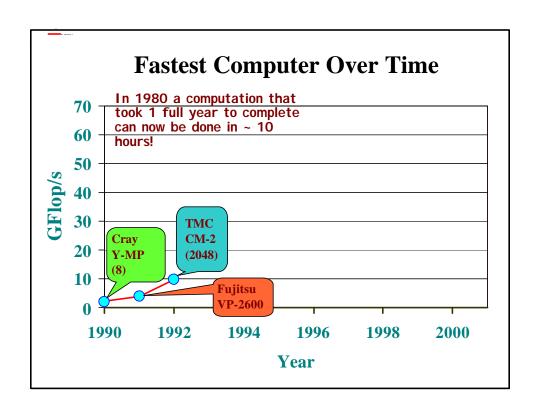
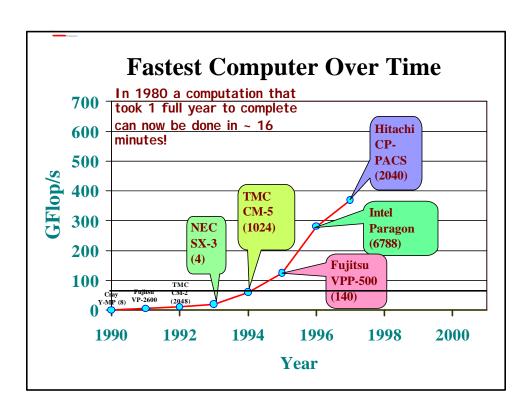
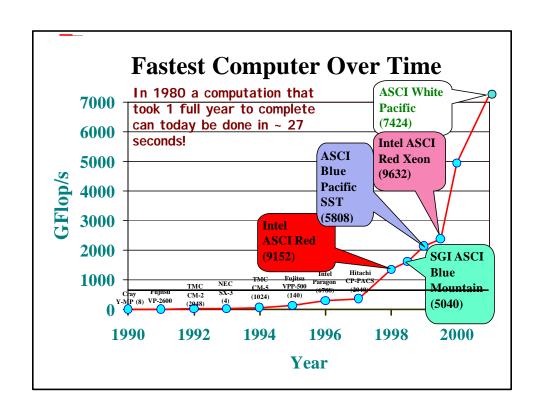
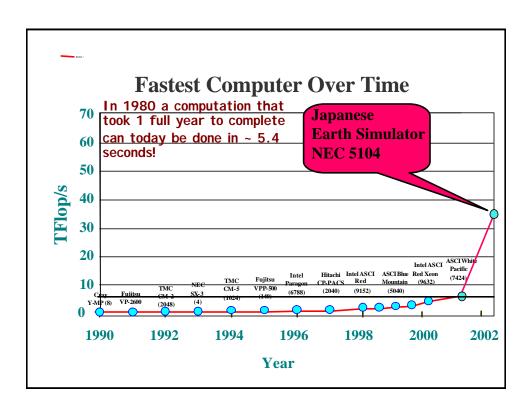

The 14th Symposium on Computer Architecture and High Performance Computing

Vitoria/ES - Brazil - October 28-30, 2002

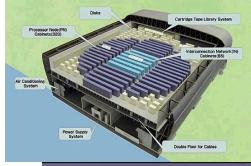

High Performance Computing, Computational Grid, and Numerical Libraries


Jack Dongarra
Innovative Computing Lab
University of Tennessee
http://www.cs.utk.edu/~dongarra/

