
1

1

Trends of Scientific Computation Trends of Scientific Computation 

Jack Dongarra
University of Tennessee 
and
Oak Ridge National Laboratory

2

Numerical LibrariesNumerical Libraries
? 20 years ago

– 1 Mflop/s - Scalar based
» Linpack, Level 1 BLAS, loop unrolling

? 10 years ago
– 1 Gflop/s - Vector & SMP computing, cache aware

» LAPACK, Level 2 & 3 BLAS, block partitioned, latency tolerant
? Today

– 1 Tflop/s - Highly parallel, network based, message passing
» ScaLAPACK, data decomposition, communication/computation

? 10 years away
– 1 Pflop/s - Many more levels MH, combination/grids&HPC

» More adaptive, LT and bandwidth aware, fault tolerant, 
extended precision, attention to SMP nodes



2

3

Technology Trends: Technology Trends: 
Microprocessor CapacityMicroprocessor Capacity

2X transistors/Chip Every 1.5 years
Called “Moore’s Law”

Moore’s Law

8087 80287
6881

80387

R2000

i860
RS6000/540

AlphaRS6000/590
Alpha

Cray 1S

Cray X-MP

Cray 2 Cray Y-MP
Cray C90 Cray T90

19981988

100 Mflop/s

1 Gflop/s



3

5

DirectionsDirections

?Move toward clusters
– Distributed Memory
– deep memory hierarchy

? Efficiency of message passing and 
data parallel programming
– Helped by standards efforts such as 
MPI, PVM, and OpenMP 

6

Challenges in Developing Challenges in Developing 
Distributed Memory LibrariesDistributed Memory Libraries

? How to integrate software?
– Until recently no standards
– Many parallel languages
– Various parallel programming 

models
– Assumptions about the parallel 

environment
» granularity
» topology
» overlapping of 

communication/computation
» development tools

? Where is the data
– Who owns it?
– Opt data distribution

? Who determines data 
layout
– Determined by user?
– Determined by library 

developer?
– Allow dynamic data dist.
– Load balancing



4

7

Performance Issues Performance Issues -- Cache &BandwidthCache &Bandwidth

? Performance instability
– Small changes may cause dramatic changes in 

delivered performance.
? Latency tolerant and bandwidth 

parsimonious algorithms and             
software are critical 
– Recompute rather than store/load

? Need to help the compiler
? Have a hard time today                     

getting performance
– Only going to get harder

Regist ers
L 1 Cache
L 2 Cache

Local M em ory

Rem ote M em ory

Secon dary M em ory

L 3  Cache

8

History of Block Partitioned History of Block Partitioned 
AlgorithmsAlgorithms

? Early algorithms involved use of 
small main memory using tapes as 
secondary storage.

? Recent work centers on use of 
vector registers, level 1 and 2 
cache, main memory, and “out of 
core” memory.



5

9

Blocked Partitioned Blocked Partitioned 
AlgorithmsAlgorithms
? LU Factorization
? Cholesky 

factorization
? Symmetric indefinite 

factorization
? Matrix inversion
? QR, QL, RQ, LQ 

factorizations
? Form Q or QTC

? Orthogonal 
reduction to:
– (upper) Hessenberg 

form
– symmetric tridiagonal 

form
– bidiagonal form

? Block QR iteration 
for nonsymmetric 
eigenvalue problems

LAPACK and ScaLAPACK are build on these

10

Gaussian Gaussian EliminationElimination

0
x

x

x
x

.

.

.

Standard Way
subtract a multiple of a row

0

x

0
0

. . .

0

LINPACK
apply sequence to a column

x

nb

then apply nb to rest of matrix
a3 = a3 -a1*a2

a3

a2

a1

L

a2 = L-1 a2

0

x

0
0

. . .

