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Rank      Site Computer Country Cores Rmax 
[Pflops] 

% of 
Peak 

Power 
[MW] 

MFlops
/Watt 

1 
National University 

of Defense 
Technology 

Tianhe-2 NUDT,  
Xeon 12C 2.2GHz + IntelXeon 

Phi (57c) + Custom 
China 3,120,000 33.9 62 17.8 1905 

2 DOE / OS                 
Oak Ridge Nat Lab 

Titan, Cray XK7 (16C) + Nvidia 
Kepler GPU (14c) + Custom  USA 560,640 17.6 65 8.3 2120 

3 DOE / NNSA                 
L Livermore Nat Lab 

Sequoia, BlueGene/Q (16c)       
+ custom  USA 1,572,864 17.2 85 7.9 2063 

4 RIKEN Advanced Inst 
for Comp Sci 

K computer Fujitsu SPARC64 
VIIIfx (8c) + Custom Japan 705,024 10.5 93 12.7 827 

5 DOE / OS                 
Argonne Nat Lab 

Mira, BlueGene/Q (16c)          
+ Custom USA 786,432 8.16 85 3.95 2066 

6 Swiss CSCS Piz Daint, Cray XC30, Xeon 8C + 
Nvidia Kepler (14c) + Custom  Swiss 115,984 6.27 81 2.3 2726 

7 Texas Advanced 
Computing Center 

Stampede, Dell Intel (8c) + Intel 
Xeon Phi (61c) + IB USA 204,900 2.66 61 3.3 806 

8 Forschungszentrum 
Juelich (FZJ) 

JuQUEEN, BlueGene/Q,  
Power BQC 16C 1.6GHz+Custom Germany 458,752 5.01 85 2.30 2178 

9 DOE / NNSA                 
L Livermore Nat Lab 

Vulcan, BlueGene/Q,  
Power BQC 16C 1.6GHz+Custom USA 393,216 4.29 85 1.97 2177 

10 Leibniz 
Rechenzentrum SuperMUC, Intel (8c) + IB Germany 147,456 2.90 91* 3.42 848 

500     Banking                    HP 
 
 
    USA        22,212       .118        50                       
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Intel	
  MIC	
  (13)	
  

Clearspeed	
  CSX600	
  (0)	
  

ATI	
  GPU	
  (2)	
  

IBM	
  PowerXCell	
  8i	
  (0)	
  

NVIDIA	
  2070	
  (4)	
  

NVIDIA	
  2050	
  (7)	
  

NVIDIA	
  2090	
  (11)	
  

NVIDIA	
  K20	
  (16)	
  

19 US 
9 China 
6 Japan 
4 Russia 
2 France 
2 Germany 
2 India 
1 Italy 
1 Poland 

1 Australia 
2 Brazil 
1 Saudi Arabia 
1 South Korea  
1 Spain 
2 Switzerland 
1 UK 
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6 

Intel Xeon 
8 cores 
3 GHz 

8*4 ops/cycle 
96 Gflop/s (DP) 

Nvidia K20X “Kepler” 
2688 “Cuda cores” 

.732 GHz 
2688*2/3 ops/cycle 
1.31 Tflop/s (DP) 

Commodity Accelerator (GPU) 

Interconnect 
PCI-X 16 lane 

64 Gb/s (8 GB/s) 
1 GW/s 

6 GB 

192 Cuda cores/SMX 
2688 “Cuda cores” 
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¨ We are interested in developing 
Dense Linear Algebra Solvers 
¨ Retool LAPACK and ScaLAPACK for 
hybrid architectures 

11/20/13 
11 



 MAGMA 
 Hybrid Algorithms 
 (heterogeneity friendly)  

Rely on 
 - hybrid scheduler 
 - hybrid kernels 

Software/Algorithms follow hardware evolution in time 
LINPACK (70’s) 
(Vector operations) 

Rely on  
   - Level-1 BLAS 
operations 

LAPACK (80’s) 
(Blocking, cache 
friendly) 

Rely on  
   - Level-3 BLAS 
operations 

ScaLAPACK (90’s) 
(Distributed Memory) 

Rely on  
   - PBLAS Mess Passing 

PLASMA 
New Algorithms  
(many-core friendly) 

