
1

1

The HPC Challenge Benchmark: The HPC Challenge Benchmark:
A Candidate for Replacing A Candidate for Replacing
LINPACK in the TOP500?LINPACK in the TOP500?

Jack Dongarra
University of Tennessee

and
Oak Ridge National Laboratory

2

Outline Outline -- The HPC Challenge Benchmark: The HPC Challenge Benchmark:
A Candidate for Replacing A Candidate for Replacing LinpackLinpack in the TOP500?in the TOP500?

♦ Look at LINPACK

♦ Brief discussion of DARPA HPCS Program

♦ HPC Challenge Benchmark

♦ Answer the Question

2

3

What Is LINPACK?What Is LINPACK?

♦ Most people think LINPACK is a benchmark.

♦ LINPACK is a package of mathematical
software for solving problems in linear algebra,
mainly dense linear systems of linear equations.

♦ The project had its origins in 1974

♦ LINPACK: “LINear algebra PACKage”
Written in Fortran 66

4

Computing in 1974Computing in 1974
♦ High Performance Computers:

IBM 370/195, CDC 7600, Univac 1110, DEC
PDP-10, Honeywell 6030

♦ Fortran 66

♦ Run efficiently

♦ BLAS (Level 1)
Vector operations

♦ Trying to achieve software portability

♦ LINPACK package was released in 1979
About the time of the Cray 1

3

5

The Accidental The Accidental BenchmarkerBenchmarker
♦ Appendix B of the Linpack Users’ Guide

Designed to help users extrapolate execution
time for Linpack software package

♦ First benchmark report from 1977;
Cray 1 to DEC PDP-10

Dense matrices
Linear systems
Least squares problems
Singular values

6

LINPACK Benchmark?LINPACK Benchmark?
♦ The LINPACK Benchmark is a measure of a computer’s

floating-point rate of execution for solving Ax=b.
It is determined by running a computer program that solves a
dense system of linear equations.

♦ Information is collected and available in the LINPACK
Benchmark Report.

♦ Over the years the characteristics of the benchmark has
changed a bit.

In fact, there are three benchmarks included in the Linpack
Benchmark report.

♦ LINPACK Benchmark since 1977
Dense linear system solve with LU factorization using partial
pivoting
Operation count is: 2/3 n3 + O(n2)
Benchmark Measure: MFlop/s
Original benchmark measures the execution rate for a Fortran
program on a matrix of size 100x100.

4

7

For For LinpackLinpack with n = 100with n = 100
♦ Not allowed to touch the code.
♦ Only set the optimization in the compiler and run.
♦ Provide historical look at computing
♦ Table 1 of the report (52 pages of 95 page report)

http://www.netlib.org/benchmark/performance.pdf

8

Linpack Benchmark Over TimeLinpack Benchmark Over Time
♦ In the beginning there was only the Linpack 100 Benchmark (1977)

n=100 (80KB); size that would fit in all the machines
Fortran; 64 bit floating point arithmetic
No hand optimization (only compiler options); source code available

♦ Linpack 1000 (1986)
n=1000 (8MB); wanted to see higher performance levels
Any language; 64 bit floating point arithmetic
Hand optimization OK

♦ Linpack Table 3 (Highly Parallel Computing - 1991) (Top500; 1993)
Any size (n as large as you can; n=106; 8TB; ~6 hours);
Any language; 64 bit floating point arithmetic
Hand optimization OK

Strassen’s method not allowed (confuses the operation count and rate)
Reference implementation available

♦ In all cases results are verified by looking at:
♦ Operations count for factorization ; solve

|| || (1)
|| || || ||

Ax b O
A x n ε

−
=

3 22 1

3 2
n n−

22n

5

9

Motivation for Additional BenchmarksMotivation for Additional Benchmarks

♦ From Linpack Benchmark and
Top500: “no single number can
reflect overall performance”

♦ Clearly need something more
than Linpack

♦ HPC Challenge Benchmark
Test suite stresses not only
the processors, but the
memory system and the
interconnect.
The real utility of the HPCC
benchmarks are that
architectures can be described
with a wider range of metrics
than just Flop/s from Linpack.

