
5/18/11 1

Jack Dongarra
University of Tennessee

Oak Ridge National Laboratory
University of Manchester

•  Thank a number of people who have
 helped with this work
  Emmanuel Agullo, George Bosilca, Aurelien

 Bouteiller, Anthony Danalis, Jim Demmel,
 Tingxing "Tim" Dong, Mathieu Faverge, Azzam
 Haidar, Thomas Herault, Mitch Horton, Jakub
 Kurzak, Julien Langou, Julie Langou, Pierre
 Lemarinier, Piotr Luszczek, Hatem Ltaief,
 Stanimire Tomov, Asim YarKhan, …

•  Much of what I will describe has been
 done before, at least in theory.

2

3

Size

R
at

e

TPP performance

0.1

1

10

100

1000

10000

100000

1000000

10000000

100000000

 1 Gflop/s

 1 Tflop/s

 100 Mflop/s

100 Gflop/s

100 Tflop/s

 10 Gflop/s

 10 Tflop/s

 1 Pflop/s

100 Pflop/s

 10 Pflop/s

59.7	
 GFlop/s	

400	
 MFlop/s	

1.17	
 TFlop/s	

2.56	
 PFlop/s	

31	
 TFlop/s	

44.16	
 PFlop/s	

SUM	

N=1	

N=500	

6-8 years

My Laptop (6 Gflop/s)

1993 1995 1997 1999 2001 2003 2005 2007 2009 2011

My iPad2 (620 Mflop/s)

Rank Site Computer Country Cores Rmax
[Pflops]

% of
Peak

Power
[MW]

Flops/
Watt

1 Nat. SuperComputer
Center in Tianjin

Tianhe-1A, NUDT
Intel + Nvidia GPU + custom China 186,368 2.57 55 4.04 636

2 DOE / OS
Oak Ridge Nat Lab

Jaguar, Cray
 AMD + custom USA 224,162 1.76 75 7.0 251

3 Nat. Supercomputer
Center in Shenzhen

Nebulea, Dawning
Intel + Nvidia GPU + IB China 120,640 1.27 43 2.58 493

4 GSIC Center, Tokyo
Institute of Technology

Tusbame 2.0, HP
Intel + Nvidia GPU + IB Japan 73,278 1.19 52 1.40 850

5
DOE / OS

Lawrence Berkeley Nat
Lab

Hopper, Cray
AMD + custom USA 153,408 1.054 82 2.91 362

6
Commissariat a

l'Energie Atomique
(CEA)

Tera-10, Bull
Intel + IB France 138,368 1.050 84 4.59 229

7 DOE / NNSA
Los Alamos Nat Lab

Roadrunner, IBM
AMD + Cell GPU + IB USA 122,400 1.04 76 2.35 446

8 NSF / NICS
U of Tennessee

Kraken, Cray
AMD + custom USA 98,928 .831 81 3.09 269

9 Forschungszentrum
Juelich (FZJ)

Jugene, IBM
Blue Gene + custom Germany 294,912 .825 82 2.26 365

10 DOE / NNSA
LANL & SNL

Cielo, Cray
AMD + custom USA 107,152 .817 79 2.95 277

Rank Site Computer Country Cores Rmax
[Pflops]

% of
Peak

Power
[MW]

GFlops/
Watt

1 Nat. SuperComputer
Center in Tianjin

Tianhe-1A, NUDT
Intel + Nvidia GPU + custom China 186,368 2.57 55 4.04 636

2 DOE / OS
Oak Ridge Nat Lab

Jaguar, Cray
 AMD + custom USA 224,162 1.76 75 7.0 251

3 Nat. Supercomputer
Center in Shenzhen

Nebulea, Dawning
Intel + Nvidia GPU + IB China 120,640 1.27 43 2.58 493

4 GSIC Center, Tokyo
Institute of Technology

Tusbame 2.0, HP
Intel + Nvidia GPU + IB Japan 73,278 1.19 52 1.40 850

5
DOE / OS

Lawrence Berkeley Nat
Lab

Hopper, Cray
AMD + custom USA 153,408 1.054 82 2.91 362

6
Commissariat a

l'Energie Atomique
(CEA)

