IMACS ThelMACSWorld Congress

Computational and Applied Mathematics &
Applications in Science and Engineering

Current Trends in High Performance
Computing and Challenges for
Mathematical Software

Jack Dongarra

University of Tennessee
Oak Ridge National Laboratory
University of Manchester

8/3/09 1

TOP

H. Meuer, H. Simon, E. Strohmaier, & JD

- Listing of the 500 most powertul

Computers 1n the World
- Yardstick: Rmax from LINPACK MPP

Ax - b , dense problem ?ﬁffmme

- Updated twice a year -
SC‘xy 1n the States in November
Meeting in Germany 1n June

Rate

- All data available from www.topS00.org 2

N
« Performance Development

100 Pflop/s

22.9 PFlop/s

10 Pflop/s

1 Pflop/s

100 Tflop/s

10 Tflop/s

1 Tflop/s | o9 - 6- ars B 17.08 TFlop/s

100 Gflop/s

59.7 GFlop/s
10 Gflop/s

My Laptop
1 Gflop/s

400 MFlop/s

100 Mflop/s

1993 1995 1997 1999 2001 2003 2005 2007 2009

Looking at the Gordon Bell Prize

(Recognize outstanding achievement in high-performance computing applications
and encourage development of parallel processing)

GFlop/s; 1988; Cray Y-MP; 8 Processors

Static finite element analysis

TFlop/s; 1998; Cray T3E; 1024 Processors _

Modeling of metallic magnet atoms, using a
variation of the locally self-consistent multiple
scattering method.

PFlop/s; 2008; Cray XT5; 1.5x10° Processors

Superconductive materials

[

Performance Development in Top500
T

1 Eflop/s

100 Pflop/s
10 Pflop/s

1 Pflop/s
100 Tflop/s

10 Tflop/s

1 Tflop/s -

1(¥flop/ s
+ 1 Gflop/s

100 Mfiop/s

(e8]

o N ~r O (e o]
o o o o o
AN AN AN AN AN

1994
1996
2000
2002
2004
2006

O~
o

2008
2020

TFlop/s

Distribution of the Top500

1200

1.1 Pflop/s

1000

800

600

400

200

0
— N ™o o ;o
N 1 N O o In

i i i
e

274 systems replaced last tim

391

417 -

443 -

17.1 Tflop/s
(@) LN
Vo) (@)
< <

N

\ []
<+ 33rd List: The TOP10
Rank Site Computer Country | Cores Rmax | 9 of
[Tflops] | Peak
DOE / NNSA Roadrunner / IBM
1 Los Alamos Nat Lab BladeCenter QS22/L521 USA 129,600 1,105 76
2 DOE / OS Jaguar / Cray 150 152
Oak Ridge Nat Lab Cray XT5 QC 2.3 GHz SR 00,15 1,059 7
Forschungszentrum Jugene / IBM
. 2 12 2
’ Juelich (FZJ) Blue Gene/P Solution ST B 825 8
NASA / Ames Research Pleiades / SGI
4 Center/NAS SGI Altix ICE 8200EX usaA 51,200 480 | 79
DOE / NNSA BlueGene/L IBM
Lawrence Livermore NL' eServer Blue Gene Solution USA 212,992| 478 80
NSF Kraken / Cray A 000
© | NICS/U of Tennessee | Cray XT5 QC 2.3 GHz L 66, 463 | 76
DOE / OS Intrepid / IBM
7 Argonne Nat Lab Blue Gene/P Solution USA 163,840 458 82
NSF Ranger / Sun
8 | TACC/U. of Texas SunBlade x6420 USA 62,976 | 433 75
DOE / NNSA Dawn / IBM
Lawrence Livermore NL Blue Gene/P Solution USA WA 83
10 Forschungszentrum JUROPA /Sun - Bull SA Germany | 26,304 274 ©

