Supercomputers and Clusters and Grid, Oh My!

Jack Dongarra
University of Tennessee
and
Oak Ridge National Laboratory
and
SFI Walton Visitor
University College Dublin
Apologies to Frank Baum...

Dorothy: “Do you suppose we'll meet any wild animals?”

Tinman: “We might.”

Scarecrow: “Animals that ... that eat straw?”

Tinman: “Some. But mostly lions, and tigers, and bears.”

All: Supercomputers and clusters and grids, oh my!
Supercomputers and clusters and grids, oh my!
Technology Trends: Microprocessor Capacity

The experts look ahead

Cramming more components onto integrated circuits

With unit cost falling as the number of components per circuit rises, by 1975 economics may dictate squeezing as many as 65,000 components on a single silicon chip

By Gordon E. Moore

Director, Research and Development Laboratories, Fairchild Semiconductor division of Fairchild Camera and Instrument Corp.

The future of integrated electronics is the future of electronics itself. The advantages of integration will bring about a proliferation of electronics, pushing this science into many new areas.

Integrated circuits will lead to such wonders as home computers—or at least terminals connected to a central computer—automatic controls for automobiles, and personal portable communications equipment. The electronic wrist-watch needs only a display to be feasible today.

But the biggest potential lies in the production of large systems. In telephone communications, integrated circuits in digital filters will separate channels on multiplex equipment. Integrated circuits will also switch telephone circuits and perform data processing.

Computers will be more powerful, and will be organized in completely different ways. For example, memories built of integrated electronics may be distributed throughout the machine instead of being concentrated in a central unit. In addition, the improved reliability made possible by integrated circuits will allow the construction of larger processing units. Machines similar to those in existence today will be built at lower costs and with faster turn-around.

Present and future

By integrated electronics, I mean all the various technologies which are referred to as microelectronics today as well as any additional ones that result in electronics functions supplied to the user as inseparable units. These technologies were first investigated in the late 1950's. The object was to miniaturize electronics equipment to include increasingly complex electronic functions in limited space with minimum weight. Several approaches evolved, including the use of thin film techniques for individual components, planar film structures and semiconductor integrated circuits.

Each approach evolved rapidly and converged so that each borrowed techniques from another. Many researchers believe the way of the future to be a combination of the various approaches.

The advocates of semiconductor integrated circuits are already using the improved characteristics of thin-film resistors by applying such films directly to an active semiconductor substrate. Those advocating a technology based upon thin film technologies are developing sophisticated techniques for the attachment of active semiconductor devices to the passive film arrays.

Both approaches have worked well and are being used.

Number of devices/chip doubles every 18 months

2X transistors/Chip Every 1.5 years

Called “Moore’s Law”
Moore’s Law

1 PFlop/s
(10^{15})

1 TFlop/s
(10^{12})

1 GFlop/s
(10^9)

1 MFlop/s
(10^6)

1 KFlop/s
(10^3)

1 (Floating Point operations / second, Flop/s)
1945 100
1949 1,000 (1 KiloFlop/s, KFlop/s)
1951 10,000
1961 100,000
1964 1,000,000 (1 MegaFlop/s, MFlop/s)
1968 10,000,000
1975 100,000,000
1987 1,000,000,000 (1 GigaFlop/s, GFlop/s)
1992 10,000,000,000
1993 100,000,000,000
1997 1,000,000,000,000 (1 TeraFlop/s, TFlop/s)
2000 10,000,000,000,000
2003 35,000,000,000,000 (35 TFlop/s)
- Listing of the 500 most powerful Computers in the World
- Yardstick: Rmax from LINPACK MPP
 \[
 Ax = b, \text{ dense problem}
 \]
- Updated twice a year
 SC‘xy in the States in November
 Meeting in Mannheim, Germany in June
- All data available from www.top500.org
What is a Supercomputer?

- A supercomputer is a hardware and software system that provides close to the maximum performance that can currently be achieved.

