5/18/11

Architecture-Aware Algorithms and
Software for Peta and Exascale
Computing
(Learning from the Past)

Jack Dongarra

University of Tennessee
Oak Ridge National Laboratory
University of Manchester

N

A

< First ...

 Thank a number of people who have
helped with this work

= Emmanuel Agullo, George Bosilca, Aurelien
Bouteiller, Anthony Danalis, Jim Demmel,
Tingxing "Tim" Dong, Mathieu Faverge, Azzam
Haidar, Thomas Herault, Mitch Horton, Jakub
Kurzak, Julien Langou, Julie Langou, Pierre
Lemarinier, Piotr Luszczek, Hatem Ltaief,
Stanimire Tomov, Asim YarKhan, ...

* Much of what | will describe has been
done before, at least in theory.

T0P SO0

H. Meuer, H. Simon, E. Strohmaier, & JD

- Listing of the 500 most powertul
Computers 1n the World
- Yardstick: Rmax from LINPACK MPP

Ax= b, dense problem A ey

Rate

- Updated twice a year -
SC*xy 1n the States in November
Meeting in Germany 1n June

- All data available from www.top500.org

N~
< Performance Development

100 Pflop/s 44.16 PFlop/s
10 Pflop/s /
2.56 PFloggs
1 Pflop/s
100 Tflop/s SUN
PP 31 TFlop/s
10 Tflop/s y »
1 Tflop/s
} 6-8 years
100 Gflop/s N=500
7 GFlop/s
10 Gflop/s > G CHow®
My Laptop op/s +
1 Gflop/s
My iPad2 (620 Mflop/s)
410 MFI
100 Mflop/s e

1993 1995 1997 1999 2001 2003 2005 2007

2009 2011

c

ICL

- 36™ List: The TOP10

. Rmax | % of
Rank Site Computer Country Cores [Pflops] | Peak
Nat. SuperComputer Tianhe-1A, NUDT
! Center in Tianjin | Intel + Nvidia GPU + custom R el e
DOE / Os Jaguar, Cray
3 Oak Ridge Nat Lab AMD + custom S LRl 7
Nat. Supercomputer Nebulea, Dawning
& Center in Shenzhen Intel + Nvidia GPU + IB iEnenl ey =
GSIC Center, Tokyo Tusbame 2.0, HP
& Institute of Technology| Intel + Nvidia GPU + IB "' T | %2
e Hopper, Cray
5 | Lawrence LB:gkeIey Nat AMD + custom UsA 153,408, 1.054 82
Commissariat a
6 I'Energie Atomique feias Oy France 138,368 1.050 84
Intel + IB
(CEA)
DOE / NNSA Roadrunner, IBM
7 | Los Alamos Nat Lab AMD + Cell 6PU + IB e e e
NSF / NICS Kraken, Cray
e U of Tennessee AMD + custom e SRR &
Forschungszentrum Jugene, IBM
4 Juelich (FZJ) Blue Gene + custom S| L e
DOE / NNSA Cielo, Cray
10 LANL & SNL AMD + custom usa 107,132 .817 | 7%

