

LINPACK Benchmark with Time Limits on Multicore & GPU Based Accelerators

Jack Dongarra

University of Tennessee & Oak Ridge National Laboratory, USA

What Is LINPACK?

- " LINPACK is a package of mathematical software for solving problems in linear algebra, mainly dense linear systems of linear equations.
- " LINPACK: "LINear algebra PACKage"
 - Written in Fortran 66
- The project had its origins in 1974
- The project had four primary contributors: myself when I was at Argonne National Lab, Jim Bunch from the University of California-San Diego, Cleve Moler who was at New Mexico at that time, and Pete Stewart from the University of Maryland.
- " LINPACK as a software package has been largely superseded by LAPACK, which has been designed to run efficiently on shared-memory, vector supercomputers.

Computing in 1974

- " Fortran 66
- " High Performance Computers:
 - > IBM 370/195, CDC 7600, Univac 1110, DEC PDP-10, Honeywell 6030
- "Trying to achieve software portability
- " Run efficiently
- " BLAS (Level 1)
 - > Vector operations
- " Software released in 1979
 - > About the time of the Cray 1

LINPACK Benchmark?

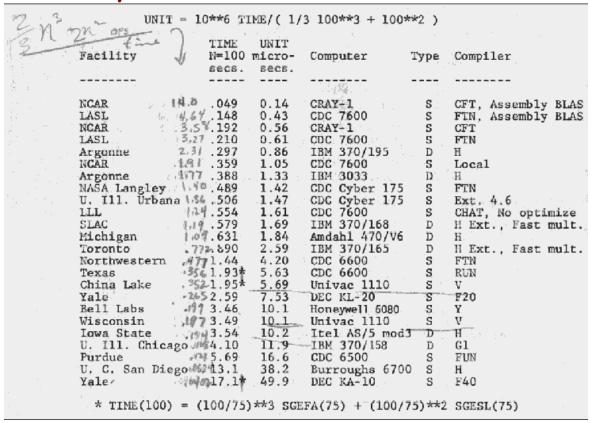
- The Linpack Benchmark is a measure of a computer's floating-point rate of execution.
 - > It is determined by running a computer program that solves a dense system of linear equations.
- "Over the years the characteristics of the benchmark has changed a bit.
 - > In fact, there are three benchmarks included in the Linpack Benchmark report.

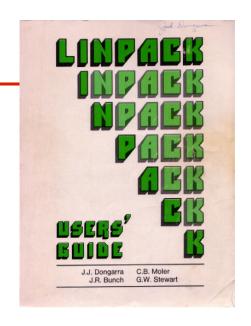
" LINPACK Benchmark

- Dense linear system solve with LU factorization using partial pivoting
- \triangleright Operation count is: 2/3 n³ + O(n²)
- > Benchmark Measure: MFlop/s
- Original benchmark measures the execution rate for a Fortran program on a matrix of size 100x100.

Accidental Benchmarker

- " Appendix B of the Linpack Users' Guide
 - Designed to help users extrapolate execution time for Linpack software package
- First benchmark report from 1977;
 - > Cray 1 to DEC PDP-10





Linpack 100

- " Use the LINPACK software DGEFA and DGESL to solve a system of linear equations.
- " DGEFA factors a matrix
- " DGESL solve a system of equations based on the factorization.

Step 1
$$A = LU$$

Step 2 Forward Elimination

Solve
$$Ly = b$$

Step 3 Backward Substitution

Solve
$$Ux = y$$

DGEFA

and

DGESL

```
С
С
      gaussian elimination with partial pivoting
С
     info = 0
     nm1 = n - 1
      if (nm1 .lt. 1) go to 70
      do 60 k = 1, nm1
        kp1 = k + 1
С
        find 1 = pivot index
С
С
        1 = idamax(n-k+1,a(k,k),1) + k - 1
        ipvt(k) = 1
c
С
        zero pivot implies this column already triangularized
С
        if (a(1,k) .eq. 0.0d0) go to 40
С
            interchange if necessary
С
С
            if (1 .eq. k) go to 10
              t = a(1,k)
               a(l,k) = a(k,k)
               a(k,k) = t
  10
            continue
С
            compute multipliers
С
С
            t = -1.0d0/a(k, k)
            call dscal(n-k,t,a(k+1,k),1)
С
C
            row elimination with column indexing
С
            do 30 j = kp1, n
              t = a(1,j)
               if (1 .eq. k) go to 20
                  a(l,j) = a(k,j)
                  a(k,j) = t
  20
               continue
               call daxpy (n-k, t, a(k+1, k), 1, a(k+1, j), 1)
  30
           continue
        go to 50
   40
        continue
            info = k
                                      Most of the
        continue
                                      work is done
   60 continue
   70 continue
                                      Here: O(n3)
```

```
С
         first solve l*y = b
C
         if (nm1 .lt. 1) go to 30
         do 20 k = 1, nm1
            1 = ipvt(k)
            t = b(1)
            if (1 .eq. k) go to 10
               b(1) = b(k)
               b(k) = t
   10
            continue
            call daxpy (n-k, t, a(k+1, k), 1, b(k+1), 1)
   20
         continue
   30
         continue
C
         now solve u*x = y
С
C
         do 40 kb = 1, n
            k = n + 1 - kb
            b(k) = b(k)/a(k,k)
            t = -b(k)
            call daxpy (k-1, t, a(1, k), 1, b(1), 1)
   40
         continue
      go to 100
   50 continue
```

Operation type	Operation count
addition	328350
multiplication	333300
reciprocal	99
absolute value	5364
comparison	4950
comparison with zero	5247

For Linpack with n = 100

- "Not allowed to touch the code.
- "Only set the optimization in the compiler and run.
- " Table 1 of the report
 - http://www.netlib.org/benchmark/performance.pdf

5/6/2010

Table 1: Performance in Solving a System of Linear Equations

Computer	"LINPACK Benchmark" OS/Compiler	n=100 Mflop/s	"TPP" Best Effort n=1000 Mflop/s	"Theoritical Peak" Mflop/s
Intel Pentium Woodcrest (1 core, 3 GHz)	ifort -parallel -xT -O3 -ipo -mP2OPT_hlo_loop_unroll_factor=2	3018	6542	12000
Intel Pentium Woodcrest (1 core, 2.67 GHz)	ifort -O3 -ipo -xT -r8 -i8	2636		10680
Intel Core 2 Q6600 Kensfield) (4 core, 2.4 GHz)			13130	38400
Intel Core 2 Q6600 Kensfield) (3 core, 2.4 GHz)			11980	28800
Intel Core 2 Q6600 Kensfield) (2 core, 2.4 GHz)			9669	19200
Intel Core 2 Q6600 Kensfield) (1 core, 2.4 GHz)	ifort -O3 -xT -ipo -static -i8 -mP2OPT_hlo_loop_unroll_factor=2	2426	7519	9600
NEC SX-8/8 (8proc. 2 GHz)			75140	128000
NEC CV 9/4 (4 2 CH-)			42600	64000

