Q 24th Biennial Conference on Numerical Analysis, June 28th - July 1st 2011
Universityof - <

Strathclyde

On the Future of High Performance
Computing: How to Think for Peta
and Exascale Computing

Jack Dongarra

University of Tennessee
Oak Ridge National Laboratory
University of Manchester

6/30/11

IS
< This picture was taken at Argonne around 1981

 Since then there have been tremendous changes
in our scientific computing environment.

* Many changes in Mathematic Software and
Numerical Libraries

<o This picture was taken at Argonne around 1981

 Since then there have been tremendous changes
in our scientific computing environment.

* Many changes in Mathematic Software and
Numerical Libraries

EISPACK
MINPACK &N

T o[O3

LINPACK Py sy

EISPACK il |
BLAS / ATLAS -\ ARPACK
Sca/LAPACK 59 ,_ il o
PVM / MPI Z ' y

TopS500 List of Supercomputers
H. Meuer, H. Simon, E. Strohmaier, & JD

- Listing of the 500 most powertul

Computers 1n the World

- Yardstick: Rmax from LINPACK MPP

Ax= b, dense problem

- Updated twice a year

Rate

TPP performance

Size

SC*xy 1n the States in November
Meeting in Germany 1n June

+ - All data available from www.top500.org

e

< Performance Development

100 Pflop/s 39 Pilag/s
10 Pflop/s /{2;;0;
1 Pflop/s /
100 Tflop/s SUM
o 41 TFlop/s
10 Tflop/s y
N_
1 Tflop/ s
ML 22 " 6-8 years
100 Gflop/s —£A0
59.7 GFlop/s
10 Gflop/s » 6 Gilop/s)
My Laptop op/s +
1 Gflop/s
] My iPad2 (620 lVlIlop‘i)
4010 MFI
100 Mflop/s e
1993 1995 1997 1999 2001 2003

2005

2007 2009 2011

N

A

“" Emerging Computer Architectures

* Are needed by applications

» Applications are given (as function of time)
» Architectures are given (as function of time)

» Algorithms and software must be adapted or
created to bridge to computer architectures
for the sake of the complex applications

- Gigascale Laptop: Uninode-Multicore /

(Your iPhone and iPad are Mflop/s devices)
 Terascale Deskside: Multinode-Multicore

 Petacale Center: Multinode-Multicore

&
ICI.