c

ICL

- 36™ List: The TOP10

. Rmax | 7% of | Power GFlops/
Rank Site Computer Country Cores [Pflops] | Peak | [MW] | Watt
Nat. SuperComputer Tianhe-1A, NUDT
! Center in Tianjin | Intel + Nvidia GPU + custom 186,368) 2.57 | 55 NS
Foe..0s Ja uar-_ Crov . -
3 Oak lidge N at L(b /1 An D[+ \uidin \v/ &5 ()| a)| ;7'0 e
N \=/ (=Y \>/ VA Y "~/
Nat. W Nebuiea; Da ning
B g Center in Shenzhen Intel + Nvidia GPU + IB e 2.58 493_
~
4 el “ewe loly sub e 2., Ar YRR IT: —~ Ny ;,/
1 @qWWw/ 1'@?/37"@ (AP | OASY Nl = u
5 Lawre:leg L;;/gfe Nat ;"PP‘?" , cray USA |153,408 1.054 | 82 | 2.91| 362
Lab y AMD + custom ‘ : :
Commissariat a Tera-10. Bull
6 I'Energie Atomique ’ France 138,368 1.050 84 | 4.59 229
Intel + IB
(CEA)
DOE / NNSA Roadrunner, IBM
7 | Los Alamos Nat Lab AMD + Cell GPU + IB Usdl (122,400 1.04 | 76 BRI
NSF / NICS Kraken, Cray
8 U of Tennessee AMD + custom UsA 98,928 .831 81 3.09 | 269
Forschungszentrum Jugene, IBM
4 Juelich (FZJ) Blue Gene + custom S| L e SE | S
DOE / NNSA Cielo, Cray
10 LANL & SNL AMD + custom UsA 107,152 .817 79 | 2.95 | 277
500 Computacenter LTD HP Cluster, Intel + GigE UK 5856 .031 53

<« Countries Share

——
I i ———
China

--- -.- Absolute Counts
US: 274
---- China: 41
-..- Germany: 26
---I--.-l.- Japan: 26
France: 26
UK: 25

“i.ﬁa'-ﬁfﬁﬁﬁﬁi

¢ Performance Development in

ICLOr"

_Top500

1 Eflop/s

100 Pflop/s
10 Pflop/s -

1 Pflop/s
100 Tflop/s

10 Tflop/s

1 Tflop/s
100 Gflop/

1(¥ﬂop/s
+ 1 Gflop/s

100 Mflop/s

rrrrrrrrrr1rrrrrrrrrrrrrrrrrrrrrrrrr T T T T T T T T T T

1996
2002
2008
2014
2020

c

ICL

Potential System Architecture

a

System peak

Power

System memory

Node performance

Node memory BW

Node concurrency

Total Node Interconnect BW
System size (nodes)

Total concurrency

Storage
10

MTTI

2 Pflop/s
7 MW
0.3 PB
125 GF

25 GB/s

12

3.5 GB/s
18,700

225,000
15 PB

0.2TB

days

¢ Potential System Architecture
~ with a cap of $200M and 20MW

Systems 2011 2018 Difference
Today & 2018

System peak 2 Pflop/s 1 Eflop/s 0(1000)
Power 7 MW ~20 MW
System memory 0.3PB @4 i @
Node performance 125 GF 1,2 or 15TF 0(10) - O(100)
Node memory BW 25 GB/s QB/S @
Node concurrency 12 O(1k) or 10k 0(100) - O(1000)
Total Node Interconnect BW 3.5GB/s 200-400GB/s O(100)
System size (nodes) 18,700 0(100,000) or O(1M) 0(10) - O(100)
Total concurrency 225,000 @ion) 0(10,000)
Storage 15 PB 500-1000 PB (>10x system 0(10) - O(100)
memory is min)
10 0.2TB 60 TB/s (how long to drain the 0(100)
machine)

MTTI days O(1 day) - 0(10)

i

¢ Exascale (10" Flop/s) Systems: &=
Two Possible Swim Lanes AR

 Light weight processors (think BG/P)
= ~1 GHz processor (10°) |
= ~1 Kilo cores/socket (103)
= ~1 Mega sockets/system (10°9)

Socket Level

MMMMMMM

» Hybrid system (think GPU based)
= ~1 GHz processor (10°)
= ~10 Kilo FPUs/socket (104) fi&&
= ~100 Kilo sockets/system (10°)

¢ Commodity plus Accelerators

Commodity Accelerator (GPU)

Quiiz: How M@:@y of the
Topobirsysten \
Answer:

Today only 17 systems on
the TOP5OO use GPUs

erconnect
PCI-X 16 lane 12
64 Gb/s

1 GW/s

£

“ We Have Seen This Before

* Floating Point Systems FPS-164
Scientific Computer (1976)