Rely on  
   - a DAG/scheduler 
   - block data layout 
   - some extra kernels 



¨ MAGMA 
Ø  Matrix algebra for GPU and multicore architecture 
Ø  To provide LAPACK/ScaLAPACK on hybrid architectures  
Ø  http://icl.cs.utk.edu/magma/ 

¨ MAGMA for CUDA, Intel Xeon Phi, and 
OpenCL 
Ø  Hybrid dense linear algebra: 

Ø  One-sided factorizations and linear system solvers 
Ø  Two-sided factorizations and eigenproblem solvers 
Ø  A subset of BLAS and auxiliary routines 

¨ MAGMA developers & collaborators 
Ø  UTK, UC Berkeley, UC Denver, INRIA (France), KAUST (Saudi 

Arabia) 
Ø  Community effort, similar to LAPACK/ScaLAPACK 





Software/Algorithms follow hardware evolution in time 

LINPACK (70’s) 

(Vector operations) 

Rely on  

   - Level-1 BLAS 

operations 

LAPACK (80’s) 

(Blocking, cache 

friendly) 

Rely on  

   - Level-3 BLAS 

operations 

ScaLAPACK (90’s) 

(Distributed Memory) 

Rely on  

   - PBLAS Mess Passing 

PLASMA (00’s) 

New Algorithms  

(many-core friendly) 

Rely on  

   - a DAG/scheduler 

   - block data layout 

   - some extra kernels 
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 MAGMA 
 Hybrid Algorithms 
 (heterogeneity friendly)  

Rely on 
 - hybrid scheduler 
 - hybrid kernels 



Parallelization of LU and QR. 
Parallelize the update: 

•  Easy and done in any reasonable software. 
•  This is the 2/3n3 term in the FLOPs count. 
•  Can be done efficiently with LAPACK+multithreaded BLAS 
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Fork - Join parallelism 
Bulk Sync Processing 



C
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Time 

•  Fork-join, bulk synchronous processing 27 
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Ø  fork join 
Ø  bulk synchronous processing 
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xTRSM 

xGEMM 

xGEMM 

xGETF2 

xTRSM 

xTRSM 

xTRSM 

xGEMM 
xGEMM 

xGEMM 

xGEMM xGEMM 
xGEMM 

xGEMM 

xGEMM xGEMM 

Numerical program generates tasks and 
run time system executes tasks respecting  
data dependences. 



We are developing a strategy : 

•  That prioritizes the data-intensive operations to be executed 
by the accelerator  

•  That keep the memory-bound ones for the CPUs since the 
hierarchical caches with out-of-order superscalar scheduling 
are more appropriate to handle it.  

•  Moreover, in order to keep the accelerator busy, we redesign 
the kernels and propose dynamically guided data distribution 
to exploit enough parallelism to keep the accelerators and 
processors busy. 

High Performance Computing :  
Current Development 



¨  A runtime environment for the 
dynamic execution of 
precedence-constraint tasks 
(DAGs) in a multicore machine 
Ø Translation 
Ø  If you have a serial program that 

consists of computational kernels 
(tasks) that are related by data 
dependencies, QUARK can help you 
execute that program (relatively 
efficiently and easily) in parallel on 
a multicore machine 

20 



¨ Objectives 
Ø  High utilization of each core 
Ø  Scaling to large number of cores 
Ø  Synchronization reducing algorithms 

¨ Methodology 
Ø  Dynamic DAG scheduling (QUARK) 
Ø  Explicit parallelism 
Ø  Implicit communication 
Ø  Fine granularity / block data layout 

¨ Arbitrary DAG with dynamic scheduling 

21 

Fork-join parallelism 
Notice the synchronization  
penalty in the presence of 
heterogeneity. DAG scheduled 

parallelism 



QUARK 

Shared Memory Superscalar Scheduling 

FOR k = 0..TILES-1 
    A[k][k] ← DPOTRF(A[k][k]) 
    FOR m = k+1..TILES-1 
        A[m][k] ← DTRSM(A[k][k], A[m][k]) 
    FOR m = k+1..TILES-1 
        A[m][m] ← DSYRK(A[m][k], A[m][m]) 
        FOR n = k+1..m-1 
            A[m][n] ← DGEMM(A[m][k], A[n][k], A[m][n]) 

for (k = 0; k < A.mt; k++) { 
    QUARK_CORE_dpotrf(...); 
    for (m = k+1; m < A.mt; m++) { 
        QUARK_CORE_dtrsm(...); 
    } 
    for (m = k+1; m < A.mt; m++) { 
        QUARK_CORE_dsyrk(...); 
        for (n = k+1; n < m; n++) { 
            QUARK_CORE_dgemm(...) 
        } 
    } 
} 

definition – pseudocode 

implementation – actual 
QUARK code in PLASMA 



High Performance Computing :  
current development 

Algorithm 1: Two-phase implementation of a one-sided
factorization.
for Pi 2 {P1, P2, . . . , Pn} do

