
6/30/11 1 

Jack Dongarra 
University of Tennessee 

Oak Ridge National Laboratory 
University of Manchester  

24th Biennial Conference on Numerical Analysis, June 28th - July 1st 2011 



•  Since then there have been tremendous changes
 in our scientific computing environment. 

•  Many changes in Mathematic Software and
 Numerical Libraries 
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LINPACK 
EISPACK 

BLAS / ATLAS 
Sca/LAPACK 
PVM / MPI 

MINPACK LAPACK 
ARPACK 

EISPACK 
MINPACK 
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EISPACK FUNPACK 

MAPLE 

MPI 
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•  Are needed by applications 

•  Applications are given (as function of time) 
•  Architectures are given (as function of time) 

•  Algorithms and software must be adapted or
 created to bridge to computer architectures
 for the sake of the complex applications 
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•  Gigascale Laptop:  Uninode-Multicore 
(Your iPhone and iPad are Mflop/s devices) 

•  Terascale Deskside:  Multinode-Multicore  

•  Petacale Center:  Multinode-Multicore 
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Rank      Site Computer Country Cores Rmax 
[Pflops] 

% of 
Peak 

Power 
[MW] 

GFlops/
Watt 

1 RIKEN Advanced Inst 
for Comp Sci 

K Computer Fujitsu SPARC64 
VIIIfx + custom Japan 548,352 8.16 93 9.9 824 

2 Nat. SuperComputer 
Center in Tianjin 

Tianhe-1A, NUDT  
Intel + Nvidia GPU + custom China 186,368 2.57 55 4.04 636 

3 DOE / OS                 
Oak Ridge Nat Lab 

Jaguar,  Cray  
 AMD + custom USA 224,162 1.76 75 7.0 251 

4 Nat. Supercomputer 
Center in Shenzhen 

Nebulea, Dawning 
Intel +  Nvidia GPU + IB China 120,640 1.27 43 2.58 493 

5 GSIC Center, Tokyo 
Institute of Technology 

Tusbame 2.0, HP  
Intel + Nvidia GPU + IB Japan 73,278 1.19 52 1.40 850 

6 DOE / NNSA         
LANL & SNL 

Cielo, Cray  
AMD + custom USA 142,272 1.11 81 3.98 279 

7 NASA Ames Research 
Center/NAS 

Plelades SGI Altix ICE 
8200EX/8400EX + IB USA 111,104 1.09 83 4.10 265 

8 
DOE / OS  

Lawrence Berkeley Nat 
Lab 

Hopper, Cray 
AMD + custom USA 153,408 1.054 82 2.91 362 

9 
Commissariat a 

l'Energie Atomique 
(CEA) 

Tera-10,  Bull  
Intel + IB France 138,368 1.050 84 4.59 229 

10 DOE / NNSA 
Los Alamos Nat Lab 

Roadrunner, IBM  
AMD + Cell GPU + IB USA 122,400 1.04 76 2.35 446 
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Absolute Counts 
US:  251 
China:    64 
Germany:    31 
UK:    28 
Japan:    26 
France:    25 
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Intel Xeon 
8 cores 
3 GHz 

8*4 ops/cycle 
96 Gflop/s (DP) 

Nvidia C2050 “Fermi” 
448 “Cuda cores” 
1.15 GHz 
448 ops/cycle 
515 Gflop/s (DP) 

Commodity Accelerator (GPU) 

Interconnect 
PCI-X 16 lane 
64 Gb/s 
1 GW/s 

3 GB 



¨  Most likely be a hybrid design 
 Think standard multicore chips and

 accelerator (GPUs) 
¨  Today accelerators are attached 
¨  Next generation more integrated 
¨  Intel’s MIC architecture “Knights Ferry” and

 “Knights Corner” to come. 
  48 x86 cores 

¨  AMD’s Fusion in 2012 - 2013 
 Multicore with embedded graphics ATI 

¨  Nvidia’s Project Denver plans to develop              
 an integrated chip using ARM                     
 architecture in 2013. 
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¨  Town Hall Meetings April-June 2007 
¨  Scientific Grand Challenges Workshops 

Nov, 2008 – Oct, 2009 
  Climate Science (11/08) 
  High Energy Physics (12/08) 
  Nuclear Physics (1/09)  
  Fusion Energy (3/09)  
  Nuclear Energy (5/09) 
  Biology (8/09) 
  Material Science and Chemistry (8/09) 
  National Security (10/09) 
  Cross-cutting technologies (2/10) 