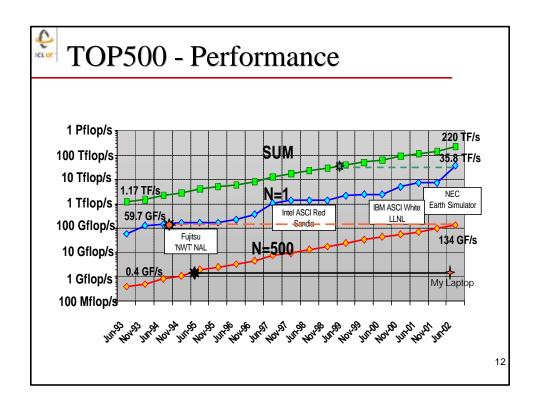


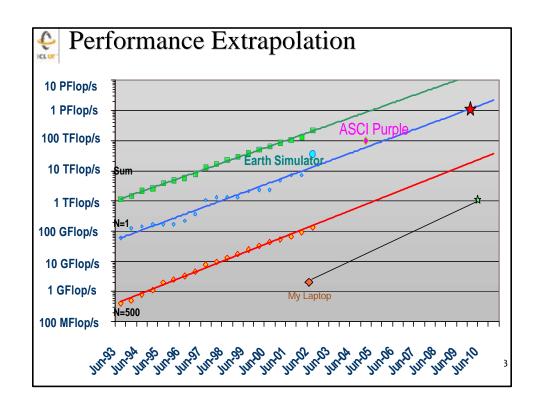


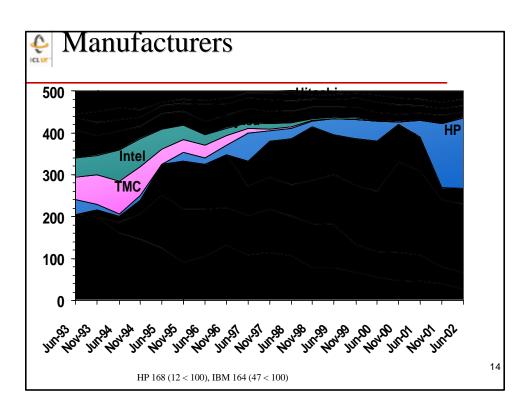
Machines at the Top of the List

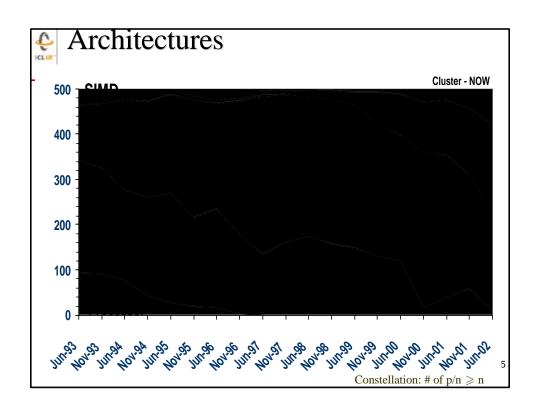

Year	Computer	Measure d Gflop/s	Factor ? from Pervious Year	Theoretica 1 Peak Gflop/s	Factor ? from Pervious Year	Number of Processors	Efficiency
2002	Earth Simulator Computer, NEC	35860	5.0	40960	3.7	5120	88%
2001	ASCI White -Pacific, IBM SP Power 3	7226	1.5	11136	1.0	7424	65%
2000	ASCI White -Pacific, IBM SP Power 3	4938	2.1	11136	3.5	7424	44%
1999	ASCI Red Intel Pentium II Xeon core	2379	1.1	3207	0.8	9632	74%
1998	ASCI Blue-Pacific SST, IBM SP 604E	2144	1.6	3868	2.1	5808	55%
1997	Intel ASCI Option Red (200 MHz Pentium Pro)	1338	3.6	1830	3.0	9152	73%
1996	Hitachi CP-PACS	368.2	1.3	614	1.8	2048	60%
1995	Intel Paragon XP/S MP	281.1	1	338	1.0	6768	83%
1994	Intel Paragon XP/S MP	281.1	2.3	338	1.4	6768	83%
1993	Fujitsu NWT	124.5		236		140	53%