Juelich (FZJ) NovaScale /Sun Blade

N

\ []
< 331 List: The TOP10
Rank Site Computer Country | Cores Rmax | % of Power|Flops/
[Tflops] | Peak | [MW] | Watt
DOE / NNSA Roadrunner / IBM
1 | Los Alamos Nat Lab BladeCenter QS22/L521 USA |129,600| 1,105 | 76 | 2.48 | 446
2 DOE / OS Jaguar / Cray 150 152 . 151
Oak Ridge Nat Lab Cray XT5 QC 2.3 GHz Usa b A0 A4 D E
Forschungszentrum Jugene / IBM
. 2 12 2 2.2
’ Juelich (FZJ) Blue Gene/P Solution Germany |294.9 e e 6| 365
NASA / Ames Research Pleiades / SGI
4 Center/NAS SGI Altix ICE 8200EX OEL 51,200 480 | 79 | 2.09 | 230
DOE / NNSA BlueGene/L IBM
Lawrence Livermore NL' eServer Blue Gene Solution USA 212,992| 478 80 2.32 | 206
NSF Kraken / Cray A 000
© NICS/U of Tennessee Cray XT5 QC 2.3 GHz L 66, 463 76
DOE / Os Intrepid / IBM
7 Argonne Nat Lab Blue Gene/P Solution USA 163,840 458 82 | 1.26 363
NSF Ranger / Sun
8 | TACC/U. of Texas SunBlade x6420 USA 62,976 | 433 75 | 2.0 | 217
DOE / NNSA Dawn / IBM
10 Forschungszentrum JUROPA /Sun - Bull SA Germany | 26,304 274 © -

Juelich (FZJ) NovaScale /Sun Blade

e LANL Roadrunner
o A Petascale System in 2008

“Connected Unit” cluster =~ 13,000 Cell HPC chips
192 Opteron nodes e = 1.33 PetaFlop/s (from Cell)
(180 w/ 2 dual-Cell blades = 7,000 dual-core Opterons
connected w/ 4 PCle x8 = 122,000 cores
B W HhY W
oo 17 clusters
\l/ P

2nd stage InfiniBand interconnect (8 switches)

Based on the 100 Gflop/s (DP) Cell chip

Hybrid Design (2 kinds of chips & 3 kinds of cores)
Programming required at 3 levels.

Du Co feron Chip

ORNL/UTK Computer Power Cost Projections

2008-2012
 Overthe next5
yearS ORNL/ UTK ORNL Computing Power Projections
will deploy 2 large 50
Petascale systems .
e Using 15 MW today ——
o By 2012 close to 3 0 M Computers
50MW!! ‘g 2
 Power costs greater g
than $10M today. 20

e Cost estimates
based on $0.07 per
KwH 0

10

2008 2009 2010 2011 2012

: > $10M >$20M > $30M
Power consumption and thermal management ’ b b

gas becomes the architectural driver for future cost Per Year
large systems and may be a limiting factor.

[\
A %
ICL

10,000,000

1,000,000

100,000 -

10,000

1,000

100

10

0

1970

—Powerful

Why All SClentlflC Computers are Parallel

Frole Ol
Sutter and
<
A hardware issue just became a
software problem

kotun 1 L. Hammond

m Transistors (000)
e Clock Speed (MHz)
& Power (W)

@ PerfiClock (ILP)

In the “old
days” it was:
each year
processors
would become
faster

Today the clock
speed is fixed or
getting slower

Things are still
doubling every
18 -24 months

Moore’s Law
reinterpretated.

= Number of cores
double every
18-24 morllihs

N

A %

Power Cost of Frequency

- Power « Voltage? x Frequency (V2F)

 Frequency « Voltage

 Power «Freaue
Cores V |[Freq \Perf Powerm)

Superscalar 1 -

“"New" Superscalar 1X 1.5X 1.5X 1.5X 3.3X

L2

N

»

“ Power Cost of Frequency

- Power « Voltage? x Frequency (V2F)

e Frequency « Voltage

 Power «Freaue
Cores Freq \Perf Power mm

1 1
“New" Superscalar 1X 1.5X 1.5X 1.5X 3.3X

: : . O.45X
[Multicore 2X 0.75)(\0.757/ 1.5X 0.8X 1.88)(}
_~ __

(Bigger # is better)

Superscalar

50% more performance with 20% less power

13
Preferable to use multiple slower devices, than one superfast device

N

»

< Parallelism 1n 2009?

