@ | SUPERCOMPUTING CONFERENCE

LINPACK Benchmark with Time
Limits on Multicore & GPU Based
Accelerators

Jack Dongarra

University of Tennessee & Oak Ridge
National Laboratory, USA

IcLOr-

What Is LINPACK?

LINPACK is a package of mathematical software for solvin
roblems in linear algebra, mainly dense linear systems o
inear equations.

LINPACK: “"LINear algebra PACKage"
> Woritten in Fortran 66

The project had its origins in 1974

The project had four primary contributors: myself when I was
at Argonne National Lab, Jim Bunch from the University of
California-San Diego, Cleve Moler who was at New Mexico at
that time, and Pete Stewart from the University of Maryland.

LINPACK as a software package has been largely superseded by
LAPACK, which has been designed to run eﬂglcienﬂy on
shared-memory, vector supercomputers.

IcLOr-

Computing 1n 1974

" Fortran 66

* High Performance Computers:

» IBM 370/195, €DC 7600, Univac 1110, DEC PDP-10,
Honeywell 6030

" Trying to achieve software portability
" Run efficiently
" BLAS (Level 1)

> Vector operations

" Software released in 1979
> About the time of the Cray 1

" LINPACK Benchmark?

" The Linpack Benchmark is a measure of a
computer’s floating-point rate of execution.

> It is determined by running a computer program that
solves a dense system of linear equations.

" Over the years the characteristics of the
benchmark has changed a bit.

> In fact, there are three benchmarks included in the
Linpack Benchmark report.

" LINPACK Benchmark

> Dense linear system solve with LU factorization using
partial pivoting

» Operation count is: 2/3 n3 + O(n?)

> Benchmark Measure: MFlop/s

» Original benchmark measures the execution rate for a
Fortran program on a matrix of size 100x100.

c

Accidental Benchmarker LinpaEs

I AW
Appendix B of the Linpack Users’ Guide Al
> Designed to help users extrapolate execution PALE
time for Linpack software package "Gk
First benchmark report from 1977; uschs’ BL
> Cr'ay 1 to DEC PDP-10 suise [

J.J. Dongarra C.B. Moler
J.R.Bunch G.W. Stewart

2 - UNI’I = 10%*%6 TIME/(1/3 100%%3 + 100%%2)

D £ TIME UNLT
Facility H=100 micro- Computer Type Compiler
J secs. Becs.

KCAR 142 049 0.14 CRAY-1 § CFT, Assembly BLAS
LASL 467 148 0.43 CDC 7600 S FIN, Assembly BLAS
NCAR 3.5%.192 0.56 CRAY-1 S CFT

LASL 2,27 .210 0.61 cnc 7600 5 FTN

Argonne 2.3 297 0.86 IBM 370/195 D H

KCAR tai .3%9 1.05 CDC 7600 S Local

Argonne -L'}? .388 1.33 IBM 3033 D H

NASA Langley V.52 489 1.42 CDC Cyber 175 S FTN

U. I11. Urbana \:%& ,506 1.47 CDC Cyber 175 S Ext. 4.6

1LL 14 .554 1.61 CDC 7600 S CHAT, No optimize
SLAC 149 .579 1.69 IBM 370/168 D H Ixt., Fast mult.
Michigan jw9.631 1.84 Amdahl 470/Vvé D H

Toronto 773 890 2.59 IBM 370/165 D 1 Ext., Fast mult.
Northwestern #T]l.(olb 4,20 CDC 6600 e FTN

Texas +35¢1.93 5.63 CDC 6600 S RL'N

China Lake 9641.95% 5.69 Univac 1110 S

Yale) -1952.59 7.53 TDEC KL-20 s FZO

Bell Labs 497 3.46 10.1 Honeywell 6080 S Y

Wisconsin !17 3.49 10.1 . Univaec 1110 S v

Iowa State g 54 10.2 Itel AS/5 modI ™D H

U. I11. (‘hicago #4.10 11.9-—-1IBM 370/158 b Gl

Purdue 4% 5.68 16.6 CDC 6500 S FWN

U, C. San Diego: 26343.1 38.2 Burroughs 6700 § H

Yale-~ (Wnl7.1¥% 49.9 DEC KA-10 S F40

* TIME(LOO) = (1C0/75)**3 SGEFA(75) + (100/75)#**2 SGESL(75)

IcLOr-

Linpack 100

" Use the LINPACK software DGEFA and DGESL
to solve a system of linear equations.