- Example of typical parallel machine

Memory Controller

Shared L3 Cache

CI'EpLSocket. il

el
—
—
—
—
~~~
—~—
—~—
~—
~—
~
i
~




{\
A\ %
ICL

Example of typical parallel machine

Node/Board~ |

/ ~

/ <3
~
/ RS o
Chip/Socket — GPU | ... | Chip/Socket /| GPU Chip/Socket — GPU
/ 1

/ ~
g | ~

Core Core Core Core Core




e

A
icLor: ‘ :
Example of typical parallel machine
Shared memory programming between processes on a board and
a combination of shared memory and distributed memory programming
between nodes and cabinets
7 \‘~\
/ ~
+ ~N
/ ~
Node/Beasd- |_ Node/Board Nod/Board
/ S
/1 >~
7/ 7/ ~
/ >~
/7 TN o
Chip!/SIoCket — GPU Chip/Secket £ GPU Chip/Socket — GPU
/ P S
L, . =~
/
Core Core Core Core Core




£

ICL or-

Example of typical parallel machine

Combination of shared memory and distributed memory programming

Chip/%écket — GPU ... | Chip/Socket ™ GPU Chip/Socket — GPU

Vi
7




c

ICL

“June 2011: The TOP10

Rank Site Computer Country Cores [,,,2 ﬁ::;] lfe:}:

RIKEN Advanced Inst | K Computer Fujitsu SPARC64

! for Comp Sci VIIIfx + custom Japan 548,352 8.16 =
Nat. SuperComputer Tianhe-1A, NUDT

2 Center in Tianjin Intel + Nvidia GPU + custom LRl =

DOE / Os Jaguar, Cray

& Oak Ridge Nat Lab AMD + custom Led = R =
Nat. Supercomputer Nebulea, Dawning

& Center in Shenzhen Intel + Nvidia 6PU + IB HEREnl der =
GSIC Center, Tokyo Tusbame 2.0, HP

= Institute of Technology, Intel + Nvidia GPU + IB Japan VR Lol 2

DOE / NNSA Cielo, Cray

6 LANL & SNL AMD + custom usa |14z2272 1.11 | 81
NASA Ames Research Plelades SGI Altix ICE

7 Center/NAS 8200EX/8400EX + I8 A e e B

2l e Hopper, Cray
8 | Lawrence LB:gkeley Nat AMD + custom UsSA 153,408, 1.054 82
Commissariat a
9 | I'Energie Atomique e b 138,368 1.050 | 84
(CEA)
10 DOE / NNSA Roadrunner, IBM USA 122,400 1.04 76

Los Alamos Nat Lab

AMD + Cell GPU + IB




C

o June 2011: The TOP10

| Rank Site Computer Country Cores | Rmax | % of | Power GFlops/

[Pflops] | Peak | [MW]| Watt

1 RIKEN Advanced Inst | K Computer Fujitsu SPARC64

for Comp Sci VIITfx + custom Japan 548,352 8.16 93 9.9 824
Nat. SuperComputer Tianhe-1A, NUDT
- Center in Tianjin Intel + Nvidia GPU + custom - 186,368 2.57 55 4.04 | 636
DOE / Os Jaguar, Cray
3 Oak R{dqe Nat qu - AMD < custom USA 224,162 17..76 | 75 7.0 251
Nat. \Sup: r. on  ter /| et 4 ta,) 0.9 )i ig 1 (o
4 | centeila I o Il UNSUa\SAY + 1U 70.0907\]-27 4| [AS2-%8 | 493
6SIC Ce mer, ‘I l(' J Tusbame z 0, HpP —y X 14~
[ns v ut) o Te ~ht > )y (e)\+/ N4 B/ EDN | B \_Tapd ] : = ?, ~ .19 2 d -, 8F )
- a y 4 V4 A 4 L 2 7 A S Fw w ¥ 4 - _ V< 4 . 4R ‘| y 4 T
OOE / NNSA Cielo, Cray
6 LANL & SNL AMD + custom USA 142,272 1.11 81 3.98 279
NASA Ames Research Plelades SGI Altix ICE
4 Center/NAS 8200EX/8400EX + IB VoAl LT IO 1.09 s 85 [RUEEE
2l e Hopper, Cray
8 | Lawrence LB:gkeley Nat AMD + custom UsA 153,408, 1.054 82 | 2.91 362
Commissariat a
9 | I'Energie Atomigue UL, L) France 138,368 1.050 = 84 | 4.59 | 229
Intel + IB
(CEA)
DOE / NNSA Roadrunner, IBM
10 | o5 Alamos Nat Lab AMD + Cell GPU + IB USA |122,4000 1.04 | 76 | 2.35| 446

500 Energy Comp IBM Cluster, Intel + GigE China 7,104  .041 53



< Countries Share

Absolute Counts

US: 251
China: 64
Germany: 31
UK: 28
Japan: 26
France: 25

Mole-8 5MagiclC =& & L L 4
. ™ Y R P o T
Sl L ddddddaddaiiidiiddds

“Russiald TSI B N
ek ishiia o I R . siocle oEinlabd.d W . oo lelast




< Commodity plus Accelerator