 These arguments are no longer theoretical
« All major processor vendors are producing multicore
chips
= Every machine will soon be a parallel machine
» To keep doubling performance, parallelism must double

 Which commercial applications can use this parallelism?
= Do they have to be rewritten from scratch?

« Will all programmers have to be parallel programmers?

= New software model needed
= Try to hide complexity from most programmers - eventually
= |n the meantime, need to understand it

 Computer industry betting on this big change, but does
not have all the answers

14

N
“ Moore’s Law Reinterpreted

 Number of cores per chip doubles
every 2 year, while clock speed
remains fixed or decreases

* Need to deal with systems with

millions of concurrent threads

e Future generation will have billions of
threads!

e Number of threads of execution
doubles every 2 year

ICL

Major Changes to Software

e Must rethink the design of our
software
= Another disruptive technology

e Similar to what happened with cluster
computing and message passing

= Rethink and rewrite the applications,
algorithms, and software
e Numerical libraries for example will
change

* For example, both LAPACK and

ScaLAPACK will undergo major changes
to accommodate this

16

ICL

Five Important Features to Consider When
Computing at Scale

« Effective Use of Many-Core and Hybrid architectures
= Dynamic Data Driven Execution
= Block Data Layout
Exploiting Mixed Precision in the Algorithms
= Single Precision is 2X faster than Double Precision
= With GP-GPUs 10x

Self Adapting / Auto Tuning of Software
= Too hard to do by hand

Fault Tolerant Algorithms
= With 1,000,000’s of cores things will falil

Communication Avoiding Algorithms

= For dense computations from O(n log p) to O(log p) 17
communications

= GMRES s-step compute (X, AX, A?X, ... ASX)

£ A New Generation of Software:

ICLOr

Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

Software/Algorithms follow hardware evolution in time

LINPACK (70’s) Rely on
(Vector operations) - Level-1 BLAS
operations

& A New Generation of Software:

ICLOr

Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

Software/Algorithms follow hardware evolution in time

LINPACK (70’s) Rely on

(Vector operations) - Level-1 BLAS
operations

LAPACK (80°s) Rely on

(Blocking, cache - Level-3 BLAS

friendly) operations

& A New Generation of Software:

Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

ICLOr

Software/Algorithms follow hardware evolution in time

LINPACK (70°s)
(Vector operations)

LAPACK (80°s)
(Blocking, cache
friendly)

ScaLAPACK (90’s)
(Distributed Memory)

Rely on
- Level-1 BLAS
operations

Rely on
- Level-3 BLAS
operations

Rely on
- PBLAS Mess Passing

¢ A New Generation of Software:

. Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

LINPACK (70°s) Rely on

(Vector operations) - Level-1 BLAS
operations

LAPACK (80°s) Rely on

(Blocking, cache - Level-3 BLAS

friendly) operations

ScaLAPACK (90°s) ‘ | Rely on

(Distributed Memory) - PBLAS Mess Passing

PLASMA (00’s) | Rely on

New Algorithms - a DAG/scheduler

(many-core friendly) - block data layout

- some extra kernels

Those new algorithms
- have a very , they scale very well (multicore, petascale computing, ...)
among the tasks, (multicore, distributed computing)
(distributed computing, out-of-core)

Those new algorithms need new kernels and rely on efficient scheduling algorithms.

6
“* Coding for an Abstract Multicore

Parallel software for multicores should have

two characteristics:

* Fine granularity:
* High level of parallelism is needed

« Cores will probably be associated with relatively small local
memories. This requires splitting an operation into tasks that
operate on small portions of data in order to reduce bus traffic
and improve data locality.

 Asynchronicity:

* As the degree of thread level parallelism grows and granularity
of the operations becomes smaller, the presence of
synchronization points in a parallel execution seriously affects
the efficiency of an algorithm.