" DGEFA factors a matrix

" DGESL solve a system of equations based on
the factorization.

Step1 A~LU
Step 2 Forward Elimination

Solve Ly =5
Step 3 Backward Substitution
Solve Ux =y

4
\
ICL

DGEFA and

DGESL

[¢]

0

0

[¢]

0

(8]

10

20

30

40

S0

60
70

gaussian elimination with partial pivoting

info = 0
nml = n - 1
if (nml .1t. 1) go to 70
do 60 k = 1, nml
kpl =k + 1

find 1 = pivot index

1 = idamax(n-k+1,a(k,k),1) + k - 1
ipvt (k) = 1

zexro pivot implies this column already triangularized
if (a(l,k) .eqg. 0.0d0) go to 40
interchange if necessary
if (1 .eq. k) go to 10
t = al(l,k)
a(l,k) a(k, k)

a(k,k) t
continue

compute multipliers

t = -1.0d0/a(k, k)
call dscal(n-k,t,a(k+1,k),1)

row elimination with column indexing

do 30 j = kpl, n
t =a(l,3)
if (1 .eq. k) go to 20
a(l,3) a(k,3)
a(k,3) T
continue
call daxpy(n-k,t,a(k+1,k),1,a(k+1,3),1)
continue
go to 50
continue
info = k
continue
continue
continue

Most of the
work is done

Here: O(n3)

c first solve 1*y = Db
C
if (nml1 .1t. 1) go to 30
do 20 k = 1, nml
1 = ipvt (k)
t = b(l)
if (1 .eq. k) go to 10
b(l) = b(k)
b(k) = t
10 continue
call daxpy(n-k,t,a(k+1,k),1,b(k+1),1)
20 continue
30 continue
C
c now solve u*x = vy
C
do 40 kb =1, n
k=n+1 - kb
b(k) = b(k)/a(k, k)
t = -b(k)
call daxpy(k-1,t,a(1,k),1,b(1),1)
40 continue
go to 100
50 continue
Operation type Operation count
addition 328350
multiplication 333300
reciprocal 99
absolute value 5364
comparison 4950
comparison with zero 5247

ICL

For Linpack with n =100

" Not allowed to touch the code.
" Only set the optimization in the compiler and

run.

" Table 1 of the report

> http://www.netlib.org/benchmark/pert

Formance . pdf

5/6/2010

-
/

Table 1: Performance in Solving a System of Linear Equations

“TPP”
“LINPACK Benchmark” Best -
n=100 es “Theoritical
Computer Mflop/s Effort | Pesk”
/Compiler n=1000 Milopis
0S/Co puie Mflop/s
Intel Pentium Woodcrest (1 core, 3 GHz) ifort -parallel -xT -O3 -ipo
-mP20PT_hlo_loop_unroll_factor=2 3018 6542 12000
Intel Pentium Woodcrest (1 core, 2.67 GHz) ifort -O3 -ipo -xT -r8 -18 2636 10680
Intel Core 2 Q6600 Kensfield) (4 core, 2.4 GHz) 13130 38400
Intel Core 2 Q6600 Kensfield) (3 core, 2.4 GHz) 11980 28800
Intel Core 2 Q6600 Kensfield) (2 core, 2.4 GHz) 9669 19200
Intel Core 2 Q6600 Kensfield) (1 core, 2.4 GHz) ifort -O3 -xT -ipo -static -18
-mP20PT _hlo_loop_unroll_factor=2 2426 7519 9600
75140 128000

NEC SX-8/8 (8proc. 2 GHz)

RTTNSN NS YA FA M ANTTYT N

4™ SN

AAAAA

ICLOr"