0

nb LAPACK
apply sequence to nb                                                          



6

11

LU Algorithm:
1: Split matrix into two rectangles (m x n/2)

if only 1 column, scale by reciprocal of pivot & return

2: Apply LU Algorithm to the left part

3: Apply transformations to right part 
(triangular solve A12 = L-1A12 and                
matrix multiplication A22=A22 -A21*A12 )

4: Apply LU Algorithm to right part

Gaussian Gaussian Elimination via a Elimination via a 
Recursive AlgorithmRecursive Algorithm

L A12

A21 A22

F. G ustavson  an d S. Toledo

12

Dense recursive factorizationDense recursive factorization

? The algorithm:
function rlu(A)
begin

rlu(A11); recursive call
A21? A21 ·U-1(A11); xTRSM() on upper triangular submatrix
A12 ? L1

-1(A11) ·A12; xTRSM() on lower triangular submatrix
A22 ? A22-A21·A12; xGEMM()
rlu(A22); recursive call

end.

? Performs BLAS Level 3 operations on 
large matrix blocks (n2/2, n2/4, n2/8, …)



7

13

Recursive FactorizationsRecursive Factorizations
? Larger matrix-matrix operations 

performed
? Automatic Blocking

– Drive the recursion down to 1
– No blocksize needed

? Applies to LU, Cholesky and QR 
factorization
– QR needs some care because of triangular 

matrix in block Householder
? Unclear if ideas applies to 2-sided 

algorithms (reduction for eigenvalue 
problem)

14

LU  Performance LU  Performance 
Recursive/BlockedRecursive/Blocked

IBM Power3 200 MHz

0
100
200
300
400
500
600
700

100 20
0

300 40
0

500 600 70
0

800 90
0

10
00

Order of vector/Matrices

M
flo

p/
s

SUN US2200 200MHz

0
100
200
300

10
0

300 500 70
0

90
0

Order of vector/Matrices

M
flo

p/
s

DEC Alpha 500 MHz

0
200
400
600
800

10
0

300 50
0

700 90
0

Order of vector/Matrices

M
flo

p/
s

Intel Pentium II - 266 MHz

0

50

100

150

200

100 20
0

30
0

400 50
0

60
0

700 80
0

90
0

100
0

Order of vector/Matrices

M
flo

p/
s

Recursive

Blocked

Recursive

Recursive

Recursive

Blocked

Blocked
Blocked



8

15

Sparse Sparse Gaussian Gaussian EliminationElimination
? Sparse Elimination much more 

complicated than dense
– Only store and compute with nonzero 

entries in A
– More nonzero “fill-in” as elimination 

proceeds
– Hard to organize the algorithm so 

that most time not spent in 
traversing data structures, rather 
than floating point.

– Fill-in, parallelizability, cost 
depends strongly on order of 
equations.

– Many parallelization strategies, 
depending on structure.

16

Sparse Gaussian EliminationSparse Gaussian Elimination
? Want to exploit block 

operations in sparse 
matrix

? Designed to exploit 
memory hierarchy
– Serial Supernode-

panel organization 
permits "BLAS 2.5" 
performance 

– Up to 40% of machine 
peak on large sparse 
matrices on IBM 
RS6000/590, MIPS 
R8000, 25% on Alpha 
21164

IBM RS/6000 Power 3 (200 MHz, 800 Mflop/s Peak)

0
100
200
300
400
500
600
700
800

10 100 200 300 400 500
Order of vector/Matrices

M
flo

p/
s

Level 3  BLAS

Level 2 BLAS

Level 1 BLAS



9

17

Sparse recursive factorization algorithmSparse recursive factorization algorithm

? Main problems:
– no large blocks that could be passed to xGEMM()
– no fast xGEMM() counterpart for sparse data structures
– fill reducing ordering required
– pivoting is harder on sparse data structures

? Solutions
– create dense blocks for dense xGEMM() by storing some 

zero values explicitly:

?
x x

x
x

x
x

x x

x 0 x
0 x 0
0 0 x

x 0 0
0 x 0
x 0 x

18

Sparse Recursive Factorization Sparse Recursive Factorization 
AlgorithmAlgorithm
? Solutions - continued

– fast sparse xGEMM() is two-level algorithm
» recursive operation on sparse data structures
» dense xGEMM() call when recursion reaches 
single block

? fill reducing ordering can be applied 
before recursive algorithm

? no partial pivoting
– use iterative improvement or
– pivot only within blocks



10

19

Recursive storage conversion steps
Matrix divided into 2x2 blocks Matrix with explicit 0’s and fill-in