« Steps 1n the LAPACK LU

DGETF2 LAPACK
(Factor a panel)

DLSWP l LAPACK
(Backward swap) ‘

DLSWP ﬂ LAPACK
(Forward swap) /\

oo 1111 s
(Triangular solve)

W_
DGEMM BLAS
(Matrix multiply) % W

¢ LU Timing Profile (16 core system)

e Threads — no lookahead

—B B EEEEUEIn

Time for each component

o
»

DGETF2
DLASWP(L)
DLASWP(R)
DTRSM
DGEMM

DGETF2 %
ﬁﬁ DLSWP f
l

EOOEO

-

DLSWP

S A
B (111
AR

1141

W

g| ﬂ

Bulk Sync Phases

\‘\‘ DGEMM

IcLOr"

Event Driven @

Multithreading

|ldeas not new.

Many papers use the
DAG approach.

¢. Adaptive Lookahead - Dynamic

while (1)

fetch_task();
switch (task.type) {
case PANEL: //
dgetf2 () ;
update_progress() ;
case COLUMN: //
dlaswp () ; //
dtrsm() ;
dgemm () ;
update_progress|() ;
case END: //
for ()

dlaswp();
return;

Reorganizing
algorithms to use

this approach #

¢ PLASMA (Redesign LAPACK /Scal APACK)

ICL

Parallel Linear Algebra Software for Multicore Architectures

e Asychronicity

e Avoid fork-join (Bulk sync design)
e Dynamic Scheduling

e OQut of order execution

e Fine Granularity
e Independent block operations

e Locality of Reference
e Data storage - Block Data Layout

Lead by Tennessee and Berkeley similar to LAPACK/ScaLAPACK as a community effort

26

c

<~ DGETRF - Intel64 - 16 cores

Gflop/s

140

120

100

80

60

40

20

DGETRF - Intel64 Xeon quad-socket quad-core (16 cores) - th. peak 153.6 Gflop/s

2000

4000

6000

Matrix size

8000

10000

12000

DGEMM
==PLASMA
=—MKL 10.1
“#=SCALAPACK
=8=|_APACK

14000

< Tile QR (&LU) Algorithms

N

N

DGEQRT

DLARFB

DLARFB

R
Vi

1 F
%,
\\Q/J

N

& .

Al

DTSQRT DSSRFB DSSRFB
C1
< [E= | N[
DTSQRT DSSRFB DSSRFB

=

FOR k = 0..TILES-1
ALKIK], TIKI[k] « DGRQRT(A[KI[K])

FOR m = k+1..TILES-1

7 7
¢ /
& /1
Z

A[KI[K], Alm][k], T[m][k] « DTSQRT(A[KI[K], Alm][k], T[m][k])

FOR n = k+1..TILES-1
A[k][n] « DLARFB(A[KI[K], TIkI[k], Alk][n])

FOR m = k+1..TILES-1

A[KI[n], Alm][n] « DSSRFB(A[m][K], TIm][k], A[KkI[n], Alm][n])

input matrix stored and processed by
square tiles

complex DAG

QR —= quad socket, dual—-core Opteron

PLASMA & ACML BLAS E : : 5
— ACML QR 4.0.0 : :
S0[|—MKL QR 9.1 ;;5;';;';é;'_“;';P9_EW_“:;:
—— LAPACK & ACML BLAS
50 : ' .

1%00 2000 3000 4000 5000 6000 7000 8000 9000 10000
problem size

29

N

»

< Future Computer Systems

* Most likely be a hybrid design

* Think standard multicore chips and
accelerator (GPUs)

 Today accelerators are attached
* Next generation more integrated
* Intel’s Larrabee in 2010 e - [E
" 8,16,32,0r 64 x86 cores m
» AMD’s Fusion in 2011
= Multicore with embedded graphics AT

* Nvidia’s plans? 30

Memory & l/O Interfaces

Fixed Function Logic
g
g

N

< Hybrid Computing

@ Match algorithmic requirements to architectural strengths of the hybrid
components
Multicore : small tasks/tiles
Accelerator: large data parallel tasks