Tera-10, Bull
Intel + IB France 138,368 1.050 84 4.59 229

7 DOE / NNSA
Los Alamos Nat Lab

Roadrunner, IBM
AMD + Cell GPU + IB USA 122,400 1.04 76 2.35 446

8 NSF / NICS
U of Tennessee

Kraken, Cray
AMD + custom USA 98,928 .831 81 3.09 269

9 Forschungszentrum
Juelich (FZJ)

Jugene, IBM
Blue Gene + custom Germany 294,912 .825 82 2.26 365

10 DOE / NNSA
LANL & SNL

Cielo, Cray
AMD + custom USA 107,152 .817 79 2.95 277

500 Computacenter LTD HP Cluster, Intel + GigE UK 5,856 .031 53

Absolute Counts
US: 274
China: 41
Germany: 26
Japan: 26
France: 26
UK: 25

0.1

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

1E+10

1E+11

19
96

20
02

20
08

20
14

20
20

1 Eflop/s

 1 Gflop/s

 1 Tflop/s

 100 Mflop/s

100 Gflop/s

100 Tflop/s

 10 Gflop/s

 10 Tflop/s

 1 Pflop/s

100 Pflop/s

 10 Pflop/s

N=1	

N=500	

Gordon
Bell

Winners

Systems 2011 2018 Difference
Today & 2018

System peak 2 Pflop/s 1 Eflop/s O(1000)

Power 7 MW ~20 MW

System memory 0.3 PB 32 - 64 PB O(100)

Node performance 125 GF 1,2 or 15TF O(10) – O(100)

Node memory BW 25 GB/s 2 - 4TB/s O(100)

Node concurrency 12 O(1k) or 10k O(100) – O(1000)

Total Node Interconnect BW 3.5 GB/s 200-400GB/s O(100)

System size (nodes) 18,700 O(100,000) or O(1M) O(10) – O(100)

Total concurrency 225,000 O(billion) O(10,000)

Storage 15 PB 500-1000 PB (>10x system
memory is min)

O(10) – O(100)

IO 0.2 TB 60 TB/s (how long to drain the
machine)

O(100)

MTTI days O(1 day) - O(10)

Systems 2011 2018 Difference
Today & 2018

System peak 2 Pflop/s 1 Eflop/s O(1000)

Power 7 MW ~20 MW

System memory 0.3 PB 32 - 64 PB O(100)

Node performance 125 GF 1,2 or 15TF O(10) – O(100)

Node memory BW 25 GB/s 2 - 4TB/s O(100)

Node concurrency 12 O(1k) or 10k O(100) – O(1000)

Total Node Interconnect BW 3.5 GB/s 200-400GB/s O(100)

System size (nodes) 18,700 O(100,000) or O(1M) O(10) – O(100)

Total concurrency 225,000 O(billion) O(10,000)

Storage 15 PB 500-1000 PB (>10x system
memory is min)

O(10) – O(100)

IO 0.2 TB 60 TB/s (how long to drain the
machine)

O(100)

MTTI days O(1 day) - O(10)

•  Light weight processors (think BG/P)
  ~1 GHz processor (109)
  ~1 Kilo cores/socket (103)
  ~1 Mega sockets/system (106)

•  Hybrid system (think GPU based)
  ~1 GHz processor (109)
  ~10 Kilo FPUs/socket (104)
  ~100 Kilo sockets/system (105)

Socket Level
Cores scale-out for planar geometry

Node Level
3D packaging

12

Intel Xeon
8 cores
3 GHz

8*4 ops/cycle
96 Gflop/s (DP)

Nvidia C2050 “Fermi”
448 “Cuda cores”
1.15 GHz
448 ops/cycle
515 Gflop/s (DP)

Commodity Accelerator (GPU)

Interconnect
PCI-X 16 lane
64 Gb/s
1 GW/s

•  Floating Point Systems FPS-164
 Scientific Computer (1976)

•  Intel Math Co-processor (1980)
•  Weitek Math Co-processor (1981)

1980

•  FPS-164 and VAX (1976)
  11 Mflop/s; transfer rate 44 MB/s
  Ratio of flops to bytes of data movement:

 1 flop per 4 bytes transferred

•  Nvidia Fermi and PCI-X to host
  500 Gflop/s; transfer rate 8 GB/s
  Ratio of flops to bytes of data movement:

 62 flops per 1 byte transferred

•  Flop/s are cheap, so are provisioned in
 excess 14

•  Most likely be a hybrid design
  Think standard multicore chips and accelerator

 (GPUs)
•  Today accelerators are attached
•  Next generation more integrated
•  Intel’s MIC architecture “Knights Ferry” and

 “Knights Corner” to come.
  48 x86 cores

•  AMD’s Fusion in 2012 - 2013
  Multicore with embedded graphics ATI

•  Nvidia’s Project Denver plans to develop
 an integrated chip using ARM
 architecture in 2013.

