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Trends of Scientific Computation Trends of Scientific Computation 

Jack Dongarra
University of Tennessee 
and
Oak Ridge National Laboratory
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Numerical LibrariesNumerical Libraries
? 20 years ago

– 1 Mflop/s - Scalar based
» Linpack, Level 1 BLAS, loop unrolling

? 10 years ago
– 1 Gflop/s - Vector & SMP computing, cache aware

» LAPACK, Level 2 & 3 BLAS, block partitioned, latency tolerant
? Today

– 1 Tflop/s - Highly parallel, network based, message passing
» ScaLAPACK, data decomposition, communication/computation

? 10 years away
– 1 Pflop/s - Many more levels MH, combination/grids&HPC

» More adaptive, LT and bandwidth aware, fault tolerant, 
extended precision, attention to SMP nodes
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Technology Trends: Technology Trends: 
Microprocessor CapacityMicroprocessor Capacity

2X transistors/Chip Every 1.5 years
Called “Moore’s Law”
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DirectionsDirections

?Move toward clusters
– Distributed Memory
– deep memory hierarchy

? Efficiency of message passing and 
data parallel programming
– Helped by standards efforts such as 
MPI, PVM, and OpenMP 
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Challenges in Developing Challenges in Developing 
Distributed Memory LibrariesDistributed Memory Libraries

? How to integrate software?
– Until recently no standards
– Many parallel languages
– Various parallel programming 

models
– Assumptions about the parallel 

environment
» granularity
» topology
» overlapping of 

communication/computation
» development tools

? Where is the data
– Who owns it?
– Opt data distribution

? Who determines data 
layout
– Determined by user?
– Determined by library 

developer?
– Allow dynamic data dist.
– Load balancing
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Performance Issues Performance Issues -- Cache &BandwidthCache &Bandwidth

? Performance instability
– Small changes may cause dramatic changes in 

delivered performance.
? Latency tolerant and bandwidth 

parsimonious algorithms and             
software are critical 
– Recompute rather than store/load

? Need to help the compiler
? Have a hard time today                     

getting performance
– Only going to get harder

Regist ers
L 1 Cache
L 2 Cache

Local M em ory

Rem ote M em ory

Secon dary M em ory

L 3  Cache
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History of Block Partitioned History of Block Partitioned 
AlgorithmsAlgorithms

? Early algorithms involved use of 
small main memory using tapes as 
secondary storage.

? Recent work centers on use of 
vector registers, level 1 and 2 
cache, main memory, and “out of 
core” memory.
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Blocked Partitioned Blocked Partitioned 
AlgorithmsAlgorithms
? LU Factorization
? Cholesky 

factorization
? Symmetric indefinite 

factorization
? Matrix inversion
? QR, QL, RQ, LQ 

factorizations
? Form Q or QTC

? Orthogonal 
reduction to:
– (upper) Hessenberg 

form
– symmetric tridiagonal 

form
– bidiagonal form

? Block QR iteration 
for nonsymmetric 
eigenvalue problems

LAPACK and ScaLAPACK are build on these
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Gaussian Gaussian EliminationElimination
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LINPACK
apply sequence to a column
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nb LAPACK
apply sequence to nb                                                          
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LU Algorithm:
1: Split matrix into two rectangles (m x n/2)

if only 1 column, scale by reciprocal of pivot & return

2: Apply LU Algorithm to the left part

3: Apply transformations to right part 
(triangular solve A12 = L-1A12 and                
matrix multiplication A22=A22 -A21*A12 )

4: Apply LU Algorithm to right part

Gaussian Gaussian Elimination via a Elimination via a 
Recursive AlgorithmRecursive Algorithm

L A12

A21 A22

F. G ustavson  an d S. Toledo
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Dense recursive factorizationDense recursive factorization

? The algorithm:
function rlu(A)
begin

rlu(A11); recursive call
A21? A21 ·U-1(A11); xTRSM() on upper triangular submatrix
A12 ? L1

-1(A11) ·A12; xTRSM() on lower triangular submatrix
A22 ? A22-A21·A12; xGEMM()
rlu(A22); recursive call

end.

? Performs BLAS Level 3 operations on 
large matrix blocks (n2/2, n2/4, n2/8, …)
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Recursive FactorizationsRecursive Factorizations
? Larger matrix-matrix operations 

performed
? Automatic Blocking

– Drive the recursion down to 1
– No blocksize needed

? Applies to LU, Cholesky and QR 
factorization
– QR needs some care because of triangular 

matrix in block Householder
? Unclear if ideas applies to 2-sided 

algorithms (reduction for eigenvalue 
problem)
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LU  Performance LU  Performance 
Recursive/BlockedRecursive/Blocked
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Sparse Sparse Gaussian Gaussian EliminationElimination
? Sparse Elimination much more 

complicated than dense
– Only store and compute with nonzero 

entries in A
– More nonzero “fill-in” as elimination 

proceeds
– Hard to organize the algorithm so 

that most time not spent in 
traversing data structures, rather 
than floating point.

– Fill-in, parallelizability, cost 
depends strongly on order of 
equations.