Recursive algorithm division lines

? - original nonzero value
0 - zero value introduced due to 

blocking
x - zero value introduced due to fill-in

20

Many Sparse Direct SolversMany Sparse Direct Solvers

www.netlib.org/utk/people/JackDongarra/la-sw.html



11

21

Iterative Solvers Iterative Solvers -- Krylov Krylov 
Subspace MethodsSubspace Methods
? Iterative methods for

– Ax = b and Ax = ? x
? Ingredients

– Matrix vector multiplication Ax, possibly Atz
– Dot products, Saxpy’s, Scaling vectors
– “Preconditioner”, M, such that MA is better conditioned than 

A
? Many methods with different properties

– For Ax = b: CG, GMRES, QMR, …
– For Ax = ? x: Lanczos, Arnoldi, …

? Many preconditioners: Jacobi, SOR, ILU, Domain 
Decomposition, Multigrid, …

? Best choice problem dependent, no easy answer

22

Decision TreeDecision Tree

? “Templates for the Solution of Linear Systems”
– Book with short description of each method & advice
– Pseudocode + Matlab, Fortran, and C
– http://www.netlib.org/templates/Templates.html



12

23

Iterative SolversIterative Solvers
www.netlib.org/utk/people/JackDongarra/la-sw.html

Today Developing Application Codes Today Developing Application Codes 
that Scale to Thousands of Processorsthat Scale to Thousands of Processors
? Certain applications needs 

drive development of new 
codes
– 3D, high-resolution (1000x)
– better physics (100x)

? Math & CS research is 
essential
– need 10-100X speedup 

from smarter algorithms
– using modern software 

development & engineering 
practices

– investment in algorithm 
research leverages huge 
hardware investment

Overall scalability requires 
algorithmic, parallel, and 
platform scalability

Algorithmic scalability

Scalable parallel
implementation

Scalable computing platform

Scalable 
application



13

Scalable Algorithms are the Scalable Algorithms are the 
Key to Key to TerascaleTerascale SimulationSimulation

? Algorithmic scalability is 
independent of parallel 
scalability

? An iterative method is 
scalable if the number 
of iterations required 
for convergence does 
not depend on problem 
size

? An algorithm 
implementation is 
scalable if the time-to-
solution is constant as 
problem size increases 
with machine size

Scalability of Linear Solvers

unscalable

scalable

Problem Size (increasing with number of 
processors)

Ti
m

e 
to

 S
ol

ut
io

n

200

150

50

0

100

10 100 10001

Scalable Parallel Scalable Parallel MultigridMultigrid
MethodsMethods

smoother

Finest Grid

First Coarse Grid
coarser grid has fewer cells

(less work & storage)

Restriction
transfer from fine 
to coarse grid

Recursively apply this 
idea until we have an 
easy problem to solve

A Multigrid V-cycle

Prolongation
transfer from coarse 
to fine grid



14

27

Numerical Algorithms and Numerical Algorithms and 
SoftwareSoftware
? Numerical computing will be adaptive, iterative, 

exploratory, and intelligent.
? Determinism in numerical computing will be 

gone.
– After all, its not reasonable to ask for exactness in numerical computations.
– Audibility of the computation, reproducibility at a 

cost
? Importance of floating point arithmetic will be 

undiminished.
– 16, 32, 64, 128 bits and beyond.
– Standards being developed

? New methods, multipole methods and their 
descendants will be ubiquitous.

? Standards are critical, need to evolve

28

Major Challenge Major Challenge -- AdaptivityAdaptivity
? These characteristics have major 
implications for applications that 
require performance guarantees.

? Adaptivity is a key so applications can 
function appropriately... 
– as resource utilization and availability change,
– as processors and networks fail, 
– as old components are retired, 
– as new systems are added, and 
– as both software and hardware on existing 

systems are updated and modified.



15

29

ConclusionsConclusions
? Numerical linear algebra major activity in 

applied mathematics
? Uses tools from CS, Applied Math, and 

Pure Math.
? Constant stream of new applications 

demands new algorithms.
? More information see:

www.netlib.org/utk/people/JackDongarra/la-sw.html