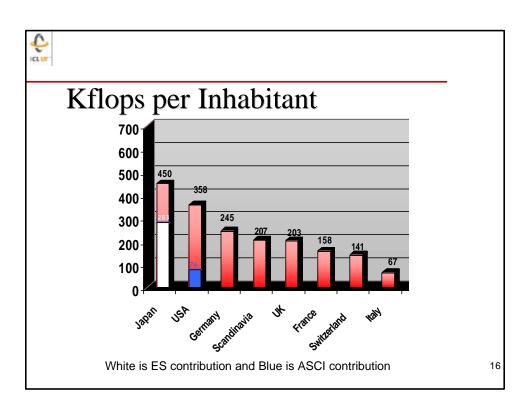
A Tour d'Force in Engineering

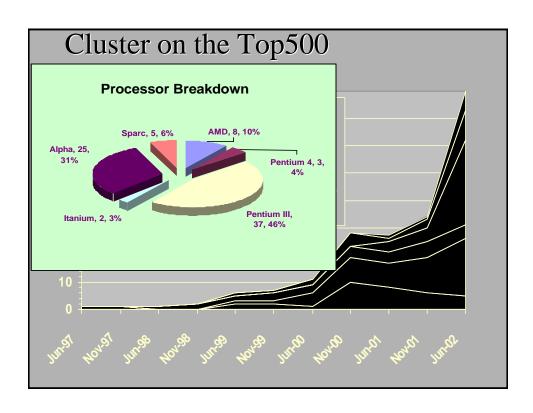

- Homogeneous, Centralized, Proprietary, Expensive!
- Target Application: CFD-Weather, Climate, Earthquakes
- 640 NEC SX/6 Nodes (mod)
 - > 5120 CPUs which have vector ops
- 40TeraFlops (peak)
- \$250-\$500 million for things in building
- Footprint of 4 tennis courts
- 7 MWatts
 - Say 10 cent/KWhr \$16.8K/day = \$6M/year!
- Expect to be on top of Top500 until 60-100 TFlop ASCI machine arrives
- For the Top500 (June 2002)
 - > Equivalent ~ 1/6 S Top 500

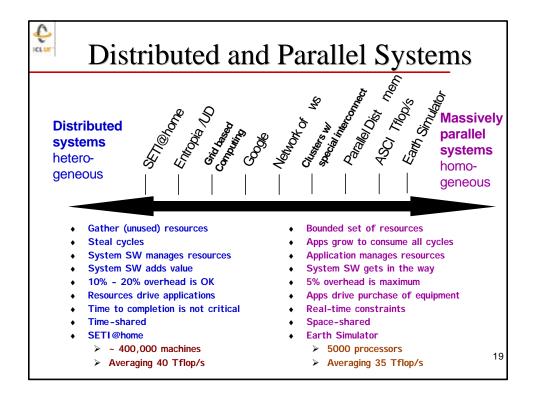

 - Performance of ESC
 > S Next Top 12 Computers
 S of all the DOE computers
 = 27.5 TFlop/s
 - Performance of ESC
 All the DOE + DOD machines (37.2 TFlop/s)

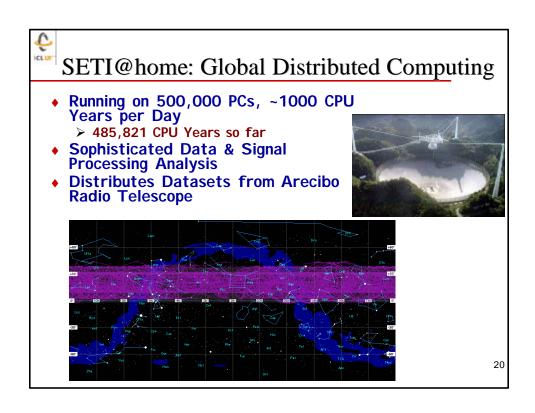





Top10 of the Top500										
Rank	Manufacturer	Computer	R _{max} [TF/s]	Installation Site	Country	Year	Area of Installation	# Proc		
1	NEC	Earth-Simulator	35.86	Earth Simulator Center	Japan	2002	Research	5120		
2	IBM	ASCI White SP Power3	7.23	Lawrence Livermore National Laboratory	USA	2000	Research	8192		
3	HP	AlphaServer SC ES45 1 GHz	4.46	Pittsburgh Supercomputing Center	USA	2001	Academic	3016		
4	HP	AlphaServer SC ES45 1 GHz	3.98	Commissariat a l'Energie Atomique (CEA)	France	2001	Research	2560		
5	IBM	SP Power3 375 MHz	3.05	NERSC/LBNL	USA	2001	Research	3328		
6	HP	AlphaServer SC ES45 1 GHz	2.92	Los Alamos National Laboratory	USA	2002	Research	2048		
7	Intel	ASCI Red	2.38	Sandia National Laboratory	USA	1999	Research	9632		
8	IBM	pSeries 690 1.3 GHz	2.31	Oak Ridge National Laboratory	USA	2002	Research	864		
9	IBM	ASCI Blue Pacific SST, IBM SP 604e	2.14	Lawrence Livermore National Laboratory	USA	1999	Research	5808		
10	IBM	pSeries 690	2.00	IBM/US Army Reseach Lab (ARL)	USA	2002	Vendor	768		