* Intel Math Co-processor (1980)
* Weitek Math Co-processor (1981)

There's one for every machine,

The Intel” Math CoProcessor

(. Balance Between Data Movement and
" Floating point

* FPS-164 and VAX (1976)
= 11 Mflop/s; transfer rate 44 MB/s

= Ratio of flops to bytes of data movement:
1 flop per 4 bytes transferred

* Nvidia Fermi and PCI-X to host
= 500 Gflop/s; transfer rate 8 GB/s

= Ratio of flops to bytes of data movement:
62 flops per 1 byte transferred

* Flop/s are cheap, so are provisioned in
excess

14

N

\
ICL

Future Computer Systems g)

Most likely be a hybrid design

= Think standard multicore chips and accelerator
(GPUs)

Today accelerators are attached
Next generation more integrated
Intel’s MIC architecture “Knights Ferry” and

“Knights Corner” to come. 5%
| ~ .

= 48 x86 cores
AMD’s Fusion in 2012 - 2013

= Multicore with embedded graphics ATI
Nvidia’s Project Denver plans to develop
an integrated chip using ARM
architecture in 2013.

15

IcLor-

The High Cost of Data Movement

*Flop/s or percentage of peak flop/s become
much less relevant

Approximate power costs (in picoJoules)

DP FMADD flop 100 pJ
DP DRAM read 4800 pJ
Local Interconnect 7500 pJ
Cross System 9000 pJ

Source: John Shalf, LBNL

*Algorithms & Software: minimize data
movement; perform more work per unit data

movement.

16

¢ Factors that Necessitate Redesign of

ICL

Our Software

e Steepness of the ascent from terascale
to petascale to exascale
« Extreme parallelism and hybrid design
e Preparing for million/billion way
parallelism
o Tightening memory/bandwidth
bottleneck

« Limits on power/clock speed
implication on multicore

e Reducing communication will become
much more intense

e« Memory per core changes, byte-to-flop
ratio will change
 Necessary Fault Tolerance
e MTTF will drop
o Checkpoint/restart has limitations
» shared responsibility

Software infrastructure does not exist today

Average Number of Cores per Supercomputer for Top 20 Systems
125,000

100,000

75,000

50,000

25,000 I
CORES I

500 '00 '01 '02 '03 ‘04 '05 '06 '07 '08 ‘09 "0

ICL

“Major Changes to Software

e Must rethink the design of our
software

= Another disruptive technology

« Similar to what happened with cluster
computing and message passing

= Rethink and rewrite the applications,
algorithms, and software

18

N
= Emerging Architectures

* Are needed by applications

» Applications are given (as function of time)
» Architectures are given (as function of time)

» Algorithms and software must be adapted or
created to bridge to (hostile) architectures for

the sake of the complex applications

19

IcLOr-

Exascale algorithms that expose and exploit
multiple levels of parallelism

Synchronization-reducing algorithms
» Break Fork-Join model

Communication-reducing algorithms

= Use methods which have lower bound on
communication

Fault resilient algorithms

* Implement algorithms that can recover from
failures

Mixed precision methods
= 2x speed of ops and 2x speed for data movement

Reproducibility of results
= Today we can’t guarantee this

20

Fork-Join Parallelization of LU and QR.

Parallelize the update: dgemm
* Easy and done in any reasonable software.]
* This is the 2/3n3 term in the FLOPs count. -'_ - -I
* Can be done efficiently with LAPACK+multithreaded BLAS

AN/

dgetf2

-
7NN

dtrsm (+ dswp)

e | VVEH

RN

m-ma=
N7

N
< Parallel Tasks in LU/LLT/QR

I
J.J.J

> ——> Step4 .

o Break mto smaller tasks and remove
dependencies

-

n-EEE
:HHfHH“l || {m i'\:‘::
“Bma 1 oe [\I\I
n S
|

N
<~ Data Layout is Critical

Y

Y

Y Y

* Tile data layout where each data tile
is contiguous in memory

- Decomposed into several fine-grained
tasks, which better fit the memory
of the small core caches