CPU:
Receive Panel(Pi)
PanelFactorize(Pi)
Send Panel(Pi)
GPU:
TrailingMatrixUpdate(A(i))

Algorithm 2: Two-phase implementation of a one-sided
factorization.
for Pi 2 {P1, P2, . . . , Pn} do

CPU:
Receive Panel(Pi)
PanelFactorize(Pi)
Send Panel(Pi)
GPU:
NextPanelUpdate (lookahead)(P(i+1))
TrailingMatrixUpdate(A(i))

operations, it is the trailing matrix update that is be off-loaded.
The problem of keeping track of the computational activities
is exacerbated by the separation between the address spaces
of main memory of the CPU and the devices. This requires
synchronization between memory buffers and is included in the
implementation shown in Algorithm 4.

The code has to be modified further to achieve closer to opti-
mal performance. In fact, the bandwidth between the CPU and
the devices is orders of magnitude too slow to sustain computa-
tional rates of accelerators1 The common technique to alleviate
this imbalance is to use lookahead [16, 17].

Algorithm 5 shows a very simple case of lookahead of depth
1. The update operation is split into an update of the next panel,
the start of the receiving of the next panel that just got updated,
and an update of the rest of the trailing matrix R. The splitting is
done to overlap the communication of the panel and the update
operation. The complication of this approach comes from the
fact that depending on the communication bandwidth and the
accelerator speed, a different lookahead depth might be required
for optimal overlap. In fact, the adjustment of the depth is often
required throughout the factorization’s runtime to yield good
performance: the updates consume progressively less time when
compared to the time spent in the panel factorization.

1The bandwidth for current generation PCI Express is at most 16 GB/s and
the devices achieve over 1000 Gflop/s performance.

Algorithm 3: Two-phase implementation with a split up-
date.
for Pi 2 {P1, P2, . . .} do

PanelFactorize(Pi)
TrailingMatrixUpdateKepler(A(i))
TrailingMatrixUpdatePhi(A(i))

Algorithm 4: Two-phase implementation with a split update
and explicit communication.
for Pi 2 {P1, P2, . . .} do

PanelFactorize(Pi)
PanelSendKepler(Pi)
TrailingMatrixUpdateKepler(A(i))
PanelSendPhi(Pi)
TrailingMatrixUpdatePhi(A(i))

Algorithm 5: Lookahead of depth 1 for the two-phase fac-
torization.
PanelFactorize(P1)
PanelSend(P1)
TrailingMatrixUpdate{Kepler,Phi}(P1)
PanelStartReceiving(P2)
TrailingMatrixUpdate{Kepler,Phi}(R(1))
for Pi 2 {P2, P3, . . .} do

PanelReceive(Pi)
PanelFactor(Pi)
PanelSend(Pi)
TrailingMatrixUpdate{Kepler,Phi}(Pi)
PanelStartReceiving(Pi)
TrailingMatrixUpdate{Kepler,Phi}(R(i))

PanelReceive(Pn)
PanelFactor(Pn)

Since the management of adaptive lookahead is tedious, it
is desirable to use a dynamic DAG scheduler to keep track of
data dependences and communication events. The only issue
is the homogeneity inherent in most of the schedulers which is
violated here due to the use of three different computing devices
that we used. Also, common scheduling techniques, such as
task stealing, are not applicable here due to the disjoint address
spaces and the associated large overheads. These caveats are
dealt with comprehensively in the remainder of the paper.

4 Lightweight Runtime for Heterogeneous Hy-
brid Architectures

In this section, we discuss the techniques that we developed
in order to achieve an effective and efficient use of heteroge-
neous hybrid architectures. Our proposed techniques consider
both, the higher ratio of execution and the hierarchical mem-
ory model of the new and emerging accelerators and coproces-
sor hardware in order to create a heterogeneous programming
model. We also redesign an existing superscalar task execution
environment to handle to schedule and execute tasks on multi-
way heterogeneous devices. For our experiments, we consider
shared-memory multicore machines with some collection of
GPUs and MIC devices. Below, we present QUARK and the
specific changes incorporated in it to facilitate execution on
heterogeneous devices.

