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•  Thank a number of people who have
 helped with this work 
  Emmanuel Agullo, George Bosilca, Aurelien

 Bouteiller, Anthony Danalis, Jim Demmel,
 Tingxing "Tim" Dong, Mathieu Faverge, Azzam
 Haidar, Thomas Herault, Mitch Horton, Jakub
 Kurzak, Julien Langou, Julie Langou, Pierre
 Lemarinier, Piotr Luszczek, Hatem Ltaief,
 Stanimire Tomov, Asim YarKhan, … 

•  Much of what I will describe has been
 done before, at least in theory. 
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Rank     Site Computer Country Cores Rmax 
[Pflops] 

% of 
Peak 

Power 
[MW] 

Flops/
Watt 

1 Nat. SuperComputer 
Center in Tianjin 

Tianhe-1A, NUDT  
Intel + Nvidia GPU + custom China 186,368 2.57 55 4.04 636 

2 DOE / OS                 
Oak Ridge Nat Lab 

Jaguar,  Cray  
 AMD + custom USA 224,162 1.76 75 7.0 251 

3 Nat. Supercomputer 
Center in Shenzhen 

Nebulea, Dawning 
Intel +  Nvidia GPU + IB China 120,640 1.27 43 2.58 493 

4 GSIC Center, Tokyo 
Institute of Technology 

Tusbame 2.0, HP  
Intel + Nvidia GPU + IB Japan 73,278 1.19 52 1.40 850 

5 
DOE / OS  

Lawrence Berkeley Nat 
Lab 

Hopper, Cray 
AMD + custom USA 153,408 1.054 82 2.91 362 

6 
Commissariat a 

l'Energie Atomique 
(CEA) 

Tera-10,  Bull  
Intel + IB France 138,368 1.050 84 4.59 229 

7 DOE / NNSA 
Los Alamos Nat Lab 

Roadrunner, IBM  
AMD + Cell GPU + IB USA 122,400 1.04 76 2.35 446 

8 NSF / NICS            
U of Tennessee 

Kraken, Cray  
AMD + custom USA 98,928 .831 81 3.09 269 

9 Forschungszentrum 
Juelich (FZJ) 

Jugene, IBM 
Blue Gene + custom Germany 294,912 .825 82 2.26 365 

10 DOE / NNSA         
LANL & SNL 

Cielo, Cray  
AMD + custom USA 107,152 .817 79 2.95 277 
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500    Computacenter LTD        HP Cluster, Intel + GigE            UK           5,856      .031        53                      



Absolute Counts 
US:  274 
China:    41 
Germany:    26 
Japan:    26 
France:    26 
UK:    25 
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Systems 2011 2018  Difference 
Today & 2018 

System peak 2 Pflop/s 1 Eflop/s O(1000) 

Power 7 MW ~20 MW 

System memory 0.3 PB 32 - 64 PB O(100) 

Node performance 125 GF 1,2  or 15TF O(10) – O(100) 

Node memory BW 25 GB/s 2 - 4TB/s O(100) 

Node concurrency 12 O(1k) or 10k O(100) – O(1000) 

Total Node Interconnect BW 3.5 GB/s 200-400GB/s O(100) 

System size (nodes) 18,700 O(100,000) or O(1M) O(10) – O(100) 

Total concurrency 225,000 O(billion) O(10,000) 

Storage 15 PB 500-1000 PB (>10x system 
memory is min) 

O(10) – O(100) 

IO 0.2 TB 60 TB/s (how long to drain the 
machine) 

O(100) 

MTTI days O(1 day) - O(10) 
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•  Light weight processors (think BG/P) 
  ~1 GHz processor (109) 
  ~1 Kilo cores/socket (103) 
  ~1 Mega sockets/system (106) 

•  Hybrid system (think GPU based) 
  ~1 GHz processor (109) 
  ~10 Kilo FPUs/socket (104)    
  ~100 Kilo sockets/system (105)  

Socket Level 
Cores scale-out for planar geometry 

Node Level 
3D packaging 
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Intel Xeon 
8 cores 
3 GHz 

8*4 ops/cycle 
96 Gflop/s (DP) 