¢ PLASMA: Parallel Linear Algebra s/w

ICLOr"

for Multicore Architectures

‘Objectives
= High utilization of each core Cholesky
= Scaling to large number of cores x4
= Shared or distributed memory

‘Methodology
= Dynamic DAG scheduling (QUARK)
= Explicit parallelism
* Implicit communication
= Fine granularity / block data layout

*Arbitrary DAG with dynamic scheduling
I
5 tE E@:E “E a2 o ~ " Paralielism

DAG scheduled
parallelism

Time > 24

£L

A
IcLor-

Synchronization Reducing Algorithms

e Regular trace

e Factorization steps pipelined

e Stalling only due to natural
load imbalance

e Dynamic

e Out of order execution

e Fine grain tasks

¢ Independent block operations

The colored area over the
rectangle is the efficiency

L

I

vy

..‘r’“"._'
i

Tuat miua
' ‘.‘ ,ll

i ".*. I i

g

e

‘l

¥

ll '”wd].

'Ilr

Y.

Y

Tile LU factorization; Matrix size 4000x4000, Tile size 200
8-socket, 6-core (48 cores total) AMD Istanbul 2.8 GHz

£ Pipelining: Cholesky Inversion

3 Steps: Factor, Invert L, Multiply L’s

L e B

I-} e |
A

BRRAT " e 7

i I mm e I.l.l.lhlll 1 1 |?I“
A i
| u |] oo
<. R
LLIII ||||| HDDIIII]
i @

TRTRI

,

LAUUM

48 cores
POTRF, TRTRI and LAUUM.
The matrix is 4000 x 4000,tile size is 200 x 200,

POTRF+TRTRI+LAUUM: 25 (7t-3)
Cholesky Factorization alone: 3t-2

Pipelined: 18 (3t+6)

- Big DAGs: No Global Critical Path

 DAGs get very big, very fast

o So windows of active tasks are used; this means no
global critical path

o Matrix of NBxNB tiles; NB3 operation
« NB=100 gives 1 million tasks

w---.
7Y Sebbbe
T s e

- =
e B o

$ o9 e e eeee e »
A T

e L
4-..-441&&“1% =
L3 sew
— Liia i
cc«cc«w&o'%%‘ 7=
T ew e

i) 3 —
> = S AL
PR e — Aiaad Ay)y v >
T — Cove §
= e uiiwgﬁibﬁflv ﬁ?vﬁi@v %‘i ., a =
= oo we e ’%, ~7 o %
OO, £33 . — S
= e T e
= iteetUtsaueees
> = - £33
e e
e —eeeetiteeees

e e
soéov00e o
Tevbeeee e —

& edeeeeee b
¢esvsv0e 6 wewwbiibe
—eTEvEe b —eeees

35

Se0® ¢ dENIvE TEEERW
Wb e edEwe e
o e e ST

. 27

“ PLASMA Local Scheduling

Dynamic Scheduling: Sliding Window

¢ Tile LU factorization
¢ 10 x 10 tiles

¢ 300 tasks

4 100 task window

I/l

“ PLASMA Local Scheduling

Dynamic Scheduling: Sliding Window

¢ Tile LU factorization
¢ 10 x 10 tiles

¢ 300 tasks

4 100 task window

I/

“ PLASMA Local Scheduling

Dynamic Scheduling: Sliding Window

¢ Tile LU factorization
¢ 10 x 10 tiles

¢ 300 tasks

4 100 task window

“ PLASMA Local Scheduling

Dynamic Scheduling: Sliding Window

¢ Tile LU factorization
¢ 10 x 10 tiles

¢ 300 tasks

4 100 task window

PLASMA
(On Node)

execution window

....................

..................

