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Top500 Performance Share of Accelerators

40%

35%

30%

25%

20%

Performance

15%

10%

Fraction of Total TOP500

5%

0%

2006
2007
2008
2009
2010
2011
2012
2013
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< Commodity plus Accelerator Today

Commodity Accelerator (GPU) e 2 COres/SMX
Intel Xeon Nvidia K20X “Kepler” z
8 cores 2688 “Cuda cores”
3 GHz 732 GHz
8*4 ops/cycle 2628* cle
96 Gflop/s (DP) 1.31 Tflop/s (DP)
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<= DLA Solvers

" We are interested in developing
Dense Linear Algebra Solvers

" Retool LAPACK and ScalLAPACK for
hybrid architectures

11/20/13
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i A New Generation of DL A Software

LINPACK (70's)

(Vector operations)

LAPACK (80's)
(Blocking, cache
friendly)

ScaLAPACK (90's)
(Distributed Memory)

2D Block Cyclic Layout

Software/Algorithms follow hardware evolution in time

Rely on
- Level-1 BLAS
operations

Rely on
- Level-3 BLAS
operations

Rely on
- PBLAS Mess Passing

|

Matrix point of view

Processor point of vie:
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< MAGMA: LAPACK for GPUs

" MAGMA

> Matrix algebra for GPU and multicore architecture
> To provide LAPACK/ScaLAPACK on hybrid architectures

> http://icl.cs.utk.edu/magma/

" MAGMA for CUDA, Intel Xeon Phi, and
OpenCL

» Hybrid dense linear algebra:

> One-sided factorizations and linear system solvers
> Two-sided factorizations and eigenproblem solvers
> A subset of BLAS and auxiliary routines

" MAGMA developers & collaborators

» UTK, UC Berkeley, UC Denver, INRIA (France), KAUST (Saudi
Arabia)

» Community effort, similar to LAPACK/ScalLAPACK
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< Key Aspects of MAGMA

HYBRID ALGORITHMS

MAGMA uses a hybridization methodology where algorithms of interest are split into
tasks of varying granularity and their execution scheduled over the available hardware
components. Scheduling can be static or dynamic. In either case, small
non-parallelizable tasks, often on the critical path, are scheduled on the CPU, and
larger more parallelizable ones, often Level 3 BLAS, are scheduled on the GPU.

PERFORMANCE

Performance of MAGMA LU in DP on Kepler K20X
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MAGM.

GFlop/s

MATRIX SIZE

21 K20X [ZZ7) Intel Xeon ES-2670
14 MP x192 @ 0.73 GHz 16 cores @ 2.60 GHz

FEATURES AND SUPPORT

* MAGMA 1.4 ror CUDA

¢ cIMAGMA 1.0 ror OpenCL

e MAGMA MIC 1.0 ror Intel Xeon Phi

A
@QV.QQQQ \*‘@Q%\
® ® ©® Llinearsystemsolvers
® ® © Eigenvalue problem solvers
o MAGMA BLAS
o CPU Interface
® ® ® GPUlInterface
® @® O Multiple precision support
o Non-GPU-resident factorizations
o @®  Multicore and multi-GPU support
o Tile factorizations with StarPU

dynamic scheduling

® ® ® |APACKtesting
® ® ® linux

O Windows

o Mac 0S



““ A New Generation of DLA Software

Software/Algorithms follow hardware evolution in time

LINPACK (70’s)
(Vector operations)

LAPACK (80’s)
(Blocking, cache
friendly)

ScalLAPACK (90’s)
(Distributed Memory)

PLASMA (00’s)
New Algorithms
(many-core friendly)

MAGMA
Hybrid Algorithms

Rely on
- Level-1 BLAS
operations

Rely on
- Level-3 BLAS
operations

Rely on
- PBLAS Mess Passing

Rely on
- a DAG/scheduler
- block data layout
- some extra kernels

Rely on
- hybrid scheduler
- hybrid kernels



Parallelization of LU and QR.

“ Parallelize the update: dgemm
— » Easy and done in any reasonable software.
* This is the 2/3n3 term in the FLOPs count.

* Can be done efficiently with LAPACK+multithreaded BLAS

N1/

-

dgetf2
I‘— Iu(I) l
IR
dtrsm (+ dswp)
— - l l l l l Fork - Join parallelism
- ' ‘ ‘ ‘ ‘ Bulk Sync Processing

dgemm
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N7
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<« Synchronization (in LAPACK LU)

GETF2 ﬂ » fork jOin
(Facior 2 panel) | » bulk synchronous processing
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PLASMA LU Factorization

Dataflow Driven

&

ICLLr"

Numerical program generates tasks and

run time system executes tasks respecting

data dependences.

