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¨  LINPACK is a package of mathematical software for solving
 problems in linear algebra, mainly dense linear systems of
 linear equations.  

¨  LINPACK: “LINear algebra PACKage” 
  Written in Fortran 66 

¨  The project had its origins in 1974  

¨  The project had four primary contributors: myself when I was
 at Argonne National Lab, Jim Bunch from the University of
 California-San Diego, Cleve Moler who was at New Mexico at
 that time, and Pete Stewart from the University of Maryland.  

¨  LINPACK as a software package has been largely superseded by
 LAPACK, which has been designed to run efficiently on
 shared-memory, vector supercomputers.  
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¨  Fortran 66 
¨  High Performance Computers: 

  IBM 370/195, CDC 7600, Univac 1110, DEC PDP-10,
 Honeywell 6030 

¨  Trying to achieve software portability  
¨  Run efficiently 
¨  BLAS (Level 1) 

 Vector operations 
¨  Software released in 1979 

 About the time of the Cray 1 



4 

¨  The Linpack Benchmark is a measure of a
 computer’s floating-point rate of execution.  
  It is determined by running a computer program that

 solves a dense system of linear equations.  
¨  Over the years the characteristics of the

 benchmark has changed a bit.  
  In fact, there are three benchmarks included in the

 Linpack Benchmark report. 
¨  LINPACK Benchmark 

 Dense linear system solve with LU factorization using
 partial pivoting 

 Operation count is: 2/3 n3 + O(n2) 
  Benchmark Measure: MFlop/s 
 Original benchmark measures the execution rate for a

 Fortran program on a matrix of size 100x100. 
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¨  Appendix B of the Linpack Users’ Guide 
  Designed to help users extrapolate execution                               

 time for Linpack software package 
¨  First benchmark report from 1977;  

  Cray 1 to DEC PDP-10                                  
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¨  Use the LINPACK software DGEFA and DGESL
 to solve a system of linear equations. 

¨  DGEFA factors a matrix 
¨  DGESL solve a system of equations based on

 the factorization. 

Step 1 

Step 2   Forward Elimination 
             Solve  L y = b 
Step 3   Backward Substitution 
              Solve U x = y                         

= 

A = L U 
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Most of the  
work is done 
Here: O(n3) 
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¨  Not allowed to touch the code. 
¨  Only set the optimization in the compiler and

 run. 
¨  Table 1 of the report 

  http://www.netlib.org/benchmark/performance.pdf  
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¨  In the beginning there was the Linpack 100 Benchmark (1977) 
  n=100 (80KB); size that would fit in all the machines 
  Fortran; 64 bit floating point arithmetic  
  No hand optimization (only compiler options) 

¨  Linpack 1000 (1986) 
  n=1000 (8MB); wanted to see higher performance levels 
  Any language; 64 bit floating point arithmetic  
  Hand optimization OK 

¨  Linpack HPL (1991) (Top500; 1993) 
  Any size (n as large as you can);  
  Any language; 64 bit floating point arithmetic  
  Hand optimization OK 

 Strassen’s method not allowed (confuses the op count and rate) 
  Reference implementation available (HPL) 

¨  In all cases results are verified by looking at: 
¨  Operations count for factorization           ; solve     
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Benchmark  Matrix  Optimizations  Parallel   
Name  dimension  allowed  Processing   
Linpack 100  100  compiler –a   
Linpack 1000b 1000  hand, code 

replacement 
–c  

Linpack Parallel  1000  hand, code 
replacement 

Yes   

HPLinpackd  Arbitrary 
(usually as large 

as possible)  
hand, code 
replacement 

Yes   

a Compiler parallelization possible.   
b Also known as TPP (Toward Peak Performance) or Best Effort 

c Multiprocessor implementations allowed.   
d Highly-Parallel LINPACK Benchmark is also known as NxN Linpack 

Benchmark or High Parallel Computing (HPC).   