- Over the last 10 years the range for the Top500 has increased greater than Moore’s Law
 - 1993:
 - #1 = 59.7 GFlop/s
 - #500 = 422 MFlop/s
 - 2003:
 - #1 = 35.8 TFlop/s
 - #500 = 403 GFlop/s

Why do we need them?
Computational fluid dynamics, protein folding, climate modeling, national security, in particular for cryptanalysis and for simulating nuclear weapons to name a few.
A Tour de Force in Engineering

- Homogeneous, Centralized, Proprietary, Expensive!
- Target Application: CFD-Weather, Climate, Earthquakes
- 640 NEC SX/6 Nodes (mod)
 - 5120 CPUs which have vector ops
 - Each CPU 8 Gflop/s Peak
- 40 TFlop/s (peak)
- ~1/2 Billion € for machine, software, & building
- Footprint of 4 tennis courts
- 7 MWatts
 - Say 10 cent/KWhr - $16.8K/day = $6M/year!
- Expect to be on top of Top500 until 60-100 TFlop ASCI machine arrives

From the Top500 (November 2003)
- Performance of ESC
 > Σ Next Top 3 Computers
November 2003

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Computer</th>
<th>Rmax Tflop/s</th>
<th>Installation Site</th>
<th>Year</th>
<th># Proc</th>
<th>Rpeak Tflop/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 NEC</td>
<td>Earth-Simulator</td>
<td>35.8</td>
<td>Earth Simulator Center</td>
<td>2002</td>
<td>5120</td>
<td>40.90</td>
</tr>
<tr>
<td>2 Hewlett-Packard</td>
<td>ASCI Q - AlphaServer SC ES45/1.25 GHz</td>
<td>13.9</td>
<td>Los Alamos National Laboratory</td>
<td>2002</td>
<td>8192</td>
<td>20.48</td>
</tr>
<tr>
<td>3 Self</td>
<td>Apple G5 Power PC w/Infiniband 4X</td>
<td>10.3</td>
<td>Virginia Tech</td>
<td>2003</td>
<td>2200</td>
<td>17.60</td>
</tr>
<tr>
<td>4 Dell</td>
<td>PowerEdge 1750 P4 Xeon 3.6 Ghz w/Myrinet</td>
<td>9.82</td>
<td>University of Illinois U/C</td>
<td>2003</td>
<td>2500</td>
<td>15.30</td>
</tr>
<tr>
<td>5 Hewlett-Packard</td>
<td>rx2600 Itanium2 1 GHz Cluster - w/Quadrics</td>
<td>8.63</td>
<td>Pacific Northwest National Laboratory</td>
<td>2003</td>
<td>1936</td>
<td>11.62</td>
</tr>
<tr>
<td>6 Linux NetworX</td>
<td>Opteron 2 GHz, w/Myrinet</td>
<td>8.05</td>
<td>Lawrence Livermore National Laboratory</td>
<td>2003</td>
<td>2816</td>
<td>11.26</td>
</tr>
<tr>
<td>7 Linux NetworX</td>
<td>MCR Linux Cluster Xeon 2.4 GHz - w/Quadrics</td>
<td>7.63</td>
<td>Lawrence Livermore National Laboratory</td>
<td>2002</td>
<td>2304</td>
<td>11.06</td>
</tr>
<tr>
<td>8 IBM</td>
<td>ASCI White, Sp Power3 375 MHz</td>
<td>7.30</td>
<td>Lawrence Livermore National Laboratory</td>
<td>2000</td>
<td>8192</td>
<td>12.29</td>
</tr>
<tr>
<td>9 IBM</td>
<td>SP Power3 375 MHz 16 way</td>
<td>7.30</td>
<td>NERSC/LBNL</td>
<td>2002</td>
<td>6656</td>
<td>9.984</td>
</tr>
<tr>
<td>10 IBM</td>
<td>xSeries Cluster Xeon 2.4 GHz - w/Quadrics</td>
<td>6.59</td>
<td>Lawrence Livermore National Laboratory</td>
<td>2003</td>
<td>1920</td>
<td>9.216</td>
</tr>
</tbody>
</table>

50% of top500 performance in top 9 machines; 131 system > 1 TFlop/s; 210 machines are clusters, 1 IE Vodophone
Apple G5 Cluster
- Dual 2.0 GHz IBM Power PC 970s
 - 16 Gflop/s per node
 - 2 CPUs * 2 fma units/cpu * 2 GHz * 2(mul-add)/cycle
- 1100 Nodes or 2200 Processors
 - Theoretical peak 17.6 Tflop/s
- Infiniband 4X primary fabric
- Cisco Gigabit Ethernet secondary fabric
- Linpack Benchmark using 2112 processors
- Theoretical peak of 16.9 Tflop/s
- Achieved 10.28 Tflop/s
 - Could be #3 on 11/03 Top500
- Cost is $5.2 million which includes the system itself, memory, storage, and communication fabrics
A Tool and A Market for Every Task