XTRSM




C High Performance Computing :
Current Development

We are developing a strategy :

* That prioritizes the data-intensive operations to be executed
by the accelerator

« That keep the memory-bound ones for the CPUs since the
hierarchical caches with out-of-order superscalar scheduling
are more appropriate to handle it.

* Moreover, in order to keep the accelerator busy, we redesign
the kernels and propose dynamically guided data distribution
to exploit enough parallelism to keep the accelerators and
processors busy.



" A runtime environment for the

dynamic execution of

precedence-constraint tasks

(DAGs) in a multicore machine
> Translation

> If you have a serial program that
consists of computational kernels
(tasks) that are related by data
dependencies, QUARK can help you
& execute that program (relatively
efficiently and easily) in parallel on
a multicore machine

20



_The Purpose of a QUARK Runtime

"Objectives
> High utilization of each core

> Scaling to large number of cores (N

» Synchronization reducing algorithms
“Methodology

> Dynamic DAG scheduling (QUARK)

> Explicit parallelism

> Implicit communication

> Fine granularity / block data layout

“"Arbitrary DAG with dynamic SChedU“ng

DAG scheduled
parallelism

/\'

/@5 @@m@i@ &&ﬁ

Fork-join parallelism
Notice the synchronization
penalty in the presence of

heterogeneity.
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cLir QUARK

OAK
“RIDGE

Shared Memory Superscalar Scheduling

FOARkk; O"TDHI_D%S'I:I!{F A[KIIK
sl i I A definition — pseudocode
A[m][K] < DTRSM(A[K][K], A[m][K])
FOR m = k+1..TILES-1
A[m][m] «— DSYRK(A[m][K], A[m][m])
FOR n = k+1..m-1
A[m][n] <~ DGEMM(A[m][K], A[n][K], A[m][n])

for (k = 0; k < A.mt; k++) {

QUARK_CORE_dpotrf(...); implementation — actual
for (m = k+1; m < A.mt; m++) { .
QUARK_CORE_dtrsm(...); QUARK code in PLASMA

for (m = k+1; m < A.mt; m++) {
QUARK_CORE_dsyrk(...);
for (n = k+1; n <m; n++) {
} QUARK_CORE_dgemm(...)
}
}



& High Performance Computing :
current development

1. Standard hybrid CPU-GPU implementation

0

204

a0

100

0 50 100
nz=1298 nz = 5886

factor panel k  then update => factor panel k+l

Algorithm 1: Two-phase implementation of a one-sided
factorization.
for P; € {Pl,Pz, .. .,Pn} do
CPU:
Receive Panel(P;)
PanelFactorize(P;)
Send Panel(P;)
GPU:

TrailingMatrixUpdate(A (1))




& High Performance Computing :
current development

Time (sec): 0.0 1.0

Legend: .. update0 . update? ...

Standard implementation without lookahead:
»Execution trace of the Cholesky factorization on a single socket CPU (Sandy Bridge) and a K20c GPU.

»We see that the computation on the CPU (e.g., the panel factorization) is not overlapped with the
computation on the GPU.

»The algorithm looks like sequential, the only advantage is that the data extensive operations are
accelerated by the GPU.
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High Performance Computing:
current development

Introducing a lookahead panel to overlap CPU and GPU

0

20

a0

100

0 50 100
nz=1288 . nz=5886

factor panel k then upddfe => factor panel k+l

next panel
continue update k

Algorithm 2: Two-phase implementation with a split update
and explicit communication.

for P; € {Pl,{-’z,. ,Pn} do

CPU:

Receive Panel(P))

PanelFactorize(P;)

Send Panel(P;)

GPU: —
NextPanelUpdate(lookahead P; 1)) — goto CPU

TrailingMatrixUpdate(A (1))




> High Performance Computing:
current development

CPU 0:

DEV 0:

1.0

Time (sec): 0.0 0.5

Legend: .. update0 . update? ..

New implementation with lookahead:
»Execution trace of the Cholesky factorization on a single socket CPU (Sandy Bridge) and a K20c GPU.

»We see that the memory-bound kernel (e.g., the panel factorization) has been allocated to the CPU while
the compute-bound kernel (e.g., the update performed by DSYRK) has been allocated to the accelerator.

