallelism
- ' ‘ ‘ ‘ ‘ Bulk Sync Processing

dgemm

O-m1=
N7

o
<« Synchronization (in LAPACK LU)

GETF2 ﬂ » fork jOin
(Facior 2 panel) | » bulk synchronous processing

!
l

/\

1171

A

1111

PLASMA LU Factorization

Dataflow Driven

&

ICLLr"

Numerical program generates tasks and

run time system executes tasks respecting

data dependences.

XTRSM

C High Performance Computing :
Current Development

We are developing a strategy :

* That prioritizes the data-intensive operations to be executed
by the accelerator

« That keep the memory-bound ones for the CPUs since the
hierarchical caches with out-of-order superscalar scheduling
are more appropriate to handle it.

* Moreover, in order to keep the accelerator busy, we redesign
the kernels and propose dynamically guided data distribution
to exploit enough parallelism to keep the accelerators and
processors busy.

" A runtime environment for the

dynamic execution of

precedence-constraint tasks

(DAGs) in a multicore machine
> Translation

> If you have a serial program that
consists of computational kernels
(tasks) that are related by data
dependencies, QUARK can help you
& execute that program (relatively
efficiently and easily) in parallel on
a multicore machine

20

_The Purpose of a QUARK Runtime

"Objectives
> High utilization of each core

> Scaling to large number of cores (N

» Synchronization reducing algorithms
“Methodology

> Dynamic DAG scheduling (QUARK)

> Explicit parallelism

> Implicit communication

> Fine granularity / block data layout

“"Arbitrary DAG with dynamic SChedU“ng

DAG scheduled
parallelism

/\'

/@5 @@m@i@ &&ﬁ

Fork-join parallelism
Notice the synchronization
penalty in the presence of

heterogeneity.

21

e <—Z§§ S l,ﬁ,@,*a =

{\
cLir QUARK

OAK
“RIDGE

Shared Memory Superscalar Scheduling

FOARkk; O"TDHI_D%S'I:I!{F A[KIIK
sl i I A definition — pseudocode
A[m][K] < DTRSM(A[K][K], A[m][K])
FOR m = k+1..TILES-1
A[m][m] «— DSYRK(A[m][K], A[m][m])
FOR n = k+1..m-1
A[m][n] <~ DGEMM(A[m][K], A[n][K], A[m][n])

for (k = 0; k < A.mt; k++) {

QUARK_CORE_dpotrf(...); implementation — actual
for (m = k+1; m < A.mt; m++) { .
QUARK_CORE_dtrsm(...); QUARK code in PLASMA

for (m = k+1; m < A.mt; m++) {
QUARK_CORE_dsyrk(...);
for (n = k+1; n <m; n++) {
} QUARK_CORE_dgemm(...)
}
}

& High Performance Computing :
current development

1. Standard hybrid CPU-GPU implementation

0

204

a0

100

0 50 100
nz=1298 nz = 5886

factor panel k then update => factor panel k+l

Algorithm 1: Two-phase implementation of a one-sided
factorization.
for P; € {Pl,Pz, .. .,Pn} do
CPU:
Receive Panel(P;)
PanelFactorize(P;)
Send Panel(P;)
GPU:

TrailingMatrixUpdate(A (1))

& High Performance Computing :
current development

Time (sec): 0.0 1.0

Legend: .. update0 . update? ...

Standard implementation without lookahead:
»Execution trace of the Cholesky factorization on a single socket CPU (Sandy Bridge) and a K20c GPU.

»We see that the computation on the CPU (e.g., the panel factorization) is not overlapped with the
computation on the GPU.

»The algorithm looks like sequential, the only advantage is that the data extensive operations are
accelerated by the GPU.

\
ICL

High Performance Computing:
current development

Introducing a lookahead panel to overlap CPU and GPU

0

20

a0

100

0 50 100
nz=1288 . nz=5886

factor panel k then upddfe => factor panel k+l

next panel
continue update k

Algorithm 2: Two-phase implementation with a split update
and explicit communication.

for P; € {Pl,{-’z,. ,Pn} do

CPU:

Receive Panel(P))

PanelFactorize(P;)

Send Panel(P;)

GPU: —
NextPanelUpdate(lookahead P; 1)) — goto CPU

TrailingMatrixUpdate(A (1))

> High Performance Computing:
current development

CPU 0:

DEV 0:

1.0

Time (sec): 0.0 0.5

Legend: .. update0 . update? ..

New implementation with lookahead:
»Execution trace of the Cholesky factorization on a single socket CPU (Sandy Bridge) and a K20c GPU.

»We see that the memory-bound kernel (e.g., the panel factorization) has been allocated to the CPU while
the compute-bound kernel (e.g., the update performed by DSYRK) has been allocated to the accelerator.

»the advantage of such strategy is not only to hide the data transfer cost between the CPU and GPU but
also to keep the GPU busy all the way until the end of execution.