Linpack Benchmark Over Time

- " In the beginning there was the Linpack 100 Benchmark (1977)
 - > n=100 (80KB); size that would fit in all the machines
 - > Fortran; 64 bit floating point arithmetic
 - > No hand optimization (only compiler options)
- " Linpack 1000 (1986)
 - > n=1000 (8MB); wanted to see higher performance levels
 - > Any language; 64 bit floating point arithmetic
 - > Hand optimization OK
- " Linpack HPL (1991) (Top500; 1993)
 - > Any size (n as large as you can);
 - > Any language; 64 bit floating point arithmetic
 - Hand optimization OK
 - > Strassen's method not allowed (confuses the op count and rate)
 - > Reference implementation available (HPL) $\frac{\|Ax b\|}{\|A\| \|B\|} = O(1)$
- " In all cases results are verified by looking at: $\|A\| \|x\| n \varepsilon$
- "Operations count for factorization $\frac{2}{3}n^3 \frac{1}{2}n^2$; solve $2n^2$

High Performance Linpack (HPL)

Benchmark	Matrix	Optimizations	Parallel
Name	dimension	allowed	Processing
Linpack 100	100	compiler	_a
Linpack 1000 ^b	1000	hand, code replacement	_c
Linpack Parallel	1000	hand, code replacement	Yes
HPLinpack ^d	Arbitrary (usually as large as possible)	hand, code replacement	Yes

^a Compiler parallelization possible.

^b Also known as TPP (Toward Peak Performance) or Best Effort

^c Multiprocessor implementations allowed.

^d Highly-Parallel LINPACK Benchmark is also known as NxN Linpack Benchmark or High Parallel Computing (HPC).

A New Generation of Software:

Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

Software/Algorithms follow hardware evolution in time LINPACK (70's) (Vector operations) Rely on - Level-1 BLAS operations

A New Generation of Software:

Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

Software/Algorithms follow hardware evolution in time			
LINPACK (70's) (Vector operations)		Rely on - Level-1 BLAS operations	
LAPACK (80's) (Blocking, cache friendly)		Rely on - Level-3 BLAS operations	

Every 10 Years or So.

Software/Algorithms follow hardware evolution in time			
LINPACK (70's) (Vector operations)		Rely on - Level-1 BLAS operations	
LAPACK (80's) (Blocking, cache friendly)		Rely on - Level-3 BLAS operations	
ScaLAPACK (90's) (Distributed Memory)		Rely on - PBLAS Mess Passing	

HPL Code is Based on ScaLAPACK

- " Uses a form of look ahead to overlap communication and computation
- "Uses MPI directly avoiding the overhead of BLASC communication layer.
- " HPL doesn't form L (pivoting is only applied forward)
- " HPL doesn't return pivots (they are applied as LU progresses)
 - LU is applied on [A, b] so HPL does one less triangular solve(HPL: triangular solve with U; ScaLAPACK: triangular solve with Land then U)
- " HPL uses recursion to factorize the panel, ScaLAPACK uses rank-1 updates
- " HPL has many variants for communication and computation: people write papers how to tune it; ScaLAPACK gives you a lot of defaults that are overall OK
- "HPL combines pivoting with update: coalescing messages usually helps with performance

Communication and Computation Differences

- ScaLAPACK
- Communication layer
 - BLACS on top of:
 - MPI, PVM, vendor lib
- Communication variants
 - Only one pivot finding
 - BLACS broadcast topologies
- Rank-k panel factorization
- Separate pivot and panel data
 - Larger message count
- Lock-step operation
 - Extra synchronization points

- HPL
- Communication layer
 - MPI
 - W Vendor MPI
- Communication variants
 - Pivot finding reductions
 - Update broadcasts
- Recursive panel factorization
- Coalescing of pivot and panel data
 - Smaller message count
- Look-ahead panel factorization
 - Critical path optimization

E

Differences in Formulation

- ScaLAPACKAx=bAX=B (multiple RHS)
- First step: pivot and factorize
 PA = LU
- Second step: apply pivot to bb' = Pb
- Third step: back-solve with LLy = b'
- Fourth step: back-solve withUUx = y
- Result: L, U, P, x

- HPL Ax=b
- Firststep:pivot,factorize,apply LA,b = L'U,y
- Second step: back-solve withUUx = y

Result: U, x, scrambled L

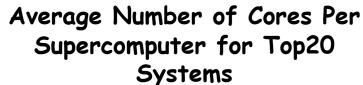
Other Differences

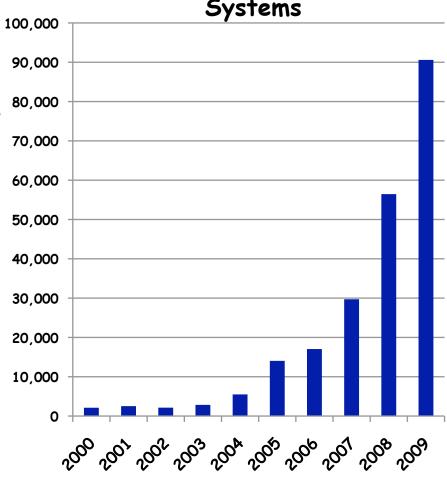
- ScaLAPACK
- Multiple precisions
 - 32-bit/64-bit/real /complex
- Random number generation
 - 32-bit
- Supported linear algebra libraries
 - BLAS

- HPL
- One precision
 - 64-bit real
- Random number generation
 - 64-bit
- Supported linear algebra libraries
 - · BLAS, VSIPL

Moore's Law Reinterpreted

- Number of cores per chip doubles every 2 year, while clock speed decreases (not increases).
 - Need to deal with systems with millions of concurrent threads
 - > Future generation will have billions of threads!
 - Need to be able to easily replace inter-chip parallelism with intro-chip parallelism
- Number of threads of execution doubles every 2 year





What's Next?