Linpack Benchmark
♦ Good

One number
Simple to define & easy to rank
Allows problem size to change
with machine and over time

♦ Bad
Emphasizes only “peak” CPU
speed and number of CPUs
Does not stress local bandwidth
Does not stress the network
Does not test gather/scatter
Ignores Amdahl’s Law (Only
does weak scaling)
…

♦ Ugly
MachoFlops
Benchmarketeering hype

10

At The Time The At The Time The LinpackLinpack Benchmark Was Benchmark Was
Created Created ……

♦ If we think about computing in late 70’s
♦ Perhaps the LINPACK benchmark was a

reasonable thing to use.
♦ Memory wall, not so much a wall but a step.
♦ In the 70’s, things were more in balance

The memory kept pace with the CPU
n cycles to execute an instruction, n
cycles to bring in a word from memory

♦ Showed compiler optimization
♦ Today provides a historical base of data

6

11

Many ChangesMany Changes

♦ Many changes in our hardware over the
past 30 years

Superscalar, Vector,
Distributed Memory,
Shared Memory,
Multicore, …

♦ While there has been
some changes to the
Linpack Benchmark not
all of them reflect the advances made in
the hardware.

♦ Today’s memory hierarchy is much more
complicated.

0

100

200

300

400

500

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

Const.

Cluster

MPP

SMP

SIMD

Single Proc.

Top500 Systems/Architectures

High Productivity Computing SystemsHigh Productivity Computing Systems
Goal:

Provide a generation of economically viable high productivity computing systems for the
national security and industrial user community (2010; started in 2002)

Goal:
Provide a generation of economically viable high productivity computing systems for the
national security and industrial user community (2010; started in 2002)

Fill the Critical Technology and Capability Gap
Today (late 80's HPC Technology) ... to ... Future (Quantum/Bio Computing)

Fill the Critical Technology and Capability Gap
Today (late 80's HPC Technology) ... to ... Future (Quantum/Bio Computing)

Applications:
Intelligence/surveillance, reconnaissance, cryptanalysis, weapons analysis, airborne contaminant modeling and biotechnology

Analysis &

Analysis &

Assessment

Assessment

Performance
Characterization

& Prediction

System
Architecture

Software
Technology

Hardware
Technology

Programming
Models

Industry R&D

Industry R&D

HPCS Program Focus Areas

Focus on:
Real (not peak) performance of critical national
security applications

Intelligence/surveillance
Reconnaissance
Cryptanalysis
Weapons analysis
Airborne contaminant modeling
Biotechnology

Programmability: reduce cost and time of
developing applications
Software portability and system robustness

7

13

team

HPCS RoadmapHPCS Roadmap

Phase 1
$20M (2002)

Phase 2
$170M (2003-2005)

Phase 3
(2006-2010)

~$250M each

Concept
Study

Advanced
Design &
Prototypes

Full Scale
Development

TBD

New Evaluation
Framework

Test Evaluation
Framework

team

5 vendors in phase 1; 3 vendors in phase 2; 1+ vendors in phase 3
MIT Lincoln Laboratory leading measurement and evaluation team

Validated Procurement
Evaluation Methodology

Today

Petascale Systems

team

14

Performance ProjectionPerformance Projection

1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015

N=1

N=500

SUM

 1 Gflop/s

 1 Tflop/s

 100 Mflop/s

100 Gflop/s

100 Tflop/s

 10 Gflop/s

 10 Tflop/s

 1 Pflop/s

10 Pflop/s

1 Eflop/s
100 Pflop/s

8

15

A A PetaFlopPetaFlop Computer by the End of the Computer by the End of the
DecadeDecade

♦ At least 10 Companies developing a
Petaflop system in the next decade.

Cray
IBM
Sun
Dawning
Galactic
Lenovo
Hitachi
NEC
Fujitsu
Bull

Japanese Japanese
““Life SimulatorLife Simulator”” (10 (10 Pflop/sPflop/s))
KeisokuKeisoku project $1B 7 yearsproject $1B 7 years

} Chinese Chinese
CompaniesCompanies

}

}

2+ Pflop/s Linpack
6.5 PB/s data streaming BW
3.2 PB/s Bisection BW
64,000 GUPS

16

PetaFlopPetaFlop Computers in 2 Years!Computers in 2 Years!

♦ Oak Ridge National Lab
Leadership Class Machine
Planned for 4th Quarter 2008
From Cray’s XT family
Using quad core chip from AMD

23,936 chips
Each chip is a quad core-processor (95,744 processors)
Each processor does 4 flops/cycle
Cycle time of 2.8 GHz

Hypercube connectivity
Interconnect based on Cray XT technology
6MW, 136 cabinets

♦ Peak, Not sustained or even LINPACK

9

17

HPC Challenge GoalsHPC Challenge Goals
♦ To examine the performance of HPC architectures

using kernels with more challenging memory access
patterns than the Linpack Benchmark

The Linpack benchmark works well on all architectures ―
even cache-based, distributed memory multiprocessors due to
1. Extensive memory reuse
2. Scalable with respect to the amount of computation
3. Scalable with respect to the communication volume
4. Extensive optimization of the software

♦ To complement the Top500 list
♦ Stress CPU, memory system, interconnect
♦ Allow for optimizations

Record effort needed for tuning
Base run requires MPI and BLAS

♦ Provide verification & archiving of results

Tests on Single Processor and System

● Local - only a single processor is performing
computations.