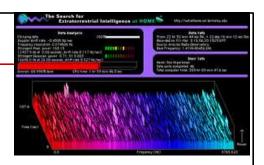


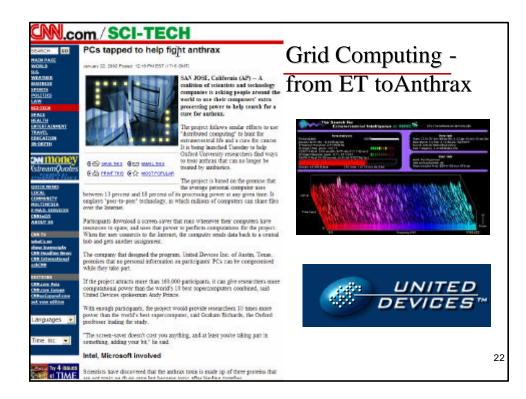




80 Clusters on the Top500

- A total of 42 Intel based and 8 AMD based PC clusters are in the TOP500.
 - > 31 of these Intel based cluster are IBM Netfinity systems delivered by IBM.
- A substantial part of these are installed at industrial customers especially in the oil-industry.
 - > Including 5 Sun and 5 Alpha based clusters and 21 HP AlphaServer.
- 14 of these clusters are labeled as 'Self-Made'.





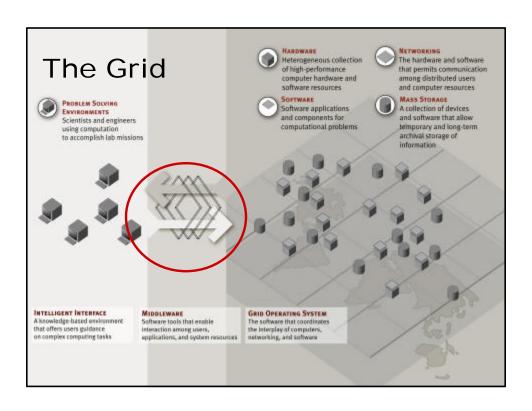
- Use thousands of Internetconnected PCs to help in the search for extraterrestrial intelligence.
- When their computer is idle or being wasted this software will download a 300 kilobyte chunk of data for analysis. Performs about 3 Tflops for each client in 15 hours.
- The results of this analysis are sent back to the SETI team, combined with thousands of other participants.

- Largest distributed computation project in existence
 - **≥** 2500 machines today
 - ➤ Averaging 40 Tflop/s
- Today a number of companies trying this for profit.

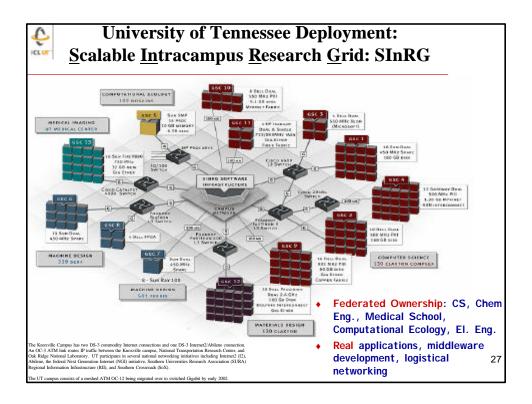
- Google query attributes
 - > 150M queries/day (2000/second)
 - > 3B documents in the index
- Data centers
 - ➤ 15,000 Linux systems in 6 data centers
 - > 15 TFlop/s and 1000 TB total capability
 - >40-80 1U/2U servers/cabinet
 - > 100 MB Ethernet switches/cabinet with gigabit Ethernet uplink
 - rowth from 4,000 systems (June 2000)
 - **>18M queries then**
- Performance and operation
 - > simple reissue of failed commands to new servers
 - > no performance debugging
 - > problems are not reproducible

