
THE ROAD TO EXASCALE:
 HARDWARE AND SOFTWARE
 CHALLENGES

JACK DONGARRA
UNIVERSITY OF TENNESSEE

OAK RIDGE NATIONAL LAB

www.exascale.org 1

Looking at the Gordon Bell Prize
(Recognize outstanding achievement in high-performance computing applications
 and encourage development of parallel processing)

  1 GFlop/s; 1988; Cray Y-MP; 8 Processors
 Static finite element analysis

  1 TFlop/s; 1998; Cray T3E; 1024 Processors
 Modeling of metallic magnet atoms, using a

 variation of the locally self-consistent multiple
 scattering method.

  1 PFlop/s; 2008; Cray XT5; 1.5x105 Processors
 Superconductive materials

  1 EFlop/s; ~2018; ?; 1x107 Processors (109 threads) www.exascale.org

2

Performance Development in Top500

0.1

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

1E+10

1E+11
19

94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

20
16

20
18

20
20

1 Eflop/s

 1 Gflop/s

 1 Tflop/s

 100 Mflop/s

100 Gflop/s

100 Tflop/s

 10 Gflop/s

 10 Tflop/s

 1 Pflop/s

100 Pflop/s

 10 Pflop/s SUM	

N=1	

N=500	

Gordon
Bell

Winners

www.exascale.org

3

Exponential growth in
parallelism for the foreseeable
future

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

Average Number of Cores Per Supercomputer

Top20 of the Top500

www.exascale.org 4

Factors that Necessitate Redesign
  Steepness of the ascent from terascale to petascale

 to exascale
  Extreme parallelism and hybrid design

  Preparing for million/billion way parallelism

  Tightening memory/bandwidth bottleneck
  Limits on power/clock speed implication on multicore
  Reducing communication will become much more intense
 Memory per core changes, byte-to-flop ratio will change

  Necessary Fault Tolerance
 MTTF will drop
 Checkpoint/restart has limitations

  Software infrastructure does not exist today
www.exascale.org

5

6

Major Changes to Software

•  Must rethink the design of our software
 Another disruptive technology

 Similar to what happened with cluster computing and
 message passing

 Rethink and rewrite the applications, algorithms, and
 software

•  Numerical libraries for example will change
 For example, both LAPACK and ScaLAPACK will

 undergo major changes to accommodate this

IESP: The Need

  The largest scale systems are becoming
 more complex, with designs supported by
 consortium
 The software community has responded slowly

  Significant architectural changes evolving
 Software must dramatically change

  Our ad hoc community coordinates poorly, both with
 other software components and with the vendors
 Computational science could achieve more with

 improved development and coordination

A Call to Action

  Hardware has changed dramatically while software ecosystem
 has remained stagnant

  Previous approaches have not looked at co-design of multiple
 levels in the system software stack (OS, runtime, compiler,
 libraries, application frameworks)

  Need to exploit new hardware trends (e.g., manycore,
 heterogeneity) that cannot be handled by existing software
 stack, memory per socket trends

  Emerging software technologies exist, but have not been fully
 integrated with system software, e.g., UPC, Cilk, CUDA, HPCS

  Community codes unprepared for sea change in architectures

  No global evaluation of key missing components
www.exascale.org

8

International Community Effort

  We believe this needs to be an international
collaboration for various reasons including:
 The scale of investment
 The need for international input on requirements
 US, Europeans, Asians, and others are working on their

own software that should be part of a larger vision for
HPC.