15

2011 2018

DP FMADD flop 100 pJ 10 pJ

DP DRAM read 4800 pJ 1920 pJ

Local Interconnect 7500 pJ 2500 pJ

Cross System 9000 pJ 3500 pJ

16

Source: John Shalf, LBNL

•  Steepness of the ascent from terascale
 to petascale to exascale

•  Extreme parallelism and hybrid design
•  Preparing for million/billion way

 parallelism

•  Tightening memory/bandwidth
 bottleneck
•  Limits on power/clock speed

 implication on multicore
•  Reducing communication will become

 much more intense
•  Memory per core changes, byte-to-flop

 ratio will change

•  Necessary Fault Tolerance
•  MTTF will drop
•  Checkpoint/restart has limitations
•  shared responsibility

Software infrastructure does not exist today

18

• Must rethink the design of our
 software
  Another disruptive technology

• Similar to what happened with cluster
 computing and message passing

  Rethink and rewrite the applications,
 algorithms, and software

•  Are needed by applications

•  Applications are given (as function of time)
•  Architectures are given (as function of time)

•  Algorithms and software must be adapted or
 created to bridge to (hostile) architectures for
 the sake of the complex applications

19

•  Synchronization-reducing algorithms
  Break Fork-Join model

•  Communication-reducing algorithms
  Use methods which have lower bound on

 communication

•  Fault resilient algorithms
  Implement algorithms that can recover from

 failures

•  Mixed precision methods
  2x speed of ops and 2x speed for data movement

•  Reproducibility of results
  Today we can’t guarantee this 20

Fork-­‐Join	
 ParallelizaCon	
 of	
 LU	
 and	
 QR.	

Parallelize	
 the	
 update:	

• 	
 Easy	
 and	
 done	
 in	
 any	
 reasonable	
 so.ware.	

• 	
 This	
 is	
 the	
 2/3n3	
 term	
 in	
 the	
 FLOPs	
 count.	

• 	
 Can	
 be	
 done	
 efficiently	
 with	
 LAPACK+mulCthreaded	
 BLAS	

-

dgemm

-

lu()

dgetf2

dtrsm (+ dswp)

dgemm

\

L

U

A(1)

A(2)
L

U

•  Break into smaller tasks and remove
 dependencies

•  Tile data layout where each data tile
 is contiguous in memory

•  Decomposed into several fine-grained
 tasks, which better fit the memory
 of the small core caches 23

• Objectives
  High utilization of each core
  Scaling to large number of cores
  Shared or distributed memory

• Methodology
  Dynamic DAG scheduling (QUARK)
  Explicit parallelism
  Implicit communication
  Fine granularity / block data layout

• Arbitrary DAG with dynamic scheduling

24

Fork-join
parallelism

DAG scheduled
parallelism

Time

Tile LU factorization; Matrix size 4000x4000, Tile size 200
8-socket, 6-core (48 cores total) AMD Istanbul 2.8 GHz

  Regular trace
  Factorization steps pipelined
  Stalling only due to natural
 load imbalance

  Dynamic
  Out of order execution
  Fine grain tasks
  Independent block operations

The colored area over the
 rectangle is the efficiency

26

POTRF+TRTRI+LAUUM: 25 (7t-3)
Cholesky Factorization alone: 3t-2

48 cores
POTRF, TRTRI and LAUUM.
The matrix is 4000 x 4000,tile size is 200 x 200,

Pipelined: 18 (3t+6)

27

•  DAGs get very big, very fast
•  So windows of active tasks are used; this means no

 global critical path
•  Matrix of NBxNB tiles; NB3 operation

•  NB=100 gives 1 million tasks

  Tile LU factorization
  10 x 10 tiles
  300 tasks
  100 task window

  Tile LU factorization
  10 x 10 tiles
  300 tasks
  100 task window

  Tile LU factorization
  10 x 10 tiles
  300 tasks
  100 task window

  Tile LU factorization
  10 x 10 tiles
  300 tasks
  100 task window

QUARK	
 DAGuE	

execution window

tasks

inputs

outputs

Number of tasks in DAG:

 O(n3)

Cholesky: 1/3 n3
LU: 2/3 n3
QR: 4/3 n3

Number of tasks in parameterized DAG:

 O(1)

Cholesky: 4 (POTRF, SYRK, GEMM, TRSM)
LU: 4 (GETRF, GESSM, TSTRF, SSSSM)
QR: 4 (GEQRT, LARFB, TSQRT, SSRFB)

