Trends of Scientific Computation

Jack Dongarra

University of Tennessee
and
Oak Ridge National Laboratory

Numerical Libraries

2 20 years ago
— 1 Mflop/s - Scalar based
» Linpack, Level 1 BLAS, loop unrolling
2 10 years ago
— 1 Gflop/s - Vector & SMP computing, cache aware
» LAPACK, Level 2 & 3 BLAS, block partitioned, latency tolerant
2 Today
— 1 Tflop/s - Highly parallel, network based, message passing
» ScalAPACK, data decomposition, communication/computation
2 10 years away

— 1 Pflop/s - Many more levels MH, combination/grids&HPC

» More adaptive, LT and bandwidth aware, fault tolerant,
extended precision, attention to SMP nodes

Technology Trends:
Microprocessor Capacity

1975 1980 1985 1980 1998

1o

L
10M srpe 500
{transistors) I}.‘IL;‘E;(? (mips)
™ Pentiym: 25
B04K8 Processor
100K @.-IB0ane 1.0
Bo2ag
10K ‘BUM a1
‘L’iUI_\,U
004 0.0l
2X transistors/Chip Every 1.5 years leIOJ/S L
Crhv D
Called “Moore'sLaw” P
- 100 Mflop/s Cray|X-
P
Cray 18
e
T+
Bpeq | do2 78T

Directions

2 Move toward clusters
— Distributed Memory
— deep memory hierarchy

2 Efficiency of message passing and
data parallel programming

— Helped by standards efforts such as
MPI1, PVM, and OpenMP

Challengesin Developing
Distributed Memory Libraries

2 How to integrate software? > Where is the data

— Until recently no standards — Who owns it?
- Many parallel languages - Opt data distribution
— Various parallel programmin .
models P prog 9 2 Who determines data
— Assumptions about the parallel layout
environment - Determined by user?
» granularity - Determined by library
» topology developer?

» overlapping of . .
communication/computation — Allow dynamic data dist.

» development tools — Load balancing

Performance | ssues - Cache & Bandwidth

2 Performance instability

— Small changes may cause dramatic changes in
delivered performance.

2 Latency tolerant and bandwidth
parsimonious algorithms and
software are critical

— Recompute rather than store/load
2 Need to help the compiler
2 Have a hard time today

getting performance

— Only going to get harder

L3 Cache
LocalMen ory

Rem oteMen ary
Seca dary M en ory

History of Block Partitioned
Algorithms

2 Early algorithms involved use of
small main memory using tapes as
secondary storage.

2 Recent work centers on use of
vector registers, level 1 and 2
cache, main memory, and “out of
core’ memory.

Blocked Partitioned

Algorithms

2 LU Factorization 2 Orthogonal

2 Cholesky reduction to:
factorization — (upper) Hessenberg

2 Symmetric indefinite form o
factorization -]s%pwnr]netrlc tridiagonal

2 Matrix inversion _ bidiagonal form

? QR, QL, RQ, LQ - Block QR iteration
factorizations for nonsymmetric

2 Form Q or QTC eigenvalue problems

LAPACK and ScaLAPACK are build on these

9

Gaussian Elimination

D

E— D

i)

Standard Way LINPACK
subtract a multiple of a row apply sequence to a column
a
) \
‘ Q| &
2 a2 B a2
<+> -
nb LAPACK nb 8= & 8185

apply sequence to nb then apply nb to rest of matrix

Gaussian Elimination via a
Recursive Algorithm

F.Gustavsa ard S. Tdedo
LU Algorithm:

1: Split matrix into two rectangles (m x n/2)
if only 1 column, scale by reciprocal of pivot & return

2: Apply LU Algorithm to the left part

3: Apply transformations to right part
(triangular solve A, =LA, and
matrix multiplication A,,=A,, -A,*A,)

4: Apply LU Algorithm to right part

L Ap
Az | Ax N
n

a

Denserecursve factorization

2 The algorithm:

function rlu(A)

begin
rlu(A;,); recursive call
A7 A, -UYA); XTRSM() on upper triangular submatrix
A, ? LA - A, XTRSM() on lower triangular submatrix
Az ? Agp-Agy -Asy; XGEMM()
rlu(A,,); recursive call

end.