200K Honda units at 5 KW to equal a 1 GW nuclear plant

- Each targets different applications
 - understand application needs

Capability
Taxonomy

Cluster Computing

♦ Commodity processors and switch
♦ Processors design point for web servers & home pc’s
♦ Leverage millions of processors
♦ Price point appears attractive for scientific computing

Capability Computing

♦ Special purpose processors and interconnect
♦ High Bandwidth, low latency communication
♦ Designed for scientific computing
♦ Relatively few machines will be sold
♦ High price
High Bandwidth vs Commodity Systems

- High bandwidth systems have traditionally been vector computers
 - Designed for scientific problems
 - Capability computing
- Commodity systems are designed for web servers and the home PC market
 - Used for cluster based computers leveraging price point
- Scientific computing needs are different
 - Require a better balance between data movement and floating point operations. Results in greater efficiency.

<table>
<thead>
<tr>
<th></th>
<th>Earth Simulator (NEC)</th>
<th>Cray X1 (Cray)</th>
<th>ASCI Q (HP ES45)</th>
<th>MCR (Dual Xeon)</th>
<th>VT Big Mac (Dual IBM PPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node Architecture</td>
<td>Vector</td>
<td>Vector</td>
<td>Alpha</td>
<td>Pentium</td>
<td>Power PC</td>
</tr>
<tr>
<td>Processor Cycle Time</td>
<td>500 MHz</td>
<td>800 MHz</td>
<td>1.25 GHz</td>
<td>2.4 GHz</td>
<td>2 GHz</td>
</tr>
<tr>
<td>Peak Speed per Processor</td>
<td>8 Gflop/s</td>
<td>12.8 Gflop/s</td>
<td>2.5 Gflop/s</td>
<td>4.8 Gflop/s</td>
<td>8 Gflop/s</td>
</tr>
<tr>
<td>Bytes/flop to main memory</td>
<td>4</td>
<td>3</td>
<td>1.28</td>
<td>0.9</td>
<td>0.8</td>
</tr>
<tr>
<td>Bytes/flop interconnect</td>
<td>1.5</td>
<td>1</td>
<td>0.12</td>
<td>0.07</td>
<td>0.11</td>
</tr>
</tbody>
</table>
Top 5 Machines for the Linpack Benchmark

<table>
<thead>
<tr>
<th>Rank</th>
<th>Computer (Full Precision)</th>
<th>Number of Procs</th>
<th>Achieved TFlop/s</th>
<th>T Peak TFlop/s</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Earth Simulator NEC SX-6</td>
<td>5120</td>
<td>35.9</td>
<td>41.0</td>
<td>87.5%</td>
</tr>
<tr>
<td>2</td>
<td>LANL ASCI Q AlphaServer EV-68 (1.25 GHz w/Quadrics)</td>
<td>8160</td>
<td>13.9</td>
<td>20.5</td>
<td>67.7%</td>
</tr>
<tr>
<td>3</td>
<td>VT Apple G5 dual IBM Power PC (2 GHz, 970s, w/Infiniband 4X)</td>
<td>2112</td>
<td>10.3</td>
<td>16.9</td>
<td>60.9%</td>
</tr>
<tr>
<td>4</td>
<td>UIUC Dell Xeon Pentium 4 (3.06 Ghz w/Myrinet)</td>
<td>2500</td>
<td>9.8</td>
<td>15.3</td>
<td>64.1%</td>
</tr>
<tr>
<td>5</td>
<td>PNNL HP RX2600 Itanium 2 (1.5GHz w/Quadrics)</td>
<td>1936</td>
<td>8.6</td>
<td>11.6</td>
<td>74.1%</td>
</tr>
</tbody>
</table>
Phases I - III

HPCS Capability or Products

Application Analysis Performance Assessment

Industry

Fiscal Year

02 03 04 05 06 07 08 09 10

Phase I Industry Concept Study
5 companies $10M each

Phase II R&D
3 companies ~$50M each

Phase III Full Scale Development commercially ready in the 2007 to 2010 timeframe.