Source: Monika Henzinger, Google

23

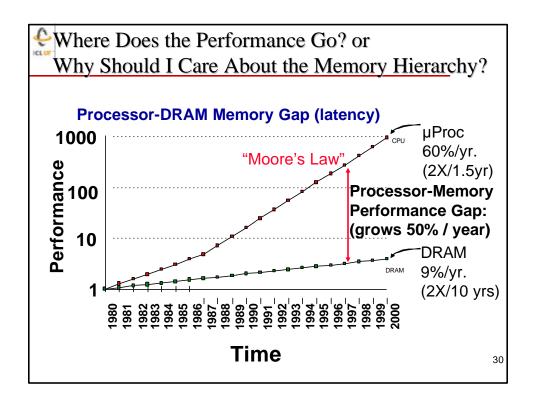


In the past: Isolation Motivation for Grid Computing

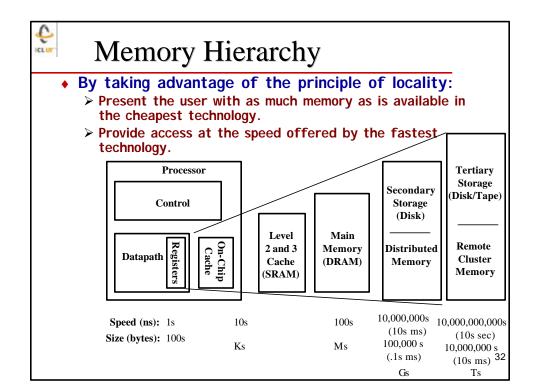


- Today there is a complex interplay and increasing interdependence among the sciences.
- Many science and engineering problems require widely dispersed resources be operated as systems.
- What we do as collaborative infrastructure developers will have profound influence on the future of science.
- Networking, distributed computing, and parallel computation research have matured to make it possible for distributed systems to support highperformance applications, but...
 - > Resources are dispersed
 - > Connectivity is variable
 - > Dedicated access may not be possible

Today: Collaboration⁴


Grids vs. Capability Computing

- ◆ Not an "either/or" question
 - > each addresses different needs
 - both are part of an integrated solution
- Grid strengths
 - > coupling necessarily distributed resources > instruments, archives, and people
 - > eliminating time and space barriers > remote resource access and capacity computing
 - Grids are not a cheap substitute for capability
- Capability computing strengths
 - > supporting foundational computations > terascale and petascale "nation scale" problems
 - engaging tightly coupled teams and computations


Software Technology & Performance

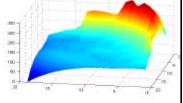
- Tendency to focus on hardware
- Software required to bridge an ever widening gap
- Gaps between usable and deliverable performance is very steep
 - ▶ Performance only if the data and controls are setup just right
 - Otherwise, dramatic performance degradations, very unstable situation
 - > Will become more unstable
- Challenge of Libraries, PSEs and Tools is formidable with Tflop/s level, even greater with Pflops, some might say insurmountable.