Linpack Benchmark Over Time

" In the beginning there was the Linpack 100 Benchmark (1977)

> n=100 (80KB); size that would fit in all the machines
» Fortran; 64 bit floating point arithmetic
» No hand optimization (only compiler options)

Linpack 1000 (1986)
» n=1000 (8MB). wanted to see higher performance levels
> Any language; 64 bit floating point arithmetic
» Hand optimization OK

Linpack HPL (1991) (Top500; 1993)
> Any size (n as large as you can);
> Any language; 64 bit floating point arithmetic

» Hand optimization OK
» Strassen’'s method not allowed (confuses the op count and rate)

> Reference implementation available (HPL) | Ax=b|
" In all cases results are verified by looking at: || 4[/[xl|ne
Operations count for factorization 2,:_1,2: solve 2’

o)

N

A

“" High Performance Linpack (HPL)

Benchmark Matrix Optimizations Parallel
Name dimension allowed Processing
Linpack 100 100 compiler —a
Linpack 1000 1000 hand, code —¢
replacement
Linpack Parallel 1000 hand, code Yes
replacement
HPLinpack? Arbitrary hand, code Yes
(usually as large replacement
as possible)

2 Compiler parallelization possible.
b Also known as TPP (Toward Peak Performance) or Best Effort

¢ Multiprocessor implementations allowed.

d Highly-Parallel LINPACK Benchmark is also known as NxN Linpack
Benchmark or High Parallel Computing (HPC).

£ A New Generation of Software:

IcLor-

Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

Software/Algorithms follow hardware evolution in time

LINPACK (70's) Rely on
(Vector operations) - Level-1 BLAS
operations

£ A New Generation of Software:

IcLor-

Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

Software/Algorithms follow hardware evolution in time

LINPACK (70's) Rely on

(Vector operations) - Level-1 BLAS
operations

LAPACK (80's) Rely on

(Blocking, cache - Level-3 BLAS

friendly) operations

£ A New Generation of Software:

IcLor-

Every 10 Years or So.

Software/Algorithms follow hardware evolution in time

LINPACK (70's)
(Vector operations)

LAPACK (80's)
(Blocking, cache
friendly)

ScalLAPACK (90's)
(Distributed Memory)

Rely on
- Level-1 BLAS
operations

Rely on

- Level-3 BLAS
operations

Rely on
- PBLAS Mess Passing

IcLOr-

HPL Code 1s Based on ScaLAPACK

" Uses a form of look ahead to overlap communication and
computation

"~ Uses MPI directly avoiding the overhead of BLASC
communication layer.

" HPL doesn't form L (pivoting is only applied forward)

" HPL doesn't return pivots (they are applied as LU
progresses)

» LU is applied on [A, b] so HPL does one less triangular solve(HPL:
triangular solve with U; ScaLAPACK: triangular solve with Land
then V)
"~ HPL uses recursion to factorize the panel, ScaLAPACK

uses rank-1 updates

" HPL has many variants for communication and
computation: people write papers how to tune it;
ScaLAPACK gives you a lot of defaults that are overall
OK

"~ HPL combines pivoting with update: coalescing messages
usually helps with performance

14

c

IcLOr-

Communication and Computation

Difterences

Scal APACK
Communication layer
. BLACS on top of:

& MPI, PVM, vendor lib

Communication variants
Only one pivot finding

« BLACS broadcast
topologies

Rank-k panel factorization
Separate pivot and panel data
. Larger message count

Lock-step operation

. Extra synchronization
points

HPL
Communication layer
. MPI

w Vendor MPI
Communication variants
. Pivot finding reductions

. Update broadcasts

Recursive panel factorization

Coalescing of pivot and panel
data

. Smaller message count

Look-ahead panel
factorization

. Critical path optimization

N . i :
. Differences in Formulation

« ScalAPACK . HPL

Ax=b Ax=b

AX=B (multiple RHS)
. First step: pivot and factorize . First

PA = LU step:pivot,factorize,apply L
. Second step: apply pivot to b Ab = LUy

b' = Pb . Second step: back-solve with
. Third step: back-solve with L U

Ly = b’ Ux =y
. Fourth step: back-solve with .