3

factor panel k   then update è factor panel k+1   

1. Standard hybrid CPU-GPU implementation 



Standard implementation without lookahead:	


Ø Execution trace of the Cholesky factorization on a single socket CPU (Sandy Bridge) and a K20c GPU. 	



Ø We see  that  the  computation  on  the  CPU (e.g.,  the  panel  factorization)  is  not  overlapped  with  the 
computation on the GPU. 	



Ø The  algorithm  looks  like  sequential,  the  only  advantage  is  that  the  data  extensive  operations  are 
accelerated by the GPU. 	



High Performance Computing :  
current development 





             

        





             

        



factor panel k   then update  è factor panel k+1 
     next panel  
 continue update k 

High Performance Computing: 
 current development 

Algorithm 1: Two-phase implementation of a one-sided
factorization.
for Pi 2 {P1, P2, . . . , Pn} do

CPU:
Receive Panel(Pi)
PanelFactorize(Pi)
Send Panel(Pi)
GPU:
TrailingMatrixUpdate(A(i))

Algorithm 2: Two-phase implementation with a split update
and explicit communication.
for Pi 2 {P1, P2, . . . , Pn} do

CPU:
Receive Panel(Pi)
PanelFactorize(Pi)
Send Panel(Pi)
GPU:
NextPanelUpdate(lookahead P(i+1)) ! goto CPU
TrailingMatrixUpdate(A(i))

operations, it is the trailing matrix update that is be off-loaded.
The problem of keeping track of the computational activities
is exacerbated by the separation between the address spaces
of main memory of the CPU and the devices. This requires
synchronization between memory buffers and is included in the
implementation shown in Algorithm 4.

The code has to be modified further to achieve closer to opti-
mal performance. In fact, the bandwidth between the CPU and
the devices is orders of magnitude too slow to sustain computa-
tional rates of accelerators1 The common technique to alleviate
this imbalance is to use lookahead [16, 17].

Algorithm 5 shows a very simple case of lookahead of depth
1. The update operation is split into an update of the next panel,
the start of the receiving of the next panel that just got updated,
and an update of the rest of the trailing matrix R. The splitting is
done to overlap the communication of the panel and the update
operation. The complication of this approach comes from the
fact that depending on the communication bandwidth and the
accelerator speed, a different lookahead depth might be required
for optimal overlap. In fact, the adjustment of the depth is often
required throughout the factorization’s runtime to yield good
performance: the updates consume progressively less time when
compared to the time spent in the panel factorization.

1The bandwidth for current generation PCI Express is at most 16 GB/s and
the devices achieve over 1000 Gflop/s performance.

Algorithm 3: Two-phase implementation with a split up-
date.
for Pi 2 {P1, P2, . . .} do

PanelFactorize(Pi)
TrailingMatrixUpdateKepler(A(i))
TrailingMatrixUpdatePhi(A(i))

Algorithm 4: Two-phase implementation with a split update
and explicit communication.
for Pi 2 {P1, P2, . . .} do

PanelFactorize(Pi)
PanelSendKepler(Pi)
TrailingMatrixUpdateKepler(A(i))
PanelSendPhi(Pi)
TrailingMatrixUpdatePhi(A(i))

Algorithm 5: Lookahead of depth 1 for the two-phase fac-
torization.
PanelFactorize(P1)
PanelSend(P1)
TrailingMatrixUpdate{Kepler,Phi}(P1)
PanelStartReceiving(P2)
TrailingMatrixUpdate{Kepler,Phi}(R(1))
for Pi 2 {P2, P3, . . .} do

PanelReceive(Pi)
PanelFactor(Pi)
PanelSend(Pi)
TrailingMatrixUpdate{Kepler,Phi}(Pi)
PanelStartReceiving(Pi)
TrailingMatrixUpdate{Kepler,Phi}(R(i))

PanelReceive(Pn)
PanelFactor(Pn)

Since the management of adaptive lookahead is tedious, it
is desirable to use a dynamic DAG scheduler to keep track of
data dependences and communication events. The only issue
is the homogeneity inherent in most of the schedulers which is
violated here due to the use of three different computing devices
that we used. Also, common scheduling techniques, such as
task stealing, are not applicable here due to the disjoint address
spaces and the associated large overheads. These caveats are
dealt with comprehensively in the remainder of the paper.