+ 3D Stacked Memory

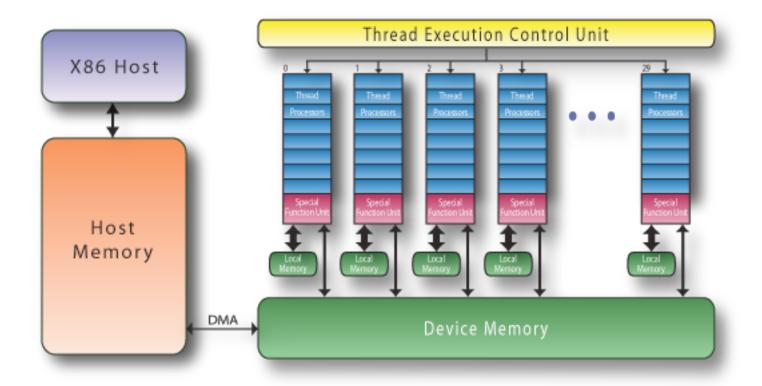
Future Computer Systems

- " Most likely be a hybrid design
- "Think standard multicore chips and accelerator (GPUs)
- " Today accelerators are attached
- "Next generation more integrated
- "Intel's Larrabee? Now called "Knights Corner" and "Knights Ferry" to come.
 - > 48 x86 cores
- " AMD's Fusion in 2011 2013
 - > Multicore with embedded graphics ATI
- " Nvidia's plans?

Exascale Systems: Two possible paths

- " Light weight processors (think BG/P)
 - > ~1 GHz processor (109)
 - > ~1 Kilo cores/socket (103)
 - > ~1 Mega sockets/system (10⁶)
- "Hybrid system (think GPU based)
 - > ~1 GHz processor (109)
 - > ~10 Kilo FPUs/socket (104)
 - > ~100 Kilo sockets/system (10⁵)

Commodity plus GPU Today



Challenges of using GPUs

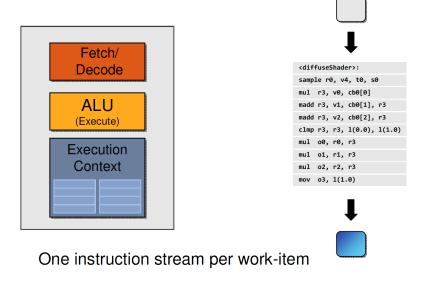
- High levels of parallelism
 Many GPU cores, serial kernel execution
 [e.g. 240 in the Nvidia Tesla; up to 512 in Fermi to have concurrent kernel execution]
- Hybrid/heterogeneous architectures
 Match algorithmic requirements to architectural strengths

[e.g. small, non-parallelizable tasks to run on CPU, large and parallelizable on GPU]

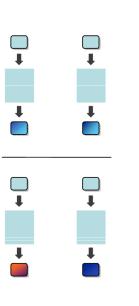
Exponentially growing gap; persistent challenge
[Processor speed improves 59%, memory bandwidth 23%, latency 5.5%]
[on all levels, e.g. a GPU Tesla C1070 (4 x C1060) has compute power of O(1,000) Gflop/s but GPUs communicate through the CPU using O(1) GB/s connection]

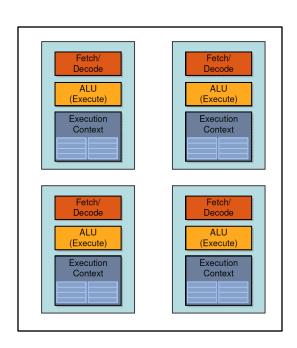
How to Count Cores?

" CPU Conventional Core



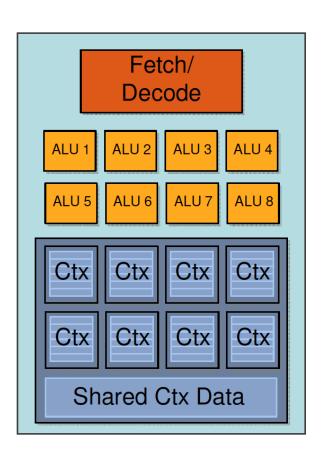
Quad Core



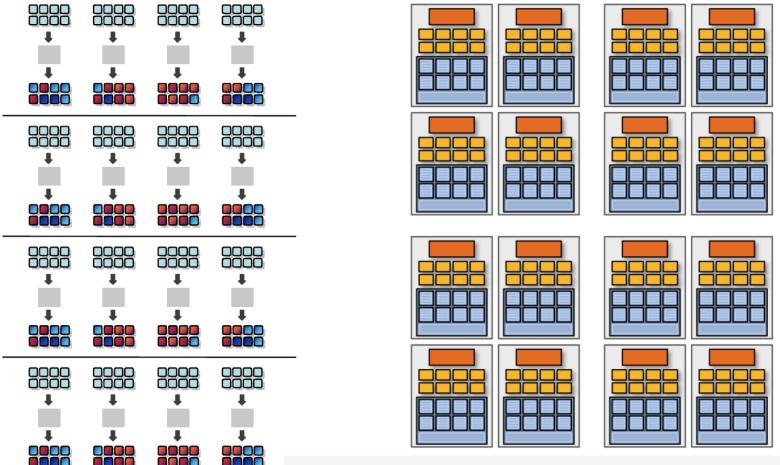


In GPUs - Add ALUs

- " SIMD Processing
- Amortize cost/complexity of managing an instruction stream across many ALUs.
- "NVIDIA refers to these ALUs as "CUDA Cores" (also streaming processors)

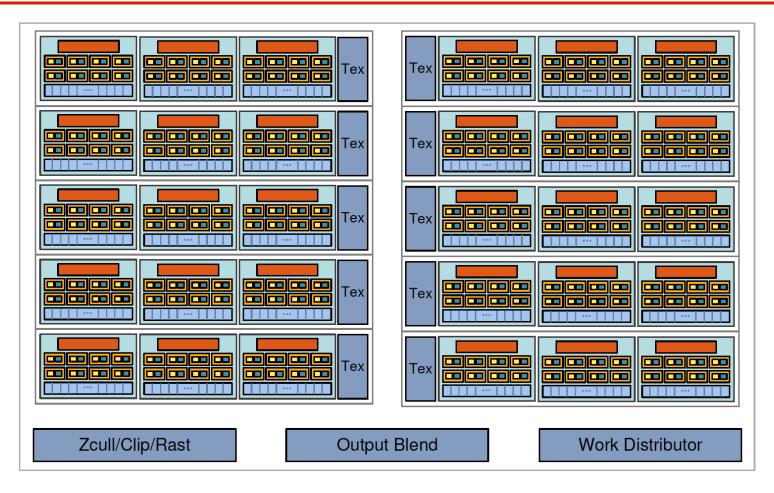


128 Elements in Parallel



16 cores each with 8 ALUs (CUDA Cores)
Total of 16 simultaneous instruction streams with
128 ALUs (CUDA Cores)