$100M?
Performance Extrapolation

[Graph showing extrapolation of performance over time with various computers and their processing capabilities.]
Performance Extrapolation

- **My Laptop**: 100 MFlop/s
- **ASCI P**: 12,544 proc
- **Blue Gene**: ASCI P 130,000 proc

- **N = 1**
- **N = 500**
- **Sum**

- 10^9
- 10^12
- 10^15

Date Range:
- Jun-93 to Jun-10
ASCI Purple & IBM Blue Gene/L

- **Announced 11/19/02**
 - One of 2 machines for LLNL
 - 360 TFlop/s
 - 130,000 proc
 - Linux
 - FY 2005

- **Preliminary machine**
 - **IBM Research BlueGene/L**
 - PowerPC 440, 500MHz w/custom proc/interconnect
 - 512 Nodes (1024 processors)
 - 1.435 Tflop/s (2.05 Tflop/s Peak)

 - **Plus**
 - ASCI Purple
 - IBM Power 5 based
 - 12K proc, 100 TFlop/s
SETI@home: Global Distributed Computing

♦ Running on 500,000 PCs, ~1300 CPU Years per Day
 ➢ 1.3M CPU Years so far
♦ Sophisticated Data & Signal Processing Analysis
♦ Distributes Datasets from Arecibo Radio Telescope

[Image of the Arecibo Radio Telescope]
SETI@home

♦ Use thousands of Internet-connected PCs to help in the search for extraterrestrial intelligence.

♦ When their computer is idle or being wasted this software will download ~ half a MB chunk of data for analysis. Performs about 3 Tflops for each client in 15 hours.

♦ The results of this analysis are sent back to the SETI team, combined with thousands of other participants.

♦ Largest distributed computation project in existence

➢ Averaging 72 Tflop/s
Google query attributes
- 150M queries/day (2000/second)
- 100 countries
- 3B documents in the index

Data centers
- 15,000 Linux systems in 6 data centers
 - 15 TFlop/s and 1000 TB total capability
 - 40-80 1U/2U servers/cabinet
 - 100 MB Ethernet switches/cabinet with gigabit Ethernet uplink
 - growth from 4,000 systems (June 2000)
 - 18M queries then

Performance and operation
- simple reissue of failed commands to new servers
- no performance debugging
 - problems are not reproducible

Source: Monika Henzinger, Google & Cleve Moler
Extreme Example: Sony PlayStation2

- **Emotion Engine:**
 - 6.2 Gflop/s, 75 million polygons per second (Microprocessor Report, 13:5)
 - Superscalar MIPS core + vector coprocessor + graphics/DRAM
 - About $200

Scientific Computing on the Sony Playstation 2

Part of my job at the NCSA is to develop the techniques for using the Sony PlayStation® 2 game console for scientific computation. The Vector Processing Units of the Emotion Engine CPU of the PS2 can be applied to scientific matrix and vector calculations instead of graphics.

What has made this possible is Sony's release of the Linux Kit (for PlayStation 2). Sony also has a Linux kit web site that has discussion forums and places for people to work on projects related to the kit.

Informational Pages

- My philosophy about the project
- Technical background on the Emotion Engine CPU
- Progress on two phases of the project:
 - scientific computation tools
 - building a PlayStation 2 cluster
- Other projects using the Playstation 2 for scientific work

Figure 1. PlayStation 2000 employs an unprecedented level of parallelism to achieve workstation-class 3D performance.
Computing On Toys

- **Sony PlayStation2**
 - 6.2 GF peak
 - 70M polygons/second
 - 10.5M transistors
 - superscalar RISC core
 - plus vector units, each:
 - 19 mul-adds & 1 divide
 - each 7 cycles
 - $199 retail
 - loss leader for game sales
 - 100 unit cluster at U of I
 - Linux software and vector unit use
 - over 0.5 TF peak
 - but hard to program & hard to extract performance ...
Science and Technology

♦ Today, large science projects are conducted by global teams using sophisticated combinations of

- Computers
- Networks
- Visualization
- Data storage
- Remote instruments
- People
- Other resources

♦ Information Infrastructure provides a way to integrate resources to support modern applications
Grid Computing is About …

Resource sharing & coordinated problem solving in dynamic, multi-institutional virtual organizations

The most pressing scientific challenges require application solutions that are multidisciplinary and multi-scale.
The Grid

- **Motivation:** When communication is close to free we should not be restricted to local resources when solving problems.