Software/Algorithms follow hardware evolution in time 
LINPACK (70’s) 
(Vector operations) 

Rely on  
   - Level-1 BLAS 
operations 

LAPACK (80’s) 
(Blocking, cache 
friendly) 

Rely on  
   - Level-3 BLAS 
operations 

ScaLAPACK (90’s) 
(Distributed Memory) 

Rely on  
   - PBLAS Mess Passing 

PLASMA (00’s) 
New Algorithms  
(many-core friendly) 

Rely on  
   - a DAG/scheduler 
   - block data layout 
   - some extra kernels 

Those new algorithms  
    - have a very low granularity, they scale very well (multicore, petascale
 computing, … ) 
    - removes a lots of dependencies among the tasks, (multicore, distributed
 computing) 
    - avoid latency (distributed computing, out-of-core) 
    - rely on fast kernels  
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¨  Uses a form of look ahead to overlap communication and
 computation 

¨  Uses MPI directly avoiding the overhead of BLASC
 communication layer.  

¨  HPL doesn't form L (pivoting is only applied forward) 
¨  HPL doesn't return pivots (they are applied as LU

 progresses) 
  LU is applied on [A, b] so HPL does one less triangular solve(HPL:

 triangular solve with U; ScaLAPACK: triangular solve with Land
 then U) 

¨  HPL uses recursion to factorize the panel, ScaLAPACK
 uses rank-1 updates 

¨  HPL has many variants for communication and
 computation: people write papers how to tune it;
 ScaLAPACK gives you a lot of defaults that are overall
 OK 

¨  HPL combines pivoting with update: coalescing messages
 usually helps with performance   
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  ScaLAPACK 
  Communication layer 

  BLACS on top of: 

  MPI, PVM, vendor lib 

  Communication variants 
  Only one pivot finding 
  BLACS broadcast

 topologies 

  Rank-k panel factorization 
  Separate pivot and panel data 

  Larger message count 

  Lock-step operation 
  Extra synchronization

 points 

  HPL 
  Communication layer 

  MPI 

  Vendor MPI 

  Communication variants 
  Pivot finding reductions 

  Update broadcasts 

  Recursive panel factorization 
  Coalescing of pivot and panel

 data 
  Smaller message count 

  Look-ahead panel
 factorization 
  Critical path optimization 



   ScaLAPACK 
 Ax=b 
 AX=B   (multiple RHS) 

  First step: pivot and factorize 
 PA  =  LU 

  Second step: apply pivot to b 
 b' = Pb 

  Third step: back-solve with L 
 Ly  =  b' 

  Fourth step: back-solve with
 U 
 Ux  =  y 

  Result: L, U, P, x 

   HPL 
 Ax=b 

  First
 step:pivot,factorize,apply L 
 A,b  =  L'U,y 

  Second step: back-solve with
 U 
 Ux  =  y 

   

  Result: U, x, scrambled L 



  ScaLAPACK 
  Multiple precisions 

  32-bit/64-bit/real
/complex 

  Random number
 generation 
  32-bit 

  Supported linear algebra
 libraries 
  BLAS 

   HPL 
  One precision 

  64-bit real 

  Random number
 generation 
  64-bit 

  Supported linear algebra
 libraries 
  BLAS, VSIPL 



¨  Number of cores per chip
 doubles every 2 year, while
 clock speed decreases (not
 increases). 
 Need to deal with systems with

 millions of concurrent threads 
 Future generation will have

 billions of threads! 
 Need to be able to easily

 replace inter-chip parallelism
 with intro-chip parallelism 

¨  Number of threads of
 execution doubles every 2
 year 0 

10,000 

20,000 

30,000 

40,000 

50,000 

60,000 

70,000 

80,000 

90,000 

100,000 

Average Number of Cores Per 
Supercomputer for Top20 

Systems 



Many Floating- 
Point Cores 

Different Classes of
 Chips 
     Home 
     Games / Graphics 
     Business  
     Scientific 

+ 3D Stacked  
Memory 



¨  Most likely be a hybrid design 
¨  Think standard multicore chips and accelerator

 (GPUs) 
¨  Today accelerators are attached 
¨  Next generation more integrated 
¨  Intel’s Larrabee? Now called “Knights Corner”

 and “Knights Ferry” to come. 
  48 x86 cores 

¨  AMD’s Fusion in 2011 - 2013 
 Multicore with embedded graphics ATI 

¨  Nvidia’s plans? 