Commodlty Accelerator (GPU)

iLJIZ Hc\vv/ Mﬁ@ﬂy of the

3GH 1.15 GHz
(

se GPUs?

Today only 17 systems on
the T@PS@@ US@ @PLS

terconnec
PCI-X 16 lan
64 Gb/s

1 GW/s

15



“ Future Computer Systems

" Most likely be a hybrid design

» Think standard multicore chips and
accelerator (GPUs)

" Today accelerators are attached
" Next generation more integrated

" Intel's MIC architecture “"Knights Ferry” anc
"Knights Corner” to come.

> 48 x86 cores
AMD
" AMD's Fusion in 2012 - 2013

> Multicore with embedded graphics ATI

" Nvidia's Project Denver plans to develop @
an integrated chip using ARM “
architecture in 2013.

16




¢ Performance Development in

~ Top500

17

1 Eflop/s *

100 Pflop/s -
10 Pflop/s -

1 Pflop/s
100 Tflop/s

10 Tflop/s

1 Tflop/s |

100 Gflop/ -
¥ —

10 Gflop/s _

I
+ 1 Gflop/s-

'A;Af‘ﬁlllllllIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
100 Mflop/s

1996
2002
2008
2014

2020




f. Broad Community Support and Development of
© the Exascale Initiative Since 2007

http://science.energy.gov/ascr/news-and-resources/program-documents/

"~ Town Hall Meetings April-June 2007

" Scientific Grand Challenges Workshops ity
Nov, 2008 — Oct, 2009

Climate Science (11/08)

High Energy Physics (12/08)

Nuclear Physics (1/09)

Fusion Energy (3/09)

Nuclear Energy (5/09)

Biology (8/09)

Material Science and Chemistry (8/09)

National Security (10/09)

Cross-cutting technologies (2/10)

Y

YV VYV V V V YV

" Exascale Steering Committee
> “Denver” vendor NDA visits (8/09)
> SCO09 vendor feedback meetings

» Extreme Architecture and Technology
Workshop (12/09)

" International Exascale Software Project

> Santa Fe, NM (4/09); Paris, France (6/09); Fundamental Science

Tsukuba, Japan (10/09); Oxford (4/10); Maui 18
(10/10); San Francisco (4/11)



¢ Potential System Architecture

ICL

Systems 2011
K Computer

System peak 8.7 Pflop/s
Power 10 MW
System memory 1.6 PB
Node performance 128 GF
Node memory BW 64 GB/s
Node concurrency 8

Total Node Interconnect BW 20 GB/s
System size (nodes) 68,544
Total concurrency 548,352
MTTI days



¢ Potential System Architecture
with a cap of $200M and 20MW

ICL

Systems 2011 2019 Difference
K Computer Today & 2019

System peak

Power

System memory

Node performance

Node memory BW

Node concurrency

Total Node Interconnect BW
System size (nodes)

Total concurrency

MTTI

8.7 Pflop/s

10 MW
1.6 PB
128 GF
64 GB/s
8
20 GB/s
68,544
548,352

days

1 Eflop/s 0(100)
~20 MW
1,2 or 15TF 0(10) - O(100)
2 - 4TB/s 0(100)
0(1k) or 10k 0(100) - O(1000)
200-400GB/s 0(10)
0(100,000) or O(1M) 0(10) - O(100)
O(hillion) Q(1,000)
O(1 day) - 0(10




0,
ICLVr"

Three Design Points for Tomorrow

" Terascale Laptop:

=
\ o pnaseitr s -
»Manycore T

" Petascale Deskside:
»Manynode-Manycore

" Exacale Center:
»Manynode-Manycore




¢ Major Changes to Software &
~_Algorithms

e Must rethink the design of our
algorithms and software

= Another disruptive technology

« Similar to what happened with cluster
computing and message passing

= Rethink and rewrite the applications,
algorithms, and software

= Data movement is expense

* Flop/s are cheap, so are provisioned in
excess



IcLOr-

Critical Issues at Peta & Exascale for
Algorithm and Software Design

* Synchronization-reducing algorithms
= Break Fork-Join model

 Communication-reducing algorithms

= Use methods which have lower bound on communication