Algorithms as DAGs Current hybrid CPU+GPU algorithms

(small tagks/tiles for multicore) (small tasks for multicores and large tasks for GPUs)
AN

. BEBEEEN

1 -
L el
|

} GPU
N Ul -
|
NN

I
|

I
]

[

//._
/

@ e.g. split the computation into tasks; define critical path that “clears” the way
for other large data parallel tasks; proper schedule the tasks execution

a Design algorithms with well defined *““search space” to facilitate auto-tuning

¢ Performance of Single Precision
___on_Conventional Processors

" Realized have the -mmm
similar situation on DGEMV

our commodity AMD Opteron
processors. 246 3000 2.00 50 1.70
e That is, SP is 2X as UltraSparc-Ille 3000 1.64 5000 1.66
fast as DP on many intel PIll
systems ntel Pl
Coppermine 3000 2.03 5000 2.09
. PowerPC 970 3000 2.04 5000 1.44
e The Intel Pentium o
and AMD Opteron s
have SSE2 P Woodcrest 3000 1.81 5000 2.18
e 2 flops/cycle DP Intel XEON 3000 2.04 5000 1.82
» 4 flops/cycle SP Intel Centrino
Duo 3000 2.71 5000 2.21
e |BM PowerPC has _ .
AltiVec Single precision is faster because:
- 8 flops/cycle SP * Operations are faster
4 flops/cycle DP * Reduced data motion

= No DP on AltiVec Larger blocks gives higher locality in cache

ICL

ldea Goes Something Like This...

e Exploit 32 bit floating point as much as
possible.

= Especially for the bulk of the computation

e Correct or update the solution with selective
use of 64 bit floating point to provide a
refined results

e Intuitively:
= Compute a 32 bit result,

= Calculate a correction to 32 bit result using
selected higher precision and,

» Perform the update of the 32 bit results with the

correction using high precision.
33

N
~ Mixed-Precision lterative Refinement

* Iterative refinement for dense systems, AXx = b, can work this

way.
L U = lu(A) o(n°)
x = L\(U\b) o(n?)
r=b- Ax o(n?)
WHILE || r || not small enough
z = L\(U\r) o(n?)
X=X+2Z o(nY)
r=>b- Ax O(n?)
END

= Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
results when using DP fl pt.

~ Mixed-Precision lterative Refinement

Iterative refinement for dense systems, AXx = b, can work this

way.
L U = lu(A) SINGLE O(n®)
x = L\(U\b) SINGLE o(n?)
r=b- Ax DOUBLE o(n?)
WHILE || r || not small enough
z = L\(U\r) SINGLE o(n?)
X=X+2Z DOUBLE o(nY)
r=b- Ax DOUBLE O(n?)
END

= Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
results when using DP fl pt.

» |t can be shown that using this approach we can compute the solution
to 64-bit floating point precision.

Requires extra storage, total is 1.5 times normal;
O(n3) work is done in lower precision

O(n?) work is done in high precision

Problems if the matrix is ill-conditioned in sp; O(108)

¢ Results for Mixed Precision Iterative
Refinement for Dense Ax = b

[_]Single prec. su
I Mixed prec. su

Architecture (BLAS)

Intel Pentium Il Coppermine (Goto)

Intel Pentium Ill Katmai (Goto)

Sun UltraSPARC lle (Sunperf)

Intel Pentium IV Prescott (Goto)

Intel Pentium IV-M Northwood (Goto)

AMD Opteron (Goto)

Cray X1 (libsci)

Speedup wrt double precision

IBM Power PCGS (2.7 GHz[VeclLib)

Compaq Alpha EVG (CXML)

IBM SP Power3 (ESSL)

w
N
— =[O0 N|O|UIl+lWwWIN|—

—(O

SGI Octane (ATLAS)

Architecture

e Single precision is faster than DP because:
= Higher parallelism within vector units
> 4 ops/cycle (usually) instead of 2 ops/cycle
= Reduced data motion
» 32 bit data instead of 64 bit data
= Higher locality in cache
» More data items in cache

¢ Results for Mixed Precision Iterative
Reflnement for Dense AX = b

Architecture (BLAS)