¨  Exascale Steering Committee 
  “Denver” vendor NDA visits (8/09) 
  SC09 vendor feedback meetings 
  Extreme Architecture and Technology 

Workshop (12/09) 

¨  International Exascale Software Project 
  Santa Fe, NM (4/09); Paris, France (6/09); 

Tsukuba, Japan (10/09); Oxford (4/10); Maui 
(10/10); San Francisco (4/11) 

Mission Imperatives 

Fundamental Science 

http://science.energy.gov/ascr/news-and-resources/program-documents/ 



Systems 2011 
K Computer 

2018  Difference 
Today & 2018 

System peak 8.7 Pflop/s 1 Eflop/s O(100) 

Power 10 MW ~20 MW 

System memory 1.6 PB 32 - 64 PB O(10) 

Node performance 128 GF 1,2  or 15TF O(10) – O(100) 

Node memory BW 64 GB/s 2 - 4TB/s O(100) 

Node concurrency 8 O(1k) or 10k O(100) – O(1000) 

Total Node Interconnect BW 20 GB/s 200-400GB/s O(10) 

System size (nodes) 68,544 O(100,000) or O(1M) O(10) – O(100) 

Total concurrency 548,352 O(billion) O(1,000) 

MTTI days O(1 day) - O(10) 
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¨ Terascale Laptop:   
 Manycore 

¨  Petascale Deskside:   
 Manynode-Manycore  

¨ Exacale Center:   
 Manynode-Manycore 
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• Must rethink the design of our
 algorithms and software 
  Another disruptive technology 

• Similar to what happened with cluster
 computing and message passing 

  Rethink and rewrite the applications,
 algorithms, and software 

  Data movement is expense 
  Flop/s are cheap, so are provisioned in

 excess  



•  Synchronization-reducing algorithms 
  Break Fork-Join model 

•  Communication-reducing algorithms 
  Use methods which have lower bound on communication 

•  Mixed precision methods 
  2x speed of ops and 2x speed for data movement 

•  Autotuning 
  Today’s machines are too complicated, build “smarts” into

 software have experiment to optimize. 

•  Fault resilient algorithms 
  Implement algorithms that can recover from failures/bit flips 

•  Reproducibility of results 
  Today we can’t guarantee this. We understand the issues,

 but some of our “colleagues” have a hard time with this. 



Do	
  you	
  remember	
  the	
  80’s	
  and	
  90’s?	
  
Algorithms	
  follow	
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  evoluGon	
  along	
  Gme.	
  

LINPACK	
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(Vector	
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LAPACK	
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ScaLAPACK	
  (00’s)	
  
(Distributed	
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  -­‐	
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  for	
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  (LAPACK)	
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ParallelizaGon	
  of	
  QR	
  FactorizaGon	
  

Parallelize	
  the	
  update:	
  
• 	
  Easy	
  and	
  done	
  in	
  any	
  reasonable	
  soQware.	
  
• 	
  This	
  is	
  the	
  2/3n3	
  term	
  in	
  the	
  FLOPs	
  count.	
  
• 	
  Can	
  be	
  done	
  “efficiently”	
  with	
  LAPACK+mulAthreaded	
  BLAS	
  

- 

dgemm 
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Fork - Join parallelism 
Bulk Sync Processing 



•  Break into smaller tasks and remove
 dependencies 



•  Tile data layout where each data tile
 is contiguous in memory 

•  Decomposed into several fine-grained
 tasks, which better fit the memory
 of the small core caches 28 



• Objectives 
  High utilization of each core 
  Scaling to large number of cores 
  Shared or distributed memory 

• Methodology 
  Dynamic DAG scheduling (QUARK) 
  Explicit parallelism 
  Implicit communication 
  Fine granularity / block data layout 

• Arbitrary DAG with dynamic scheduling 
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Fork-join 
parallelism 

DAG scheduled 
parallelism 

Time 



Tile QR factorization; Matrix size 4000x4000, Tile size 200 
8-socket, 6-core (48 cores total) AMD Istanbul 2.8 GHz 

  Regular trace 
  Factorization steps pipelined 
  Stalling only due to natural
 load imbalance 

  Dynamic 
  Out of order execution 
  Fine grain tasks 
  Independent block operations 

The colored area over the
 rectangle is the efficiency 



•  For the symmetric eigenvalue problem the
 reduction is the expensive part 
  If just eigenvalues are required then 90% of

 the time to perform the reduction. 
  If both values and vectors needed then 50% of

 the time spent in the reduction. 