QUARK

Number of tasks in DAG:

O(n3)

Cholesky: 1/3 n3
LU: 2/3 n3
QR: 4/3 n3

DPLASMA
(Distributed System)

? ? ? inputs

tasks

outputs

DAGUE

Number of tasks in parameterized DAG:

O(1)

Cholesky: 4 (POTRF, SYRK, GEMM, TRSM)
LU: 4 (GETRF, GESSM, TSTRF, SSSSM)
QR: 4 (GEQRT, LARFB, TSQRT, SSRFB)

DAG: Conceptualized & Parameterized

Start with PLASMA

for i,j = 0..N
QUARK_Insert(GEMM, A[i, j],INPUT, B[j, i],INPUT, C[i,i],INOUT)
QUARK_Insert(TRSM, A[i, j],INPUT, B[j, i],INOUT)

——

Parse the C source code to Abstract Syntax Tree

QUARKInsert

Analyze dependencies with Omega Test

{1<i<N: GEMM(i, j) => TRSM(3F) } Loops & array
references

v have to be
affine

Generate Code which has the Parameterized DAG

6
< Example: Cholesky 4x4

** RT is using the symbolic
information from the
compiler to make
scheduling, message
passing, & RT decisions

*k Data distribution: regular,
irregular

*k Task priorities

** No left looking or right
looking, more adaptive or
opportunistic

Gflop/s

6000
4000 //-—-—
3000 //
DSBP =
——DSB
1000 / 5P Distributed Square
0 — T T T T T T T T ~——ScalAPACK Block Packed
O O O O X O OO N0
& & &V o K A0 VS
N S R S
Matrix size 4500 -
4000 LU
3500
81 nodes « 3000
Dual socket nodes ;3- ;ggg
Quad core Xeon L5420 © 1500 ——HpL
Total 648 cores at 2.5 GHz 1283 ——DAGUE
ConnectX InfiniBand DDR 4x 0 ===ScalAPACK
O O N O O ©® & O N O
M S I K S M . S
® & & oA A0 O
R RN L L NQ<o 09 \2)0
4500
4000 / Matrix size
3500 / /—4
» 3000 7 —
2 2500
S 2000 [
g / /
1500 T~ ——DAGUE
1000 I/
500 7 ScalAPACK
0) 1 T 1 T 1 T] T] 1
Q O N0 O O O O 0O N0 O O
S & P P P XD AC P S P
FEFTES PP L

Matrix size

N
<. Communication Avoiding Algorithms

o Goal: Algorithms that communicate as little as possible

Jim Demmel and company have been working on algorithms
that obtain a provable minimum communication. (M. Anderson
yesterday)
Direct methods (BLAS, LU, QR, SVD, other decompositions)

« Communication lower bounds for all these problems

« Algorithms that attain them (all dense linear algebra, some
sparse)

Iterative methods - Krylov subspace methods for Ax=b, Ax=Ax

« Communication lower bounds, and algorithms that attain them
(depending on sparsity structure)

For QR Factorization they can show:

Lower bound

flops O(mn?)
words (")('\'/‘;‘_Vz)

2

messages | O(21;)

w3/2

6
< Standard QR Block Reduction

 We have a m x n matrix A we want to
reduce to upper triangular form.

s
< Standard QR Block Reduction

 We have a m x n matrix A we want to
reduce to upper triangular form.

Q1TI »]

s
< Standard QR Block Reduction

 We have a m x n matrix A we want to
reduce to upper triangular form.

‘ R
Q1T » Q2T » Q3T »

A =Q,Q,Q;R = QR

¢ Communication Avoiding QR

ICL

_ Example

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume I, Applications,
pages 1610-1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.

€ Communication Avoiding QR

ICL

__ Example

1
1
D, : omain_Tile_QR
1
1

D 1 omain_Tile_QR

1
D 2 L-) Domain_Tile_QR

1
D3 E-)Dom in_Tile_QR

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume I, Applications,
pages 1610-1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.