* Mixed precision methods

= 2x speed of ops and 2x speed for data movement
* Autotuning

= Today’s machines are too complicated, build “smarts” into
software have experiment to optimize.

« Fault resilient algorithms
= Implement algorithms that can recover from failures/bit flips

« Reproducibility of results

= Today we can’t guarantee this. We understand the issues,
but some of our “colleagues” have a hard time with this.



Do you remember the 80’s and 90’s?

Algorithms follow hardware evolution along time.

LINPACK (80's)
(Vector operations)

Rely on
- Level-1 BLAS operations

LAPACK (90’s)
(Blocking, cache friendly)

Rely on
- Level-3 BLAS operations

ScalLAPACK (00’s) Rely on
(Distributed memory, -Level-3 BLAS operations
Message passing) - MPI for message passing

24



Blocked QR Factorization (LAPACK)

Panel

dgeqf2 + dlarft

I<— qr(I)

remaining submatrix |factorization

Update of the

dlarfb

=-00 0

25




Parallelization of QR Factorization

Parallelize the update:

* Easy and done in any reasonable software.
* This is the 2/3n3 term in the FLOPs count.

dgemm

—
-— -

* Can be done “efficiently” with LAPACK+multithreaded BLAS

Panel

dgeqf2 + dlarft

I<— qr(I)

Update of the

remaining submatrix |factorization

dlarfb

=-00 0

26

NN\ | /7

A\\V/4

}

A7 INN

i
Hil
7

Fork - Join parallelism
Bulk Sync Processing



N
< Parallel Tasks in LU/LLT/QR

I
J.J.J

> ——> Step4 .

o Break mto smaller tasks and remove
dependencies

-

n-EEE
:HHfHH“l || {m i'\:‘::
“Bma 1 oe [ \I\I
n S
|




N
<~ Data Layout is Critical

Y

Y

Y Y

* Tile data layout where each data tile
is contiguous in memory

- Decomposed into several fine-grained
tasks, which better fit the memory
of the small core caches



¢ PLASMA: Parallel Linear Algebra s/w

ICLOr"

for Multicore Architectures

‘Objectives
= High utilization of each core Cholesky
= Scaling to large number of cores x4
= Shared or distributed memory

‘Methodology
= Dynamic DAG scheduling (QUARK)
= Explicit parallelism
* Implicit communication
= Fine granularity / block data layout

*Arbitrary DAG with dynamic scheduling
I
5 tE E@:E “E a2 o ~ " Paralielism

DAG scheduled
parallelism

Time > 29




£L

A
IcLor-

Synchronization Reducing Algorithms

e Regular trace

e Factorization steps pipelined

e Stalling only due to natural
load imbalance

e Dynamic

e Out of order execution

e Fine grain tasks

¢ Independent block operations

The colored area over the
rectangle is the efficiency

L

I

vy

..‘r’“"._'
i

Tuat miua
' ‘.‘ ,ll

i ".*. I i

g

e

‘l

¥

ll '”wd].

'Ilr

Y.

Y

Tile QR factorization; Matrix size 4000x4000, Tile size 200
8-socket, 6-core (48 cores total) AMD Istanbul 2.8 GHz




IcLOr-

Reduction to Condensed Form for Symmetric
Eigenvalue Problem and Singular Value Decomposition

* For the symmetric eigenvalue problem the
reduction is the expensive part

* If just eigenvalues are required then 90% of
the time to perform the reduction.

» If both values and vectors needed then 50% of
the time spent in the reduction.

* The existing LAPACK and ScaLAPACK uses
two sided block Householder
transformations

« Results in a BLAS 2.5 based
implementation.



~" Reduction to Condensed Form for Symmetric Eigenvalue
Problem and Singular Value Decomposition

Idea:

*  Remove the fork join bottleneck
by breaking the first stage
algorithm into small