DAG: Conceptualized & Parameterized

PLASMA
(On Node)

DPLASMA
(Distributed System)

small enough to
 store on each
 core in every
node = Scalable

for	
 i,j	
 =	
 0..N	

	
 	
 	
 QUARK_Insert(
 GEMM,	
 	
 A[i,	
 j],INPUT,	
 	
 	
 B[j,	
 i],INPUT,	
 	
 C[i,i],INOUT	
)	

	
 	
 	
 QUARK_Insert(
 TRSM,	
 	
 A[i,	
 j],INPUT,	
 	
 	
 B[j,	
 i],INOUT	
)	

Start	
 with	
 PLASMA	

Analyze	
 	
 dependencies	
 with	
 Omega	
 Test	

{	
 1	
 <	
 i	
 <	
 N	
 :	
 GEMM(i,	
 j)	
 =>	
 TRSM(j)	
 }	

Generate	
 Code	
 which	
 has	
 the	
 Parameterized	
 DAG	

GEMM(i,	
 j)	
 TRSM(j)	

Parse	
 the	
 C	
 source	
 code	
 to	
 Abstract	
 Syntax	
 Tree	

QUARK_Insert	

GEMM	
 A	

i	
 j	

B	

i	
 j	
 i	
 j	

B	

Loops	
 &	
 array
	
 references
	
 have	
 to	
 be
	
 affine	

"   RT is using the symbolic
 information from the
 compiler to make
 scheduling, message
 passing, & RT decisions

"   Data distribution: regular,
 irregular

"   Task priorities
"   No left looking or right

 looking, more adaptive or
 opportunistic

LU	

Cholesky	

QR	

DSBP = 
Distributed Square  
Block Packed

81 nodes
Dual socket nodes
Quad core Xeon L5420
Total 648 cores at 2.5 GHz
ConnectX InfiniBand DDR 4x

•  Goal: Algorithms that communicate as little as possible
•  Jim Demmel and company have been working on algorithms

 that obtain a provable minimum communication. (M. Anderson
 yesterday)

•  Direct methods (BLAS, LU, QR, SVD, other decompositions)
•  Communication lower bounds for all these problems
•  Algorithms that attain them (all dense linear algebra, some

 sparse)

•  Iterative methods – Krylov subspace methods for Ax=b, Ax=λx
•  Communication lower bounds, and algorithms that attain them

 (depending on sparsity structure)
•  For QR Factorization they can show:

36

•  We have a m x n matrix A we want to
 reduce to upper triangular form.

•  We have a m x n matrix A we want to
 reduce to upper triangular form.

Q1T

•  We have a m x n matrix A we want to
 reduce to upper triangular form.

R

A = Q1Q2Q3R = QR

Q1T Q2T Q3T

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume II, Applications,
pages 1610‒1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.

R0!

R1!

R2!

R3!

R0!

R2!

R0!R! R!

D1!

D2!

D3!

Domain_Tile_QR	

Domain_Tile_QR	

Domain_Tile_QR	

Domain_Tile_QR	

D0!

D1!

D2!

D3!

D0!

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume II, Applications,
pages 1610‒1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.

R0!

R1!

R2!

R3!

R0!

R2!

R0!R! R!

D1!

D2!

D3!

Domain_Tile_QR	

Domain_Tile_QR	

Domain_Tile_QR	

Domain_Tile_QR	

D0!

D1!

D2!

D3!

D0!

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume II, Applications,
pages 1610‒1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.

R0!

R1!

R2!

R3!

R0!

R2!

R0!R! R!

D1!

D2!

D3!

Domain_Tile_QR	

Domain_Tile_QR	

Domain_Tile_QR	

Domain_Tile_QR	

D0!

D1!

D2!

D3!

D0!

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume II, Applications,
pages 1610‒1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.

R0!

R1!

R2!

R3!

R0!

R2!

R0!R! R!

D1!

D2!

D3!

Domain_Tile_QR	

Domain_Tile_QR	

Domain_Tile_QR	

Domain_Tile_QR	

D0!

D1!

D2!

D3!

D0!

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume II, Applications,
pages 1610‒1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.

R0!

R1!

R2!

R3!

R0!

R2!

R0!R! R!

D1!

D2!

D3!

Domain_Tile_QR	

Domain_Tile_QR	

Domain_Tile_QR	

Domain_Tile_QR	

D0!

D1!

D2!

D3!

D0!