 No global evaluation of key missing components
 Hardware features are uncoordinated with

software development

www.exascale.org

9

IESP Goal

Build an international plan for developing
the next generation open source software
for scientific high-performance computing

Improve the world’s simulation and
modeling capability by improving the
coordination and development of the HPC
software environment

Workshops:

www.exascale.org

10

Key Trends

  Increasing Concurrency

  Reliability Challenging

  Power dominating designs

  Heterogeneity in a node

  I/O and Memory: ratios
 and breakthroughs

Requirements on
X-Stack

  Programming models,
applications, and tools must
address concurrency

  Software and tools must manage
power directly

  Software must be resilient

  Software must address change
to heterogeneous nodes

  Software must be optimized for
new Memory ratios and need to
solve parallel I/O bottleneck

www.exascale.org
Roadmap Components

Where We Are Today:

  SC08 (Austin TX) meeting to generate interest

  Funding from DOE’s Office of Science & NSF Office of
 Cyberinfratructure and sponsorship by Europeans and
 Asians

  US meeting (Santa Fe, NM) April 6-8, 2009

  65 people

  NSF’s Office of Cyberinfrastructure funding

  European meeting (Paris, France) June 28-29, 2009

  70 people

  Outline Report

  Asian meeting (Tsukuba Japan) October 18-20, 2009

  Draft roadmap

  Refine Report

  SC09 (Portland OR) BOF to inform others

  Public Comment

  Draft Report presented

Nov 2008

Apr 2009

Jun 2009

Oct 2009

Nov 2009

www.exascale.org

13

  www.exascale.org

www.exascale.org

14

4.2.4 Numerical Libraries
  Technology drivers

  Hybrid architectures

  Programming models/
languages

  Precision

  Fault detection

  Energy budget

  Memory hierarchy

  Standards

  Alternative R&D
strategies
  Message passing

  Global address space

  Message-driven work-queue

  Recommended research agenda
  Hybrid and hierarchical based

software (eg linear algebra split across
multi-core / accelerator)

  Autotuning

  Fault oblivious sw, Error tolerant sw

  Mixed arithmetic

  Architectural aware libraries

  Energy efficient implementation

  Algorithms that minimize
communications

  Crosscutting considerations
  Performance

  Fault tolerance

  Power management

  Arch characteristics

Priority Research Direction

Key	
 challenges	

• Fault oblivious, Error tolerant software
• Hybrid and hierarchical based algorithms (eg
linear algebra split across multi-core and gpu,
self-adapting)
• Mixed arithmetic
• Energy efficient algorithms
• Algorithms that minimize communications
• Autotuning based software
• Architectural aware algorithms/libraries
• Standardization activities
• Async methods

• Overlap data and computation

• Adaptivity for architectural environment
• Scalability : need algorithms with minimal
amount of communication
• Increasing the level of asynchronous
behavior
• Fault resistant software– bit flipping and
loosing data (due to failures). Algorithms that
detect and carry on or detect and correct and
carry on (for one or more)
• Heterogeneous architectures
• Languages
• Accumulation of round-off errors

• Efficient	
 libraries	
 of	
 numerical	
 rou>nes	

• Agnos>c	
 of	
 plaAorms	

• Self	
 adap>ng	
 to	
 the	
 environment	

• Libraries	
 will	
 be	
 impacted	
 by	
 compilers,	
 OS,	
 run>me,	
 prog	
 env
	
 etc	

• Standards:	
 FT,	
 Power	
 Management,	
 Hybrid	
 Programming,	
 arch
	
 characteris>cs	
 	

• Make	
 systems	
 more	
 usable	
 by	
 a	
 wider	
 group	
 of
	
 applica>ons	

• Enhance	
 programmability	

Summary	
 of	
 research	
 direc>on	

Poten>al	
 impact	
 on	
 soNware	
 component	

Poten>al	
 impact	
 on	
 usability,	
 capability,	
 	

and	
 breadth	
 of	
 community	

4.2.4 Numerical Libraries

Energy aware

Fault tolerant

Heterogeneous sw

Self adapting for precision

Scaling to billion way

2010	
 2011	
 2012	
 2013	
 2014	
 2015	
 2016	
 2017	
 2018	
 2019	

Com
plexity	
 of	
 system

	

Architectural transparency

Self Adapting for performance

Numerical Libraries
Structured grids
Unstructured grids
FFTs
Dense LA
Sparse LA
Monte Carlo
Optimization

Language issues
Std: Fault tolerant

Std: Energy aware

Std: Arch characteristics Std: Hybrid Progm

Improving
HPC

Software

Pete Beckman & Jack Dongarra

http://www.exascale.org

www.exascale.org 18