● Embarrassingly Parallel - each processor in the
entire system is performing computations but
they do no communicate with each other
explicitly.

● Global - all processors in the system are
performing computations and they explicitly
communicate with each other.

10

19

HPC Challenge Benchmark HPC Challenge Benchmark
Consists of basically 7 benchmarks;

Think of it as a framework or harness for adding benchmarks of interest.

1. LINPACK (HPL) ― MPI Global (Ax = b)

2. STREAM ― Local; single CPU
*STREAM ― Embarrassingly parallel

3. PTRANS (A A + BT) ― MPI Global

4. RandomAccess ― Local; single CPU
*RandomAccess ― Embarrassingly parallel
RandomAccess ― MPI Global

5. BW and Latency – MPI

6. FFT - Global, single CPU, and EP

7. Matrix Multiply – single CPU and EP

proci prock

Random integer
read; update; & write

April 18, 2006 Oak Ridge National Lab, CSM/FT 20

HPCS Performance TargetsHPCS Performance Targets

● HPCC was developed by HPCS to assist in testing new HEC systems
● Each benchmark focuses on a different part of the memory hierarchy
● HPCS performance targets attempt to

� Flatten the memory hierarchy
� Improve real application performance
� Make programming easier

● HPCC was developed by HPCS to assist in testing new HEC systems
● Each benchmark focuses on a different part of the memory hierarchy
● HPCS performance targets attempt to

� Flatten the memory hierarchy
� Improve real application performance
� Make programming easier

Cache(s)Cache(s)

Local MemoryLocal Memory

RegistersRegisters

Remote MemoryRemote Memory

DiskDisk

TapeTape

Instructions

Memory HierarchyMemory Hierarchy

Operands

Lines Blocks

Messages

Pages

11

April 18, 2006 Oak Ridge National Lab, CSM/FT 21

HPCS Performance TargetsHPCS Performance Targets

● HPCC was developed by HPCS to assist in testing new HEC systems
● Each benchmark focuses on a different part of the memory hierarchy
● HPCS performance targets attempt to

� Flatten the memory hierarchy
� Improve real application performance
� Make programming easier

● HPCC was developed by HPCS to assist in testing new HEC systems
● Each benchmark focuses on a different part of the memory hierarchy
● HPCS performance targets attempt to

� Flatten the memory hierarchy
� Improve real application performance
� Make programming easier

● LINPACK: linear system solve
Ax = b

Cache(s)Cache(s)

Local MemoryLocal Memory

RegistersRegisters

Remote MemoryRemote Memory

DiskDisk

TapeTape

Instructions

Memory HierarchyMemory Hierarchy

Operands

Lines Blocks

Messages

Pages

April 18, 2006 Oak Ridge National Lab, CSM/FT 22

HPCS Performance TargetsHPCS Performance Targets

● HPCC was developed by HPCS to assist in testing new HEC systems
● Each benchmark focuses on a different part of the memory hierarchy
● HPCS performance targets attempt to

� Flatten the memory hierarchy
� Improve real application performance
� Make programming easier

● HPCC was developed by HPCS to assist in testing new HEC systems
● Each benchmark focuses on a different part of the memory hierarchy
● HPCS performance targets attempt to

� Flatten the memory hierarchy
� Improve real application performance
� Make programming easier

HPC ChallengeHPC Challenge

● LINPACK: linear system solve
Ax = b

● STREAM: vector operations
A = B + s * C

● FFT: 1D Fast Fourier Transform
Z = fft(X)

● RandomAccess: integer update
T[i] = XOR(T[i], rand)

Cache(s)Cache(s)

Local MemoryLocal Memory

RegistersRegisters

Remote MemoryRemote Memory

DiskDisk

TapeTape

Instructions

Memory HierarchyMemory Hierarchy

Operands

Lines Blocks

Messages

Pages

12

April 18, 2006 Oak Ridge National Lab, CSM/FT 23

HPCS Performance TargetsHPCS Performance Targets

● HPCC was developed by HPCS to assist in testing new HEC systems
● Each benchmark focuses on a different part of the memory hierarchy
● HPCS performance targets attempt to

