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• Autotuning• Autotuning
• May work well for certain 

t ti  b tcomputations, but
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““What role will accelerators will What role will accelerators will 
play in the future HPC systems?play in the future HPC systems?””p y f yp y f y

• Conventional parallel processing vs  accelerator Conventional parallel processing vs. accelerator 
technologies: challenges and opportunities

• Can (and under what circumstances) systems 
based on other than CPU processing elements 
(such as FPGA, Cell, GPU) deliver performance 
above what is achievable on modern above what is achievable on modern 
multiprocessors?

• The challenge of software development and 
i  d l  f  ff ti   f programming models for effective use of 

accelerator technologies
• What vendors can/should do to satisfy the needs What vendors can/should do to satisfy the needs 

of computational scientists interested in using 
these architectures? 3



Exploiting Mixed PrecisionExploiting Mixed Precision

• Current Version of the Cell has > a factor of 10 between 
single precision and double prevision performance (204 
GFlop/s to 14 GFlop/s)!GFlop/s to 14 GFlop/s)!

Next version this will narrow to a factor of 2 (as in most common 
processors today)

W  b  i t t d i  l ki g f   t  l it th  • We became interested in looking for ways to exploit the 
speed of SP but still retain the accuracy of DP.

SPE ~ 25 Gflop/s peak
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Moving Data Around on the Cell

256 KB256 KB

Injection bandwidth
25.6 GB/s

Injection bandwidth Injection bandwidthInjection bandwidth

Worst case memory bound operations (no reuse of data) 
3 data movements (2 in and 1 out) with 2 ops (SAXPY)
For the cell would be 4.6 Gflop/s (25.6 GB/s*2ops/12B) in SP.



Linear Algebra Iterative RefinementLinear Algebra Iterative Refinement
• Exploit 32 bit floating point as much as 

possible.
Especially for the bulk of the computation

• Correct or update the solution with selective 
use of 64 bit floating point to provide a 
refined results

• Intuitively: 
Compute a 32 bit result, 
C l l t   ti  t  32 bit lt i  Calculate a correction to 32 bit result using 
selected higher precision and,
Perform the update of the 32 bit results with the 
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Perform the update of the 32 bit results with the 
correction using high precision. 
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PS3 Hardware OverviewPS3 Hardware Overview
Disabled/Broken: Yield issues25.6 Gflop/s 25.6 Gflop/s 25.6 Gflop/s

SIT CELL
PE PE PE

SIT CELL200 GB/s
GameOS

Hypervisor
PowerPC

PE PE PE

25.6 Gflop/s 25.6 Gflop/s 25.6 Gflop/s

25 GB/s
3.2 GHz
25 GB/s injection bandwidth
200 GB/s between SPEs

256 MiB
200 GB/s between SPEs 
32 bit peak perf 6*25.6 Gflop/s

153.6 Gflop/s peak
64 bit peak perf 6*1.8 Gflop/s

10.8 Gflop/s peak
1 Gb/s NIC
256 MiB memory 



Matrix Multiple on a 4 Node PlayStation3 Cluster

What's good
Very cheap: ~4$ per Gflop/s (with 32 

bit fl pt theoretical peak)
F t l l t ti b t SPE

What's bad
Gigabit network card. 1 Gb/s is too 

little for such computational power (150 
Gflop/s per node)Fast local computations between SPEs

Perfect overlap between 
communications and computations is 
possible (Open-MPI running):

Gflop/s per node)
Linux can only run on top of GameOS 

(hypervisor)
Extremely high network access 

l t i (120 )PPE does communication via MPI
SPEs do computation via SGEMMs

latencies (120 usec)
Low bandwidth (600 Mb/s)

Only 256 MB local memory
Only 6 SPEs

33 Gold: Computation: 8 ms
Blue: Communication: 20 ms



SUMMA Model vs Measures 1 SPE
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GPU ExperimentsGPU Experiments
• LAPACK is running on the CPU, 

making calls to CUDA BLAS which are making calls to CUDA BLAS which are 
running on the GPU. 

AMD Opteron 1 8 GHzAMD Opteron 1.8 GHz
NVIDIA Quadro FX 5600
• processors: 128 (total)              • processors: 128 (total)              
• max performance: 346 GFlop/s SP
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Performance of LAPACK LU, QR, and Performance of LAPACK LU, QR, and 
CholeskyCholesky with CUBLASwith CUBLAS
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