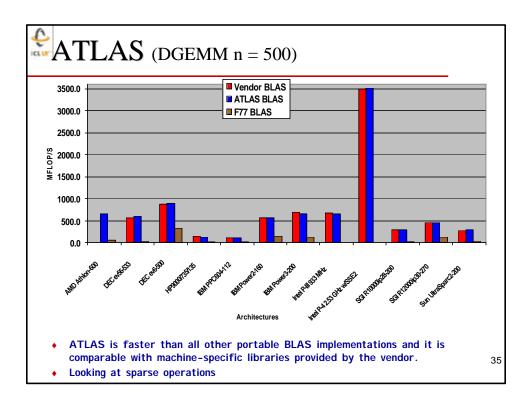
Optimizing Computation and Memory Use

- Computational optimizations
 - > Theoretical peak: (# fpus)*(flops/cycle) * Mhz > Pentium 4: (1 fpu)*(2 flops/cycle)*(2.53 Ghz) = 5060 MFLOP/s
- Operations like:
 - $a = x^T y$: 2 operands (16 Bytes) needed for 2 flops; at 5060 Mflop/s will requires 5060 MW/s bandwidth
 - y = a x + y : 3 operands (24 Bytes) needed for 2 flops; at 5060 Mflop/s will requires 7590 MW/s bandwidth
- Memory optimization
 - ➤ Theoretical peak: (bus width) * (bus speed)
 - > Pentium 4: (32 bits)*(533 Mhz) = 2132 MB/s = 266 MW/s

Self Adapting Software

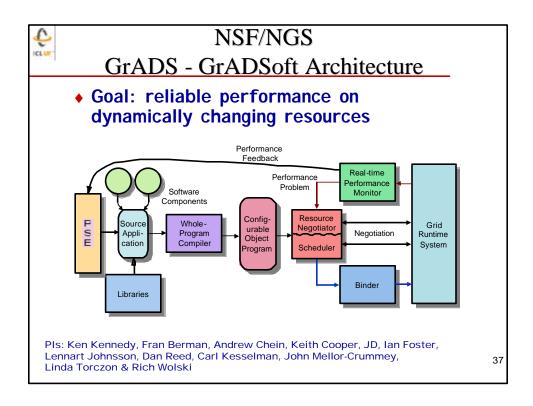
- Software system that ...
 - Obtains information on the underlying system where they will run.
 - ➤ Adapts application to the presented data and the available resources perhaps provide automatic algorithm selection
 - During execution perform optimization and perhaps reconfigure based on newly available resources.
 - > Allow the user to provide for faults and recover without additional users involvement
- The moral of the story
 - ➤ We know the concepts of how to improve things.
 - Capture insights/experience do what humans do well
 - Automate the dull stuff

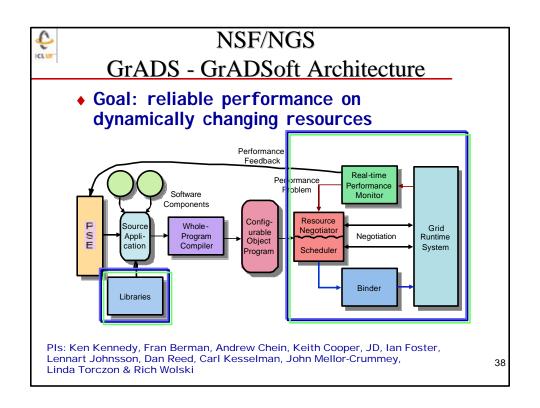

33

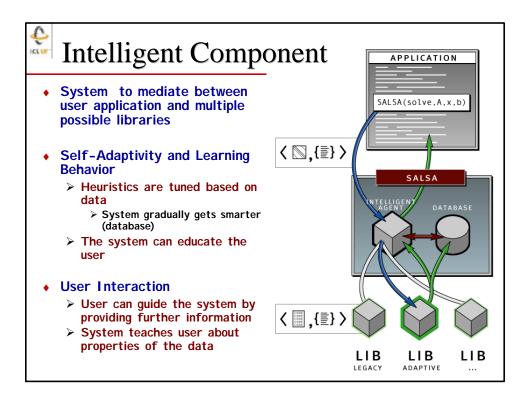

Software Generation

Strategy - ATLAS BLAS

- Parameter study of the hw
- **Generate multiple versions** of code, w/difference values of key performance parameters
- Run and measure the performance for various versions
- Pick best and generate library
- Level 1 cache multiply optimizes for:
 - TLB access
 - ➤ L1 cache reuse
 - > FP unit usage
 - ➤ Memory fetch
 - > Register reuse
 - > Loop overhead minimization