2 Performs BLAS Level 3 operations on
large matrix blocks (n2/2, n2/4, n2/8, ..§

Recur sive Factorizations

2 Larger matrix-matrix operations
performed

2 Automatic Blocking
— Drive the recursion down to 1
— No blocksize needed

2 Applies to LU, Cholesky and QR

factorization
— QR needs some care because of triangular

matrix in block Householder

2 Unclear if ideas applies to 2-sided
algorithms (reduction for eigenvalue

problem) .
LU Performance
Recur sive/Blocked
IBM Power3 200 MHz) SUN US2200 200MHz
Recursive
Z;% 300 Recursive
g i% Blocked é 200 Blocked
= 50 $ 100
100 0 +—+—+—+—+—+—++++1
R e T T e e
SELLLSCS S L S L
Order of vector/Matrices. Order of vector/Matrices
Intel Pentium Il - 266 MHz
DEC Alpha 500 MHz Recursive
200
800 Recursive 150
. 600 H Blocked
Eg‘ 400 Blocked £ 100
= ZOO% 50
0+—F+—+—+—+—+—++—+—F+ oy
S S & S & CELCSLSOP S w

Order of vector/Matrices

Spar se Gaussian Elimination

e pammat o b

2 Sparse Elimination much more
complicated than dense

— Only store and compute with nonzero
entries in A

— More nonzero “fill-in”” as elimination
proceeds

— Hard to organize the algorithm so
that most time not spent in
traversing data structures, rather
than floating point.

— Fill-in, parallelizability, cost
depends strongly on order of
equations.

— Many parallelization strategies,
depending on structure.

Spar se Gaussian Elimination

2 Want to exploit block
operations in sparse
matrix

2 Designed to exploit
memory hierarchy

— Serial Supernode-
panel organization
permits "BLAS 2.5"
performance

— Up to 40% of machine
peak on large sparse 10 100 200 300 400 500
matrices on 1BM Order of vectorMeatices
RS6000/590, MIPS
R8000, 25% on Alpha
21164

1BM RS/6000 Power 3 (200 MHz, 800 Mflopls Peak)

Level3 BAS

Level 2 B AS

// Level 1 BLAS

SLEECEEE

16

Spar se recursive factorization algorithm

2 Main problems:
— no large blocks that could be passed to xGEMM()
— no fast xGEMM() counterpart for sparse data structures
— fill reducing ordering required
— pivoting is harder on sparse data structures
2 Solutions

— create dense blocks for dense XxGEMM() by storing some
zero values explicitly:

X X x 0 x
X) 0 x O
X ' 0 0 x
X x 00
X 0 x O 7
X X X 0 x

Spar se Recursive Factorization
Algorithm

2 Solutions - continued

— fast sparse XxGEMM() is two-level algorithm
» recursive operation on sparse data structures

» dense xGEMM() call when recursion reaches
single block

2 fill reducing ordering can be applied
before recursive algorithm

2 no partial pivoting
— use iterative improvement or
— pivot only within blocks

18

I e«
m b|x ||l =

Recur sive stor age conver sion steps

Matrix divided into 2x2 blocks

L T .I
- Ll
- -
I
- L]
m O
L] L]
-
L

L] - T
" e
" 0w

L]

Recursive agorithm division lines

I
1]

Matrix with explicit 0's and fill-in

0 ow|{l
e
IF &

I oelx c|e »
@ Ijx x{ill &
|
=
. 00|
&

ERIE Y

& |

o

!

"
S
X

o1
LU]

= 2o e

-

T

blocking

? - original nonzero value
0 - zero value introduced due to

X - zero value introduced due to fiI!;in

Many Sparse Direct Solvers

=
B

Pl b | b) b | R | e B | B B | B

Complez

m|«

X

I

o+

Bug | Dist

X
X

o B]

el e o] e | e | e | e

EFD

-

el | b | b | bl | b | b

an

X

www.netlib.org/utk/people/JackDongarrall a-sw.html

20

Iterative Solvers- Krylov
Subspace M ethods

2 lIterative methods for
— AX = Db and Ax = ?X
2 Ingredients
— Matrix vector multiplication Ax, possibly Atz
— Dot products, Saxpy3’, Scaling vectors
— “Preconditioner”, M, such that MA is better conditioned than
A
2 Many methods with different properties
— For Ax = b: CG, GMRES, QMR, ..
— For Ax = ?x: Lanczos, Arnoldi, ..
2 Many preconditioners: Jacobi, SOR, ILU, Domain
Decomposition, Multigrid, ..