U
Ux =y

Result: U, x, scrambled L

« Result: L, U, P, x

o .
. Other Difterences

. ScalLAPACK . HPL
. Multiple precisions - One precision
. 32-bit/64-bit/real » 64-bit real
/complex
. Random number . Random number
generation generation
. 32-bit . 64-bit

Supported linear algebra Supported linear algebra
libraries libraries

. BLAS . BLAS, VSIPL

N
“" Moore’s Law Reinterpreted

" Number of cores per Chip Average Number of Cores Per
doubles every 2 year, while Supercomputer for Top20
clock speed decreases (not :®.o® ySTE
increases). 90,000
> Need to deal with systems with 8.0

millions of concurrent threads 70.000

» Future generation will have 60,000

billions of threads! o 000

> Need to be able to easily v om0
replace inter-chip parallelism

with intro-chip parallelism 30.000

" Number of threads of oo

execution doubles every 2 = 2 I I
m_ = =
YCGP : O & & & 9
& S S § 00,,, ,,,o 0° S

A
&
IcLor-

__What’s Next?

e

MlxedLa
All Large Core

9° Small Core d ii Many Small Cores
i ii i
ii - -
T .
- -
T -
All Small C o e

ST

1"F

Different Classes of

ing- tonic NoC >
ot Cores. . —Q"":’;ﬂ*f’" > Chips
——— Home
3D memory Games / Graphics
vers Business
Scientific

multi-core
processor layer

+ 3D Stacked
Memory

{\
A\ %
ICL ’

Future Computer Systems

" Most likely be a hybrid design
* Think standard multicore chips and accelerator

Today accelerators are attached L <
" Next generation more integrated 3

" Intel's Larrabee? Now called “"Knights Corner”
and “Knights Ferry” to come.
> 48 x86 cores

" AMD's Fusion in 2011 - 2013
> Multicore with embedded graphics ATI

" Nvidia’s plans?

20

ICLOr"

Exascale Systems: Two possible paths

" Light weight processors (think BG/P)
» ~1 GHz processor (10°)
> ~1 Kilo cores/socket (103)
» ~1 Mega sockets/system (10°)

" Hybrid system (think GPU based)

» ~1 GHz processor (10°)
> ~10 Kilo FPUs/socket (10%)
» ~100 Kilo sockets/system (10°)

21

L
" Commodity plus GPU Today

Thread Execution Control Unit

W0y Wy
Fuacion Unt Fuacion Ut

Device Memory

From: Michael Wolfe, PGI

22

N
“* Challenges of using GPUs

. High levels of parallelism

Many GPU cores, serial kernel execution

[e.g. 240 in the Nvidia Tesla; up to 512 in Fermi - to have concurrent
kernel execution]

. Hybrid/heterogeneous architectures
Match algorithmic requirements to architectural

strengths
[e.g. small, non-parallelizable tasks to run on CPU, large and parallelizable

on GPU]

. Compute vs communication gap

Exponentially growing gap:. persistent challenge

[Processor speed improves 597%, memory bandwidth 23%, latency 5.5%]

[on all levels, e.g. a GPU Tesla C1070 (4 x C1060) has compute power of
O(1,000) Gflop/s but GPUs communicate through the CPU using O(1) GB/s
connection]

23/29

n
-
ICLOr"

How to Count Cores?

" CPU Conventional Core

ALU

(Execute)

==

One instruction stream per work-item

J
!

<diffuseShader>:

sample ro, v4, to, so

mul r3, vo, cbo[0]

madd r3, vi, cbe[1], r3
madd r3, v2, cbe[2], r3
clmp r3, r3, 1(0.0), 1(1.0)

Quad Core

ALU i
(Execute) |

ALU
(Execute)

=

ALU |
(Execute) |

ALU
(Execute) |

24

ICLOr"

In GPUs - Add ALUs

“ SIMD Processing
" Amortize cost/complexity

of managing an instruction
stream across many ALUs.