4 Lightweight Runtime for Heterogeneous Hy-
brid Architectures

In this section, we discuss the techniques that we developed
in order to achieve an effective and efficient use of heteroge-
neous hybrid architectures. Our proposed techniques consider
both, the higher ratio of execution and the hierarchical mem-
ory model of the new and emerging accelerators and coproces-
sor hardware in order to create a heterogeneous programming
model. We also redesign an existing superscalar task execution
environment to handle to schedule and execute tasks on multi-
way heterogeneous devices. For our experiments, we consider
shared-memory multicore machines with some collection of
GPUs and MIC devices. Below, we present QUARK and the
specific changes incorporated in it to facilitate execution on
heterogeneous devices.

3

2.  Introducing a lookahead panel to overlap CPU and GPU 







          

        





          

        

New implementation with lookahead:	


Ø Execution trace of the Cholesky factorization on a single socket CPU (Sandy Bridge) and a K20c GPU. 	



Ø We see that the memory-bound kernel (e.g., the panel factorization) has been allocated to the CPU while 
the compute-bound kernel (e.g., the update performed by DSYRK) has been allocated to the accelerator. 	



Ø the advantage of such strategy is not only to hide the data transfer cost between the CPU and GPU  but 
also to keep the GPU busy all the way until the end of execution.	



High Performance Computing: 
 current development 



factor panel k   then update  è factor panel k+1 
     next panel  
 continue update k 

High Performance Computing : current development 

Algorithm 1: Two-phase implementation of a one-sided
factorization.
for Pi 2 {P1, P2, . . . , Pn} do

CPU:
Receive Panel(Pi)
PanelFactorize(Pi)
Send Panel(Pi)
GPU:
TrailingMatrixUpdate(A(i))

Algorithm 2: Two-phase implementation with a split update
and lookahead panel.
for Pi 2 {P1, P2, . . . , Pn} do

CPU:
Receive Panel(Pi)
PanelFactorize(Pi)
Send Panel(Pi)
GPU:
NextPanelUpdate(lookahead P(i+1)) ! goto CPU
TrailingMatrixUpdate(A(i))

operations, it is the trailing matrix update that is be off-loaded.
The problem of keeping track of the computational activities
is exacerbated by the separation between the address spaces
of main memory of the CPU and the devices. This requires
synchronization between memory buffers and is included in the
implementation shown in Algorithm 5.

The code has to be modified further to achieve closer to opti-
mal performance. In fact, the bandwidth between the CPU and
the devices is orders of magnitude too slow to sustain computa-
tional rates of accelerators1 The common technique to alleviate
this imbalance is to use lookahead [16, 17].

Algorithm 6 shows a very simple case of lookahead of depth
1. The update operation is split into an update of the next panel,
the start of the receiving of the next panel that just got updated,
and an update of the rest of the trailing matrix R. The splitting is
done to overlap the communication of the panel and the update
operation. The complication of this approach comes from the
fact that depending on the communication bandwidth and the
accelerator speed, a different lookahead depth might be required

1The bandwidth for current generation PCI Express is at most 16 GB/s and
the devices achieve over 1000 Gflop/s performance.

Algorithm 3: Two-phase implementation with a split update
prioritizing critical path.
for Pi 2 {P1, P2, . . . , Pn} do

CPU:
Receive Panel(Pi)
PanelFactorize(Pi)
Send Panel(Pi)
GPU:
for j 2 {Pi+1, Pi+2, . . . , Pn} do

MatrixUpdate of block j(P(j)) with priority p � j

Algorithm 4: Two-phase implementation with a split up-
date.
for Pi 2 {P1, P2, . . .} do

PanelFactorize(Pi)
TrailingMatrixUpdateKepler(A(i))
TrailingMatrixUpdatePhi(A(i))

Algorithm 5: Two-phase implementation with a split update
and explicit communication.
for Pi 2 {P1, P2, . . .} do

PanelFactorize(Pi)
PanelSendKepler(Pi)
TrailingMatrixUpdateKepler(A(i))
PanelSendPhi(Pi)
TrailingMatrixUpdatePhi(A(i))

for optimal overlap. In fact, the adjustment of the depth is often
required throughout the factorization’s runtime to yield good
performance: the updates consume progressively less time when
compared to the time spent in the panel factorization.