NVIDIA GT280 "old Telsa"

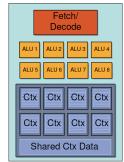


- 240 streaming processors (CUDA Cores) (ALUs)
- "Equivalent to 30 processing cores, each with 8 "CUDA cores"

NVIDIA GeForce GTX 280 (Tesla)

- NVIDIA-Speak
 - 240 CUDA cores (ALUs)
- Generic speak
 - 30 processing cores
 - 8 CUDA Cores (SIMD functional units) per core

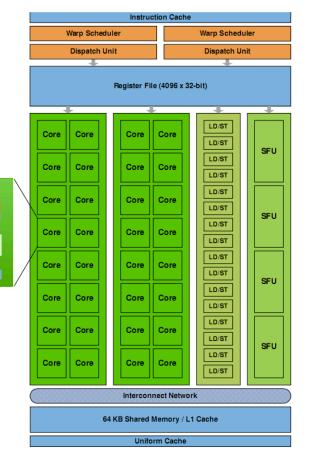
Processing Core



- 1 mul-add (2 flops) + 1 mul per functional unit (3 flops/cycle)
- Best case theoretically: 240 mul-adds + 240 muls per cycle
 - 1.3 GHz clock
 - 30 * 8 * (2 + 1) * 1.33 = 933 Gflop/s peak
- Best case reality: 240 mul-adds per clock
 - Just able to do the mul-add so 2/3 or 624 Gflop/s
- All this is single precision
 - Double precision is 78 Gflop/s peak (Factor of 8 from SP; exploit mixed prec)
- 141 GB/s bus, 1 GB memory
- 4 GB/s via PCle (we see: T = 11 us + Bytes/3.3 GB/s)
- In SP SGEMM performance 375 Gflop/s

NVIDIA Fermi (GTX 480)

- Fermi GTX 480 has 480 CUDA cores (ALUs)
- 32 CUDA Cores (ALUs) in each of the 15 processing Cores



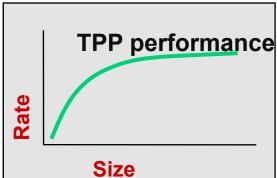
NVIDIA Tesla C2050 (Fermi), GF100 Chip

- NVIDIA-Speak
 - 448 CUDA cores (ALUs)
- Generic speak
 - 14 processing cores
 - 32 CUDA Cores (SIMD functional units) per core
 - 1 mul-add (2 flops) per ALU (2 flops/cycle)
 - Best case theoretically: 448 mul-adds
 - 1.15 GHz clock
 - 14 * 32 * 2 * 1.15 = 1.03 Tflop/s peak
 - All this is single precision
 - Double precision is half this rate, 515 Gflop/s
 - 144 GB/s bus, 3 GB memory
 - In SP SGEMM performance 580 Gflop/s
 - In DP DGEMM performance 300 Gflop/s
 - Power: 247 W
 - Interface PClex16

Processing Core

High Performance Linpack

- "Linpack benchmark (solve Ax = b, A is dense general matrix) uses $O(n^2)$ data and $O(n^3)$ operations.
- " If we look at the performance as a function of size we see something like this.



So you want to run a large a problem as you can on your machine to get the most performance.

Benchmark Rules and Requirements

Precision

- 64-bit floating point
- 32-bit not allowed
- No Mixed precision

Algorithm

- Partial pivoting
- No fast matrix-matrix multiply (i.e. Strassen's method)
- No triangular matrix inversion on diagonal

Data/Storage

- Matrix generator must be used.
- Initially: Data in main memory
- During computation: arbitrary
- At finish: Data in main memory

Computation

- Arbitrary: any device can compute
- Timing and performance
 - Clock is started and stopped with data in main memory.
 - All computation and data transfers are included in total time
 - Standard formula for performance
 2/3 * n³ / time

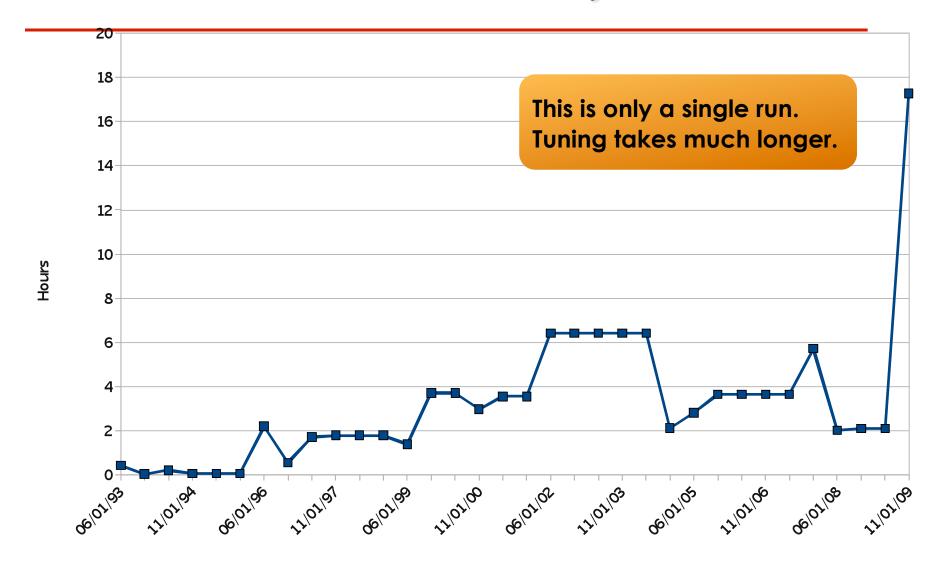
Verification

|| Ax-b|| / (||A||||x||-||b|| n e)
 = O(10)

"How Long Will This HPL Thing Run?"