Communication Reducing QR
Factorization

Quad-socket, quad-core machine Intel Xeon EMT64 E7340 at 2.39 GHz.
Theoretical peak is 153.2 Gflop/s with 16 cores.

Matrix size 51200 by 3200

•  Mixed precision, use the lowest
 precision required to achieve a
 given accuracy outcome
  Improves runtime, reduce power

 consumption, lower data movement
  Reformulate to find correction to

 solution, rather than solution; Δx
 rather than x.

46

47

•  Exploit 32 bit floating point as much as
 possible.
  Especially for the bulk of the computation

•  Correct or update the solution with selective
 use of 64 bit floating point to provide a
 refined results

•  Intuitively:
  Compute a 32 bit result,
  Calculate a correction to 32 bit result using

 selected higher precision and,
  Perform the update of the 32 bit results with the

 correction using high precision.

L U = lu(A) SINGLE O(n3)
x = L\(U\b) SINGLE O(n2)
r = b – Ax DOUBLE O(n2)
WHILE || r || not small enough
 z = L\(U\r) SINGLE O(n2)
 x = x + z DOUBLE O(n1)
 r = b – Ax DOUBLE O(n2)
END

•  Iterative refinement for dense systems, Ax = b, can work this
 way.

  Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
 results when using DP fl pt.

L U = lu(A) SINGLE O(n3)
x = L\(U\b) SINGLE O(n2)
r = b – Ax DOUBLE O(n2)
WHILE || r || not small enough
 z = L\(U\r) SINGLE O(n2)
 x = x + z DOUBLE O(n1)
 r = b – Ax DOUBLE O(n2)
END

•  Iterative refinement for dense systems, Ax = b, can work this
 way.

  Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
 results when using DP fl pt.

  It can be shown that using this approach we can compute the solution
 to 64-bit floating point precision.

•  Requires extra storage, total is 1.5 times normal;
•  O(n3) work is done in lower precision
•  O(n2) work is done in high precision
•  Problems if the matrix is ill-conditioned in sp; O(108)

0

50

100

150

200

250

300

350

400

450

500

960 3200 5120 7040 8960 11200 13120

Matrix size

G
flo
p/
s

Single Precision

Double Precision

FERMI Tesla C2050: 448 CUDA cores @ 1.15GHz 
 SP/DP peak is 1030 / 515 GFlop/s

0

50

100

150

200

250

300

350

400

450

500

960 3200 5120 7040 8960 11200 13120

Matrix size

G
flo
p/
s

Single Precision

Mixed Precision

Double Precision

Similar results for Cholesky & QR
factorizations

FERMI Tesla C2050: 448 CUDA cores @ 1.15GHz 
 SP/DP peak is 1030 / 515 GFlop/s

•  For example when done in parallel can’t
 guarantee the order of operations.

•  Lack of reproducibility due to floating point
 nonassociativity and algorithmic adaptivity
 (including autotuning) in efficient production
 mode

•  Bit-level reproducibility may be unnecessarily
 expensive most of the time

•  Force routine adoption of uncertainty
 quantification
  Given the many unresolvable uncertainties in

 program inputs, bound the error in the
 outputs in terms of errors in the inputs

52

xi∑

•  For the last decade or more, the research
 investment strategy has been
 overwhelmingly biased in favor of hardware.

•  This strategy needs to be rebalanced -
 barriers to progress are increasingly on the
 software side.

•  Moreover, the return on investment is more
 favorable to software.
  Hardware has a half-life measured in years, while

 software has a half-life measured in decades.
•  High Performance Ecosystem out of balance

  Hardware, OS, Compilers, Software, Algorithms, Applications
•  No Moore’s Law for software, algorithms and applications

•  Thank a number of people who have
 helped with this work
  Emmanuel Agullo, George Bosilca, Aurelien

 Bouteiller, Anthony Danalis, Jim Demmel,
 Tingxing "Tim" Dong, Mathieu Faverge, Azzam
 Haidar, Thomas Herault, Mitch Horton, Jakub
 Kurzak, Julien Langou, Julie Langou, Pierre
 Lemarinier, Piotr Luszczek, Hatem Ltaief,
 Stanimire Tomov, Asim YarKhan

•  More details tomorrow Session 21 on
 Numerical Algorithms 54

55

“We can only see a short
 distance ahead, but we
 can see plenty there
 that needs to be
 done.”
  Alan Turing (1912

—1954)

•  www.exascale.org

Published in the January 2011 issue of
The International Journal of High
 Performance Computing Applications