granularity tasks in order to
expose and to bring to the
fore the parallelism residing
within the BLAS library.

.
el
R R RN

01 2 3 4 5 6 7
QR factorisation on tile A(1,0)

*  The tile algorithm generates a
directed acyclic graph (DAG),
where nodes represent tasks
and edges describe the data
dependencies between them.

~ o

e I-.lll ssscleses

li3iiasasniss
=1 . eee.
fasskass

[
~ o

g i HHH T TR ‘;E 55'
I
£
°

*  Those tasks are scheduled
asynchronously in an out-of
-order fashion.



C

“Performance

-\

Eigenvalues [ eigenvalues only ]

Gflop/s

140
130
120
110
100
920
80
70
60
50
40
30
20
10
0

SInQUIar Values smgular values only]

- A- PLASMA DSYTRD | DGESVD
- ¢ - MKL-SBR-DSYRDB .- ﬁ 1 48 core AMD system
- B - SBR-toolkit-DSYRDD 2T AT 120
~+: MKL-DSYTRD _a-” r 50X
- & - LPK-ref -DSYTRD .- -
reference-DS o 100 PLASMA
IA” |
A Phe | 80
12X 2
,A — o 60
/, 5
’ | o
s 40
el ]
X
A | 20
4
~ MKL
, . 0 LAPACK
A, 0 5000 10000 15000 20000 25000 30000
’ 7 Size
B e iNeh
S A o < 4 ¢'>
,{' 4 lg saz@-82 9 H— -.-.-o_.--—ﬁ-—---m---.-m‘---—-m-—‘-—---—{ |
83-9-9-o-e-e-o-o-o-«>—---o----o---o---o---e---w---

2k 3k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k

Matrix size

Experiments on eight-socket six-core AMD Opteron 2.4 GHz

processors with MKL V10.3.

Block DAG based to banded form, then pipelined group
chasing to tridiagaonal form.

The reduction to condensed form accounts for the factor of
50 improvement over LAPACK

Execution rates based on 4/3n3 ops



£ Pipelining: Cholesky Inversion

3 Steps: Factor, Invert L, Multiply L’s

L e B

I-} e |
A

BRRAT " e 7

i I mm e I.l.l.lhlll 1 1 |?I“
A i
| u | ] oo
<. R
LLIII ||||| HDDIIII]
i @

TRTRI

,

LAUUM

48 cores
POTRF, TRTRI and LAUUM.
The matrix is 4000 x 4000,tile size is 200 x 200,

POTRF+TRTRI+LAUUM: 25 (7t-3)
Cholesky Factorization alone: 3t-2

Pipelined: 18 (3t+6)



&

“Software Stack

PLASMA )
5 PLASMA
g L J [ QUARK
2
T core BLAS [ POSIX threads ] [ hwloc
o >/ [
= LAPACK
e CBLAS
3 < L (C)LAPACK
£
£
8 BLAS
g

QUARK - QUeuing And Runtime for Kernels

LAPACK - Linear Algebra PACKage

BLAS - Basic Linear Algebra Subroutines

hwloc

- hardware locality




N
<. Communication Avoiding Algorithms

o Goal: Algorithms that communicate as little as possible

Jim Demmel and company have been working on algorithms
that obtain a provable minimum communication. (M. Anderson
yesterday)
Direct methods (BLAS, LU, QR, SVD, other decompositions)

« Communication lower bounds for all these problems

« Algorithms that attain them (all dense linear algebra, some
sparse)

Iterative methods - Krylov subspace methods for Ax=b, Ax=Ax

« Communication lower bounds, and algorithms that attain them
(depending on sparsity structure)

For QR Factorization they can show:

Lower bound

# flops O(mn?)
# words (")('\'/‘;‘_Vz)

2

# messages | O(21;)

w3/2




6
< Standard QR Block Reduction

 We have a m x n matrix A we want to
reduce to upper triangular form.




s
< Standard QR Block Reduction

 We have a m x n matrix A we want to
reduce to upper triangular form.

Q1TI » ]



s
< Standard QR Block Reduction

 We have a m x n matrix A we want to
reduce to upper triangular form.

‘ R
Q1T » Q2T » Q3T »

A =Q,Q,Q;R = QR



¢ Communication Avoiding QR

ICL

_ Example

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume I, Applications,
pages 1610-1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.