Nvidia C2050 “Fermi” 
448 “Cuda cores” 
1.15 GHz 
448 ops/cycle 
515 Gflop/s (DP) 

Commodity Accelerator (GPU) 

Interconnect 
PCI-X 16 lane 
64 Gb/s 
1 GW/s 



•  Floating Point Systems FPS-164
 Scientific Computer (1976) 

•  Intel Math Co-processor (1980) 
•  Weitek Math Co-processor (1981) 

1980 



•  FPS-164 and VAX (1976) 
  11 Mflop/s; transfer rate 44 MB/s 
  Ratio of flops to bytes of data movement:

 1 flop per 4 bytes transferred 

•  Nvidia Fermi and PCI-X to host 
  500 Gflop/s; transfer rate 8 GB/s 
  Ratio of flops to bytes of data movement:

 62 flops per 1 byte transferred 

•  Flop/s are cheap, so are provisioned in
 excess  14 



•  Most likely be a hybrid design 
  Think standard multicore chips and accelerator

 (GPUs) 
•  Today accelerators are attached 
•  Next generation more integrated 
•  Intel’s MIC architecture “Knights Ferry” and

 “Knights Corner” to come. 
  48 x86 cores 

•  AMD’s Fusion in 2012 - 2013 
  Multicore with embedded graphics ATI 

•  Nvidia’s Project Denver plans to develop              
 an integrated chip using ARM                     
 architecture in 2013. 

15 



2011 2018 

DP FMADD flop   100 pJ     10 pJ 

DP DRAM read 4800 pJ 1920 pJ 

Local Interconnect 7500 pJ 2500 pJ 

Cross System 9000 pJ 3500 pJ 

16 

Source: John Shalf, LBNL 



•  Steepness of the ascent from terascale
 to petascale to exascale 

•  Extreme parallelism and hybrid design 
•  Preparing for million/billion way

 parallelism 

•  Tightening memory/bandwidth
 bottleneck 
•  Limits on power/clock speed

 implication on multicore 
•  Reducing communication will become

 much more intense  
•  Memory per core changes, byte-to-flop

 ratio will change 

•  Necessary Fault Tolerance 
•  MTTF will drop 
•  Checkpoint/restart has limitations 
•  shared responsibility 

Software infrastructure does not exist today  
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• Must rethink the design of our
 software 
  Another disruptive technology 

• Similar to what happened with cluster
 computing and message passing 

  Rethink and rewrite the applications,
 algorithms, and software 



•  Are needed by applications 

•  Applications are given (as function of time) 
•  Architectures are given (as function of time) 

•  Algorithms and software must be adapted or
 created to bridge to (hostile) architectures for
 the sake of the complex applications 

19 



•  Synchronization-reducing algorithms 
  Break Fork-Join model 

•  Communication-reducing algorithms 
  Use methods which have lower bound on

 communication 

•  Fault resilient algorithms 
  Implement algorithms that can recover from

 failures 

•  Mixed precision methods 
  2x speed of ops and 2x speed for data movement 

•  Reproducibility of results 
  Today we can’t guarantee this 20 



Fork-­‐Join	
  ParallelizaCon	
  of	
  LU	
  and	
  QR.	
  

Parallelize	
  the	
  update:	
  
• 	
  Easy	
  and	
  done	
  in	
  any	
  reasonable	
  so.ware.	
  
• 	
  This	
  is	
  the	
  2/3n3	
  term	
  in	
  the	
  FLOPs	
  count.	
  
• 	
  Can	
  be	
  done	
  efficiently	
  with	
  LAPACK+mulCthreaded	
  BLAS	
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•  Break into smaller tasks and remove
 dependencies 



•  Tile data layout where each data tile
 is contiguous in memory 

•  Decomposed into several fine-grained
 tasks, which better fit the memory
 of the small core caches 23 



• Objectives 
  High utilization of each core 
  Scaling to large number of cores 
  Shared or distributed memory 

• Methodology 
  Dynamic DAG scheduling (QUARK) 
  Explicit parallelism 
  Implicit communication 
  Fine granularity / block data layout 

• Arbitrary DAG with dynamic scheduling 

24 

Fork-join 
parallelism 

DAG scheduled 
parallelism 

Time 



Tile LU factorization; Matrix size 4000x4000, Tile size 200 
8-socket, 6-core (48 cores total) AMD Istanbul 2.8 GHz 