- " The LANL RoadRunner HPL run took about 2 hours.
 - \triangleright They ran a size of n=2.3 \times 106
- " At ORNL they have more memory, 300 TB, and they wanted to run a problem which used most of it. They ran a matrix of size $n = 4.7 \times 10^6$
 - > This run took about 18 hours!!
- " JAXA Fujitsu system (slower than ORNL's system) ran a matrix of size 3.3×10^6
 - > That took over 60 hours!!!!

Time to Run for #1 Entry on TOP500



In a Few Years ...

- " Have a 5 Pflop/s system
- " If memory goes up by a factor of 5 we will be able to do a problem of size $n = 33.5 \times 10^6$
- Running at 5 Pflop/s the benchmark run will take 2.5 days to complete
- " Clearly we have a issue here

We Have to Do Something

- One of the positive aspects of the Linpack Benchmark is that it stresses the system.
- "Run only a portion of the run.
- " But for how long?
 - > 4 hours? 6 hours? 8 hours? 12 hours? 24 hours?
- " Have to check the results for numerical accuracy.

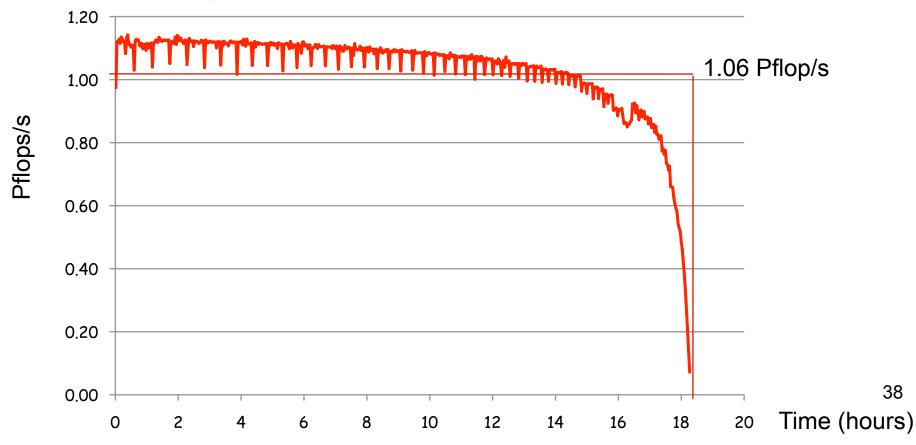
$$\frac{\parallel Ax - b \parallel}{(\parallel A \parallel ||x|| + ||b||)n\varepsilon} \approx O(1)$$

Preliminary set of "Ground Rules"

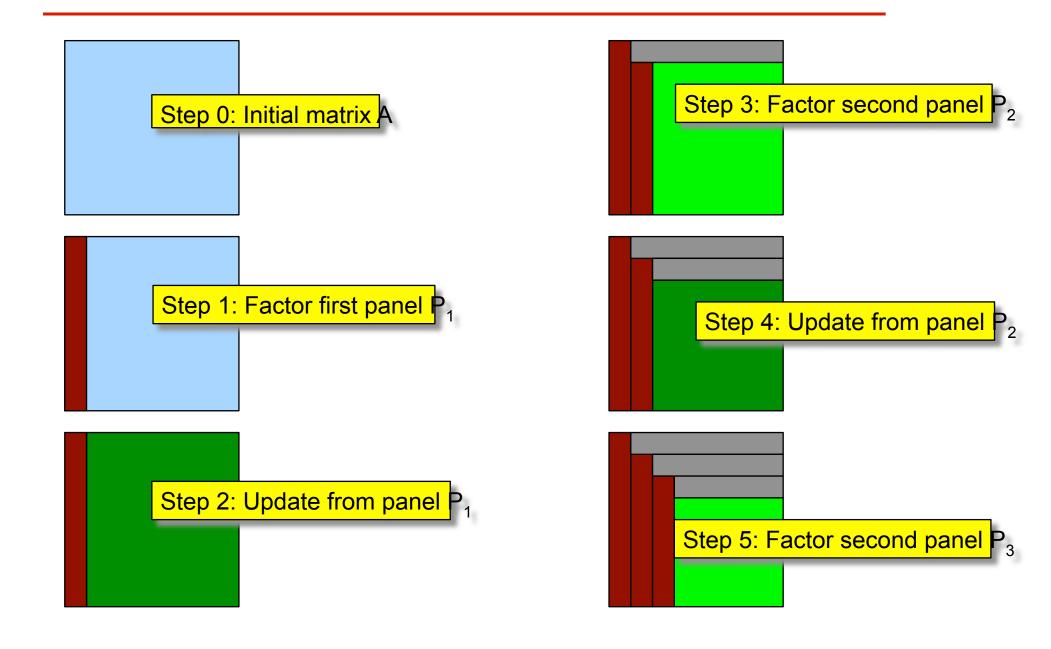
- "Whatever is done should be simple to explain and implement.
- The time should still present some challenges, say 12 hours.
 - > Stability test
- "The results have to be verifiable.
 - > Accuracy test
- " Even if doing a partial run the full matrix has to be used.
- The rate of execution from the shorten run can never be more than the rate from a complete run.
 - > Avoid gaming the benchmark

Over the Course of the Run

- " Can't just start the run and stop it after a set amount of time.
- "The performance will vary over the course of the run.