€ Communication Avoiding QR

ICL

__ Example

1
1
D, : omain_Tile_QR
1
1

D 1 omain_Tile_QR

1
D 2 L-) Domain_Tile_QR

1
D3 E-)Dom in_Tile_QR

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume I, Applications,
pages 1610-1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.



¢ Communication Avoiding QR

ICL

__ Example

I 3
I H
D, : omain_Tile_QR i
1
L) !
:” .
D, “aDomain_Tile_QR
Ly
— — —
r? 3
D 2 :‘-) Domain_Tile_QR i
1
‘> |
|"> 'J
1
D3 5—-)D0m in_Tile_QR

-

v

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume I, Applications,
pages 1610-1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.



£ Communication Avoiding QR

ICLOr"

__ _Example

I
I
D, : omain_Tile_QR
1
1

S | N | E— - )

\
4
1

D 1 omain_Tile_QR

D 2 L) Domain_Tile_QR

I —

]
D3 HDom in_Tile_QR

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume I, Applications,
pages 1610-1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.

A
]

- i e —— -




£ Communication Avoiding QR

ICLOr"

__ _Example

I
I
D, : omain_Tile_QR
1
1

S | N | E— - )

\
4
1

D 1 omain_Tile_QR

D 2 #2Domaijn_Tile_QR

I —

]
D3 HDom in_Tile_QR

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume I, Applications,
pages 1610-1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.

A

I

- i e —— -




Communication Reducing QR
Factorization

LH
A %
ICLVUr"

g % <
: g £
s 2 3 m 3
) _m.u_ o w
= a @ »

VT

.ﬁ /l
ooooooo
@ ¥ &« © © o ¥

s/doj

___ A_.....
\ !
_ \
- __ ,
) Y N
| /... _
. _ \
—1 y
Ml S
.|| x a i
7o S _._ __. —
/ __ \ |
| |
[
|
|
__
! | \
4[|



< Mixed Precision Methods

* Mixed precision, use the lowest
precision required to achieve a
given accuracy outcome

= [mproves runtime, reduce power
consumption, lower data movement

= Reformulate to find correction to
solution, rather than solution; Ax
rather than x.

S (xi)

S (xi)

Xi+1 = Xj —

46 : - i]: ;(();ii))



N

< |dea Goes Something Like This...

o Exploit 32 bit floating point as much as
possible.
= Especially for the bulk of the computation

e Correct or update the solution with selective
use of 64 bit floating point to provide a
refined results

e Intuitively:
= Compute a 32 bit result,

= Calculate a correction to 32 bit result using
selected higher precision and,

= Perform the update of the 32 bit results with the
correction using high precision.

47



N . . . . .
~ Mixed-Precision lterative Refinement

 Iterative refinement for dense systems, Ax = b, can work this

way.
L U = lu(A) o(n’)
x = L\(U\b) o(n’)
r=>b- Ax o(n’)
WHILE || r || not small enough
z = L\(U\r) o(n?
X=X+2Z o(n’)
r=>b- Ax o(n?
END

= Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
results when using DP fl pt.



N . . . . .
~ Mixed-Precision lterative Refinement

 Iterative refinement for dense systems, Ax = b, can work this

way.
L U = lu(A) SINGLE o(n’)
x = L\(U\b) SINGLE o(n?
r=>b- Ax DOUBLE o(n’)
WHILE || r || not small enough
z = L\(U\r) SINGLE o(n?
X=X+2Z DOUBLE o(n’)
r=b- Ax DOUBLE o(n?
END

= Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
results when using DP fl pt.

= |t can be shown that using this approach we can compute the solution
to 64-bit floating point precision.

Requires extra storage, total is 1.5 times normal;
O(n3) work is done in lower precision

O(n?) work is done in high precision

Problems if the matrix is ill-conditioned in sp; O(108)




Gflop/s

AX —_ b FERMI Tesla C2050: 448 CUDA cores @ 1.15GHz