Intel Pentium Il Coppermine (Goto)
Intel Pentium Ill Katmai (Goto)

Sun UltraSPARC lle (Sunperf)

Intel Pentium IV Prescott (Goto)
Intel Pentium IV-M Northwood (Goto)
AMD Opteron (Goto)

Cray X1 (libsci)

IBM Power PCGS5 (2.7 GHzfVecLib)
Compaq Alpha EVG (CXML)

IBM SP Power3 (ESSL)

SGl Octane (ATLAS)

Speedup wrt double precision

—[=1O(O|N[O U~ W[N] —

—(O

Architecture

Architecture (BLAS-MPI) # procs n DP Solve DP Solve #
ISP Solve /1ter Ref iter

AMD Opteron (Goto — OpenMPI MX) 32 22627 1.85 1.79 6

AMD Opteron (Goto — OpenMPI MX) 64 32000 1.90 1.83 6

e Single precision is faster than DP because:
= Higher parallelism within vector units
> 4 ops/cycle (usually) instead of 2 ops/cycle
= Reduced data motion
» 32 bit data instead of 64 bit data
= Higher locality in cache
» More data items in cache

ICL

. Sparse Direct Solver and Iterative

Refinement

Speedup Over DP

MUMPS package based on multifrontal approach which

generates small dense matrix multiplies

Opteron wiintel compiler

O Iterative Refinemen

O Single Precision
2—‘*"*1*:“** -
1.8] T—
1
1.6—ﬂ} Al
T -l-] I |
14110l ﬁw ﬂ — ﬁ N | \
12l e H |- n
1 T 1 | | |) |
0.8 i | il ‘
' 1l
0.6_ |
0.4 I [|
0.2 Wim ' |
iy mi {
04 - THLgig! L I l u I
Cn & 3 T L |
Sy o e Con 6 : | ‘
7 (O A Q) &) o2 .
/$/7 < ‘9/,% OQ’/_ 7 Q////; %) % /}/} /5& # 4 T
S R, Ky @%\s\& 906\@%7 /1/%00///%0;)% /)Q“’e o 225 s, © e, 4
Ne, TS S, 7 Ky
v %y, Vs %, 7 o Y9 %9/0 %,
NO, 7

Tim Davis's Collection, n=100K -3M

....

N

“ Sparse lterative Methods (PCG)

e Quter/Inner Iteration

Outer iterations using 64 bit floating point

Inner iteration:
In 32 bit floating point

Compute 7(°) = b — Az(%) for some initial guess z(%
for 1=1,2,...

solve M z(i=1) = p(i=1)

pioy = rli=D7 (=1
ifi=1

p(l) — ,(0)
else

Bi—1 = pi—1/pi-2
pl) = (=1 4 g, pi-1)
endif
¢ = Apt)
a; = Pi-l/P(i)T‘I(i)
() = 2= 4 q,p()
r() = pi=1) — o, ¢
check convergence; continue if necessary
end

Compute 9 = b — Az for some initial guess z!

for i=1,2,...

solve MzU-1) = pli-1)
(-7 ,(i-1)

pi-1 =17
ifi=1
V) = 5
else
Bi-1 = pi-1/pi-2»
D) = 20=1) 4 g, pli=1)
endif
¢ = Apli)

T
i = picy /P g

2() = 20-1) 4 q;pli)
r) = pli=1) _ g;q)

check convergence; continue if necessary

e Quter iteration in 64 bit floating point and inner

Iiteration in 32 bit floating point

0)

39

o Mixed Precision Computations for
“" Sparse Inner/Outer-type lterative Solvers

2.5
2.25 Speedups for mixed precision
5. Inner SP/Outer DP (SP/DP) iter. methods vs DP/DP

(CG?, GMRES?, PCG?, and PGMRES? with diagonal prec.)

1.751 (Higher is better)

1.5-
1.251

1-
0.75- BCG?
0.5 WPCG
025 B GMRES
0. B PGMRES

11,142 25,980 79,275 230,793 602,091

1.25

Iterations for mixed precision
SP/DP iterative methods vs DP/DP

(Lower is better)

Machine:
Intel Woodcrest (3GHz, 1333MHz bus)

Stopping criteria:
Relative to 1, residual reduction (10-'?)