•  The existing LAPACK and ScaLAPACK uses
 two sided block Householder
 transformations 

•  Results in a BLAS 2.5 based
 implementation.  



Idea: 
•  Remove the fork join bottleneck

 by breaking the first stage
 algorithm into small
 granularity tasks in order to
 expose and to bring to the
 fore the parallelism residing
 within the BLAS library. 

•  The tile algorithm generates a
 directed acyclic graph (DAG),
 where nodes represent tasks
 and edges describe the data
 dependencies between them. 

•  Those tasks are scheduled
 asynchronously in an out-of
-order fashion. 
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PLASMA DSYTRD
MKL SBR DSYRDB
SBR toolkit DSYRDD
MKL DSYTRD
LPK reference DSYTRD

50X

12X

Performance 
Eigenvalues Singular Values singular values  only 

•  Block DAG based to banded form, then pipelined group
 chasing to tridiagaonal form. 

•  The reduction to condensed form accounts for the factor of
 50 improvement over LAPACK 

•  Execution rates based on 4/3n3 ops 

eigenvalues only 

 Experiments on eight-socket six-core AMD Opteron 2.4 GHz
 processors with MKL V10.3. 
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POTRF+TRTRI+LAUUM: 25 (7t-3) 
Cholesky Factorization alone: 3t-2 

48 cores 
POTRF, TRTRI and LAUUM. 
The matrix is 4000 x 4000,tile size is 200 x 200, 

Pipelined: 18 (3t+6) 



Software Stack 
PLASMA 

BLAS 

(C)LAPACK 

LAPACK 
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core BLAS POSIX threads hwloc 
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QUARK  - QUeuing And Runtime for Kernels 

LAPACK  - Linear Algebra PACKage 

BLAS  - Basic Linear Algebra Subroutines 

hwloc  - hardware locality 



•  Goal: Algorithms that communicate as little as possible 
•  Jim Demmel and company have been working on algorithms

 that obtain a provable minimum communication. (M. Anderson
 yesterday) 

•  Direct methods (BLAS, LU, QR, SVD, other decompositions) 
•  Communication lower bounds for all these problems 
•  Algorithms that attain them (all dense linear algebra, some

 sparse) 

•  Iterative methods – Krylov subspace methods for Ax=b, Ax=λx 
•  Communication lower bounds, and algorithms that attain them

 (depending on sparsity structure) 
•  For QR Factorization they can show: 
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•  We have a m x n matrix A we want to
 reduce to upper triangular form. 



•  We have a m x n matrix A we want to
 reduce to upper triangular form. 

Q1T 



•  We have a m x n matrix A we want to
 reduce to upper triangular form. 

R 

A = Q1Q2Q3R = QR 

Q1T Q2T Q3T 



A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd 
Conference on Hypercube Concurrent Computers and Applications, volume II, Applications, 
pages 1610‒1620, Pasadena, CA, Jan. 1988. ACM. Penn. State. 
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Communication Reducing QR 
Factorization 

Quad-socket, quad-core machine Intel Xeon EMT64 E7340 at 2.39 GHz.  
Theoretical peak is  153.2 Gflop/s with 16 cores. 

Matrix size 51200 by 3200 



•  Mixed precision, use the lowest
 precision required to achieve a
 given accuracy outcome 
  Improves runtime, reduce power

 consumption, lower data movement 
  Reformulate to find correction to

 solution, rather than solution; Δx
 rather than x. 
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•  Exploit 32 bit floating point as much as
 possible. 
  Especially for the bulk of the computation 

•  Correct or update the solution with selective
 use of 64 bit floating point to provide a
 refined results 

•  Intuitively:  
  Compute a 32 bit result,  
  Calculate a correction to 32 bit result using

 selected higher precision and, 
  Perform the update of the 32 bit results with the

 correction using high precision.  



L U = lu(A)    SINGLE   O(n3) 
x = L\(U\b)    SINGLE   O(n2) 
r = b – Ax    DOUBLE   O(n2) 
WHILE || r || not small enough 
        z = L\(U\r)    SINGLE   O(n2) 
        x = x + z    DOUBLE   O(n1) 
        r = b – Ax    DOUBLE   O(n2) 
END 

•  Iterative refinement for dense systems,   Ax = b, can work this
 way. 

  Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
 results when using DP fl pt. 



L U = lu(A)    SINGLE   O(n3) 
x = L\(U\b)    SINGLE   O(n2) 
r = b – Ax    DOUBLE   O(n2) 
WHILE || r || not small enough 
        z = L\(U\r)    SINGLE   O(n2) 
        x = x + z    DOUBLE   O(n1) 
        r = b – Ax    DOUBLE   O(n2) 
END 

•  Iterative refinement for dense systems,   Ax = b, can work this
 way. 

  Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
 results when using DP fl pt. 

  It can be shown that using this approach we can compute the solution
 to 64-bit floating point precision. 

•  Requires extra storage, total is 1.5 times normal; 
•  O(n3) work is done in lower precision 
•  O(n2) work is done in high precision 
•  Problems if the matrix is ill-conditioned in sp; O(108) 
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MUMPS package based on multifrontal approach which  
generates small dense matrix multiplies 



53 •  Outer/Inner Iteration 

•  Outer iteration in 64 bit floating point and inner
 iteration in 32 bit floating point 

Inner iteration: 
In 32 bit floating point 

Outer iterations using 64 bit floating point 
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2	



           6,021        18,000        39,000       120,000     240,000	



Matrix size	



Condition number	



Machine:���
   Intel Woodcrest (3GHz, 1333MHz bus)���

Stopping criteria:���
   Relative to r0 residual reduction (10-12)	



Speedups for mixed precision ���
Inner SP/Outer DP (SP/DP) iter. methods vs DP/DP ���
(CG2, GMRES2, PCG2, and PGMRES2 with diagonal prec.)���
(Higher is better)	



Iterations for mixed precision ���
SP/DP iterative methods vs DP/DP ���
(Lower is better)	



2	


2	



2	





•  For example           when done in parallel can’t
 guarantee the order of operations. 

•  Lack of reproducibility due to floating point
 nonassociativity and algorithmic adaptivity
 (including autotuning) in efficient production
 mode 

•  Bit-level reproducibility may be unnecessarily
 expensive most of the time 

•  Force routine adoption of uncertainty
 quantification  
  Given the many unresolvable uncertainties in

 program inputs, bound the error in the
 outputs in terms of errors in the inputs 
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•  Lossless	
  diskless	
  check-­‐poinGng	
  	
  for
	
  iteraGve	
  methods	
  
•  Checksum	
  maintained	
  in	
  acGve	
  processors	
  
•  On	
  failure,	
  roll	
  back	
  to	
  checkpoint	
  and

	
  conGnue	
  
•  No	
  lost	
  data	
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  recover	
  



•  Lossless	
  diskless	
  check-­‐poinGng	
  	
  for
	
  iteraGve	
  methods	
  
•  Checksum	
  maintained	
  in	
  acGve	
  processors	
  
•  On	
  failure,	
  roll	
  back	
  to	
  checkpoint	
  and

	
  conGnue	
  
•  No	
  lost	
  data	
  

•  Lossy	
  approach	
  for	
  iteraGve	
  methods	
  
•  No	
  checkpoint	
  maintained	
  
•  On	
  failure,	
  approximate	
  missing	
  data	
  and

	
  carry	
  on	
  
•  Lost	
  data	
  but	
  use	
  approximaGon	
  to	
  	
  	
  	
  	
  	
  	
  	
  	
  

	
  recover	
  
•  Check-­‐pointless	
  methods	
  for	
  dense

	
  algorithms	
  
•  Checksum	
  maintained	
  as	
  part	
  of

	
  computaGon	
  
•  No	
  roll	
  back	
  needed;	
  No	
  lost	
  data	
  



•  For the last decade or more, the research
 investment strategy has been
 overwhelmingly biased in favor of hardware.  

•  This strategy needs to be rebalanced -
 barriers to progress are increasingly on the
 software side.   

•  High Performance Ecosystem out of balance 
  Hardware, OS, Compilers, Software, Algorithms, Applications 

•  No Moore’s Law for software, algorithms and applications 

•  Our community is needed and has a great deal to
 offer. 

•  "The golden age of numerical analysis has not yet
 started!” - Volker Mehrmann 
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