2 Best choice problem dependent, no easy answer

21
T Yus.%“"“--._h
L
__/'
-
7 Mo Wes =
& & LY
5 stoedge Iz A well- 5 A well- Largest and saallest
cxpensive’ comiditicmed ? oiwlitboned? vigenvalues known?
Mo Yes Mo Yes Yies Mo Mo Yes
Try GMEES Try OGS or Trs QMI-:l Try OG an Try MINRES Try OG Trv CG with
-0t o [HEREN o & method for Chebyehes Accel,
GYIRESIk) nonsymmetric A&

2 “Templates for the Solution of Linear Systems”
— Book with short description of each method & advice
— Pseudocode + Matlab, Fortran, and C
- http://www.netlib.org/templates/Templates.html 2

www.netlib.org/utk/people/JackDongarrall a-sw.html

|terative Solvers

Yo | Comple | 017 | v [ot [50q | D | 50 | ten | SED | O
.;-_:Lu.n_- =1 =11 =1 I Ll R
.'_-i-:-'.LS.i:r:: . x . % .3\. X [1 M . | X . X .
| epg . X Ky X FlE
.u.:_u X X .:. X X XX
| i+ X X M XX
[TEACE X X X x|x
LASFark X Ix XX
EAFFEE . X X M F . P
1 x x|xix B X
FETS: . X X ..x o .PE X
| e * x| X M x|x
o | x x| M X
.E-!-.ECF.!.L'K . x X X . X XX
| x x| X % | x
mooEs (X | X ' XM x|x|x|x 23
Terplase: X X X XX

Today Developing Application Codes
that Scaleto Thousands of Processors

2 Certain applications needs Overall scalability requires
drive development of new algorithmic, parallel, and
codes platform scalability
— 3D, high-resolution (1000x)

— better physics (100x)

2 Math & CS researCh iS Algorithmic scalability

essential Scalable

- need 10-100X speedup application
from smarter algorithms

— using modern software
development & engineering
practices

— investment in algorithm

research leverages huge
hardware investment

Scalable parallel
implementation

Scalable computing platform

12

Scalable Algorithmsarethe
Key to Terascale Smulation

Scalability of Linear Solvers

200

Time to Solution
(= =
o ol
o o

a
o

1 10

N\
(\“'c”ax
W

\

scalable

100

Problem Size (increasing with number of
processors)

1000

?

Algorithmic scalability is
independent of parallel
scalability

An iterative method is
scalable if the number
of iterations required

for convergence does

not depend on problem
size

An algorithm
implementation is
scalable if the time-to-
solution is constant as
problem size increases
with machine size

Scalable Paralld Multigrid

M ethods

smoother
é

Finest Grid

Restriction
transfer from fine
to coarse grid

A Multigrid V-cycle []

coarser grid has fewer cells o

(less work & storage)

First Coarse Grid

Recursively apply this
idea until we have an
easy problem to solve

]

Prolongation
transfer from coarse
to fine grid

Numerical Algorithmsand
Software

2 Numerical computing will be adaptive, iterative,
exploratory, and intelligent.

2 Determinism in numerical computing will be
gone.

— After all, its not reasonable to ask for exactness in numerical computations.
— Audibility of the computation, reproducibility at a
cost

2 Importance of floating point arithmetic will be
undiminished.
- 16, 32, 64, 128 bits and beyond.
— Standards being developed

2 New methods, multipole methods and their
descendants will be ubiquitous.

2 Standards are critical, need to evolve
27

Major Challenge - Adaptivity

2 These characteristics have major
implications for applications that
require performance guarantees.

2 Adaptivity is a key so applications can
function appropriately...
— as resource utilization and availability change,
as processors and networks fail,
as old components are retired,
as new systems are added, and

as both software and hardware on existing
systems are updated and modified.

28

14

Conclusions

2 Numerical linear algebra major activity in
applied mathematics

2 Uses tools from CS, Applied Math, and
Pure Math.

2 Constant stream of new applications
demands new algorithms.

2 More information see:

www.netlib.org/utk/people/JackDongarra/la-sw.html

29

15