»the advantage of such strategy is not only to hide the data transfer cost between the CPU and GPU but
also to keep the GPU busy all the way until the end of execution.



Eli_gh Performance Computing : current development

ICL

s Prioritizi icat-path o ttetismif

needeq

0 0

20 20

40

60

a0

100 100

120 120

0 50 100 0 50 100
nz=1298 nz= 5886

factor panel k  then update => factor panel k+l
next panel

Algorithm 3: Two-phase implementation with a split update
prioritizing critical path.

for P, € {P,P,,...,P,} do
CPU:

Receive Panel(ﬁ-)

PanelFactorize(P;)

Send Panel(P;)

GPU:

forj € {P;11,Piio,..., Py} do

L MatrixUpdate of block j(P(]-)) with priority p — |




High Performance Computing : current development

ICLLr"

I
I
CPU 0: :.. .. .. .. . .
:
[}
GPU 0: :
Time (sec):

Legend:  update0 - update2 - - - - -

Prioritize the critical path :

»the panel factorization can be executed earlier. This will increase the lookahead depth that the algorithm
exposes, increasing parallelism, so that there are more update tasks available to be executed by the device
resources.

»This options has advantage when a lot of parallelism is needed especially for small sizes.



& High Performance Computing:
current development

1. Standard hybrid CPU-GPU implementation

0

204

a0

100

0 50 100
nz=1298 nz = 5886

factor panel k  then update => factor panel k+l

Algorithm 1: Two-phase implementation of a one-sided
factorization.
for P; € {Pl,Pz, .. .,Pn} do
CPU:
Receive Panel(P;)
PanelFactorize(P;)
Send Panel(P;)
GPU:

TrailingMatrixUpdate(A (1))




High Performance Computing : current development

ICLOr"

Time (sec): 0.0 0.5

1.0
Legend: .. updateo . update2 ..

Resource Capability Weight :

» the advantage of such strategy is to keep all resources busy all the way until the end of execution.

» Careful management of the capability-weights ensures that the CPU does not take any work that would cause
a delay to the GPU, since that would negatively affect the performance.



High Performance Computing : current development
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High Performance Computing : current development

ICLOr

" Multiple 6PU Case
»Experiments with 6 GPUs

Scalability and performance of such implementation



E]i_gh Performance Computing : current development

ICL

CPU O

GPU 0:

GPU 1:

GPU 2:

GPU 3:

GPU 4:

GPU 5:

Time (sec): 0.0 0.5 1.0 15

Legen:

Scalability and efficiency :

»snapshot of the execution trace of the Cholesky factorization on System A for a matrix of size 40K using six
GPUs K20c.

»As expected the pattern of the trace looks compressed which means that our implementation is able to
schedule and balance the tasks on the whole six GPUs devices.
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Gflop/s
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Gflop/s

magma_dquark DPOTRF Kepler K20c
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Gflop/s

magma_dquark DPOTRF Kepler K20c
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magma_quark scalability DPOTRF
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Gflop/s
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magma_quark scalability DGEQRF Xeon-Phi
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¢ Major Changes to Software &

IcLOr-

Algorithms

e Must rethink the design of our
algorithms and software

= Another disruptive technology

« Similar to what happened with cluster
computing and message passing

= Rethink and rewrite the applications,
algorithms, and software

= Data movement is expense

* Flop/s are cheap, so are provisioned in
excess



N
< Summary

* Major Challenges are ahead for extreme
computing
= Parallelism O(10%)
e Programming issues
= Hybrid
 Peak and HPL may be very misleading
« No where near close to peak for most apps

= Fault Tolerance
« Today Sequoia BG/Q node failure rate is 1.25 failures/day

= Power
« 50 Gflops/w (today at 2 Gflops/w)

* We will need completely new approaches and
technologies to reach the Exascale level
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Collaborators / Software / Support

. PLASMA e &< FUJITSU
http://icl.cs.utk.edu/plasmal/ #VIDIA. nag@ AMDZ
¢
- MAGMA )\ The MathWorks

http://icl.cs.utk.edu/magmal/

-; (\ "—% U.S. DEPARTMENT OF
. Quark (RT for Shared Memory) ®A W ENERGY

http://icl.cs.utk.edu/quark/

. Collaborating partners
University of Tennessee, Knoxville

. PaRSEC(Parallel Runtime Scheduling jlversty & watorna, serkeley

University of Colorado, Denver
and Execution Control) VAGMA PLASMA

http://icl.cs.utk.edu/parsec/ EYIE  EiNE
x
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