  Regular trace 
  Factorization steps pipelined 
  Stalling only due to natural
 load imbalance 

  Dynamic 
  Out of order execution 
  Fine grain tasks 
  Independent block operations 

The colored area over the
 rectangle is the efficiency 
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POTRF+TRTRI+LAUUM: 25 (7t-3) 
Cholesky Factorization alone: 3t-2 

48 cores 
POTRF, TRTRI and LAUUM. 
The matrix is 4000 x 4000,tile size is 200 x 200, 

Pipelined: 18 (3t+6) 
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•  DAGs get very big, very fast 
•  So windows of active tasks are used; this means no

 global critical path  
•  Matrix of NBxNB tiles; NB3 operation 

•  NB=100 gives 1 million tasks  



  Tile LU factorization 
  10 x 10 tiles 
  300 tasks 
  100 task window 
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QUARK	
   DAGuE	
  

execution window 

tasks 

inputs 

outputs 

Number of tasks in DAG: 

 O(n3) 

Cholesky: 1/3 n3 
LU: 2/3 n3  
QR: 4/3 n3  

Number of tasks in parameterized DAG: 

 O(1) 

Cholesky: 4 (POTRF, SYRK, GEMM, TRSM) 
LU: 4 (GETRF, GESSM, TSTRF, SSSSM) 
QR: 4 (GEQRT, LARFB, TSQRT, SSRFB) 

DAG: Conceptualized & Parameterized  

PLASMA 
(On Node) 

DPLASMA 
(Distributed System) 

small enough to
 store on each
 core in every 
node = Scalable 



for	
  i,j	
  =	
  0..N	
  

	
  	
  	
  QUARK_Insert(	
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  A[i,	
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  Tree	
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Loops	
  &	
  array
	
  references
	
  have	
  to	
  be
	
  affine	
  



"   RT is using the symbolic
 information from the
 compiler to make
 scheduling, message
 passing, & RT decisions 

"   Data distribution: regular,
 irregular 

"   Task priorities 
"   No left looking or right

 looking, more adaptive or
 opportunistic 



LU	
  

Cholesky	
  

QR	
  

DSBP  = 
Distributed Square  
Block Packed 

81 nodes 
Dual socket nodes 
Quad core Xeon L5420 
Total 648 cores at 2.5 GHz 
ConnectX InfiniBand DDR 4x 



•  Goal: Algorithms that communicate as little as possible 
•  Jim Demmel and company have been working on algorithms

 that obtain a provable minimum communication. (M. Anderson
 yesterday) 

•  Direct methods (BLAS, LU, QR, SVD, other decompositions) 
•  Communication lower bounds for all these problems 
•  Algorithms that attain them (all dense linear algebra, some

 sparse) 

•  Iterative methods – Krylov subspace methods for Ax=b, Ax=λx 
•  Communication lower bounds, and algorithms that attain them

 (depending on sparsity structure) 
•  For QR Factorization they can show: 

36 



•  We have a m x n matrix A we want to
 reduce to upper triangular form. 



•  We have a m x n matrix A we want to
 reduce to upper triangular form. 

Q1T 



•  We have a m x n matrix A we want to
 reduce to upper triangular form. 

R 

A = Q1Q2Q3R = QR 

Q1T Q2T Q3T 



A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd 
Conference on Hypercube Concurrent Computers and Applications, volume II, Applications, 
pages 1610‒1620, Pasadena, CA, Jan. 1988. ACM. Penn. State. 
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Communication Reducing QR 
Factorization 

Quad-socket, quad-core machine Intel Xeon EMT64 E7340 at 2.39 GHz.  
Theoretical peak is  153.2 Gflop/s with 16 cores. 

Matrix size 51200 by 3200 



•  Mixed precision, use the lowest
 precision required to achieve a
 given accuracy outcome 
  Improves runtime, reduce power

 consumption, lower data movement 
  Reformulate to find correction to

 solution, rather than solution; Δx
 rather than x. 