" NVIDIA refers to these

ALUs as "CUDA Cores” (also
streaming processors)

ALU 1

ALU2|

ALU3

ALU 4|

ALU 5

ALUG|

ALU7

ALUS|

25

“" 128 Elements in Parallel

P9 BB BB
4 4 4 3

0800 0O@6 GeEE Geoo
@eeo 0 G0eC eseo
000 O 8800 0000
8 0000 00
4 4 3 3
4 g g

[(EE

0000

2 L 4 4 3

4 L 4 3 3
0B00 0OBGEG OsEs 00
. =E=l @0e0 @80
0000 0000 0000 0000
0000 0000 0oococ 0000
4 L L L
4 g g g
800 OB6E6 0866 G6E00
GEBC GEEGG 600 @eEeO

16 cores each with 8 ALUs (CUDA Cores)

Total of 16 simultaneous instruction streams with
128 ALUs (CUDA Cores)

ICL

- NVIDIA GT280 “old Telsa”

—
[er=] o] =] e
[E= == E= ==

Tex Tex

—
=1 =] =)
(== (==1==1==]

Tex Tex

| I—
== (= =] [= =] (= =]}
=1 = =

Tex Tex

| I—
(== == ==l = =]
s

IEIIEIIEIIEI IEIIEIIEIIEI

I—
[==1 (=1 [==] [==]
(=== =)

Tex Tex

IEIIEIIEIIEI IEIIEIIEIIEI
IEIIEIIEIIEI IEIIEIIEIIEI

—
=51 == == ==
(E=1E=E=] ==

Tex Tex

Zcull/Clip/Rast

Output Blend

240 streaming processors (CUDA Cores) (ALUs)

" Equivalent to 30 processing cores, each with 8
"CUDA cores”

Work Distributor

c

= NVIDIA GeForce GTX 280 (Tesla)

* NVIDIA-Speak Processing Core
. =
240 CUDA cores (ALUs)
* Generic speak
: O]l | ouflon
= 30 processing cores
« 8 CUDA Cores (SIMD functional units) per core Shared Ot Data

1 mul-add (2 flops) + 1 mulps nctionalunit (3 flops/cycle)
Best case theoretically:(240 mul-adds)+ er cycle
e 1.3 GHz clock

e 30*8*(2+1)*1.33 =933 Gflop/s peak

Best case reality: 240 mul-adds per clock
e Just able to do the mul-add so 2/3 or 624 Gflop/s

All this is single precision
« Double precision is 78 Gflop/s peak (Factor of 8 from SP; exploit mixed prec)

141 GB/s bus, 1 GB memory
4 GB/s via PCle (we see: T = 11 us + Bytes/3.3 GB/s)
In SP SGEMM performance 375 Gflop/s

e
= NVIDIA Fermi (GTX 480)

 Fermi GTX 480 has 480 CUDA cores (ALUs)

* 32 CUDA Cores (ALUs) in each of the 15
processing Cores

I Instruction Cache |
| Warp Scheduler | | ‘Warp Scheduler I
| Dispatch Unit | | Dispatch Unit |

Register File (4096 x 32-bit)

BHEEEEEREEEREHEE)

Interconnect Network)

64 KB Shared Memory / L1 Cache

&

A

~ NVIDIA Tesla C2050 (Fermi), GF100 Chip

* NVIDIA-Speak Processing Core
= 448 CUDA cores (ALUs)

* Generic speak

= 14 processing cores
» 32 CUDA Cores (SIMD functional units) per core

1 mul-add (2 flops) per ALU (2 flops/cycle)

= Best case theoretically: 448 mul-adds
 1.15 GHz clock e
e 14*32*2*1.15 =1.03 Tflop/s peak

= All this is single precision
« Double precision is half this rate, 515 Gflop/s

= 144 GB/s bus, 3 GB memory

= |n SP SGEMM performance 580 Gflop/s
= |n DP DGEMM performance 300 Gflop/s
= Power: 247 W

» |nterface PClex16

IcLOr-

High Performance Linpack

" Linpack benchmark (solve Ax = b, A is dense general
matrix) uses O(n?) data and O(n3) operations.

