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Looking at the Gordon Bell Prize 
(Recognize outstanding achievement in high-performance computing applications 
 and encourage development of parallel processing ) 

  1 GFlop/s; 1988; Cray Y-MP; 8 Processors 
 Static finite element analysis 

  1 TFlop/s; 1998; Cray T3E; 1024 Processors 
 Modeling of metallic magnet atoms, using a                  

 variation of the locally self-consistent multiple            
 scattering method. 

  1 PFlop/s; 2008; Cray XT5; 1.5x105 Processors 
 Superconductive materials 

  1 EFlop/s; ~2018;   ?; 1x107 Processors (109 threads)   www.exascale.org 
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Performance Development in Top500 
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Exponential growth  in 
parallelism for the foreseeable 
future 
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Factors that Necessitate Redesign 
  Steepness of the ascent from terascale to petascale

 to exascale 
  Extreme parallelism and hybrid design 

  Preparing for million/billion way parallelism 

  Tightening memory/bandwidth bottleneck 
  Limits on power/clock speed implication on multicore 
  Reducing communication will become much more intense  
 Memory per core changes, byte-to-flop ratio will change 

  Necessary Fault Tolerance 
 MTTF will drop 
 Checkpoint/restart has limitations 

  Software infrastructure does not exist today  
www.exascale.org 

5 



6 

Major Changes to Software 

•  Must rethink the design of our software 
 Another disruptive technology 

 Similar to what happened with cluster computing and
 message passing 

 Rethink and rewrite the applications, algorithms, and
 software 

•  Numerical libraries for example will change 
 For example, both LAPACK and ScaLAPACK will

 undergo major changes to accommodate this 



IESP: The Need 

  The largest scale systems are becoming                
 more complex, with designs supported by
 consortium 
 The software community has responded slowly 

  Significant architectural changes evolving 
 Software must dramatically change 

  Our ad hoc community coordinates poorly, both with
 other software components and with the vendors 
 Computational science could achieve more with

 improved development and coordination 



A Call to Action 

  Hardware has changed dramatically while software ecosystem
 has remained stagnant 

  Previous approaches have not looked at co-design of multiple
 levels in the system software stack (OS, runtime, compiler,
 libraries, application frameworks) 

  Need to exploit new hardware trends (e.g., manycore,
 heterogeneity) that cannot be handled by existing software
 stack, memory per socket trends 

  Emerging software technologies exist, but have not been fully
 integrated with system software, e.g., UPC, Cilk, CUDA, HPCS 

  Community codes unprepared for sea change in architectures 

  No global evaluation of key missing components 
www.exascale.org 

8 



International Community Effort 

  We believe this needs to be an international 
collaboration for various reasons including: 
 The scale of investment 
 The need for international input on requirements  
 US, Europeans, Asians, and others are working on their 

own software that should be part of a larger vision for 
HPC. 

 No global evaluation of key missing components 
 Hardware features are uncoordinated with 

software development 

www.exascale.org 
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IESP Goal 

Build an international plan for developing 
the next generation open source software 
for scientific high-performance computing 

Improve the world’s simulation and               
modeling capability by improving the    
coordination and development of the HPC 
software environment 

Workshops: 

www.exascale.org 
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Key Trends 

  Increasing Concurrency 

  Reliability Challenging 

  Power dominating designs 

  Heterogeneity in a node 

  I/O and Memory: ratios
 and breakthroughs 

Requirements on 
X-Stack 

  Programming models, 
applications, and tools must 
address concurrency 

  Software and tools must manage 
power directly 

  Software must be resilient 

  Software must address change 
to heterogeneous nodes 

  Software must be optimized for 
new Memory ratios and need to 
solve parallel I/O bottleneck 



www.exascale.org 
Roadmap Components 



Where We Are Today: 

  SC08 (Austin TX) meeting to generate interest 

  Funding from DOE’s Office of Science & NSF Office of
 Cyberinfratructure and sponsorship by Europeans and
 Asians 

  US meeting (Santa Fe, NM) April 6-8, 2009  

  65 people 

  NSF’s Office of Cyberinfrastructure funding 

  European meeting (Paris, France) June 28-29, 2009 

  70 people 

  Outline Report 

  Asian meeting (Tsukuba Japan) October 18-20, 2009 

  Draft roadmap 

  Refine Report 

  SC09 (Portland OR) BOF to inform others 

  Public Comment 

  Draft Report presented  

Nov 2008 

Apr 2009 

Jun 2009 

Oct 2009 

Nov 2009 
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  www.exascale.org 

www.exascale.org 
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4.2.4 Numerical Libraries 
  Technology drivers 

  Hybrid architectures 

  Programming models/
languages 

  Precision 

  Fault detection 

  Energy budget 

  Memory hierarchy 

  Standards 

  Alternative R&D 
strategies 
  Message passing 

  Global address space 

  Message-driven work-queue 

  Recommended research agenda 
  Hybrid and hierarchical based 

software (eg linear algebra split across 
multi-core / accelerator) 

  Autotuning 

  Fault oblivious sw, Error tolerant sw 

  Mixed arithmetic 

  Architectural aware libraries 

  Energy efficient implementation 

  Algorithms that minimize 
communications 

  Crosscutting  considerations 
  Performance 

  Fault tolerance 

  Power management 

  Arch characteristics 



Priority Research Direction  

Key	
  challenges	
  

• Fault oblivious, Error tolerant software 
• Hybrid and hierarchical based algorithms (eg 
linear algebra split across multi-core and gpu, 
self-adapting) 
• Mixed arithmetic 
• Energy efficient algorithms 
• Algorithms that minimize communications 
• Autotuning based software 
• Architectural aware algorithms/libraries 
• Standardization activities  
• Async methods 

• Overlap data and computation 

• Adaptivity for architectural environment  
• Scalability : need algorithms with minimal 
amount of communication 
• Increasing the level of asynchronous 
behavior  
• Fault resistant software– bit flipping and 
loosing data (due to failures).  Algorithms that 
detect and carry on or detect and correct and 
carry on (for one or more) 
• Heterogeneous architectures 
• Languages 
• Accumulation of round-off errors 

• Efficient	
  libraries	
  of	
  numerical	
  rou>nes	
  

• Agnos>c	
  of	
  plaAorms	
  

• Self	
  adap>ng	
  to	
  the	
  environment	
  

• Libraries	
  will	
  be	
  impacted	
  by	
  compilers,	
  OS,	
  run>me,	
  prog	
  env
	
  etc	
  

• Standards:	
  FT,	
  Power	
  Management,	
  Hybrid	
  Programming,	
  arch
	
  characteris>cs	
  	
  

• Make	
  systems	
  more	
  usable	
  by	
  a	
  wider	
  group	
  of
	
  applica>ons	
  
• Enhance	
  programmability	
  

Summary	
  of	
  research	
  direc>on	
  

Poten>al	
  impact	
  on	
  soNware	
  component	
  
Poten>al	
  impact	
  on	
  usability,	
  capability,	
  	
  

and	
  breadth	
  of	
  community	
  



4.2.4 Numerical Libraries 
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Architectural transparency 

Self Adapting for performance 

Numerical Libraries 
Structured grids 
Unstructured grids 
FFTs 
Dense LA 
Sparse LA 
Monte Carlo 
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Language issues 
Std: Fault tolerant  

Std: Energy aware 
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Improving 
HPC 

Software  

Pete Beckman & Jack Dongarra 
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