46 
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•  Exploit 32 bit floating point as much as
 possible. 
  Especially for the bulk of the computation 

•  Correct or update the solution with selective
 use of 64 bit floating point to provide a
 refined results 

•  Intuitively:  
  Compute a 32 bit result,  
  Calculate a correction to 32 bit result using

 selected higher precision and, 
  Perform the update of the 32 bit results with the

 correction using high precision.  



L U = lu(A)    SINGLE   O(n3) 
x = L\(U\b)    SINGLE   O(n2) 
r = b – Ax    DOUBLE   O(n2) 
WHILE || r || not small enough 
        z = L\(U\r)    SINGLE   O(n2) 
        x = x + z    DOUBLE   O(n1) 
        r = b – Ax    DOUBLE   O(n2) 
END 

•  Iterative refinement for dense systems,   Ax = b, can work this
 way. 

  Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
 results when using DP fl pt. 



L U = lu(A)    SINGLE   O(n3) 
x = L\(U\b)    SINGLE   O(n2) 
r = b – Ax    DOUBLE   O(n2) 
WHILE || r || not small enough 
        z = L\(U\r)    SINGLE   O(n2) 
        x = x + z    DOUBLE   O(n1) 
        r = b – Ax    DOUBLE   O(n2) 
END 

•  Iterative refinement for dense systems,   Ax = b, can work this
 way. 

  Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
 results when using DP fl pt. 

  It can be shown that using this approach we can compute the solution
 to 64-bit floating point precision. 

•  Requires extra storage, total is 1.5 times normal; 
•  O(n3) work is done in lower precision 
•  O(n2) work is done in high precision 
•  Problems if the matrix is ill-conditioned in sp; O(108) 



0 

50 

100 

150 

200 

250 

300 

350 

400 

450 

500 

960 3200 5120 7040 8960 11200 13120 

Matrix size 

G
flo
p/
s 

Single Precision 

Double Precision 

FERMI       Tesla C2050: 448 CUDA cores @ 1.15GHz 
                  SP/DP peak is 1030 / 515 GFlop/s 



0 

50 

100 

150 

200 

250 

300 

350 

400 

450 

500 

960 3200 5120 7040 8960 11200 13120 

Matrix size 

G
flo
p/
s 

Single Precision 

Mixed Precision 

Double Precision 

Similar results for Cholesky & QR 
factorizations 

FERMI       Tesla C2050: 448 CUDA cores @ 1.15GHz 
                  SP/DP peak is 1030 / 515 GFlop/s 



•  For example           when done in parallel can’t
 guarantee the order of operations. 

•  Lack of reproducibility due to floating point
 nonassociativity and algorithmic adaptivity
 (including autotuning) in efficient production
 mode 

•  Bit-level reproducibility may be unnecessarily
 expensive most of the time 

•  Force routine adoption of uncertainty
 quantification  
  Given the many unresolvable uncertainties in

 program inputs, bound the error in the
 outputs in terms of errors in the inputs 

52 
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•  For the last decade or more, the research
 investment strategy has been
 overwhelmingly biased in favor of hardware.  

•  This strategy needs to be rebalanced -
 barriers to progress are increasingly on the
 software side.   

•  Moreover, the return on investment is more
 favorable to software. 
  Hardware has a half-life measured in years, while

 software has a half-life measured in decades. 
•  High Performance Ecosystem out of balance 

  Hardware, OS, Compilers, Software, Algorithms, Applications 
•  No Moore’s Law for software, algorithms and applications 



•  Thank a number of people who have
 helped with this work 
  Emmanuel Agullo, George Bosilca, Aurelien

 Bouteiller, Anthony Danalis, Jim Demmel,
 Tingxing "Tim" Dong, Mathieu Faverge, Azzam
 Haidar, Thomas Herault, Mitch Horton, Jakub
 Kurzak, Julien Langou, Julie Langou, Pierre
 Lemarinier, Piotr Luszczek, Hatem Ltaief,
 Stanimire Tomov, Asim YarKhan 

•  More details tomorrow Session 21 on
 Numerical Algorithms 54 
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“We can only see a short
 distance ahead, but we
 can see plenty there
 that needs to be
 done.” 
  Alan Turing (1912 

—1954) 

•  www.exascale.org 

Published in the January 2011 issue of 
The International Journal of High
 Performance Computing Applications 