SP/DP peak is 1030 / 515 GFlop/s

500

450

400

350

300

250

200

150

100

50

960 3200 5120

Single Precision

Double Precision
B =
e i

e

7040 8960 11200 13120

Matrix size




c

- AX = b FERMI  Tesla C2050: 448 CUDA cores @ 1.15GHz
SP/DP peak is 1030 / 515 GFlop/s

@ Direct solvers
- Factor and solve in working precision

@ Mixed Precision Iterative Refinement

- Factor in single (i.e. the bulk of the computation
in fast arithmetic) and use it as preconditioner
in simple double precision iteration, e.g.

X, =x+(LU_)"P (b—Ax)

500

Single Precision
450

400 : L
Mixed Precision

350

300

Double Precision

250 2 — (=0
++

Gflop/s

e
200

150

100

Similar results for Cholesky & QR
< factorizations

960 3200 5120 7040 8960 11200 13120

Matrix size



ICL

Sparse Direct Solver and Iterative
Refinement

52

MUMPS package based on multifrontal approach WhICh
generates small dense matrix multiplies

Opteron wiintel compiler I lterative Refinement

O Single Precision

Speedup Over DP
]
1.8

7
1.6-4 B
14
271

, _
084 | [f
0.6+

0.4

021
o—FM
[
6‘¢

Tim Davis's Collection, n=100K - 3M



N

< Sparse Iterative Methods (PCG)

 Quter/Inner lteration Inner iteration:

53 In 32 bit floating point

Outer iterations using 64 bit floating point

Compute 7(%) = b — Az(9 for some initial guess z(%) Compute r® = b — Az(®) for some initial guess (¥
f _1 2 for i:1,2,...' o
or 1=1,4,... solve Mz(i-1) = p(i=1)
solve M z(i=1) = p(i=1) pio1 = ri=D7 (-1

ifi=1
— =0T _(i-1 T = 0
)-02—.1 =1 ( ) ""( ) elfe
ifz=1 5(1‘31:/;7;—11)//01'—2 i
D= 00 4 gl
p(l) — :(O) enzzlif g
else = a0
ai = pi1 /PP ¢
Bi—1 = pi-1/pi-a £ = 207D 4 gipl9
(i) = ,(i-1) (i-1) e
p =z + /8 i—1P check convergence; continue if necessary
endif end

¢ = Apl)

Q; = Pi-l/P(iJTQ(i)

r(i) = 'r(i_l) —_ azq(l)

check convergence; continue if necessary
end

« Quter iteration in 64 bit floating point and inner
iteration in 32 bit floating point



e
A <
IcLOr"

2.5

54 2.25

2 4

1.75 1

1.5 1

1.25 4

0.75 1

Mixed Precision Computations for
Sparse Inner/Quter-type lterative Solvers

Speedups for mixed precision

Inner SP/Outer DP (SP/DP) iter. methods vs DP/DP
(CG?, GMRES?, PCG?, and PGMRES? with diagonal prec.)
(Higher is better)

mCG?
mPCG’
m GMRES °
m PGMRES’

11,142 25,980 79,275 230,793 602,091

Iterations for mixed precision
SP/DP iterative methods vs DP/DP

(Lower is better)

Machine:
Intel Woodcrest (3GHz, 1333MHz bus)

Stopping criteria:
Relative to 1, residual reduction (10-'?)

11,142 25,980 79,275 230,793 602,091 -&— Matrix Size

6,021 18,000 39,000 120,000 240,000 < Condition number



IcLOr-

Reproducibility

 For example Exi when done in parallel can’t
guarantee the order of operations.

* Lack of reproducibility due to floating point
nonassociativity and algorithmic adaptivity
(including autotuning) in efficient production
mode

- Bit-level reproducibility may be unnecessarily
expensive most of the time

* Force routine adoption of uncertainty
quantification

= Given the many unresolvable uncertainties in
program inputs, bound the error in the
outputs in terms of errors in the inputs

95



¢ Three Ideas for Fault Tolerant
Linear Algebra Algorithms

ICL

e Lossless diskless check-pointing for

iterative methods

e Checksum maintained in active processors

e On failure, roll back to checkpoint and

continue
e No lost data

Diskless Checkpointing