Since the management of adaptive lookahead is tedious, it
is desirable to use a dynamic DAG scheduler to keep track of
data dependences and communication events. The only issue
is the homogeneity inherent in most of the schedulers which is
violated here due to the use of three different computing devices
that we used. Also, common scheduling techniques, such as
task stealing, are not applicable here due to the disjoint address
spaces and the associated large overheads. These caveats are
dealt with comprehensively in the remainder of the paper.

4 Lightweight Runtime for Heterogeneous Hy-
brid Architectures

In this section, we discuss the techniques that we developed
in order to achieve an effective and efficient use of heteroge-
neous hybrid architectures. Our proposed techniques consider
both, the higher ratio of execution and the hierarchical mem-
ory model of the new and emerging accelerators and coproces-
sor hardware in order to create a heterogeneous programming
model. We also redesign an existing superscalar task execution
environment to handle to schedule and execute tasks on multi-
way heterogeneous devices. For our experiments, we consider
shared-memory multicore machines with some collection of
GPUs and MIC devices. Below, we present QUARK and the
specific changes incorporated in it to facilitate execution on
heterogeneous devices.

4.1 Task Superscalar Scheduling
Task-superscalar execution takes a serial sequence of tasks as
input and schedules them for execution in parallel, inferring
the data dependences between the tasks at runtime. The depen-
dences between the tasks are inferred through the resolution of
data hazards: Read after Write (RaW), Write after Read (WaR)
and Write after Write (WaW). The dependences are extracted
from the serial code by having the user annotate the data when
defining the tasks, noting whether the data is to be read and/or

3

3.  Prioritizing critical path to provide more parallelism if 
needed 
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Prioritize the critical path :	


Ø the panel factorization can be executed earlier. This will increase the lookahead depth that the algorithm 
exposes, increasing parallelism, so that there are more update tasks available to be executed by the device 
resources.	


Ø This options has advantage when a lot of parallelism is needed especially for small sizes.	





High Performance Computing: 
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Algorithm 1: Two-phase implementation of a one-sided
factorization.
for Pi 2 {P1, P2, . . . , Pn} do

CPU:
Receive Panel(Pi)
PanelFactorize(Pi)
Send Panel(Pi)
GPU:
TrailingMatrixUpdate(A(i))

Algorithm 2: Two-phase implementation of a one-sided
factorization.
for Pi 2 {P1, P2, . . . , Pn} do

CPU:
Receive Panel(Pi)
PanelFactorize(Pi)
Send Panel(Pi)
GPU:
NextPanelUpdate (lookahead)(P(i+1))
TrailingMatrixUpdate(A(i))

operations, it is the trailing matrix update that is be off-loaded.
The problem of keeping track of the computational activities
is exacerbated by the separation between the address spaces
of main memory of the CPU and the devices. This requires
synchronization between memory buffers and is included in the
implementation shown in Algorithm 4.

The code has to be modified further to achieve closer to opti-
mal performance. In fact, the bandwidth between the CPU and
the devices is orders of magnitude too slow to sustain computa-
tional rates of accelerators1 The common technique to alleviate
this imbalance is to use lookahead [16, 17].

Algorithm 5 shows a very simple case of lookahead of depth
1. The update operation is split into an update of the next panel,
the start of the receiving of the next panel that just got updated,
and an update of the rest of the trailing matrix R. The splitting is
done to overlap the communication of the panel and the update
operation. The complication of this approach comes from the
fact that depending on the communication bandwidth and the
accelerator speed, a different lookahead depth might be required
for optimal overlap. In fact, the adjustment of the depth is often
required throughout the factorization’s runtime to yield good
performance: the updates consume progressively less time when
compared to the time spent in the panel factorization.

1The bandwidth for current generation PCI Express is at most 16 GB/s and
the devices achieve over 1000 Gflop/s performance.