¢ Communication Avoiding QR

ICL

__ Example

I 3
I H
D, : omain_Tile_QR i
1
L) !
:” .
D, “aDomain_Tile_QR
Ly
— — —
r? 3
D 2 :‘-) Domain_Tile_QR i
1
‘> |
|"> 'J
1
D3 5—-)D0m in_Tile_QR

-

v

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume I, Applications,
pages 1610-1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.

£ Communication Avoiding QR

ICLOr"

__ _Example

I
I
D, : omain_Tile_QR
1
1

S | N | E— -)

\
4
1

D 1 omain_Tile_QR

D 2 L) Domain_Tile_QR

I —

]
D3 HDom in_Tile_QR

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume I, Applications,
pages 1610-1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.

A
]

- i e —— -

£ Communication Avoiding QR

ICLOr"

__ _Example

I
I
D, : omain_Tile_QR
1
1

S | N | E— -)

\
4
1

D 1 omain_Tile_QR

D 2 #2Domaijn_Tile_QR

I —

]
D3 HDom in_Tile_QR

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume I, Applications,
pages 1610-1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.

A

I

- i e —— -

Communication Reducing QR
Factorization

LH
A %
ICLVUr"

g % <
: g £
s 2 3 m 3
) _m.u_ o w
= a @ »

VT

.ﬁ /l
ooooooo
@ ¥ &« © © o ¥

s/doj

___ A_.....
\ !
_ \
- __ ,
) Y N
| /... _
. _ \
—1 y
Ml S
.|| x a i
7o S _._ __. —
/ __ \ |
| |
[
|
|
__
! | \
4[|

IcLOr-

Mixed Precision Methods

* Mixed precision, use the lowest
precision required to achieve a
given accuracy outcome

= [mproves runtime, reduce power
consumption, lower data movement

= Reformulate to find correction to
solution, rather than solution; Ax
rather than x.

46

N

< |dea Goes Something Like This...

o Exploit 32 bit floating point as much as
possible.
= Especially for the bulk of the computation

e Correct or update the solution with selective
use of 64 bit floating point to provide a
refined results

e Intuitively:
= Compute a 32 bit result,

= Calculate a correction to 32 bit result using
selected higher precision and,

= Perform the update of the 32 bit results with the
correction using high precision.

47

N
~ Mixed-Precision lterative Refinement

 Iterative refinement for dense systems, Ax = b, can work this

way.
L U = lu(A) o(n’)
x = L\(U\b) o(n’)
r=>b- Ax o(n’)
WHILE || r || not small enough
z = L\(U\r) o(n?
X=X+2Z o(n’)
r=>b- Ax o(n?
END

= Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
results when using DP fl pt.

N
~ Mixed-Precision lterative Refinement

 Iterative refinement for dense systems, Ax = b, can work this

way.
L U = lu(A) SINGLE o(n’)
x = L\(U\b) SINGLE o(n?
r=>b- Ax DOUBLE o(n’)
WHILE || r || not small enough
z = L\(U\r) SINGLE o(n?
X=X+2Z DOUBLE o(n’)
r=b- Ax DOUBLE o(n?
END

= Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
results when using DP fl pt.

= |t can be shown that using this approach we can compute the solution
to 64-bit floating point precision.

Requires extra storage, total is 1.5 times normal;
O(n3) work is done in lower precision

O(n?) work is done in high precision

Problems if the matrix is ill-conditioned in sp; O(108)

Gflop/s

AX —_ b FERMI Tesla C2050: 448 CUDA cores @ 1.15GHz

SP/DP peak is 1030 / 515 GFlop/s

500

450

400

350

300

250

200

150

100

50

960 3200 5120

Single Precision

Double Precision
B =
e i

e

7040 8960 11200 13120

Matrix size

c

- AX = b FERMI Tesla C2050: 448 CUDA cores @ 1.15GHz
SP/DP peak is 1030 / 515 GFlop/s

@ Direct solvers
- Factor and solve in working precision

@ Mixed Precision Iterative Refinement

- Factor in single (i.e. the bulk of the computation
in fast arithmetic) and use it as preconditioner
in simple double precision iteration, e.g.