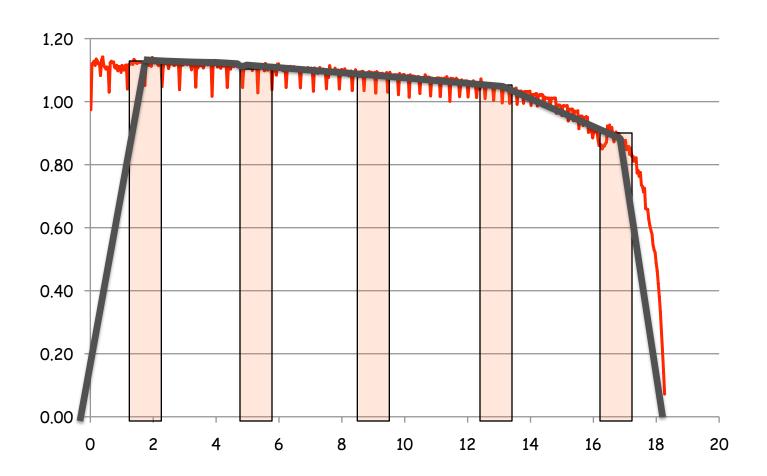


First 5 Steps of LU Factorization



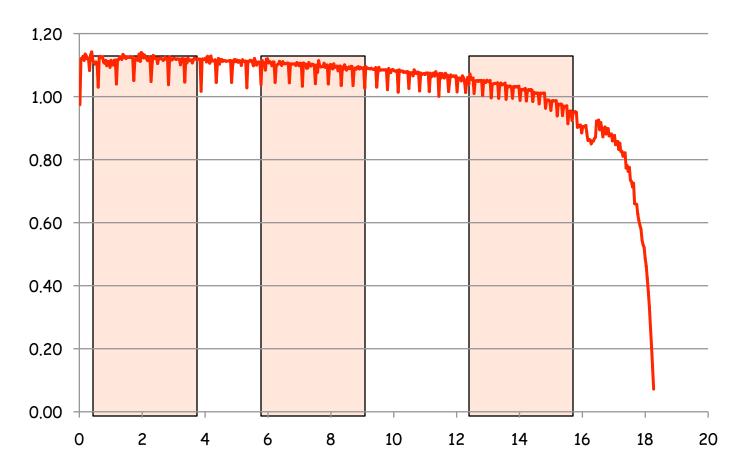
How to Capture Performance?

" Should we do sampling, and apply quadrature?



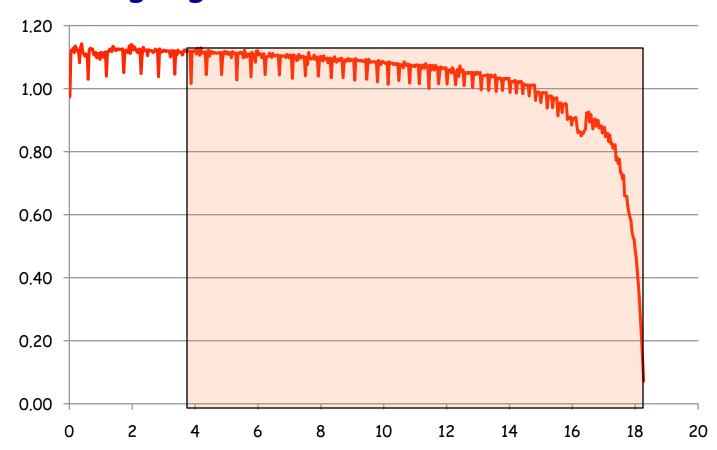
How to Capture Performance?

- " Take a window of performance and use it.
- " But what window?



How to Capture Performance?

Figure out the point to start (say what would have been 12 hours into the run) and begin the timing there going to the end.



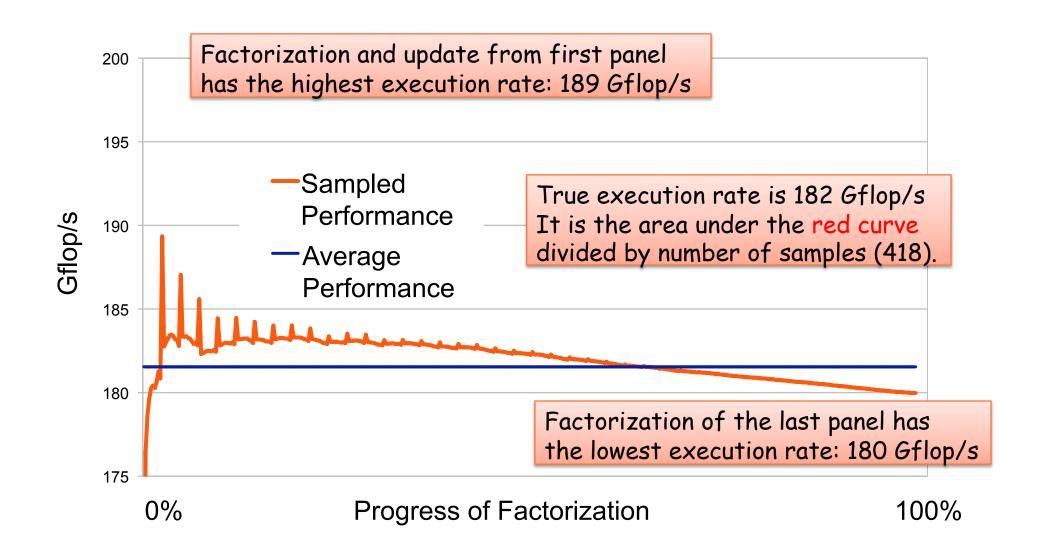
Real Example

- Matrix size: N = 50160
- " Block size: $N_B = 120$
- Performance:
 ²/₃ N³ / time = 182.135
 Gflop/s
- " Process grid: 10 by 10
- " No. of panels: $N/N_R = 418$
- " No. of samples: $N/N_B = 418$

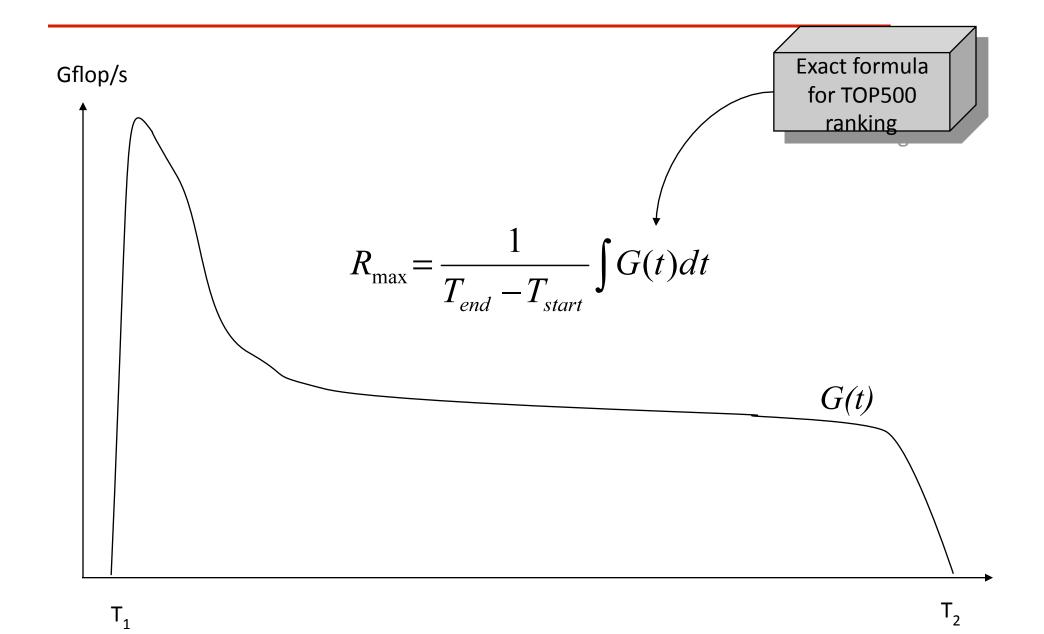
Each sample is a Gflop/s rate to perform a panel factorization and update

```
> for j = 1, 2, 3, ..., 418
> t = clock()
> factor_panel(j)
> update_from_panel(j)
> t = clock() - t
> C = (N-j*N<sub>B</sub>+N<sub>B</sub>)<sup>3</sup>-(N-j*N<sub>B</sub>)<sup>3</sup>
> gflops = 2/3 * C / t * 10<sup>-9</sup>
> print gflops
> end
```