� Flatten the memory hierarchy
� Improve real application performance
� Make programming easier

● HPCC was developed by HPCS to assist in testing new HEC systems
● Each benchmark focuses on a different part of the memory hierarchy
● HPCS performance targets attempt to

� Flatten the memory hierarchy
� Improve real application performance
� Make programming easier

HPC ChallengeHPC Challenge Performance TargetsPerformance Targets

● LINPACK: linear system solve
Ax = b

● STREAM: vector operations
A = B + s * C

● FFT: 1D Fast Fourier Transform
Z = fft(X)

● RandomAccess: integer update
T[i] = XOR(T[i], rand)

Cache(s)Cache(s)

Local MemoryLocal Memory

RegistersRegisters

Remote MemoryRemote Memory

DiskDisk

TapeTape

Instructions

Memory HierarchyMemory Hierarchy

Operands

Lines Blocks

Messages

Pages

Max Relative
8x

40x
200x

64000 GUPS 2000x

2 Pflop/s
6.5 Pbyte/s
0.5 Pflop/s

Computational Resources and
HPC Challenge Benchmarks

Computational
resources

Computational
resources

CPU
computational

speed

Memory
bandwidth

Node
Interconnect

bandwidth

13

Computational
resources

Computational
resources

CPU
computational

speed

Memory
bandwidth

Node
Interconnect

bandwidth

HPL
Matrix Multiply

STREAM
Random & Natural Ring
Bandwidth & Latency

Computational Resources and
HPC Challenge Benchmarks

PTrans, FFT, Random Access

26

How Does The Benchmarking Work?How Does The Benchmarking Work?
♦ Single program to download and run

Simple input file similar to HPL input
♦ Base Run and Optimization Run

Base run must be made
User supplies MPI and the BLAS

Optimized run allowed to replace certain routines
User specifies what was done

♦ Results upload via website (monitored)
♦ html table and Excel spreadsheet generated with

performance results
Intentionally we are not providing a single figure of merit
(no over all ranking)

♦ Each run generates a record which contains 188
pieces of information from the benchmark run.

♦ Goal: no more than 2 X the time to execute HPL.

14

27

http://icl.cs.utk.edu/hpcc/http://icl.cs.utk.edu/hpcc/ webweb

28

15

29

30

HPCC HPCC KiviatKiviat Chart Chart

http://icl.cs.utk.edu/hpcc/

16

31

32

17

33

Different Computers are Better at Different Different Computers are Better at Different
Things, No Things, No ““FastestFastest”” Computer for All Computer for All ApsAps

34

HPCC Awards Info and RulesHPCC Awards Info and Rules

Class 1 (Objective)
♦ Performance

1.G-HPL $500
2.G-RandomAccess $500
3.EP-STREAM system $500
4.G-FFT $500

♦ Must be full submissions
through the HPCC
database

Class 2 (Subjective)
♦ Productivity (Elegant

Implementation)
Implement at least two
tests from Class 1
$1500 (may be split)
Deadline:

October 15, 2006
Select 3 as finalists

♦ This award is weighted
50% on performance and
50% on code elegance,
clarity, and size.

♦ Submissions format
flexible

Winners (in both classes) will be
announced at SC06 HPCC BOF

Winners (in both classes) will be
announced at SC06 HPCC BOF

Sponsored by:

18

Class 1: If Awards Given Today, the Winners …

Base Run
• Global HPL

– IBM BlueGene/L LLNL
– 131072 proc; Power PPC 440 0.7 GHz
– 80.68 Tflop/s

• Global RandomAccess
– Cray XT3 Sandia National Lab
– 10350 proc; 2 GHz Opteron
– 1 GUPS

• EP-STREAM-Triad for the System
– IBM BlueGene/L LLNL
– 131072 proc; Power PPC 440 0.7 GHz
– 63 TB/s

• Global FFT
– IBM BlueGene/L LLNL
– 131072 proc; Power PPC 440 0.7 GHz
– 2178 Gflop/s

Optimized Run
• Global HPL

– IBM BlueGene/L LLNL
– 131072 proc; Power PPC 440 0.7 GHz
– 259.213 Tflop/s

• Global RandomAccess
– IBM BlueGene/L LLNL
– 131072 proc; Power PPC 440 0.7 GHz
– 35.47 GUPS

• EP-STREAM-Triad for the System
– IBM BlueGene/L LLNL
– 131072 proc; Power PPC 440 0.7 GHz
– 160 TB/s

• Global FFT
– IBM BlueGene/L LLNL
– 131072 proc; Power PPC 440 0.7 GHz
– 2311 Gflop/s

Would like to capture what level of effort was required to do the optimization.