Algorithm 3: Two-phase implementation with a split up-
date.
for Pi 2 {P1, P2, . . .} do

PanelFactorize(Pi)
TrailingMatrixUpdateKepler(A(i))
TrailingMatrixUpdatePhi(A(i))

Algorithm 4: Two-phase implementation with a split update
and explicit communication.
for Pi 2 {P1, P2, . . .} do

PanelFactorize(Pi)
PanelSendKepler(Pi)
TrailingMatrixUpdateKepler(A(i))
PanelSendPhi(Pi)
TrailingMatrixUpdatePhi(A(i))

Algorithm 5: Lookahead of depth 1 for the two-phase fac-
torization.
PanelFactorize(P1)
PanelSend(P1)
TrailingMatrixUpdate{Kepler,Phi}(P1)
PanelStartReceiving(P2)
TrailingMatrixUpdate{Kepler,Phi}(R(1))
for Pi 2 {P2, P3, . . .} do

PanelReceive(Pi)
PanelFactor(Pi)
PanelSend(Pi)
TrailingMatrixUpdate{Kepler,Phi}(Pi)
PanelStartReceiving(Pi)
TrailingMatrixUpdate{Kepler,Phi}(R(i))

PanelReceive(Pn)
PanelFactor(Pn)

Since the management of adaptive lookahead is tedious, it
is desirable to use a dynamic DAG scheduler to keep track of
data dependences and communication events. The only issue
is the homogeneity inherent in most of the schedulers which is
violated here due to the use of three different computing devices
that we used. Also, common scheduling techniques, such as
task stealing, are not applicable here due to the disjoint address
spaces and the associated large overheads. These caveats are
dealt with comprehensively in the remainder of the paper.

4 Lightweight Runtime for Heterogeneous Hy-
brid Architectures

In this section, we discuss the techniques that we developed
in order to achieve an effective and efficient use of heteroge-
neous hybrid architectures. Our proposed techniques consider
both, the higher ratio of execution and the hierarchical mem-
ory model of the new and emerging accelerators and coproces-
sor hardware in order to create a heterogeneous programming
model. We also redesign an existing superscalar task execution
environment to handle to schedule and execute tasks on multi-
way heterogeneous devices. For our experiments, we consider
shared-memory multicore machines with some collection of
GPUs and MIC devices. Below, we present QUARK and the
specific changes incorporated in it to facilitate execution on
heterogeneous devices.

3

factor panel k   then update è factor panel k+1   

1. Standard hybrid CPU-GPU implementation 
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Resource Capability Weight :	


Ø  the advantage of such strategy is to keep all resources busy all the way until the end of execution.	



Ø  Careful management of the capability-weights ensures that the CPU does not take any work that would cause 
a delay to the GPU, since that would negatively affect the performance. 	
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Scalability and performance of such implementation 

¨ Multiple GPU Case 
Ø Experiments with 6 GPUs 
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Scalability and efficiency :	


Ø snapshot of the execution trace of the Cholesky factorization on System A for a matrix of size 40K using six 
GPUs K20c. 	



Ø As expected the pattern of  the trace looks compressed which means that  our  implementation is  able  to 
schedule and balance the tasks on the whole six GPUs devices. 	
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• Must rethink the design of our 
algorithms and software 
§  Another disruptive technology 

• Similar to what happened with cluster 
computing and message passing 

§  Rethink and rewrite the applications, 
algorithms, and software 

§  Data movement is expense 
§  Flop/s are cheap, so are provisioned in 

excess  



•  Major Challenges are ahead for extreme 
computing 
§  Parallelism O(109)  

•  Programming issues  

§  Hybrid  
•  Peak and HPL may be very misleading 
•  No where near close to peak for most apps 

§  Fault Tolerance  
•  Today Sequoia BG/Q node failure rate is 1.25 failures/day 

§  Power 
•  50 Gflops/w (today at 2 Gflops/w) 

•  We will need completely new approaches and 
technologies to reach the Exascale level 



u  PLASMA 
http://icl.cs.utk.edu/plasma/ 

u  MAGMA 
http://icl.cs.utk.edu/magma/  

u  Quark (RT for Shared Memory) 
•  http://icl.cs.utk.edu/quark/ 

u  PaRSEC(Parallel Runtime Scheduling  
and Execution Control) 

•  http://icl.cs.utk.edu/parsec/ 
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u  Collaborating partners 
     University of Tennessee, Knoxville 

University of California, Berkeley 
University of Colorado, Denver 

MAGMA PLASMA 