| P4

PO

P2

P3

P4

¢ When failure occurs:

> control passes to user
supplied handler

"~

> “subtraction” performed
to recover missing data

> P4 takes on role of P1
» Execution continue

P4 takes on the identity of P1
and the computation continues.

PO

P2

P3

& [




C Three ldeas for Fault Tolerg2:= heceonte

ICL

¢ When failure occurs:

> control passes to user
PO ® supplied handler

P4 > “subtraction” performed

Linear Algebra Algorithms . -

Lossy approach for iterative methods

* No checkpoint for computed data
maintained

e On failure, approximate missing data
and carry on

e Lost data but use approximation to
recover

> P4 takes on role of P1
> Execution continue

P4 takes on the identity of P1
and the computation continues.

PO PO
P4 P1
P2 P3

P2 P3

Lossy Algorithm : Basic Idea

¢ Let us assume that the exact solution of
the system Ax=b is stored on different
processors by rows

A X = 3 steps
Step 1: recover a processor and a
Processor 1 running parallel environment (the job
Processor 2 of the FT-MPI library)
- Processor 3 Step 2: recover Ay; Ay, ..., A, and b,
Processor 4 (the original data) on the failed
Processor 5 processor
Processor 6 Step 3: Notice that
Agy Xg + Ao Xo + .o + Ay X, = b=
Xy = A, 1 (b, = Zinhyi x)




C Three Ideas for Fault Tolerg2es heceontne

ICL

> control passes to user
PO ® supplied handler

P4 > “subtraction” performed

Linear Algebra Algorithms . -

> P4 takes on role of P1
> Execution continue

P4 takes on the identity of P1
and the computation continues.

PO PO
P4 P1

Lossy Algorithm : Basic Idea

o ¢ Let us assume that the exact solution of
the system Ax=b is stored on different
processors by rows

[ ) A X =b 3 steps
Step 1: recover a processor and a
Processor 1 running parallel environment (the job
[ Processor 2 of the FT-MPI library)
= Processor 3 Step 2: recover Ay; Ay, ..., Ay and b,
Processor 4 (the original data) on the failed

processor

Step 3: Notice that
Agy Xy + Agp Xp + .o + Ay X = b=
['v —an 5k 25 Al

An Example: Scal.APACK/PBLAS Matrix Multiplication

Processor 5
Py Processor 6

Check-pointless methods for dense

algorithms [ s e Xl
e Checksum maintained as part of S I P S AT
computation - . e
* No roll back needed; No lost data -l C s

Z ¢ Z .6 ZLZLC

+ Single failure during computation can be recovered from the checksum
relationship

+ By using a floating-point version Reed-Solomon code, multiple failures can
be tolerated



IcLOr-

Conclusions

* For the last decade or more, the research
investment strategy has been
overwhelmingly biased in favor of hardware.

* This strategy needs to be rebalanced -
barriers to progress are increasingly on the

software side.

e High Performance Ecosystem out of balance

= Hardware, OS, Compilers, Software, Algorithms, Applications
 No Moore’s Law for software, algorithms and applications

« Our community is needed and has a great deal to
offer.

* "The golden age of humerical analysis has not yet
started!” - volker Mehrmann



/6
“PLASMA

People

e Current Team

Dulceneia Becker
Henricus Bouwmeester
Jack Dongarra

Mathieu Faverge
Azzam Haidar

Blake Haugen

Jakub Kurzak

Julien Langou

Hatem Ltaief

Piotr Luszczek

e Past Members e Outside Contributors
e Emmanuel Agullo e Fred Gustavson
e Wesley Alvaro e Lars Karlsson
e Alfredo Buttari e Bo Kagstrom
e Bilel Hadri

NVIDIA

-

: a , J\The MathWorks
' Microsoft