– Many parallelization strategies, 
depending on structure.
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Sparse Gaussian EliminationSparse Gaussian Elimination
? Want to exploit block 

operations in sparse 
matrix

? Designed to exploit 
memory hierarchy
– Serial Supernode-

panel organization 
permits "BLAS 2.5" 
performance 

– Up to 40% of machine 
peak on large sparse 
matrices on IBM 
RS6000/590, MIPS 
R8000, 25% on Alpha 
21164

IBM RS/6000 Power 3 (200 MHz, 800 Mflop/s Peak)
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Sparse recursive factorization algorithmSparse recursive factorization algorithm

? Main problems:
– no large blocks that could be passed to xGEMM()
– no fast xGEMM() counterpart for sparse data structures
– fill reducing ordering required
– pivoting is harder on sparse data structures

? Solutions
– create dense blocks for dense xGEMM() by storing some 

zero values explicitly:

?
x x

x
x

x
x

x x

x 0 x
0 x 0
0 0 x

x 0 0
0 x 0
x 0 x
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Sparse Recursive Factorization Sparse Recursive Factorization 
AlgorithmAlgorithm
? Solutions - continued

– fast sparse xGEMM() is two-level algorithm
» recursive operation on sparse data structures
» dense xGEMM() call when recursion reaches 
single block

? fill reducing ordering can be applied 
before recursive algorithm

? no partial pivoting
– use iterative improvement or
– pivot only within blocks
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Recursive storage conversion steps
Matrix divided into 2x2 blocks Matrix with explicit 0’s and fill-in

Recursive algorithm division lines

? - original nonzero value
0 - zero value introduced due to 

blocking
x - zero value introduced due to fill-in
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Many Sparse Direct SolversMany Sparse Direct Solvers

www.netlib.org/utk/people/JackDongarra/la-sw.html
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Iterative Solvers Iterative Solvers -- Krylov Krylov 
Subspace MethodsSubspace Methods
? Iterative methods for

– Ax = b and Ax = ? x
? Ingredients

– Matrix vector multiplication Ax, possibly Atz
– Dot products, Saxpy’s, Scaling vectors
– “Preconditioner”, M, such that MA is better conditioned than 

A
? Many methods with different properties

– For Ax = b: CG, GMRES, QMR, …
– For Ax = ? x: Lanczos, Arnoldi, …

? Many preconditioners: Jacobi, SOR, ILU, Domain 
Decomposition, Multigrid, …

? Best choice problem dependent, no easy answer
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Decision TreeDecision Tree

? “Templates for the Solution of Linear Systems”
– Book with short description of each method & advice
– Pseudocode + Matlab, Fortran, and C
– http://www.netlib.org/templates/Templates.html
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Iterative SolversIterative Solvers
www.netlib.org/utk/people/JackDongarra/la-sw.html

Today Developing Application Codes Today Developing Application Codes 
that Scale to Thousands of Processorsthat Scale to Thousands of Processors
? Certain applications needs 

drive development of new 
codes
– 3D, high-resolution (1000x)
– better physics (100x)

? Math & CS research is 
essential
– need 10-100X speedup 

from smarter algorithms
– using modern software 

development & engineering 
practices

– investment in algorithm 
research leverages huge 
hardware investment

Overall scalability requires 
algorithmic, parallel, and 
platform scalability

Algorithmic scalability

Scalable parallel
implementation

Scalable computing platform

Scalable 
application
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Scalable Algorithms are the Scalable Algorithms are the 
Key to Key to TerascaleTerascale SimulationSimulation

? Algorithmic scalability is 
independent of parallel 
scalability

? An iterative method is 
scalable if the number 
of iterations required 
for convergence does 
not depend on problem 
size

? An algorithm 
implementation is 
scalable if the time-to-
solution is constant as 
problem size increases 
with machine size

Scalability of Linear Solvers

unscalable

scalable

Problem Size (increasing with number of 
processors)
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Scalable Parallel Scalable Parallel MultigridMultigrid
MethodsMethods

smoother

Finest Grid

First Coarse Grid
coarser grid has fewer cells

(less work & storage)

Restriction
transfer from fine 
to coarse grid

Recursively apply this 
idea until we have an 
easy problem to solve

A Multigrid V-cycle

Prolongation
transfer from coarse 
to fine grid
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Numerical Algorithms and Numerical Algorithms and 
SoftwareSoftware
? Numerical computing will be adaptive, iterative, 

exploratory, and intelligent.
? Determinism in numerical computing will be 

gone.
– After all, its not reasonable to ask for exactness in numerical computations.
– Audibility of the computation, reproducibility at a 

cost
? Importance of floating point arithmetic will be 

undiminished.
– 16, 32, 64, 128 bits and beyond.
– Standards being developed

? New methods, multipole methods and their 
descendants will be ubiquitous.

? Standards are critical, need to evolve
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Major Challenge Major Challenge -- AdaptivityAdaptivity
? These characteristics have major 
implications for applications that 
require performance guarantees.

? Adaptivity is a key so applications can 
function appropriately... 
– as resource utilization and availability change,
– as processors and networks fail, 
– as old components are retired, 
– as new systems are added, and 
– as both software and hardware on existing 

systems are updated and modified.
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ConclusionsConclusions
? Numerical linear algebra major activity in 

applied mathematics
? Uses tools from CS, Applied Math, and 

Pure Math.
? Constant stream of new applications 

demands new algorithms.
? More information see:

www.netlib.org/utk/people/JackDongarra/la-sw.html