Eli_gh Performance Computing : current development

ICL

s Prioritizi icat-path o ttetismif

needeq

0 0

20 20

40

60

a0

100 100

120 120

0 50 100 0 50 100
nz=1298 nz= 5886

factor panel k then update => factor panel k+l
next panel

Algorithm 3: Two-phase implementation with a split update
prioritizing critical path.

for P, € {P,P,,...,P,} do
CPU:

Receive Panel(ﬁ-)

PanelFactorize(P;)

Send Panel(P;)

GPU:

forj € {P;11,Piio,..., Py} do

L MatrixUpdate of block j(P(]-)) with priority p — |

High Performance Computing : current development

ICLLr"

I
I
CPU 0: :..
:
[}
GPU 0: :
Time (sec):

Legend: update0 - update2 - - - - -

Prioritize the critical path :

»the panel factorization can be executed earlier. This will increase the lookahead depth that the algorithm
exposes, increasing parallelism, so that there are more update tasks available to be executed by the device
resources.

»This options has advantage when a lot of parallelism is needed especially for small sizes.

& High Performance Computing:
current development

1. Standard hybrid CPU-GPU implementation

0

204

a0

100

0 50 100
nz=1298 nz = 5886

factor panel k then update => factor panel k+l

Algorithm 1: Two-phase implementation of a one-sided
factorization.
for P; € {Pl,Pz, .. .,Pn} do
CPU:
Receive Panel(P;)
PanelFactorize(P;)
Send Panel(P;)
GPU:

TrailingMatrixUpdate(A (1))

High Performance Computing : current development

ICLOr"

Time (sec): 0.0 0.5

1.0
Legend: .. updateo . update2 ..

Resource Capability Weight :

» the advantage of such strategy is to keep all resources busy all the way until the end of execution.

» Careful management of the capability-weights ensures that the CPU does not take any work that would cause
a delay to the GPU, since that would negatively affect the performance.

High Performance Computing : current development

1200

1000

800

600

Gflop/s

400

200

—a&— DPOTRF using CW (Kepler K20c)
- A- DPOTRF no CW (Kepler K20c)
—&— DPOTRF using CW (Fermi M20%0) —a—aA

- 8- DPOTRF no CW (Fermi M2090)

G --F -B6E --0--BF----0B -8

D . W ..

2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26}
Matrix size

High Performance Computing : current development

ICLOr

" Multiple 6PU Case
»Experiments with 6 GPUs

Scalability and performance of such implementation

E]i_gh Performance Computing : current development

ICL

CPU O

GPU 0:

GPU 1:

GPU 2:

GPU 3:

GPU 4:

GPU 5:

Time (sec): 0.0 0.5 1.0 15

Legen:

Scalability and efficiency :

»snapshot of the execution trace of the Cholesky factorization on System A for a matrix of size 40K using six
GPUs K20c.

»As expected the pattern of the trace looks compressed which means that our implementation is able to
schedule and balance the tasks on the whole six GPUs devices.

IcLOr-

Gflop/s

5200

4800 ——DPOTRF1K20c] _
a200- |
a000- |
3600 |
8200 |
2800~ |
2400~ |
2000- |
e |
1200

800

400

magma_dquark DPOTRF Kepler K20c

0 | | | |
2ldk 8k 12k 1

6k 20k 24k 28k 32k 36k 40 50k 60k
Matrix size

Gflop/s

magma_dquark DPOTRF Kepler K20c

5200 ——

4800/ —*—DPOTRF2K20¢|, _
4400 1 - DPOTRF 1 K20c .. .
a000- |
3600 |
8200 |
2800- |
2400~ |
2000
1600
1200
800
400
° 2Kk 8K 12k 16k 20k 24k 28K 32k 36k 40 50k 60k

Matrix size

Gflop/s

magma_dquark DPOTRF Kepler K20c

5200 —— T |
ig00| —°—DPOTRF3K20¢| _
—eo— DPOTRF 2 K20c

asgo| __DPOTRF2K200 _
w00 TOTRF 1K) _
600l _
as00l _
o800l _
400l . coe—e—e— _
2000
1600
1200

800

100.

0 2kKdk 8k 12k 16k 20k 24k 28k 32k 36k 40 50k 60k

Matrix size

IcLOr-

Gflop/s

5200

4800 |
4400
4000 ;

3600
3200
2800
2400
2000
1600
1200

800

magma_dquark DPOTRF Kepler K20c

—a&— DPOTRF 4 K20c

DPOTRF 3 K20c
—e— DPOTRF 2 K20c
—w—DPOTRF 1 K20cl |

0 | | | |
2ldk 8k 12k 1

6k 20k 24k 28k 32k 36k 40 50k 60k
Matrix size

IcLOr-

Gflop/s

magma_dquark DPOTRF Kepler K20c

5200 ——————— ——r T T T 1
800l | —=—DPOTRF6K20c| a—
4400 - + DPOTRF 4 K20c ..
DPOTRF 3 K20c
4000- | —o— DPOTRE 2 K20c| . L
3600F | —~— DPOTRF 1 K20¢c| o o A
3200 & A
2800 A
2400F o eSO T T
2000- E/f ..
1600 : /if ..
1200 /0
800L 2T
a00- A&
0 2kKdk 8k 12k 16k 20k 24k 28k 32k 36k 40 50k 60k

Matrix size

a

ICL

4800

4400
4000
3600
3200

< 2800

2 2400

© 2000
1600
1200

800
400

0 | | | |
2kdk 8k 12k 1

gma_dquark DGEQRF Kepler K20c

—— DGEQRF 1 K20C ..