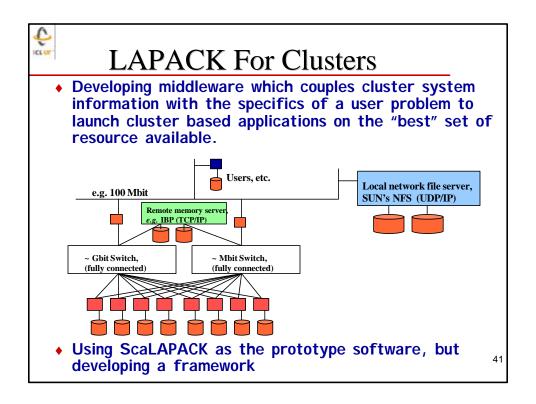

- Takes ~ 20 minutes to run, generates Level 1,2, & 3 BLAS
- "New" model of high performance programming where critical code is machine generated using parameter optimization.
- Designed for modern architectures
 - > Need reasonable C compiler
- Today ATLAS in used within various ASCI and SciDAC activities and by Matlab, Mathematica, Octave, Maple, Debian, Scyld Beowulf, SuSE,...

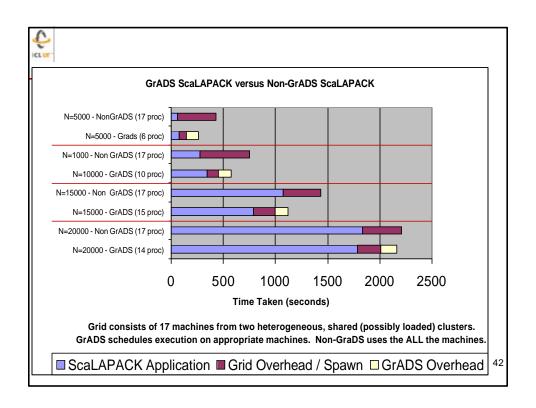



form.

GrADS - Grid Application Development System

- Problem: Grid has distributed, heterogeneous, dynamic resources; how do we use them?
- Goal: reliable performance on dynamically changing resources
- Minimize work of preparing an application for Grid execution
 - Provide generic versions of key components (currently built in to applications or manually done)
 - ➤ E.g., scheduling, application launch, performance monitoring
- Provide high-level programming tools to help automate application preparation
 - > Performance modeler, mapper, binder





Research Areas

- Automatically generating performance models (e.g. for ScaLAPACK) on Grid resources
- Evaluating Performance "Contracts"
- Near Optimal Scheduling (execution) on the Grid
- Rescheduling for changing resources
- Checkpointing and fault tolerance
- High-latency tolerant algorithms (SANS ideas)
- Porting applications/libraries to GrADS framework
- Developing generic GrADSoft interfaces (API's)

Research Directions

- Parameterizable libraries
- Fault tolerant algorithms
- Annotated libraries
- Hierarchical algorithm libraries
- "Grid" (network) enabled strategies

A new division of labor between compiler writers, library writers, and algorithm developers and application developers will emerge.

Futures for Numerical Algorithms and Software

- Numerical software will be adaptive, exploratory, and intelligent
- Determinism in numerical computing will be gone.
 - > After all, its not reasonable to ask for exactness in numerical computations.
 - > Auditability of the computation, reproducibility at a cost
- Importance of floating point arithmetic will be undiminished.
 - ▶ 16, 32, 64, 128 bits and beyond.
- Reproducibility, fault tolerance, and auditability
- Adaptivity is a key so applications can effectively use the resources.

Collaborators / Support

◆ TOP500

- > H. Mauer, Mannheim U
- >H. Simon, NERSC
- **≻**E. Strohmaier, NERSC

GrADS

- ➤ Sathish Vadhiyar, UTK
- ➤ Asim YarKhan, UTK
- ➤ Ken Kennedy, Fran Berman, Andrew Chein, Keith Cooper, I an Foster, Carl Kesselman, Lennart Johnsson, Dan Reed, Linda Torczon, & Rich Wolski

> Thanks

NSF Next Generation Software (NGS)

Grid Application Development Software Project

Scientific Discovery through Advanced Computing (SciDAC)