- If we look at the performance as a function of size
we see something like this.

TPP performance

Size
" So you want to run a large a problem as you can on
your machine to get the most performance.

Rate

s .
«- Benchmark Rules and Requirements

 Precision . Computation
« 64-bit floating point . Arbitrary: any device can
. 32-bit not allowed compute
. No Mixed precision . Timing and performance
. Algorithm « Clock is started and stopped

with data in main memory.

. All computation and data
transfers are included in

« Partial pivoting

« No fast matrix-matrix
multiply (i.e. Strassen's

method) total time
. No triangular matrix inversion . SJ::fi?:a:z:mma for
n diagonal
9o 2/3 * n3 / time
. Data/Storage e
Matrix generator must be + Verification
. used ? . |1 Ax-bl| 7 (IIAl1lIxII-1Ib]] n e)
' = 0(10)

o Initially: Data in main memory
« During computation: arbitrary

« At finish: Data in main
memory

IcLOr-

“How Long Will This HPL Thing Run?”

" The LANL RoadRunner HPL run took about 2 hours.

» They ran a size of n=2.3 x 106

"~ At ORNL they have more memory, 300 TB, and
they wanted to run a problem which used most of
it. They ran a matrix of size n = 4.7 x 106
> This run took about 18 hours!!

" JAXA Fujitsu system (slower than ORNL's system)
ran a matrix of size 3.3 x 10°

> That took over 60 hourslil

33

«. Time to Run for #1 Entry on TOP500

49}

18

16

14

12

10

Hours

34/16

IcLOr-

In a Few Years ...

" Have a 5 Pflop/s system

" If memory goes up by a factor of 5 we will be
able to do a problem of size n = 33.5 x 10°

" Running at 5 Pflop/s the benchmark run will
take 2.5 days to complete

" Clearly we have a issue here

35

N

A

IcLOr-

We Have to Do Something

" One of the positive aspects of the Linpack
Benchmark is that it stresses the system.

" Run only a portion of the run.

" But for how long?
> 4 hours? 6 hours? 8 hours? 12 hours? 24 hours?

" Have to check the results for numerical
accuracy.

[Ax=bl o
(I A1l b e

36

IcLOr-

Preliminary set of “Ground Rules”

" Whatever is done should be simple to explain
and implement.

" The time should still present some challenges,
say 12 hours.
> Stability test

" The results have to be verifiable.
» Accuracy test

" Even if doing a partial run the full matrix has
to be used.

" The rate of execution from the shorten run can
never be more than the rate from a complete
run.
> Avoid gaming the benchmark

e

A

“" Over the Course of the Run

" Can't just start the run and stop it after a set
amount of time.

" The performance will vary over the course of
the run.

1.20

1.00

0.80

Pflops/s

0.60

0.40

0.20

0.00

H‘ﬂ'fm‘mmrrm

1.06 Pflop/s

38

10

12

14

16

18

20 Time (hours)

A

o First 5 Steps of LU Factorization

Step 3: Factor second panel

| SteE 0: Initial matrixk\

| Step 1: Factor first panel ?1

Step 4: Update from panel

Step 2: Update from panel

Step 5: Factor second panel

c

ICLOr"

How to Capture Performance?

" Should we do sampling, and apply quadrature?

1.20

1.00

0.80

0.60

0.40 -

0.20

0.00 ¥

20

40

ICLOr"

How to Capture Performance?

" Take a window of performance and use it.

" But what window?

1.20

1.00 W
0.80

0.60 \\
0.40

0.20

0.00

10 12 14 16

18

20

41

ICLOr"

How to Capture Performance?

" Figure out the point to start (say what would have
been 12 hours into the run) and begin the timing
there going to the end.

1.20

1.00

0.80

0.60

0.40

0.20

0.00

N
< Real Example

" Each sample is a Gflop/s rate to

" Matrix size: N = 50160 .
perform a panel factorization and

" Block size: N;= 120

~ Performance: update
2/, N* / time = 182.135 »forj=1.23, ... 418
Gflop/s i; -tC'°C'<0 .