1,142 25980 79275 230793 602,091 <e—— Matrix size

6,021 18,000 39,000 120,000 240,000 < Condition number 40

c

ICL

Intriguing Potential

Exploit lower precision as much as possible

= Payoff in performance

e Faster floating point
e | ess data to move

Automatically switch between SP and DP to match

the desired accuracy

= Compute solution in SP and then a correction to the

solution in DP

Potential for GPU, FPGA, special purpose processors
= Use as little you can get away with and improve the

accuracy

Applies to sparse direct and iterative linear systems
and Eigenvalue, optimization problems, where

Newton’s method is used.

J(xi)

I (xi)

Xi+1 = Xj —

Correction = - A\(b — Ax)

S (xi)
J(x:)

> |

{\
A\ %
ICL

‘Fault Tolerance

 Trends in HPC:
= High end systems with thousand of processors.

* Increased probability of a system.
failure
= Most nodes today are robust, 3 year life.

= Mean Time to Failure is growing shorter as
systems grow and devices shrink.

= Process faults not tolerated in MPI model.
Mismatch between hardware and

(non fault-tolerant) programming
paradigm of MPI.

© Three Ideas for Fault Tolerant

ICL

Linear Algebra Algorithms

e Lossless diskless check-pointing for

iterative methods

e Checksum maintained in active processors
e On failure, roll back to checkpoint and

continue

* Nolostdata T)igkless Checkpointing

| P4

¢ When failure occurs:

> control passes to user

supplied handler

> “subtraction” performed
to recover missing data

> P4 takes on role of P1
» Execution continue

P4 takes on the identity of P1
and the computation continues.

P ®
P2 P3
PO

P2 P3

P4

PO

P2

& [

P3

. Three Ideas for Fault Tolera?ikiss checkpointing

¢ When failure occurs:

ICL » contro| passes to user
PO supplied handler

Linear Algebra Algorithms . = = oo

» P4 takes on role of P1
» Execution continue

P4 takes on the identity of P1
and the computation continues.

([
PO PO
B P1
P2 | P3 P2 | P3
[J
[J
[]
e Lossy approach for iterative methods Lossy Algorithm : Basic Idea
heckpoint f dd ¢ Let us assume that the exact solution of
¢ NO.C e‘.: point for computed data the system Ax=b is stored on different
maintained processors by rows
e On failure, approximate missing data A ‘= 3 steps)
Step 1: recover a processor and a
and ca rry on Processor 1 rt;rltrrl[:ingl;__})a;;glll?lbensi;onment (the job
Processor 2 of the FT- ibrary
 Lost data but use approximation to = Proesrs | e origing) data) on he aied T
recover Processos | LS Notice that
Processor® Agy X3 + Ago Xp + o + Ap X, = b=
X, = A22-1 (b2 = Ay xi)

. Three Ideas for Fault Tolera?ikes checkpointing

IC

> control passes to user
PO supplied handler

Linear Algebra Algorithms . = = oo

» P4 takes on role of P1
» Execution continue

P4 takes on the identity of P1
and the computation continues.

([J
PO PO
B P1
[P2 P3 P2 P3
[J
Lossy Algorithm : Basic Idea
o + Let us assume that the exact solution of
the system Ax=b is stored on different
) pl"OCGSSOI"S by rows
- 3 steps
i A x =b Step 1: recover a processor and a
Processor 1 running parallel environment (the job
([] Processor 2 of the FT-MPI library)
- Processor 3 Step 2: recover Ay; A,,, ..., A, and b,
Processor 4 (the original data) on the failed
Processor 5 processor
Step 3: Notice that
[] Processor 6 Aoy X; + Agy Xp + oo + Asy X, = byms
['v —an 5k 2% Al