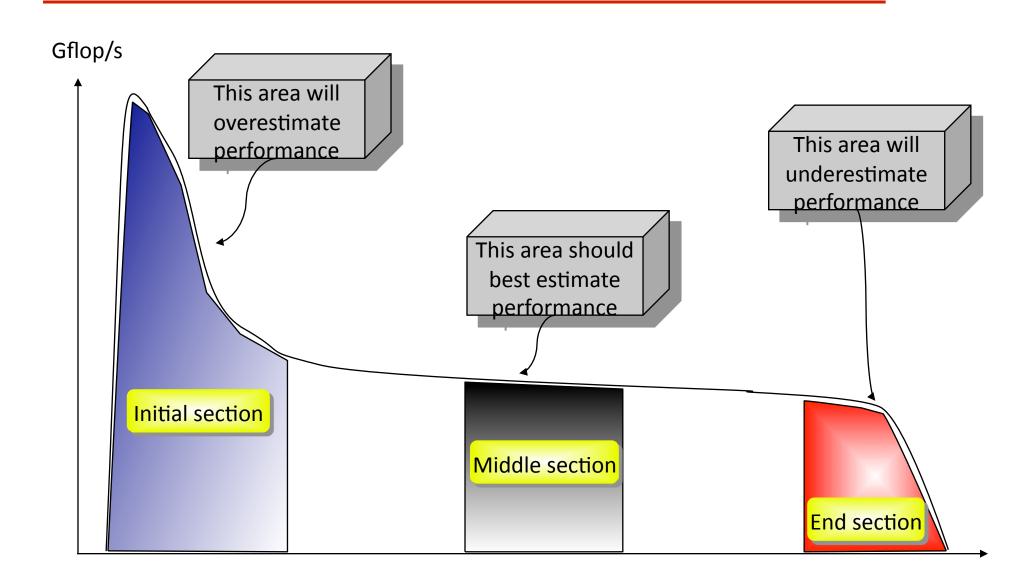

LU Factorization Performance over Time



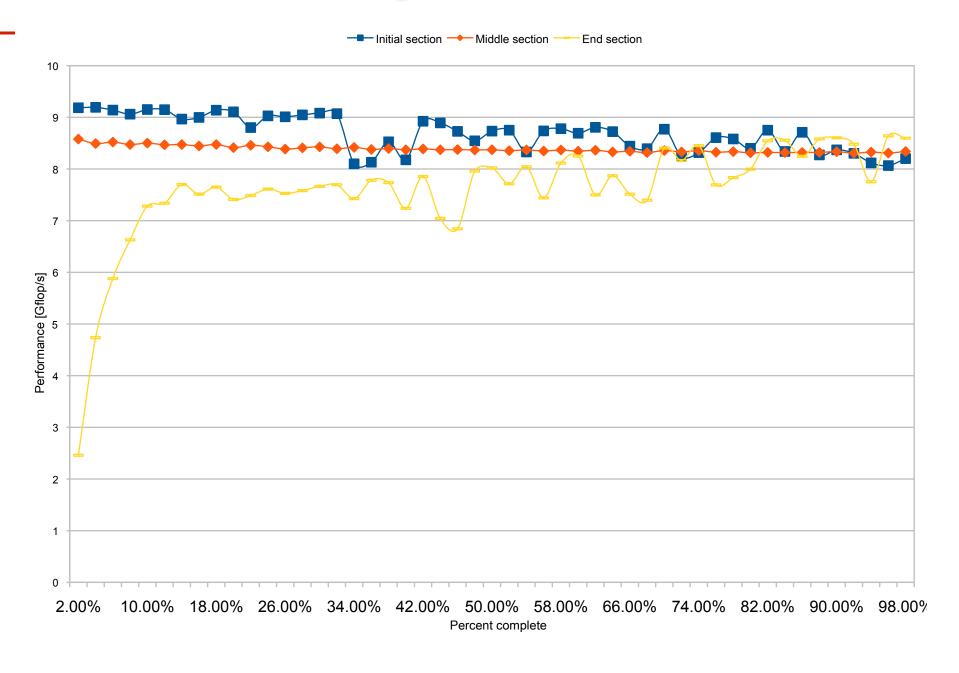
Performance of LINPACK Benchmark Run



Estimating Performance from a Shorter Run



All 3 Sections Compared



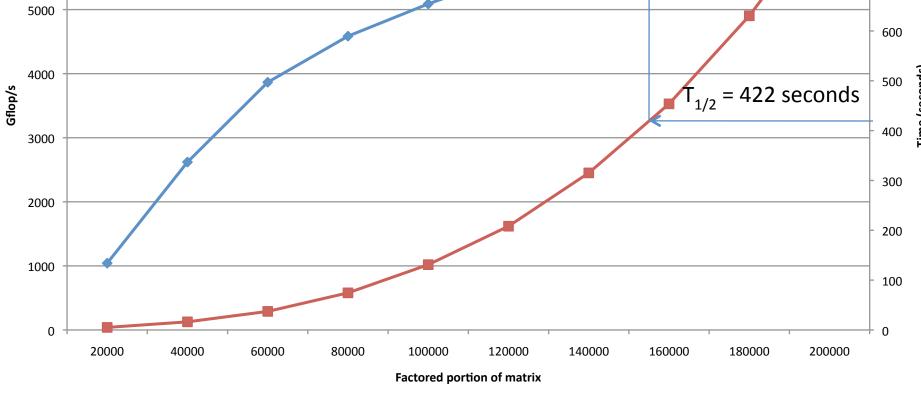
Limited Benchmark Run

- "Start the computation in at some and running to completion.
- " Simplified the job of checking the solution.