" Process grid: 10 by 10 actor_panel(}) ,

N £ panels: N/N. = 418 > update_from_panel(j)

- 'NO. o panels: 8 >t = clock() -
No. Of samples- N/NB = 418 >C = (N_j*NB+NB)3_(N_j*NB)3

» gflops = 2/3*C/ t+* 10°
> print gflops
> end

IcLOr-

LU Factorization Performance over Time

Gflop/s

200

195

190

185

180

175

Factorization and update from first panel
has the highest execution rate: 189 Gflop/s

—Sampled True execution rate is 182 Gflop/s
Performance It is the area under the red curve

— Average divided by number of samples (418).
Performance

H

Factorization of the last panel has
the lowest execution rate: 180 Gflop/s

0% Progress of Factorization 100%

.?Performance of LINPACK Benchmark Run

Gflop/s Exact formula
for TOP500

| ____ranking

|
R_ = G(t)dt
w77 [Gw)

start

G

S
~Estimating Performance from a Shorter Run

Gflop/s

ya

This area will
overestimate

This area will
underestimate

This area should
best estimate

Initial sectionJ

Middle section

CAll 3 Sections Compared

—8— |nitial section —®— Middle section End section

10

o [«2)

Performance [Gflop/s]
S

0
2.00% 10.00% 18.00% 26.00% 34.00% 42.00% 50.00% 58.00% 66.00% 74.00% 82.00% 90.00% 98.00%

Percent complete

c

IcLOr-

[L.imited Benchmark Run

* Start the computation in at some and running to

completion.
" Simplified the job of checking the solution.
0"
A= '

" Easy to Understand and implement.

48

Jaguar XT4
1024 cores (out of 7832 * 4)
2.1 GHz @ 4 flops/cycle
32 by 32 process grid
Original matrix size: 200k

7000

==Gflop/s -®Time

R,,=94%of R__

6000 €

X

5000

4000

Gflop/s

1/

, =422 seconds

3000

2000

1000

0 —
20000 40000 60000

80000

100000

Factored portion of matrix

120000

140000

160000

180000

200000

900

- 800

- 700

- 600

- 500

- 400

- 300

- 200

- 100

Time (seconds)

Jaguar XT4
7832 * AMD 1354 Budapest
Quad-Core 2.6 GHz
100x100 core grid
10,000 cores

=-Gflop/s -®seconds

70000

60000 /

— - /

50000

40000

Gflop/s

- /
20000

10000 /./

/

400000 500000 600000 750000 1000000

Factored portion of matrix

12000

- 10000

- 8000

- 6000

- 4000

- 2000

Time (seconds)

Jaguar XT4
7832 * AMD 1354 Budapest
Quad-Core 2.6 GHz
172x175 core grid (30100 cores)

=-Gflop/s -®seconds

250000

200000

150000

Gflop/s

100000

50000

700000 1000000 1300000 1700000

Factored portion of matrix

18000

- 16000

- 14000

- 12000

- 10000

- 8000

- 6000

- 4000

- 2000

Time (seconds)

N

A

IcLOr-

HPL Summary

" Making changes to the benchmark should be done

very carefully, hard to undo.

"~ Will continue to experiment with the approximate

run.

" Provide a way to estimate time and size.
" Perhaps role this out as beta for November
" Plan for 12 hour max run

» If your run would be less than 12 hours, then run on the
whole matrix.

" Verify the computation
"~ Approximation rate will be an under approximation
" The longer the testing the more accurate the

performance estimate

&

A\

~ HPC Challenge Benchmarks for GPUs Next
HPC Challenge Corresponding
Benchmark Memory Hierarchy

*HPL: solves a system

Ax=b \ Registers

I Instr. Operands

* STREAM: vector operations

A=B+sxC _ —
Blocks
*FFT: 1D Fast Fourier Transform .
—

Z= FFT(X) latenc I Messages
* RandomAccess: random updates

T(i) = XOR(T(i), r)

I Pages

Disk

°* HPC Challenge measures this hierarchy