20 



¨  Light weight processors (think BG/P) 
  ~1 GHz processor (109) 
  ~1 Kilo cores/socket (103) 
  ~1 Mega sockets/system (106) 

¨  Hybrid system (think GPU based) 
  ~1 GHz processor (109) 
  ~10 Kilo FPUs/socket (104)    
  ~100 Kilo sockets/system (105)  

21 
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From: Michael Wolfe, PGI 
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"   High levels of parallelism 
Many GPU cores, serial kernel execution  
[ e.g. 240 in the Nvidia Tesla; up to 512 in Fermi – to have concurrent
 kernel execution ] 

"   Hybrid/heterogeneous architectures 
Match algorithmic requirements to architectural
 strengths 
[ e.g. small, non-parallelizable tasks to run on CPU, large and parallelizable
 on GPU ] 

"   Compute vs communication gap 
Exponentially growing gap; persistent challenge 
[ Processor speed improves 59%, memory bandwidth 23%, latency 5.5% ] 
[ on all levels, e.g. a GPU Tesla C1070 (4 x C1060) has compute power of 
O(1,000) Gflop/s but GPUs communicate through the CPU using O(1) GB/s
 connection ]  



¨  CPU Conventional Core   Quad Core 
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¨  SIMD Processing 
¨  Amortize cost/complexity  

 of managing an instruction
 stream across many ALUs.  

¨  NVIDIA refers to these
 ALUs as “CUDA Cores” (also
 streaming processors)  

25 
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(CUDA Cores) 16 cores each with 8 ALUs (CUDA Cores) 
Total of 16 simultaneous instruction streams with  
  128 ALUs (CUDA Cores) 



¨  240 streaming processors (CUDA Cores) (ALUs) 
¨  Equivalent to 30 processing cores, each with 8

 “CUDA cores” 
27 



•  NVIDIA-Speak 
  240 CUDA cores (ALUs) 

•  Generic speak 
  30 processing cores 

•  8 CUDA Cores (SIMD functional units) per core 

  1 mul-add (2 flops) + 1 mul per functional unit (3 flops/cycle) 
  Best case theoretically: 240 mul-adds + 240 muls per cycle 

•  1.3 GHz clock  
•  30 * 8 * (2 + 1) * 1.33 = 933 Gflop/s peak 

  Best case reality: 240 mul-adds per clock 
•  Just able to do the mul-add so 2/3 or 624 Gflop/s 

  All this is single precision 
•  Double precision is 78 Gflop/s peak (Factor of 8 from SP; exploit mixed prec) 

  141 GB/s bus, 1 GB memory  
  4 GB/s via PCIe (we see: T = 11 us + Bytes/3.3 GB/s) 
  In SP SGEMM performance 375 Gflop/s 

Processing Core 



•  Fermi GTX 480 has 480 CUDA cores (ALUs) 
•  32 CUDA Cores (ALUs) in each of the 15

 processing Cores 
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•  NVIDIA-Speak 
  448  CUDA cores (ALUs) 

•  Generic speak 
  14  processing cores 

•  32 CUDA Cores (SIMD functional units) per core 

  1 mul-add (2 flops) per ALU (2 flops/cycle) 
  Best case theoretically: 448 mul-adds 

•  1.15 GHz clock  
•  14 * 32 * 2 * 1.15 = 1.03 Tflop/s peak 

  All this is single precision 
•  Double precision is half this rate, 515 Gflop/s 

  144 GB/s bus, 3 GB memory  
  In SP SGEMM performance 580 Gflop/s 
  In DP DGEMM performance 300 Gflop/s 
  Power: 247 W 
  Interface PCIex16 

Processing Core 



¨  Linpack benchmark (solve Ax = b, A is dense general
 matrix) uses O(n2) data and O(n3) operations. 

¨  If we look at the performance as a function of size
 we see something like this. 

¨  So you want to run a large a problem as you can on
 your machine to get the most performance. 

Size 

R
at

e 

TPP performance 



  Precision 
  64-bit floating point 
  32-bit not allowed 
  No Mixed precision 

  Algorithm 
  Partial pivoting 
  No fast matrix-matrix

 multiply (i.e. Strassen’s
 method) 

  No triangular matrix inversion
 on diagonal 

  Data/Storage 
  Matrix generator must be

 used. 
  Initially: Data in main memory 
  During computation: arbitrary 
  At finish: Data in main

 memory 

  Computation 
  Arbitrary: any device can

 compute 
  Timing and performance 

  Clock is started and stopped
 with data in main memory. 