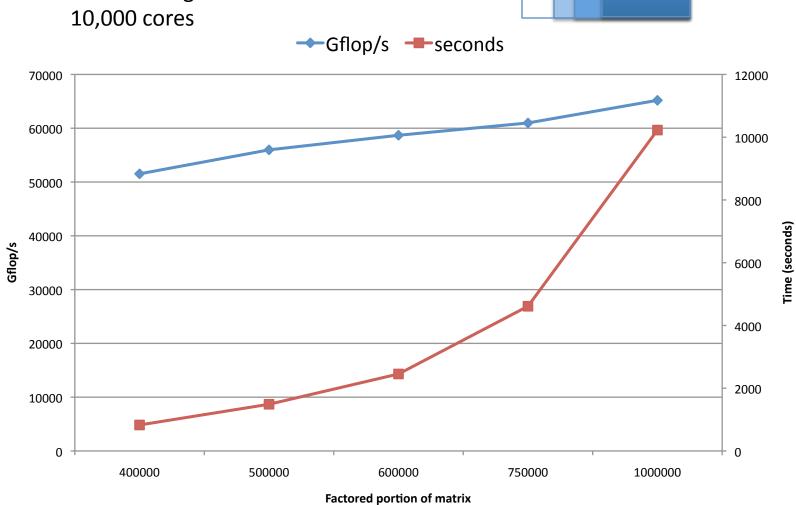
$$A = \begin{bmatrix} I & 0 \\ 0 & A' \end{bmatrix}$$

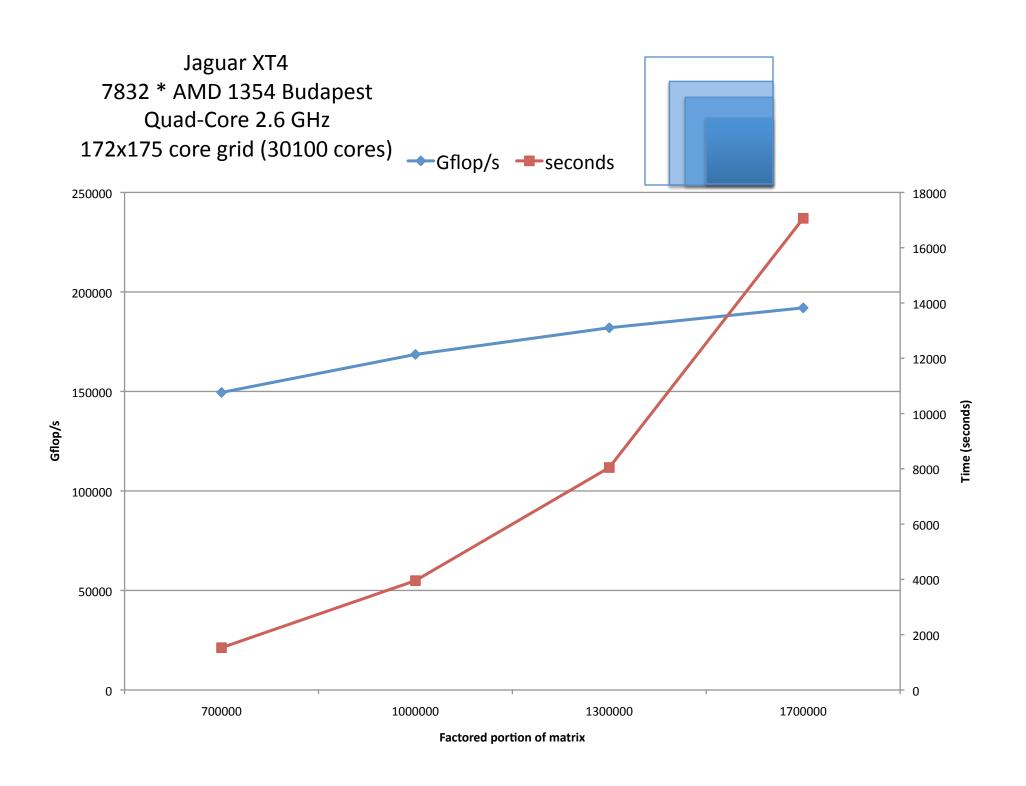
" Easy to Understand and implement.

Jaguar XT4 1024 cores (out of 7832 * 4) 2.1 GHz @ 4 flops/cycle 32 by 32 process grid Original matrix size: 200k →Gflop/s →Time 7000 900 $R_{1/2} = 94\% \text{ of } R_{max}$ 800 6000 700 600 4000 500 $T_{1/2} = 422 \text{ seconds}$ 400 3000 300



Jaguar XT4
7832 * AMD 1354 Budapest
Quad-Core 2.6 GHz
100x100 core grid
10,000 cores

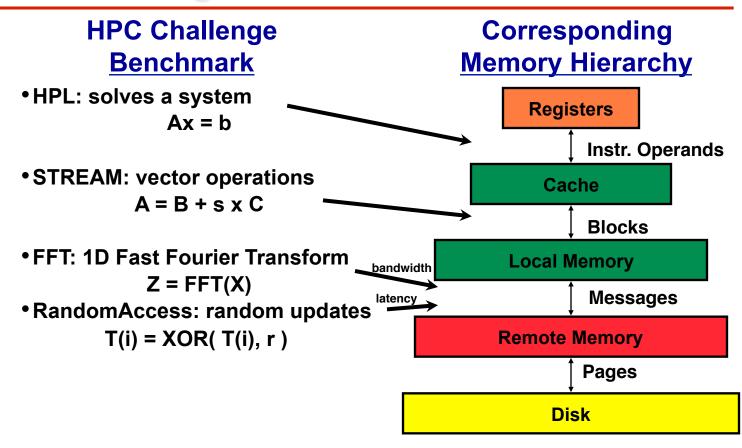




HPL Summary

- " Making changes to the benchmark should be done very carefully, hard to undo.
- " Will continue to experiment with the approximate run.
- " Provide a way to estimate time and size.
- " Perhaps role this out as beta for November
- " Plan for 12 hour max run
 - > If your run would be less than 12 hours, then run on the whole matrix.
- " Verify the computation
- " Approximation rate will be an under approximation
- The longer the testing the more accurate the performance estimate

HPC Challenge Benchmarks for GPUs Next



HPC Challenge measures this hierarchy