36

Class 2 Awards Class 2 Awards

♦ Subjective
♦ Productivity (Elegant Implementation)

Implement at least two tests from Class 1
$1500 (may be split)
Deadline:

October 15, 2006
Select 5 as finalists

♦ Most "elegant" implementation with special
emphasis being placed on:

♦ Global HPL, Global RandomAccess, EP STREAM
(Triad) per system and Global FFT.

♦ This award is weighted
50% on performance and
50% on code elegance, clarity, and size.

19

37

5 Finalists for Class 2 5 Finalists for Class 2 –– November 2005November 2005

♦ Cleve Moler, Mathworks
Environment: Parallel
Matlab Prototype
System: 4 Processor
Opteron

♦ Calin Caseval, C. Bartin, G.
Almasi, Y. Zheng, M.
Farreras, P. Luk, and R.
Mak, IBM

Environment: UPC
System: Blue Gene L

♦ Bradley Kuszmaul, MIT
Environment: Cilk
System: 4-processor
1.4Ghz AMD Opteron 840
with 16GiB of memory

♦ Nathan Wichman, Cray
Environment: UPC
System: Cray X1E (ORNL)

♦ Petr Konency, Simon
Kahan, and John Feo, Cray

Environment: C + MTA
pragmas
System: Cray MTA2

Winners!

38

Top500 and HPC Challenge RankingsTop500 and HPC Challenge Rankings
♦ It should be clear that the HPL (Linpack

Benchmark - Top500) is a relatively poor
predictor of overall machine performance.

♦ For a given set of applications such as:
Calculations on unstructured grids
Effects of strong shock waves
Ab-initio quantum chemistry
Ocean general circulation model
CFD calculations w/multi-resolution grids
Weather forecasting

♦ There should be a different mix of components
used to help predict the system performance.

20

39

Will the Top500 List Go Away?Will the Top500 List Go Away?

♦ The Top500 continues to serve a valuable role
in high performance computing.

Historical basis
Presents statistics on deployment
Projection on where things are going
Impartial view
Its simple to understand
Its fun

♦ The Top500 will continue to play a role

40

No Single Number for HPCC?No Single Number for HPCC?
♦ Of course everyone wants a single number.
♦ With HPCC Benchmark you get 188 numbers per system run!
♦ Many have suggested weighting the seven tests in HPCC to come up

with a single number.
LINPACK, MatMul, FFT, Stream, RandomAccess,
Ptranspose, bandwidth & latency

♦ But your application is different than mine, so weights are
dependent on the application.

♦ Score = W1*LINPACK + W2*MM + W3*FFT+ W4*Stream +

W5*RA + W6*Ptrans + W7*BW/Lat

♦ Problem is that the weights depend on your job mix.

♦ So it make sense to have a set of weights for each user or site.

21

41

Tools Needed to Help With Performance Tools Needed to Help With Performance
♦ A tools that analyzed an application perhaps

statically and/or dynamically.
♦ Output a set of weights for various sections of

the application
[W1, W2, W3, W4, W5, W6, W7, W8]
The tool would also point to places where we were
missing a benchmarking component for the mapping.

♦ Think of the benchmark components as a basis
set for scientific applications

♦ A specific application has a set of "coefficients"
of the basis set.

♦ Score = W1*HPL + W2*MM + W3*FFT+ W4*Stream +

W5*RA + W6*Ptrans + W7*BW/Lat + …

42

Future DirectionsFuture Directions
♦ Looking at reducing execution time
♦ Constructing a framework for benchmarks
♦ Developing machine signatures
♦ Plans are to expand the benchmark

collection
Sparse matrix operations
I/O
Smith-Waterman (sequence alignment)

♦ Port to new systems
♦ Provide more implementations

Languages (Fortran, UPC, Co-Array)
Environments
Paradigms

22

Collaborators
• HPC Challenge

– Piotr Łuszczek, U of Tennessee
– David Bailey, NERSC/LBL
– Jeremy Kepner, MIT Lincoln Lab
– David Koester, MITRE
– Bob Lucas, ISI/USC
– Rusty Lusk, ANL
– John McCalpin, IBM, Austin
– Rolf Rabenseifner, HLRS

Stuttgart
– Daisuke Takahashi, Tsukuba,

Japan

http://icl.cs.utk.edu/hpcc/

• Top500
– Hans Meuer, Prometeus
– Erich Strohmaier, LBNL/NERSC
– Horst Simmon, LBNL/NERSC