6k 20k 24k 28k 32k 36k 40 48k
Matrix size

a

ICL

4800,
4400,

4000
3600
3200

< 2800

2 2400

© 2000
1600
1200

800
400

0 | | | |
2kdk 8k 12k 1

gma_dquark DGEQRF Kepler K20c

I I
+

DGEQRF 2 K20c
—— DGEQRF 1 K20c

6k 20k 24k 28k 32k 36k 40 48k
Matrix size

a

ICL

4800! —o
4400|
4000|

3600
3200
< 2800
2 2400
© 2000
1600
1200
800
400

0 | | | |
2kdk 8k 12k 1

gma_dquark DGEQRF Kepler K20c

DGEQRF 3 K20c ...
—o— DGEQRF 2 K20c
—»— DGEQRF 1 K20c

6k 20k 24k 28k 32k 36k 40 48k
Matrix size

ICL

4800
4400
4000
3600

3200
< 2800
2 2400
© 2000
1600
1200
800
400

magma_quark DGEQRF Kepler K20c

—a— DGEQRF 4 K20c
DGEQRF 3 K20c
—e— DGEQRF 2 K20c

—— DGEQRF 1 K20c

0 T | |
2ikdk 8k 12k 16k 20k 24k 28k 32k 36k 40

48k
Matrix size

a

ICL

gma_dquark DGEQRF Kepler K20c

4800 —=— DGEQRF 6 K20c¢ L -
4400l ~—DGEQRF4K20¢c| g]
4000 DGEQRF3K20c, -~ _
soo| ~—DGEQRF2K20c, .~ _
—— DGEQRF 1 K20c
3200 ———M8m8 —m8Mmm— /S a—" _
g- 2800 gl A i
Soa0f 000000094 2]
N R 47 _
1600 M e _
1200 £~ _
goot @ Ge—mr—"" _
400 < _
0 2ldk 8k 12k 16k 20k 24k 28k 32k 36k 40 48k 56k

Matrix size

magma_quark scalability DPOTRF

ICL

1400' : : : : : : : : : | | | |
—O©— magma dpotrf quark 1-Fermi
1o00| 72— Magma dpotrfquark 2-Fermi | ___g—8
—E— magma dpotrfquark 4-Fermi
1000 44
g- 800 44
O
(5 600 4444444444444444444444444444444444 B — N e
400 44 .. VY .. WY .. S - W
200 44

2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26
Matrix size

a

ICL

Gflop/s

2400

2000

1600

1200

800

400

gma_quark scalability DPOTRF Xeon-Phi

DPOTRF_3 XeonPhi
—A&— DPOTRF_2 XeonPni
- DPOTRF 1XeonPhi | |

2k4k 6k 8k 12k 16k 20k 24k 28k 32k 36k 40k
Matrix size

magma_quark scalability DGEQRF Xeon-Phi

ICL

2400

QR 3 XeonPhi
—&— QR 2 XeonPhi
2000 _e— QR 1 XeonPhi

1600

1200

Gflop/s

800

400

2k4dk 6k 8k 12k 16k 20k 24k 28k 32k 36k 40k
Matrix size

¢ Major Changes to Software &

IcLOr-

Algorithms

e Must rethink the design of our
algorithms and software

= Another disruptive technology

« Similar to what happened with cluster
computing and message passing

= Rethink and rewrite the applications,
algorithms, and software

= Data movement is expense

* Flop/s are cheap, so are provisioned in
excess

N
< Summary

* Major Challenges are ahead for extreme
computing
= Parallelism O(10%)
e Programming issues
= Hybrid
 Peak and HPL may be very misleading
« No where near close to peak for most apps

= Fault Tolerance
« Today Sequoia BG/Q node failure rate is 1.25 failures/day

= Power
« 50 Gflops/w (today at 2 Gflops/w)

* We will need completely new approaches and
technologies to reach the Exascale level

ICL

Collaborators / Software / Support

. PLASMA e &< FUJITSU
http://icl.cs.utk.edu/plasmal/ #VIDIA. nag@ AMDZ
¢
- MAGMA)\ The MathWorks

http://icl.cs.utk.edu/magmal/

-; (\ "—% U.S. DEPARTMENT OF
. Quark (RT for Shared Memory) ®A W ENERGY

http://icl.cs.utk.edu/quark/

. Collaborating partners
University of Tennessee, Knoxville

. PaRSEC(Parallel Runtime Scheduling jlversty & watorna, serkeley

University of Colorado, Denver
and Execution Control) VAGMA PLASMA

http://icl.cs.utk.edu/parsec/ EYIE EiNE
x
SR