- **Infrastructure** that builds on the Internet and the Web
- **Enable and exploit large scale sharing of resources**
- **Virtual organization**
 - Loosely coordinated groups
- **Provides for remote access of resources**
 - Scalable
 - Secure
 - Reliable mechanisms for discovery and access
Grid Software Challenges

- **Simplified programming**
 - reduced complexity and coordination

- **Accounting and resource economies**
 - “non-traditional” resources and concurrency
 - shared resource costs and denial of service
 - negotiation and equilibration
 - exchange rates and sharing

- **Scheduling and adaptation**
 - performance, fault-tolerance, and access
 - networks, computing, storage, and sensors

- **On-demand access**
 - unique observational events and sensor fusion
 - “instant” access and nimble scheduling

- **Managing bandwidth and latency**
 - lambda dominance and exploitation
The Grid

Problem Solving Environments
Scientists and engineers using computation to accomplish lab missions

Hardware
Heterogeneous collection of high-performance computer hardware and software resources

Software
Software applications and components for computational problems

Networking
The hardware and software that permits communication among distributed users and computer resources

Mass Storage
A collection of devices and software that allow temporary and long-term archival storage of information

Intelligent Interface
A knowledge-based environment that offers users guidance on complex computing tasks

Middleware
Software tools that enable interaction among users, applications, and system resources

Grid Operating System
The software that coordinates the interplay of computers, networking, and software
Science Grid Projects
TeraGrid 2003
Prototype for a National Cyberinfrastructure
SuperSINET and Applications

Nano-Technology For GRID Application

Computational GRID and NAREGI

DataGRID for High-energy Science

OC-48+ transmission for Radio Telescope

Bio-Informatics

NIFS

Kyoto U.
Osaka U.
Doshidha U.
Nagoya U.
Okazaki Research Institutes

Kyushu U.

NIG

NAO

Waseda U.

KEK
Tsukuba U.

Operation (NII)
U. of Tokyo
Tokyo Institute of Tech.

ISAS

NII R&D
Atmospheric Sciences Grid

Real time data

Data Fusion

General Circulation model

Regional weather model

Photo-chemical pollution model

Particle dispersion model

Bushfire model

Topography Database

Vegetation Database

Emissions Inventory
Standard Implementation

Change Models

Real time data

Data Fusion

General Circulation model

Regional weather model

Photo-chemical pollution model

Particle dispersion model

Bushfire model

Topography Database

Vegetation Database

Emissions Inventory

MPI

GASS/GridFTP/GRC

MPI

MPI

MPI

GASS

3-D
The Computing Continuum

- Each strikes a different balance
 - computation/communication coupling
- Implications for execution efficiency
- Applications for diverse needs
 - computing is only one part of the story!
Grids vs. Capability vs. Cluster Computing

♦ Not an “either/or” question
 ➢ Each addresses different needs
 ➢ Each are part of an integrated solution

♦ Grid strengths
 ➢ Coupling necessarily distributed resources
 ➢ instruments, software, hardware, archives, and people
 ➢ Eliminating time and space barriers
 ➢ remote resource access and capacity computing
 ➢ Grids are not a cheap substitute for capability HPC

♦ Capability computing strengths
 ➢ Supporting foundational computations
 ➢ terascale and petascale “nation scale” problems
 ➢ Engaging tightly coupled computations and teams

♦ Clusters
 ➢ Low cost, group solution
 ➢ Potential hidden costs
 ➢ Key is easy access to resources in a transparent way
Real Crisis With HPC Is With The Software

- **It’s time for a change**
 - complexity is rising dramatically
 - highly parallel and distributed systems
 - From 10 to 100 to 1000 to 10000 to 100000 of processors!!
 - multidisciplinary applications

- **Programming is stuck**
 - arguably hasn’t changed since the 60’s

- **A supercomputer application and software are usually much more long-lived than a hardware**
 - Hardware life typically five years at most.
 - Fortran and C are the main programming models

- **Software is a major cost component of modern technologies.**
 - The tradition in HPC system procurement is to assume that the software is free.

- **We don’t have any great ideas about how to solve this problem.**
Future Directions

- Silicon
 - escaping the von Neumann bottleneck
 - streaming vector, dense packages, ...
 - Processing in Memory (PIM)

Optical computing

- Biological computing
- Quantum computing

Quantum-dot array proposal:

- Quantum dots defined in 2DEG by side gates
- Coulomb blockade used to fix electron number at one per dot
- Spin of electron is qubit
- State operations controllable: coastline of dots
Collaborators / Support

♦ TOP500

- H. Meuer, Mannheim U
- H. Simon, NERSC
- E. Strohmaier, NERSC