  All computation and data
 transfers are included in
 total time 

  Standard formula for
 performance 
2/3 * n3 / time 

  Verification 
  || Ax-b|| / (||A||||x||-||b|| n e)

 = O(10) 
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¨  The LANL RoadRunner HPL run took about 2 hours. 
  They ran a size of n=2.3 x 106 

¨  At ORNL they have more memory, 300 TB,  and
 they wanted to run a problem which used most of
 it. They ran a matrix of size n = 4.7 x 106 

  This run took about 18 hours!! 

¨  JAXA Fujitsu system (slower than ORNL’s system)
 ran a matrix of size 3.3 x 106  
  That took over 60 hours!!!! 
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This is only a single run. 
Tuning takes much longer. 
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¨  Have a 5 Pflop/s system 

¨  If memory goes up by a factor of 5 we will be
 able to do a problem of size n = 33.5 x 106 

¨  Running at 5 Pflop/s the benchmark run will
 take 2.5 days to complete 

¨  Clearly we have a issue here 
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¨  One of the positive aspects of the Linpack
 Benchmark is that it stresses the system. 

¨  Run only a portion of the run. 
¨  But for how long? 

  4 hours? 6 hours? 8 hours? 12 hours? 24 hours? 
¨  Have to check the results for numerical

 accuracy. 

  

|| Ax − b ||
(|| A || ||x|| + || b ||)n ε

≈ O(1)



¨  Whatever is done should be simple to explain
 and implement. 

¨  The time should still present some challenges,
 say 12 hours. 
 Stability test 

¨  The results have to be verifiable. 
 Accuracy test 

¨  Even if doing a partial run the full matrix has
 to be used. 

¨  The rate of execution from the shorten run can
 never be more than the rate from a complete
 run. 
 Avoid gaming the benchmark 
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¨  Can’t just start the run and stop it after a set
 amount of time. 

¨  The performance will vary over the course of
 the run. 
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1.06 Pflop/s 



Step 0: Initial matrix A 

Step 1: Factor first panel P1 

Step 2: Update from panel P1 

Step 3: Factor second panel P2 

Step 4: Update from panel P2 

Step 5: Factor second panel P3 
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¨  Should we do sampling, and apply quadrature? 
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¨  Take a window of performance and use it. 
¨  But what window? 
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¨  Figure out the point to start (say what would have
 been 12 hours into the run) and begin the timing
 there going to the end. 
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¨  Matrix size: N = 50160 
¨  Block size:  NB = 120 
¨  Performance: 

 2/3 N3 / time = 182.135
 Gflop/s 

¨  Process grid:  10 by 10 
¨  No. of panels: N/NB = 418 
¨  No. of samples: N/NB = 418 

¨  Each sample is a Gflop/s rate to  
    perform a panel factorization and  
    update 

  for j = 1, 2, 3, ..., 418 
 t = clock()‏ 
 factor_panel(j)‏ 
 update_from_panel(j)‏ 
 t = clock() - t 
 C = (N-j*NB+NB)3-(N-j*NB)3  
 gflops = 2/3 * C / t * 10-9  
 print gflops 

  end 
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True execution rate is 182 Gflop/s 
It is the area under the red curve 
divided by number of samples (418). 
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¨  Start the computation in at some and running to
 completion. 

¨  Simplified the job of checking the solution. 

¨  Easy to Understand and implement. 
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¨  Making changes to the benchmark should be done
 very carefully, hard to undo. 

¨  Will continue to experiment with the approximate
 run. 

¨  Provide a way to estimate time and size. 
¨  Perhaps role this out as beta for November 
¨  Plan for 12 hour max run 

  If your run would be less than 12 hours, then run on the
 whole matrix. 

¨  Verify the computation 
¨  Approximation rate will be an under approximation 
¨  The longer the testing the more accurate the

 performance estimate 



Registers 

Cache 

Local Memory 

Remote Memory 

Disk 

Instr. Operands 

Blocks 

Pages 

Messages 

•  HPC Challenge measures this hierarchy 

HPC Challenge 
Benchmark 

Corresponding 
Memory Hierarchy 

• HPL: solves a system 
Ax = b 

• STREAM: vector operations 
A = B + s x C 

• FFT: 1D Fast Fourier Transform 
Z = FFT(X) 

• RandomAccess: random updates 
T(i) = XOR( T(i), r )  

bandwidth!

latency!