X, =x+(LU_)"P (b—Ax)

500

Single Precision
450

400 : L
Mixed Precision

350

300

Double Precision

250 2 — (=0
++

Gflop/s

e
200

150

100

Similar results for Cholesky & QR
< factorizations

960 3200 5120 7040 8960 11200 13120

Matrix size

IcLOr-

Reproducibility

 For example Exi when done in parallel can’t
guarantee the order of operations.

* Lack of reproducibility due to floating point
nonassociativity and algorithmic adaptivity
(including autotuning) in efficient production
mode

- Bit-level reproducibility may be unnecessarily
expensive most of the time

* Force routine adoption of uncertainty
quantification

= Given the many unresolvable uncertainties in
program inputs, bound the error in the
outputs in terms of errors in the inputs

52

< Conclusions

* For the last decade or more, the research
investment strategy has been
overwhelmingly biased in favor of hardware.

* This strategy needs to be rebalanced -
barriers to progress are increasingly on the
software side.

* Moreover, the return on investment is more
favorable to software.

= Hardware has a half-life measured in years, while

software has a half-life measured in decades.

e High Performance Ecosystem out of balance

= Hardware, OS, Compilers, Software, Algorithms, Applications
 No Moore’s Law for software, algorithms and applications

N

A

< Last ...

 Thank a number of people who have
helped with this work

= Emmanuel Agullo, George Bosilca, Aurelien
Bouteiller, Anthony Danalis, Jim Demmel,
Tingxing "Tim" Dong, Mathieu Faverge, Azzam
Haidar, Thomas Herault, Mitch Horton, Jakub
Kurzak, Julien Langou, Julie Langou, Pierre
Lemarinier, Piotr Luszczek, Hatem Ltaief,
Stanimire Tomov, Asim YarKhan

* More details tomorrow Session 21 on
Numerical Algorithms

54

INTERNATIONAL

EXASCALE ROADMAP

SOFTWARE PROJECT

55

Jack Dongarra
Pete Beckman
Terry Moore
Patrick Aerts
Giovanni Alpisio
Jean-Claude Andre
David Barkai
Jean-Yves Berthou
Taisuke Boku
Bertrand Braunschweig
Franck Cappella
Barbara Chapman
Xuebin Chi

SPONSORS

"
waen GE nci

Alok Choudhary
Sudip Dosanjh
Thom Dunning
Sandro Fiore
Al Geist
Bill Gropp
Robert Harrison
Mark Hereld
Michael Heroux
Adolfy Hoisie
Koh Hotta
Yutaka Ishikawa
Fred Johnson

5,

Sanjay Kale Matthias Mueller
Richard Kenway Wolfgang Nagel
David Keyes Hiroshi Nakashima
Bill Kramer Michael E. Papka
Jesus Labarta Dan Reed
Alain Lichnewsky Mitsuhisa Sato
Thomas Lippert Ed Seidel
Bob Lucas John Shalf
Barney Maccabe David Skinner
Satoshi Matsuoka Marc Snir
Paul Maessina Thomas Sterling
Peater Michielse Rick Stevens
Bernd Mohr Fred Streitz
& TR Ce0

A

B iNRIA

5] + Mk

RIKEN

Bob Sugar
Shinji Sumimoto
William Tang
John Taylor
Rajeev Thakur
Anne Trefethen
Matea Valero
Aad van der Steen
Jeffrey Vetter
Peg Williams
Robert Wisniewski
Kathy Yelick

T D mh

Published in the January 2011 issue of
The International Journal of High
Performance Computing Applications

“We can only see a short
distance ahead, but we
can see plenty there
that needs to be
done.”

= Alan Turing (1912
—1954)

* www.exascale.org