An Example: Scal.APACK/PBLAS Matrix Multiplication

e Check-pointless methods for dense

algorithms [) (s i, T a8
e Checksum maintained as part of computation iz_ifﬂ - Z'*;: s . s v ros)
e No roll back needed; No lost data o R) .
- c ., c,, >.c
2 0. z..c. ZLZ.cC

+ Single failure during computation can be recovered from the checksum
relationship

+ By using a floating-point version Reed-Solomon code, multiple failures can
be tolerated

N

< Exascale Computing

Google: exascale computing study

ExaScale Computing Study:
Technology Challenges in
Achieving Exascale Systems

Peter Kogge, Editor & Study Lead

Shekhar Borkar

Dan Campbell

William Carlson I m
Monty Denneau
Paul Franzon
William Harrod
Kerry Hill

Jon Hiller

Sherman Karp
Stephen Keckler
Dean Klein

Robert Lucas

Mark Richards

Al Scarpelli

Steven Scott

Allan Snavely
Thomas Sterling

R. Stanley Williams
Katherine Yelick

September 28, 2008

This work was sponsored by DARPA IPTO i the ExaScale Computing Study with Dr. William Hamod
as Program Manager; AFRL contract number FA8650-07-C-7724. This report is published m the
interest of scientific and technical mformation exchange and its pubhcation does not constitute the
Government s approval or disapproval of its ideas or fmdmgs

NOTICE

Using Government drawings, specifications, or other data included m this d t for any
purpose other than Government procurement does not m any way obligate the U.S. Governnment
The fact that the Government formmlated or supphed the drawmgs, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or permission to
manufacture, use, or sell any patented invention that may relate to them.

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED.

46

N

»

< Exascale Computing ==

ExaScale Computing Study:
Technology Challenges in
Achieving Exascale Systems

Exascale systems are likely feasible by 2017+2 =™
10-100 Million processing elements (cores or e

R. Stanley Williams
Katherine Yelick

mini-cores) with chips perhaps as dense as o
1,000 cores per socket, clock rates will grow — =Essisseanimme
more slowly “mm:mﬂﬁsgﬁmwmmm
3D packaging likely el

Large-scale optics based interconnects
10-100 PB of aggregate memory
Hardware and software based fault management

Heterogeneous cores

Performance per watt — stretch goal 100 GF/watt of
sustained performance = >> 10 - 100 MW Exascale system

Power, area and capital costs will be significantly higher
than for today’s fastest systems

47
Google: exascale computing study

N

»

< Conclusions

 For the last decade or more, the research

Investment strategy has been
overwhelmingly biased in favor of hardware.

e This strategy needs to be rebalanced -
barriers to progress are increasingly on the
software side.

« Moreover, the return on investment IS more
favorable to software.

= Hardware has a half-life measured in years, while

software has a half-life measured in decades.

e High Performance Ecosystem out of balance

= Hardware, OS, Compilers, Software, Algorithms, Applications
« No Moore’s Law for software, algorithms and applications

N

< Collaborators / Support

Employment opportunities
for post-docsinthelCL .. Microsoft
group at Tennessee ‘D

v;" - :‘.3‘?.\\ ,{"I
@\ The MathWorks

PLASMA Parallel Linear

Algebra Software for
Multicore Architectures

http://icl.cs.utk.edu/plasma/ Google

Web Images Video News Maps Deskiop more »

MAG MA Matrix Algebra On dmga”aLGoogle Search][I'm Feeling Lucky,)E;_E;—QEE; g:::h
GPU and Multicore

- New! Try Docs & Spreadsheets and share your projects instantly.
Architectures

Advertising Programs - Business Solutions - About Google

©2006 Google

Contact Jack Dongarra

. If you are wondering what’s beyond
ExaFlops

10%4 yotta
Mega, Giga, Tera, 1027 xona
30

Peta, Exa, Zetta .. 10 Wweka
1033 vunda
1036 uda

103 kil
1o 103° treda

10° mega
. 1042 sorta

10° giga .

104> rinta

1012 tera
1048 quexa
10 peta 1051 enta
1018 exa Pep
1021 zetta 10> ocha
1057 nena

1090 minga
1083 Juma

